Blooms of cyanobacteria in a temperate Australian lagoon

2 system post and prior to European settlement

3

Perran L. M. Cook¹, Miles Jennings¹, Daryl P Holland¹ John Beardall², Christy Briles³, Atun Zawadzki⁴, Phuong Doan^{5*}, Keely Mills^{5,6}, Peter Gell⁵

6 [1] {Water Studies Centre, School of Chemistry, Monash University, Clayton, VIC 3800,

7 Australia}

- 8 [2] {School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia}
- 9 [3] {Geography and Environmental Sciences, University of Colorado, Denver, CO 802173364, USA}
- 11 [4] {ANSTO Institute for Environmental Research, Lucas Heights, NSW 2232, Australia}
- 12 [5] {Water Research Network, Federation University Australia, Ballarat, VIC 3350,13 Australia}
- 14 [6] {British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK}
- 15 [*]{now at: Faculty of Biology- Environment, The University of Da Nang, Da Nang city,
- 16 Vietnam}
- 17 Correspondence to: P.L.M Cook (perran.cook@monash.edu)
- 18

19 Abstract

20 Blooms of noxious N₂ fixing cyanobacteria such as *Nodularia spumigena* are a recurring 21 problem in some estuaries, however, the historic occurrence of such blooms in unclear in 22 many cases. Here we report the results of a palaeoecological study on a temperate Australian 23 lagoon system (The Gippsland Lakes) where we used stable isotopes and pigment biomarkers 24 in dated cores as proxies for eutrophication and blooms of cyanobacteria. Pigment proxies show a clear signal, with an increase in cyanobacterial pigments (echinenone, canthaxanthin 25 26 and zeaxanthin) in the period coinciding with recent blooms. Another excursion in these proxies was observed prior to the opening of an artificial entrance to the lakes in 1889, which 27 28 markedly increased the salinity of the Gippsland Lakes. A coincident increase in the

sediment organic carbon content in the period prior to the opening of the artificial entrance 1 2 suggests the bottom waters of the lakes were increasingly stratified and hypoxic, which would 3 have led to an increase in the recycling of phosphorus. After the opening of the artificial 4 entrance there was a ~60 year period with low values for the cyanobacterial proxies as well as 5 a low sediment organic carbon content suggesting a period of low bloom activity associated with the increased salinity of the lakes. During the 1940s, the current period of re-6 7 eutrophication commenced as indicated by a steadily increasing sediment organic carbon 8 content and cyanobacterial pigments. We suggest increasing nitrogen inputs from the 9 catchment led to the return of hypoxia and increased phosphorus release from the sediment, which drove the re-emergence of cyanobacterial blooms. 10

11

12 **1** Introduction

13 Harmful algal blooms (HABS) are becoming increasingly prevalent throughout the world. One of the key causes of this is eutrophication of aquatic environments by excessive nutrient 14 15 inputs (Conley et al., 2009). Climatological and hydrological factors are increasingly recognized as an important contributor to HABS through altered temperature and salinity 16 17 regimes (Paerl and Paul, 2012). Blooms of toxic cyanobacteria such as Nodularia spumigena 18 are particularly conspicuous in some estuaries such as the Baltic Sea, the Peel-Harvey Estuary 19 and the Gippsland Lakes (Cook and Holland, 2012;Lukatelich and McComb, 1986;Conley et 20 al., 2009). The most likely reasons for their dominance in these systems are: (1) long water 21 residence time; (2) intermediate salinity (~5-20); and (3) a high supply of phosphorus (both 22 from the catchment and from anoxic bottom waters and sediments). As such, the frequency 23 and occurrence of these blooms is likely to result from a strong interaction between 24 anthropogenic nutrient loading and climatological and hydrological factors.

25

In the case of the Baltic Sea, cyanobacterial blooms have occurred sporadically since the formation of the Littorina Sea 8000 years BP (Bianchi et al., 2000). The presence of cyanobacteria is most likely controlled by the extent of bottom water hypoxia, which leads to an efficient recycling of phosphorus (Funkey et al. 2014). The extent of hypoxia in the Baltic has been controlled by morphological and hydrological changes, however, the most likely control over hypoxia and cyanobacterial blooms over the past two millennia is the expansion and contraction of human activities (Zillen and Conley, 2010). Similarly, in the Gippsland

Lakes and Peel-Harvey Estuary, the frequent and intense blooms are thought to be relatively 1 2 recent phenomena, with significant blooms only observed after the late 1970s (McComb and 3 Humphries, 1992). In the Peel-Harvey Estuary, the intensity of N. spumigena blooms is 4 strongly related to river discharge during the previous winter/spring which delivers significant 5 quantities of phosphorus as well as reducing the salinity of the estuary to a range favourable to N. spumigena growth (McComb and Humphries, 1992). The critical importance of salinity 6 7 in controlling N. spumigena blooms is well illustrated in the Peel-Harvey Estuary, where a 8 newly cut channel to the sea increased the salinity of the estuary and virtually eliminated N. 9 spumigena blooms (Wildsmith et al., 2009).

10

In the Gippsland Lakes, Australia, it has been shown that N. spumigena bloom size is 11 12 decoupled from catchment inputs owing to internal recycling of P driven by stratification (Cook and Holland, 2012). As such, N. spumigena blooms typically occur during wet years 13 14 when stratification is highest, however there is no relationship between catchment nutrient loads and bloom size (Cook and Holland, 2012). Nevertheless, anthropogenic activities are 15 likely to have played a role in the occurrence of recent blooms through increased phosphorus 16 17 inputs leading to increased sediment phosphorus storage as well as increased nitrogen inputs which are likely to drive increased releases of phosphorus from the sediment through 18 19 increased anoxia (Cook et al., 2010). Prior to European settlement, the Gippsland Lakes were 20 connected to the ocean by an ephemeral entrance (Bird, 1978). In 1889, a permanent artificial 21 entrance was opened, which increased the salinity regime of the lakes (Saunders et al., 2008). 22 There are anecdotal accounts of N. spumigena blooms prior to the opening of the artificial entrance, but there is no information on the relative frequency or intensity of blooms at this 23 24 time. Two alternative hypotheses were tested here. 1. The fresher, less flushed and more stratified environment prior to the opening of the artificial entrance may have been more 25 26 conducive to anoxia, associated sediment phosphorus release and cyanobacterial blooms than post opening. 2. Alternatively, low nutrient inputs prior to European settlement may have led 27 to a lower incidence of hypoxia and associated cyanobacterial blooms. The aim of this study 28 was to investigate changes in the trophic status and frequency of cyanobacterial blooms in the 29 30 Gippsland Lakes before the opening of the artificial entrance up to the present day using pigment, organic matter and isotope proxies on dated cores taken from the centre of the lake 31 32 system. The findings provide an important, longer-term perspective from which to frame

modern management regimes within the Gippsland Lakes as well as other systems modified
 by humans more generally.

