

1 **Key biogeochemical factors affecting soil carbon storage in *Posidonia* meadows**

2 Serrano, Oscar^{1,2*}, Aurora M. Ricart^{1,3}, Paul S. Lavery^{1,4}, Miguel Angel Mateo^{1,4},
3 Ariane Arias-Ortiz⁵, Pere Masque^{1,2,5,6}, Mohammad Rozaimi^{1,7}, Andy Steven⁸, Carlos
4 M. Duarte⁹.

5 ¹ School of Natural Sciences, Centre for Marine Ecosystems Research, Edith Cowan
6 University, Joondalup WA 6027.

7 ² The University of Western Australia Oceans Institute, University of Western
8 Australia, 35 Stirling Highway, Crawley 6009.

9 ³ Departament d'Ecologia, Universitat de Barcelona, Av. Diagonal 643, 08028,
10 Barcelona, Spain 08028.

11 ⁴ Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones
12 Científicas. Blanes, Spain 17300.

13 ⁵ Departament de Física & Institut de Ciència i Tecnologia Ambientals, Universitat
14 Autònoma de Barcelona. 08193 Bellaterra, Catalonia

15 ⁶ School of Physics, The University of Western Australia, Crawley, Western Australia
16 6009

17 ⁷ School of Environmental and Natural Resource Sciences, Faculty of Science and
18 Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
19 Malaysia

20 ⁸ CSIRO, EcoSciences Precinct - Dutton Park 41 Boggo Road Dutton Park QLD
21 4102, Australia.

22 ⁹ Red Sea Research Center, King Abdullah University of Science and Technology,
23 Thuwal 23955-6900, Kingdom of Saudi Arabia.

24

25 ***Corresponding author:** O. Serrano (o.serranogras@ecu.edu.au)

26

27 **Key points:** Interactions of biogeochemical factors control organic carbon storage in
28 seagrass soils / Higher organic carbon storage driven by higher plant inputs / Soil
29 accumulation rates and sediment grain-size control organic carbon storage

30

31 **Keywords:** Carbon Sinks, Blue Carbon, Global Change, Marine Sediments, Coastal
32 Ecosystems

33

34 **Abstract**

35 Biotic and abiotic factors influence the accumulation of organic carbon (C_{org})
36 in seagrass ecosystems. We surveyed *Posidonia sinuosa* meadows growing in
37 different water depths to assess the variability in the sources, stocks and accumulation
38 rates of C_{org} . We show that over the last 500 years, *P. sinuosa* meadows closer to the
39 upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher C_{org} stocks
40 (averaging $6.3 \text{ kg } C_{org} \text{ m}^{-2}$) at 3 to 4-fold higher rates ($12.8 \text{ g } C_{org} \text{ m}^{-2} \text{ y}^{-1}$) compared to
41 meadows closer to the deep limits of distribution (at 6-8 m depth; $1.8 \text{ kg } C_{org} \text{ m}^{-2}$ and
42 $3.6 \text{ g } C_{org} \text{ m}^{-2} \text{ y}^{-1}$). In shallower meadows, C_{org} stocks were mostly derived from
43 seagrass detritus (88% in average) compared to meadows closer to the deep limit of
44 distribution (45% on average). Also, soil accumulation rates and fine-grained
45 sediment content ($<0.125 \text{ mm}$) in shallower meadows (2.0 mm y^{-1} and 9%,
46 respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm y^{-1}
47 and 5%, respectively). The C_{org} stocks and accumulation rates accumulated over the
48 last 500 years in bare sediments ($0.6 \text{ kg } C_{org} \text{ m}^{-2}$ and $1.2 \text{ g } C_{org} \text{ m}^{-2} \text{ y}^{-1}$) were 3 to 11-
49 fold lower than in *P. sinuosa* meadows, while fine-grained sediment content (1%) and
50 seagrass detritus contribution to the C_{org} pool (20%) were 8 and 3-fold lower than in

51 *Posidonia* meadows, respectively. The patterns found support the hypotheses that C_{org}
52 storage in seagrass soils is influenced by interactions of biological (e.g. meadow
53 productivity, cover and density), chemical (e.g. recalcitrance of C_{org} stocks) and
54 physical (e.g. hydrodynamic energy and soil accumulation rates) factors within the
55 meadow. We conclude that there is a need to improve global estimates of seagrass
56 carbon storage accounting for biogeochemical factors driving variability within
57 habitats.