3

4 2 Materials and Methods

5 2.1 Study Site

6 The Gippsland Lakes are located in South Eastern Australia, and experience a temperate climate with a water temperature range of ~10-25 °C (Fig 1). The Lakes are fed by 5 river 7 systems including the Latrobe and Avon in the west, and the Mitchell, Tambo and Nicholson 8 9 in the east. Lake Wellington in the west is a shallow basin with an average depth of ~ 2.6 m, and typically has a salinity <15. Lakes King and Victoria in the east have an average depth of 10 \sim 5 m. The lakes cover an area of 356 km², making them one of the largest estuarine systems 11 in Australia. Maximum river flows and floods typically occur in the Austral winter-spring, 12 13 which reduce surface salinities to \sim 5-15, which then increase to >25 over summer in Lakes King and Victoria. Lakes King and Victoria are typically salinity stratified, with bottom 14 15 water salinities of ~30-35 and during intense stratification following high river flow, the 16 bottom waters of the Lakes King and Victoria may become anoxic. Winter and spring 17 inflows typically lead to blooms of diatoms and dinoflagellates, and since 1987, periodic 18 blooms of Nodularia spumigena have occurred in Lake King during late spring and summer 19 when surface water salinities are ~9-20 (Cook and Holland, 2012). Previous studies have 20 shown these blooms are phosphorus limited and that they are sustained by high sediment phosphorus release focused in the northern basin of Lake King and that these blooms can fix 21 significant quantities of nitrogen with a δ^{15} N of ~0 ‰ (Cook and Holland, 2012;Cook et al., 22 2010;Holland et al., 2012;Woodland and Cook, 2014;Woodland et al., 2013). 23

24

25 **2.2** Sampling

Sediment cores were taken from Lake King North (LKN; 37.875620° S, 147.757280° E, Fig 1) at a water depth of 7 m on the 15th of March 2012, which is where contemporary blooms are centered. The uppermost core, LKN1 (0-56 cm) was retrieved by a piston corer to collect the recent, unconsolidated sediments. This core was sectioned in the field at 0.5 cm intervals (contiguous), to attain a chronology to aid the identification of recent changes in the sediment. During sectioning, the core was placed in a black plastic bag to shield it from light and once sectioned, samples were rapidly placed in the dark. Subsamples (1-2 g) from each section were stored in glass vials, with the rest of the sample stored in zip lock bags. All samples were kept on ice and, on returning to the laboratory, the bags were transferred to the refrigerator (4 °C) and the vials frozen until required for stable isotope analysis. Wet samples were kept in darkness in order to reduce light exposure that could change the sediment composition.

7

A second drive (LKN2) using a Russian peat corer collected a deeper, older sedimentary sequence and consisted of a series of 50 cm (overlapping) drives from 0 - 2.1 m. All cores were stored in halved PVC pipes, wrapped in cling film and aluminium foil and kept cool until refrigerated in the laboratory. The cores were sectioned into 1 cm layers using a blade and spatula, and stored as per LKN1. The two sequences were correlated based on the calculated field depths and this was validated by dating across the two sequences as described in the next section.

15

16 2.3 Dating

The sediment core was dated at the Australian Nuclear Science and Technology Organisation 17 (ANSTO) Institute for Environmental Research using the lead-210 (²¹⁰Pb) dating method 18 (Appleby, 2001). Samples were chemically processed following the methods described in 19 Atahan et al. (2015) and analysed by alpha spectrometry to determine unsupported ²¹⁰Pb 20 activities on thirteen subsamples from core LKN1 (0 - 51.5 cm) and the 42-92 cm LKN2 21 22 sequence. A CIC (Constant Initial Concentration) model was used to calculate the ages of the sediment samples (Appleby, 2001). The ²¹⁰Pb chronology was validated with the presence of 23 a subsurface peak of caesium-137 (137 Cs), which identifies the year of 1964, due to global 24 atmospheric nuclear weapons tests (Leslie and Hancock, 2008). ¹³⁷Cs activities in 8 25 26 subsamples were determined by gamma spectrometry.

27

28 2.4 Carbon and nitrogen analysis

Sediment from the LKN1 and LKN2 core sediment sample was analysed via mass spectroscopy for % nitrogen, % carbon, C_{org} :N, δ^{15} N and $\delta^{13}C_{org}$. These samples were dried at 60°C for 30-50 hours and placed in 1.7 ml Eppendorf tubes along with Qiagen Tungsten

Carbide Beads (3 mm) then shaken for 6-10 minutes at 25 Hz using a Retsch Mixer Mill MM 1 200 until a fine, homogeneous powder was produced. Samples for carbon ($\delta^{13}C_{org}$) were 2 weighed in silver capsules and placed on a hotplate (60-80°C) to undergo acidification. 3 Aliquots (20 µL) of 10% HCl were sequentially added to capsules until no effervescence was 4 recorded. Samples for nitrogen (δ^{15} N) analysis were weighed in tin capsules. Once each 5 capsule was prepared it was pinched-closed and pressed into a disk using a pelletiser. Each 6 7 sample was analysed on an ANCA GSL2 elemental analyser interfaced to a Hydra 20-22 8 continuous-flow isotope ratio mass-spectrometer (Sercon Ltd., UK). Stable isotope data were expressed in the delta notation ($\delta^{13}C_{org}$ and $\delta^{15}N$) relative to the stable isotopic ratio of Vienna 9 Pee Dee Belemnite standard (R_VPDB = 0.0111797) and the air standard (R Air = 10 11 0.0036765), for carbon and nitrogen respectively. Analytical precision was ± 0.1 % for both $\delta^{13}C_{org}$ and $\delta^{15}N$ (SD for n=5). 12

13

14 2.5 Pigments

15 Pigments were analysed at 5 cm intervals from 0-41 cm and every 10 cm through to 200 cm 16 from the LKN2 core sequence. Freeze-dried sediments were extracted in pure acetone overnight and stored in the dark at -22°C. They were then filtered, dried and re-dissolved 17 18 under low light conditions, and then injected into a Shimadzu high performance liquid 19 chromatography (HPLC) system. The separation conditions were modified from Mantoura and Llewellyn (1983) and Chen et al. (2001) using a 4.6×150 mm, 3 μ m C8 (Luna, 20 21 Phenomenex) column. Pigment peaks were identified by retention times and spectra, and then 22 quantified by peak areas at maximum absorbance wavelength using calibrated curves from phytoplankton pigment standards DHI (Denmark). Canthaxanthin was measured at 475 nm, 23 24 and the carotenoids lutein, zeaxanthin, diadinoxanthin, diatoxanthin, and echinenone were measured at 450 nm. The pigments zeaxanthin, echinenone and canxanthin were used as 25 26 markers for cyanobacteria (Jeffrey and Vesk, 1997), Chlorophyll a was measured at 665 nm. Concentrations are reported in micromoles (µmol) of pigment relative to the organic material 27 in the sediment as measured as described above. 28

29

30 2.6 Diatoms

The core sequence was subsampled every 10 cm for diatom analysis from the LKN2 core. Approximately 1 g wet weight sediment was digested in 30% hydrogen peroxide in a beaker,

on a hotplate, for up to 4 hours (Battarbee, 1986). Following digestion, a small amount of HCl 1 2 was added to remove any carbonates. The suspensions were washed in distilled water and left 3 to settle overnight, before decanting the supernatant (repeated four times). An aliquot of the final suspension was placed onto a coverslip and left to dry. The coverslips were permanently 4 5 mounted onto slides using Naphrax. Diatoms were identified (where possible) to species level, using a Nikon DIC Microscope. Identifications were undertaken using a range of 6 7 general (Krammer and Lange-Bertalot, 1991a, b;Krammer and Lange-Bertalot, 1988, 1986) 8 and regional (Foged, 1978; Sonneman et al., 2000) floras. A minimum of 200 valves per 9 sample were counted, and the counts converted to percentage data in C2 (Juggins, 2003). Where possible an ecological preference (i.e. saline, fresh, thalassic) was assigned to each 10 11 species to create a habitat summary diagram. To further explore patterns in the diatom data, a 12 Detrended Correspondence Analysis (DCA) was carried out using Canoco 4.5.

13

14 2.7 Charcoal

Wet sediment (1 ml) from the LKN2 sequence was subsampled into a 50 ml Falcon tube. 25 ml of 10% tetra sodium pyrophosphate (Na₄P₂O₇) was added to the tube, the contents shaken vigorously and left to sit. After 30 minutes, 25 ml of 12.5% sodium hypochlorite (NaOCl) was added, and the tube was again shaken vigorously and then left to sit for 14-18 hours. The samples were then sieved through 250 μ m and then 125 μ m mesh, rinsed and placed on a water filled petri dish where the total number of charcoal and grass charcoal particles were enumerated under a dissecting microscope.

22

23 **3 Results**

24 3.1 Age model

The unsupported ²¹⁰Pb activities for the King Lake core exhibit an overall decay profile with 25 increasing depth (Fig 2a) indicating the core is suitable for ²¹⁰Pb dating. The top 5 cm 26 unsupported ²¹⁰Pb activities deviate from a decay profile, which may be due to sediment 27 mixing in the upper section of the core. Below 5 cm the unsupported 210Pb activities exhibit 28 29 two distinct zones, where each zone follows a monotonic profile with depth, between 5-20 cm and 20-90 cm. Using the CIC ²¹⁰Pb dating model, the mass accumulation rate between 5-20 30 cm depth was calculated to be 1 g/cm²/year (about 0.55 cm/year), and between 20-90 cm 31 depth at 2.4 g/cm²/year (about 1 cm/year). These mass accumulation rates were used to 32

determine sediment ages between 0 and 90 cm core depth, which were then converted to 1 2 calendar years (Fig 2b). The 210Pb ages were validated by ¹³⁷Cs, with the 1964 peak found in the 25-30 cm sediment laver in the LKN1 sequence, dated to 1964-1969 (Fig 2c). A further 3 validation is the peak in charcoal abundance (24 ml⁻¹) at depth 61 cm (Fig 3), which 4 corresponds to approximately 1937, which is in close agreement with the date of the most 5 widespread bushfires in the catchment in 1939. The sediment age below 90 cm was estimated 6 7 by extrapolating the measured sedimentation rate over the depth interval 20-90 cm to 200 cm. 8 Given that sedimentation rates have increased since European settlement, this provides a 9 minimum age for sediments below ~140 cm.

10

11 3.2 Sediment chronology

12 Three broad zones within the chronology are identified here. The delineation of the zones was 13 based on a visual assessment of abrupt changes in the diatom and geochemical proxies as well 14 as inflection points in DCA axis 1.

- 15
- 16

17 Zone LK1 (c. 1810-1870, depth 130-200 cm)

18 This zone covers the period of European settlement in the region. Sediment organic carbon and nitrogen content were relatively stable at 5% and 0.5% respectively and were the highest 19 observed in the entire record (Fig 3). Sediment δ^{13} C and δ^{15} N were similarly stable at -23% 20 and 4‰ respectively. Sediment Corg:N ratios were ~10 over this period. Sediment pigments 21 including diatoxanthin and cyanobacterial pigments were also sporadically high over this 22 period, with total cyanobacterial pigments peaking at 2600 nmol g org C⁻¹ at 185 cm 23 coinciding with the year ~ 1820 which is the highest concentration in this record. Over this 24 25 period, thalassic diatom taxa dominated, although to a much lesser extent than in the period 26 LKN1. The diatom Cyclotella choctawatcheeana was the dominant species over this period. 27 Charcoal abundances were much higher over this period than the subsequent periods, and peaked at 170 cm coinciding with the year ~1825 (Fig 4). 28

This zone represents an abrupt change in most proxies and encompasses the period of the 1 opening of the artificial entrance in 1889. The sediment δ^{13} C, %Corg and %N decreased by 2 1.5%, 2% and 0.2% respectively at 130 cm before increasing again by a similar amount at 80 3 4 cm. There was also a distinct jump in the Corg:N ratio in the sediment from ~ 11 to >13 over this period. Sediment δ^{15} N increased abruptly by ~1‰ at the start of the period, but unlike 5 6 the other proxies it did not show and marked change at the end of this period as the other 7 proxies did. There was a distinct peak in the dominance of freshwater diatom species over this period. All pigment markers were relatively low and stable over this period. There was a 8 9 spike in charcoal at ~ 100 cm depth coinciding with the year ~ 1900 .

10

11 Zone LK3 (c. 1920-2012, depth 0-80 cm)

12 Over this period, %N and %Corg increased from approximately 0.2 to 0.5 and 2.6 to 4.3, respectively. The C_{org} :N ratio showed an initial decrease and then stabilised at ~11 (Fig 3). 13 The $\delta^{13}C$ and $\delta^{15}N$ were relatively constant at -23‰ and 5‰ respectively over the period 14 1925 – 1980s; and the sedimentation rate was also constant at 1 cm/year. During the late 15 16 1980s, the sedimentation rate slowed from 1 to 0.55 cm/year, at the same time there was a marked decrease in δ^{15} N, δ^{13} C_{org}, %N and %C_{org}, and a spike in C_{org}:N. This change coincided 17 18 with the first and largest Nodularia spumigena bloom on record in Lake King in 1987, 19 followed by recurring blooms through to the present (Cook and Holland, 2012). In 2006-20 2007 major bushfires occurred in the East Gippsland catchment, followed by a major flood in 21 2007.

22

Concentrations of chlorophyll a, diatoxanthin and cyanobacterial pigments increased gradually from 1925 to the late 1980s, before rapidly increasing after this period. Pheophytin a showed sporadic peaks between 1950 and 1975, before decreasing in the 1980s, followed by another increase after this. Diatoms were dominated by thalassic taxa throughout the period 1925 to the present. Charcoal abundance within the sediment was consistently low throughout this period with one spike occurring at ~60 cm which dates to the period of ~1939 coincident with some of the most widespread fires on record in the region.

Although there is a possibility of mixing below the depth of ²¹⁰Pb activity cannot be ruled out, we believe that large scale mixing of the core below this depth can be ruled out, leaving our broad interpretation of the 3 zones unchanged. First, zone LK-1, which is prior to the opening of the artificial entrance consistently has the highest count of *Cyclotella* and lowest abundance of Thalassic diatoms. Second many of the proxies measured at high resolution showed abrupt changes throughout the core. If there was significant sediment mixing, such abrupt changes would be smeared out.

- 8
- 9

10 4 Discussion

11 Impact of settlement

Prior to European settlement in the early 1840s, land use by the Aboriginal tribes was of a 12 nomadic hunter gathering nature, and documentary evidence suggests that fire was the 13 principal agent of land management across Australia at this time (Gammage, 2011). This 14 15 account is however contradicted by most charcoal records from south-east Australia which 16 show an increased incidence of fire after European settlement (Mooney et al., 2011: Mills et 17 al., 2013). The high charcoal counts below 170 cm are consistent with high rates of indigenous burning of fringing reedbeds before tubers were harvested which has been a 18 19 recognized common practice (Head, 1987). Early European land use was primarily low intensity sheep grazing. Gold mining commenced in the 1850s, followed by increased 20 21 navigation of the lakes in the 1860s for the purposes of trade, fishing and tourism. By the 22 1870s there was regular steamer traffic on the Mitchell River and there are regular references 23 to dredging the mouths of the Mitchell, Nicholson and Tambo Rivers from the early 1880s though to the turn of the century and into the 1920s (Synan, 1989). The opening of the 24 25 permanent entrance in 1889 was one of the pivotal moments in the recent ecological history 26 of the lakes because it led to an increase in the salinity of the Gippsland Lakes (Saunders et al., 2008). Over the period of the opening of the artificial entrance (corresponding to depths 27 of ~110 cm), we expected to see a change in the diatom taxa to a greater abundance of 28 29 thalassic species and a concomitant reduction in freshwater species. Unexpectedly, a spike in 30 freshwater species was instead observed over the period 1870-1925 represented by the LK2 layer. This corresponded with other geochemical proxies which suggested an increase in 31

terrestrial organic matter including a decrease in δ^{13} C, and an increase in the sediment C:N 1 2 ratio which was also observed (although not discussed) by Saunders et al. (2008). This 3 suggests that the study site had an increased influence from riverine sediments over this period. The most likely explanation for this is remobilization of terrestrial sediments through 4 5 dredging activities within the delta of the Mitchell River over this period (Fig 1), which could have led to an increased deposition of terrestrial material at the study site over this period. It 6 7 appears that this increased input of terrestrial material did not correspond with a changed sedimentation rate as the ²¹⁰Pb decay profiles displayed a similar trend between the LK3 and 8 9 LK2 layers (Fig 2a). Irrespective of the exact cause of the LK2 sediment layer, we are 10 confident the LK3 and LK1 layers are representative of post and pre artificial entrance opening periods respectively. 11

12 Cyanobacteria blooms and eutrophication

The biogeochemical proxies analysed here provide clear evidence for two periods of 13 14 eutrophication and cyanobacterial blooms in the Gippsland Lakes: (1) The recent period after World War II (LK3) and (2) prior to the opening of the artificial entrance in 1889 (LK1). The 15 16 latter part of the most recent period has been well monitored and provides an excellent means to validate the biogeochemical proxies. The first piece of evidence for the recent period of 17 18 eutrophication comes from the steady increase in sediment organic carbon and pheophytin-a 19 content after the 1940s (Fig. 3), consistent with a previous paleolimnological study (Saunders et al., 2008). The $\delta^{13}C_{org}$ of this organic matter is typically ~-23 ‰, consistent with organic 20 21 matter inputs derived from phytoplankton (Fig. 3). This period also coincided with a marked jump in the sum of the cyanobacteria pigments zeaxanthin, echinenone and canthaxanthin 22 from ~500 nmol g orgC-1 up to >2000 nmol g orgC⁻¹ at the top of the core (Fig 3) consistent 23 with a N. spumigena bloom at the site in Nov 2011 – Feb 2012 (Woodland et al., 2013). The 24 25 first documented bloom of N. spumigena in the lakes the occurred in 1965 and the period from 1987 through the 1990s is known to have had severe and regular blooms (Cook and 26 Holland 2012). Over this period there were also two dips in the $\delta^{15}N$ of ~2 ‰ in the 1940s 27 and late 1980s - 2000 consistent with the occurrence of nitrogen fixing cyanobacteria. The 28 29 broad agreement between these cyanobacteria markers and recent recorded blooms gives us confidence that they are appropriate markers of cyanobacteria blooms within the Gippsland 30 Lakes and this is consistent with previous studies in the Baltic Sea (Bianchi et al., 31 32 2000;Funkey et al., 2014).

2 The biogeochemical proxies for the period prior to the opening of the artificial entrance in 1889 in layer LK1 likewise suggest a period of eutrophication and intense cyanobacteria 3 blooms. The sediment organic content was high (~5%), the δ^{15} N was low (~4-5‰), the $\delta^{13}C_{org}$ 4 was in the range typical of phytoplankton (-22 - 23 ‰) and the cyanobacteria pigments and 5 6 pheophytin-a were sporadically high (Fig 3). Reports from newspaper articles in the late 7 1870s also suggest the presence of surface scums of cyanobacteria with reference to "noxious 8 and ill smelling weed" on the surface of Lake King and there were anecdotal reports of the 9 greatly improved water quality with the increased salinity after the opening of the artificial 10 entrance in 1889 (Synan, 1989). We now discuss 3 key factors controlling incidence of 11 cyanobacteria blooms prior to the opening of the artificial entrance and European settlement.

12

13 1. Salinity. With no permanent entrance, the inflow of seawater was greatly reduced, and at 14 this time the lakes were considerably fresher (Harris et al., 1988;Saunders et al., 2008). The 15 diatom chronology also supports this reduced marine influence with an increased abundance of Cvclotella choctawatcheeana a planktonic diatom characteristic of deep mesosaline 16 17 (salinities >10) lakes and brackish marine systems (Fritz et al., 1993), and the reduced 18 dominance of thalassic diatoms (Fig 4). N. spumigena typically blooms at salinities between 19 9 to 20 in the Gippsland Lakes, and these salinities are currently only reached during late 20 spring-summer in high flow years (Cook and Holland, 2012). Prior to the opening of the 21 artificial entrance it is likely this salinity range was more typical, hence increasing the 22 frequency of blooms. In high flow years when salinities were even lower, it is likely that 23 other nitrogen fixing cyanobacteria, such as Anabaena would instead dominate. This species 24 occasionally blooms in Lake Wellington, and it is therefore possible that this cyanobacterium 25 was present in Lake King prior to 1889.

26

Stratification and residence time. At present, the highest stratification is observed during
 periods of low surface water salinity in the Gippsland Lakes associated with above average
 river flows (Cook and Holland, 2012). Reduced tidal flushing, combined with low surface
 salinity would lead to enhanced stratification and residence time of the water column which
 are both known to favour buoyant slow growing cyanobacteria such as *N. spumigena* (Sellner,
 1997;Paerl, 2014). Increased stratification will also lead to increased hypoxia, and the

1 marked increase in sediment organic carbon content to $\sim 5\%$ prior to ~ 1870 (below 130 cm, 2 Fig. 4) is consistent with increased hypoxia in this period (Zillen and Conley, 2010). A key 3 effect of this would be to enhance the release of phosphorus from the sediment which is a key 4 driver of *N. spumigena* blooms in the Gippsland Lakes (Cook et al., 2010;Scicluna et al., 5 2015).

6

7 3. Nutrients. Prior to European settlement it has been estimated that nitrogen and phosphorus 8 loads were a lower by a factor of 2 and 3 respectively (Grayson et al., 2001). At face value, it 9 is surprising that the Gippsland Lakes experienced more blooms of cyanobacteria then, 10 however, this can be reconciled with contemporary studies. First, cyanobacteria such as N. spumigena can derive all of their nitrogen requirements from nitrogen fixation, and these 11 12 blooms can add significant loads to the Gippsland Lakes (Woodland and Cook, 2014). The generally lower sediment δ^{15} N values prior to 1870 (below 130 cm) are consistent with this. 13 14 Second, cyanobacterial blooms are driven by a focused release of phosphorus from the sediments during bottom water hypoxia/anoxia, and it was estimated that a large recent bloom 15 16 of N. spumigena was caused by a release of ~25 tonnes of phosphorus from the sediment in Lake King (Scicluna et al., 2015). Given that phosphorus is trapped and effectively recycled 17 18 in periodically anoxic and high residence time systems such as the Gippsland Lakes, it is 19 plausible that a pre-European phosphorus catchment load of 50 tonnes per year could 20 maintain blooms of at least the same magnitude as currently observed (Grayson et al., 2001).

21 Did nitrogen play a key role in the re-emergence of cyanobacteria blooms?

22 Following the opening of the artificial entrance there was a ~ 60 year period ($\sim 80-130$ cm) 23 with relatively low cyanobacteria biomass and oxic bottom water, as indicated by the 24 reduction in cyanobacteria pigments and sediment organic carbon content respectively. It is 25 likely that this relatively low productivity period was caused by relatively good ventilation of 26 the bottom water combined with low catchment nutrient inputs. After the 1940s, the modern 27 eutrophication of the Gippsland Lakes commenced as indicated by a stready increase in 28 sediment organic carbon and cyanobacteria pigments. Changes to hydrological, 29 morphological and salinity regimes are unlikely to be a key driver because, apart from a 20 % 30 reduction in river inputs from river diversions (Moroka, 2010), there have been no significant 31 hydrological and morphological changes to the Gippsland Lakes over this period. Given that 32 fire can lead to increased nutrient loads as previously discussed, it is highly likely that the 1 1939 wildfires (Australian Broadcasting Corporation, 2016) led to a significant pulse of 2 nutrients into the Gippsland Lakes. The subsequent increase in agriculture (Lake 3 Glenmaggie, used for irrigation in the Macalister Irrigation District, a tributary of the Latrobe 4 River, was completed in 1926 and expanded immediately post world war II), industry and 5 urbanization within the catchment have been estimated to have increased nutrient loads by a 6 factor of 1.8 and 3 for total nitrogen and phosphorus respectively (Grayson et al., 2001).

7

8 Previous work has shown that the Gippsland Lakes are generally nitrogen limited outside N. 9 spumigena blooms (Holland et al., 2012) and increased inputs of this element have most likely resulted in increased productivity in the Gippsland Lakes, particularly during the winter 10 and spring diatom blooms when most of the nutrient load is delivered. The increased settling 11 12 of phyto-detritus after the collapse of these blooms would have driven increased water 13 column anoxia over the late spring period triggering the release of phosphorus stored in the 14 sediment leading to more favorable conditions for N. spumigena blooms (Cook et al., 2010;Scicluna et al., 2015;Holland et al., 2012). We therefore speculate that the recent re-15 16 emergence of cyanobacterial blooms is amplified by increased nitrogen loads, which drive 17 increased internal release of phosphorus through increased bottom water hypoxia and anoxia in late spring through to summer. These observations are consistent with global studies of 18 19 coastal waters which consistently show an increased incidence of hypoxia over the past 50 20 years driven by eutrophication (Diaz and Rosenberg, 2008) and that this may then lead on to 21 blooms of cyanobacteria (Funkey et al., 2014). This finding supports the argument that 22 mitigating coastal eutrophication requires controls on both nitrogen and phosphorus (Paerl, 23 2014;Conley et al., 2009), even in systems that experience diazotrophic cyanobacterial 24 blooms.

25

26 **5** Conclusions

In conclusion, blooms of cyanobacteria were a natural feature of the Gippsland Lakes prior to European settlement, most likely driven by strong stratification and phosphorus release from the sediment. We suggest that pre-European phosphorus loads were sufficient to maintain a sediment phosphorus pool capable of driving significant periodic blooms based on contemporary observations. The opening of the artificial entrance in 1889 likely led to increased salinity, flushing and reduced stratification, leading to an increase in bottom water

oxygenation, a decrease in sediment phosphorus release and associated cyanobacterial 1 2 blooms. The re-emergence of *N. spumigena* blooms post world war II may have occurred as a 3 consequence of increased nitrogen inputs which led to increased anoxia occurring as a consequence of increased primary production, triggering sediment phosphorus release during 4 the summer low flow period when blooms occur. This finding provides a mechanism by 5 which decreasing nitrogen loads may also reduce phosphorus limited diazotrophic 6 7 cyanobacterial blooms, by reducing phosphorus release from the sediment highlighting the need to control both nitrogen and phosphorus loads to estuaries even when they experience 8 9 blooms of diazotrophic cyanobacteria.

10

11 Author Contribution

Cook conceived of, coordinated the work and lead the writing of the manuscript. Jennings 12 13 collected the cores, processed them for dating and undertook the stable isotope analysis, Holland and Beardall assisted with writing of the 14 which formed his honours thesis. 15 manuscript and coordination of the work. Briles undertook the charcoal counts and assisted with writing of the manuscript. Zawadzki undertook the core dating analyses and contributed 16 17 to writing the manuscript. Doan undertook pigment analyses and contributed to writing of the 18 manuscript. Mills assisted with core sampling, data processing and interpretation and writing 19 the manuscript. Gell undertook diatom identification and counts and writing of the 20 manuscript.

21

22 Acknowledgements

This work was supported by the Australian Research Council (LP110100040), the Australian
Institute of Nuclear Science and Engineering (ALNGRA12139), the Gippsland Lakes
Ministerial Advisory Committee, EPA Victoria and Melbourne Water. We thank V. Evrard
and K. Browne for undertaking the isotope analyses. KM publishes with the approval of the
Executive Director, British Geological Survey (NERC).

28

29

1 References

- 2 Appleby, P.: Chronostratigraphic techniques in recent sediments., in: Tracking environmental
- 3 change using lake sediments. Vol 1: Basin analysis, coring and chronological techniques,
- 4 edited by: Last, W., and Smol, J., Kluwer Academic Publishers, Dordrecht, 2001.
- 5 Atahan, P., Heijnis, H., Dodson, J., Grice, K., Le Metayer, P., Taffs, K., Hembrow, S.,
- 6 Woltering, M., and Zawadzki, A.: Pollen, biomarker and stable isotope evidence of late
- 7 Quaternary environmental change at Lake McKenzie, southeast Queensland, J. Paleolimn.,
- 8 53, 139-156, 10.1007/s10933-014-9813-3, 2015.
- 9 <u>http://www.abc.net.au/blackfriday/story/default.htm</u>, access: Jan 15, 2016.
- 10 Battarbee, R. W.: Diatom Analysis, in: Handbook of Holocene Palaeoecology and
- 11 Palaeohydrology, edited by: Berglund, B. E., John Wiley & Sons., Chichester, 1986.
- 12 Bianchi, T. S., Engelhaupt, E., Westman, P., Andren, T., Rolff, C., and Elmgren, R.:
- Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?, Limnol. Oceanogr., 45,
 716-726, 2000.
- Bird, E. C. F.: The geomorphology of the Gippsland Lakes region Ministry for Conservation,
 Victoria, 158, 1978.
- 17 Chen, N., Bianchi, T., McKee, B., and Bland, J.: Historical trends of hypoxia on the Louisiana
- 18 shelf: Application of pigments as biomarkers, Organic Geochemistry, 32, 543-561, 2001.
- 19 Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E.,
- 20 Lancelot, C., and Likens, G. E.: ECOLOGY Controlling Eutrophication: Nitrogen and
- 21 Phosphorus, Science, 323, 1014-1015, 10.1126/science.1167755, 2009.
- 22 Cook, P. L. M., Holland, D. P., and Longmore, A. R.: Effect of a flood event on the dynamics
- 23 of phytoplankton and biogeochemistry in a large temperate Australian lagoon, Limnology &
- 24 Oceanography, 55, 1123-1133, 2010.
- 25 Cook, P. L. M., and Holland, D. P.: Long term nutrient loads and phytoplankton dynamics in
- a large temperate Australian lagoon system affected by recurring blooms of Nodularia
- 27 *spumigena*, Biogeochemistry, 107, 261-274, 2012.
- 28 Diaz, R. J., and Rosenberg, R.: Spreading dead zones and consequences for marine
- 29 ecosystems, Science, 321, 926-929, 2008.
- 30 Foged, N.: Diatoms in eastern Australia., Bibliotheca Phycologica Series No. 41., Lubrecht &
- 31 Cramer Ltd, 1978.
- 32 Fritz, S. C., Juggins, S., and Battarbee, R. W.: Diatom assemblages and ionic characterization
- of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity
- and climate fluctuations, Can. J. Fish. Aquat. Sci., 50, 1844-1856, 1993.
- 35 Funkey, C. P., Conley, D. J., Reuss, N. S., Humborg, C., Jilbert, T., and Slomp, C. P.:
- 36 Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea, Environmental Science &
- 37 Technology, 48, 2598-2602, 10.1021/es404395a, 2014.
- 38 Gammage, W.: The Largest Estate on Earth: How Aborigines Made Australia, Allen and
- 39 Unwin, Sydney, 434 pp., 2011.
- 40 Grayson, R. B., Tan, K. S., and Wealands, S.: Pre-European load estimates into the Gippsland
- 41 Lakes, University of Melbourne, 5, 2001.
- 42 Harris, G., Batley, G., Webster, I. T., Molloy, R., and Fox, D.: Gippsland Lakes
- 43 Environmental Audit: Review of water quality and status of the aquatic ecosystems of the
- 44 Gippsland Lakes, CSIRO, Melbourne, 1988.
- 45 Head, L.: The Holocene prehistory of a coastal wetland system: Discovery bay, southeastern
- 46 Australia., Human Ecology, 15, 435- 462, 1987.

- 1 Holland, D. P., Van Erp, I. C., Beardall, J., and Cook, P. L. M.: Environmental controls on the
- 2 growth of the nitrogen-fixing cyanobacterium Nodularia spumigena Mertens in a temperate
- 3 lagoon system in South-Eastern Australia, Marine Ecology Progress Series, 461, 47-57, 2012.
- 4 Jeffrey, S. W., and Vesk, M.: Introduction to marine phytoplankton and their pigment
- 5 signatures, in: Phytoplankton Pigments in Oceanography: Guidlines to Modern Methods,
- edited by: Jeffrey, S. W., Mantoura, R. F. C., and Wright, S. W., UNESCO Publishing, Paris,
 37-84, 1997.
- 8 Juggins, S.: C2 user Guide: Software for Ecological and Palaeoecological Data Analysis and
- 9 Visualisation., University of Newcastle, Newcastle upon Tyne, United Kingdom, 2003.
- 10 Krammer, K., and Lange-Bertalot, H.: Bacillariophyceae. 1. Teil. Naviculaceae.
- 11 Süßwasserflora von Mitteleuropa, Band 2/1, Spektrum Akademischer Verlag, Stuttgart, 1986.
- 12 Krammer, K., and Lange-Bertalot, H.: Bacillariophyceae. 2. Teil. Bacillariaceae,
- 13 Epithemiaceae, Surirellaceae. Süßwasserflora von Mitteleuropa, Band 2/2., Spektrum
- 14 Akademischer Verlag, Stuttgart, 1988.
- 15 Krammer, K., and Lange-Bertalot, H.: Bacillariophyceae. 4. Teil. Achnanthaceae, kritsche
- 16 erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamliteraturverzeichnis.
- 17 Süßwasserflora von Mitteleuropa, Band 2/4., Spektrum Akademischer Verlag, Stuttgart,
- 18 1991a.
- 19 Krammer, K., and Lange-Bertalot, H.: Bacillariophyceae. 3. Teil. Centrales, Fragilariaceae,
- Eunotiaceae. Süßwasserflora von Mitteleuropa, Band 2/3, Spektrum Akademischer Verlag,
 Stuttgart, 1991b.
- 22 Leslie, C., and Hancock, G.: Estimatin the date corresponding to the horizon of the first
- detection of 137Cs and 239+240Pu in sediment cores., Journal of Environmental
- 24 Radioactivity, 99, 483-490, 2008.
- 25 Lukatelich, R. J., and McComb, A. J.: Nutrient levels and the development of diatom and
- 26 blue-green-algal blooms in a shallow Australian estuary, J. Plankton Res., 8, 597-618, 1986.
- 27 Mantoura, R. F. C., and Llewellyn, C. A.: The rapid determination of algal chlorophyll and
- 28 carotenoid pigments and their breakdown products in natural waters by reverse-phase high-
- 29 performance liquid chromatography, Analytica Chimica Acta, 151, 297-314,
- 30 http://dx.doi.org/10.1016/S0003-2670(00)80092-6, 1983.
- 31 McComb, A. J., and Humphries, R.: Loss of nutrients from catchments and their ecological
- 32 impacts in the Peel-Harvey estuarine system, Western Australia, Estuaries, 15, 529-537, 1992.
- 33 Mills, K., Gell, P., Gergis, J., Baker, P. J., Finlayson, C. M., Hesse, P. P., Jones, R., Kershaw,
- 34 P., Pearson, S., Treble, P. C., Barr, C., Brookhouse, M., Drysdale, R., McDonald, J., Haberle,
- 35 S., Reid, M., Thoms, M., and Tibby, J.: Paleoclimate studies and natural-resource
- 36 management in the Murray-Darling Basin II. Unravelling human impacts and climate
- 37 variability., Australian Journal of Earth Science, 60, 561-571., 2013.
- 38 Mooney, S. D., Harrison, S. P., Bertlein, P. J., Daniau, A.-L., Stevenson, J., Brownlie, K. C.,
- 39 Buckman, S., Cupper, M., Iuly, J., Black, M., Colhoun, E., D'Costa, D., Dodson, J., Haberle,
- 40 S., Hope, G. S., Kershaw, P., Kenyon, C., Mckenzie, M., and Williams, N.: Late Quaternary
- 41 fire regimes of Australasia, Quaternary Science Reviews, 30, 28-46, 2011.
- 42 Moroka: Understanding the Environmental Water Requirements of the Gippsland Lakes
- 43 Systems. Stage 2: Input to the Gippsland region Sustainable Water Strategy., Report to East
- and West Gippsland Catchment Management Authorities, Traralgon. (Moroka: Melbourne.),
 2010.
- 46 Paerl, H. W., and Paul, V. J.: Climate change: Links to global expansion of harmful
- 47 cyanobacteria, Water Res., 46, 1349-1363, 10.1016/j.watres.2011.08.002, 2012.
- 48 Paerl, H. W.: Mitigating Harmful Cyanobacterial Blooms in a Human- and Climatically-
- 49 Impacted World, Life, 4, 988-1012, 10.3390/life4040988, 2014.

- Saunders, K. M., Hodgson, D. A., Harrison, J., and McMinn, A.: Palaeoecological tools for 1
- 2 improving the management of coastal ecosystems: a case study from Lake King (Gippsland
- 3 Lakes) Australia, J. Paleolimn., 40, 33-47, 10.1007/s10933-007-9132-z, 2008. 4 Scicluna, T. R., Woodland, R. J., Zhu, Y., Grace, M. R., and Cook, P. L. M.: Deep dynamic
- 5 pools of phosphorus in the sediment of a temperate lagoon with recurring blooms of
- 6 diazotrophic cyanobacteria, Limnology & Oceanography, 60, 2185-2196, 2015.
- 7
- Sellner, K. G.: Physiology, ecology, and toxic properties of marine cyanobacteria blooms, 8 Limnol. Oceanogr., 42, 1089-1104, 1997.
- 9 Sonneman, J. A., Sincock, A., Fluin, J., Reid, M., Newall, P., Tibby, J., and Gell, P.: An
- 10 illustrated guide to common stream diatom species from temperate Australia, Cooperative
- 11 Research Centre for Freshwater Ecology Identification Guide No. 33., 2000.
- Synan, P.: The Lakes: Highways of Water, Landmark Press, Drouin, 235 pp., 1989. 12
- 13 Wildsmith, M. D., Rose, T. H., Potter, I. C., Warwick, R. M., Clarke, K. R., and Valesini, F.
- 14 J.: Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following
- 15 extreme modifications aimed at reducing eutrophication, Mar. Pollut. Bull., 58, 1250-1262,
- 16 10.1016/j.marpolbul.2009.06.008, 2009.
- 17 Woodland, R. J., Holland, D. P., Beardall, J., Smith, J., Scicluna, T. R., and Cook, P. L. M .:
- 18 Assimilation of Diazotrophic nitrogen into food webs, Plos ONE, 8, e67588
- 19 10.1371/journal.pone.0067588, 2013.
- 20 Woodland, R. J., and Cook, P. L. M.: Using stable isotope ratios to estimate atmospheric
- 21 nitrogen fixed by cyanobacteria at the ecosystem-scale, Ecological Applications, 24, 539–547, 22 10.1890/13-0947.1, 2014.
- 23 Zillen, L., and Conley, D. J.: Hypoxia and cyanobacteria blooms - are they really natural
- features of the late Holocene history of the Baltic Sea?, Biogeosciences, 7, 2567-2580, 24
- 25 10.5194/bg-7-2567-2010, 2010.
- 26
- 27
- 28
- 29
- 30
- 31

Figure 1. The Gippsland Lakes, south-eastern Australia. The study site in Northern Lake King 3 is marked with the solid circle (37.875620° S, 147.757280° E).

Fig 2. Unsupported ²¹⁰Pb activities (Bq/Kg sed) versus depth (a), ¹³⁷Cs activities (Bq/Kg sed) versus depth (b) and the age depth model based on unsupported ²¹⁰Pb values using the CIC (constant initial concentration) model (c). The star in (c) refers to the depth of the ¹³⁷Cs peak activity. LKN1 and LKN2 refer to the two different cores sampled (see methods) and the horizontal dashed line demarcates the transition from core LKN1 to LKN 2.

Fig 3. Depth profiles for the site Lake King North of diatom salinity indicator species (See 2 Fig 4 for classification of species) and geochemical proxies including: Pigments chlorophyll a 3 4 (Chl-a), pheophytin a, and total cyanobacteria (the sum of the pigments, zeaxanthin, 5 canthaxanthin and echineone) normalised to sediment organic carbon content; Sediment organic carbon and nitrogen isotope isotope ratios (δ^{13} C and δ^{15} N respectively); Sediment 6 organic carbon and total nitrogen content (% sediment mass) and their ratio (Corg, N, C/N 7 8 respectively); Charcoal content of the sediment expressed in particles per mL. The zones LK-9 1 to LK-3, are 3 region of the profile corresponding to inflections in DCA axis 1 (See Fig. 4) and also abrupt changes in the carbon and nitrogen isotope and concentration proxies. 10

Fig 4. Profiles of diatom species abundance (% of total species count) grouped based on water salinity (fresh, saline, thalassic and other). Fresh indicates diatoms found at <5 PSU, saline indicates species expected to grow at high salinity within estuaries, and thalassic species are expected to be found exclusively in the coastal ocean. Other refers to species typical of intermediate salinity within estuaries and lagoons. Detrended Correspondence Analysis (DCA) axes 1 and 2 are also shown with depth.