58

59 **1. Introduction**

60 The recent focus on carbon trading has intensified the interest in quantifying
61 the capability of a variety of ecosystems to store carbon, since carbon storage
62 provides one means of valuing these ecosystems. The role of seagrass meadows in
63 absorbing and storing carbon dioxide over centennial to millennial scales is being
64 evaluated in the context of climate change mitigation (Fourqurean et al. 2012; Duarte
65 et al. 2013). Seagrasses occupy only 0.1% of the ocean surface but are considered one
66 of the largest carbon sinks worldwide (Duarte et al. 2005, 2010; Mcleod et al. 2011).
67 Unlike terrestrial ecosystems, which store organic carbon (C_{org}) mainly in the living
68 biomass, C_{org} stocks in seagrass meadows are mainly found in their soils, where it can
69 accumulate over millennia (Mateo et al. 1997). The substrate where seagrasses grow
70 meet the requirements for sediment to be considered a soil (Serrano et al. 2012),
71 despite marine ecologists broadly refer to seagrass substrates as sediments (Kristensen
72 & Rabenhorst, 2015).

73 Seagrasses encompass a wide variety of species across a range of depositional
74 environments and water depths (Carruthers et al. 2007), and the variability in the soil
75 C_{org} stocks among seagrass habitats had been found to be high (up to eighteen-fold;

76 Lavery et al. 2013). However, there has been a tendency to simplify regional and
77 global estimates of C_{org} stocks in seagrass ecosystems from a very limited data set,
78 based on few species and habitats (Nelleman et al. 2009; Fourqurean et al. 2012).
79 Geomorphological settings (i.e. topography and hydrology), soil characteristics (e.g.
80 mineralogy and texture) and biological features (e.g. primary production and
81 remineralization rates) control soil C_{org} storage in both terrestrial ecosystems
82 (Amundson, 2001, De Deyn et al. 2008; Jonsson and Wardle, 2009) and in mangrove
83 and tidal salt marshes (Donato et al. 2011; Adame et al. 2013; Ouyang and Lee,
84 2014). However, our understanding of the factors regulating this variability in
85 seagrass meadows is limited (Nellemann et al. 2009; Duarte et al. 2010; Serrano et al.
86 2014).

87 Based on the terrestrial analogues and the limited research undertaken on
88 seagrasses, it is likely that multiple factors may influence C_{org} storage within seagrass
89 meadows, including biotic and abiotic factors acting in the water column, canopy and
90 the soils. The seagrass itself may exert a primary control on C_{org} storage through its
91 biomass, productivity and nutrient content (Lavery et al. 2013; Serrano et al. 2014;
92 Miyajima et al. 2015), and all of which are highly variable depending upon seagrass
93 species and habitat conditions (Alcoverro et al. 1995; Collier et al. 2007). Seagrass
94 density, biomass and productivity are strongly related to the underwater light
95 penetration (Dennison, 1987; Duarte, 1991). Therefore, it can be expected that
96 different irradiance regimes (and therefore depth) would influence the C_{org} storage
97 capacity of seagrasses (Serrano et al. 2014).

98 Once C_{org} is buried in the soil biotic and abiotic factors are likely to control the
99 degree of C_{org} accumulation and preservation (Burdige, 2007). The rates of soil
100 accumulation, the sediment structure and the biochemical composition of the organic

101 matter buried may strongly influence C_{org} accumulation and preservation, and are
102 highly variable among seagrass meadows (De Falco et al. 2000; Kennedy et al. 2010;
103 Duarte et al. 2013). Soil accumulation may be a function of the seagrass canopy
104 structure (De Falco et al. 2000; Gacia and Duarte, 2001; Peralta et al. 2008; Hendriks
105 et al. 2010), the availability of suspended particles to settle out of the water column
106 and the production of biogenic carbonates within the meadow (De Falco et al. 2000;
107 Mazarrasa et al. 2015). If the accumulated sediments are fine, then they are likely to
108 enhance the preservation of C_{org} since they tend to limit oxygen exchange and redox
109 potentials, which reduce remineralization (e.g. Keil and Hedges, 1993). And finally,
110 while both autochthonous (e.g. plant detritus and epiphytes) and allochthonous (e.g.
111 seston and terrestrial matter) sources contribute to the C_{org} pool in seagrass soils
112 (Kennedy et al. 2010) the proportion of seagrass-derived C_{org} may be an important
113 factor controlling C_{org} storage capacity. Seagrass tissues contain relatively high
114 amounts of degradation-resistant organic compounds (e.g. lignin and cellulose;
115 Harrison, 1989; Klap et al. 2000; Torbatinejad et al. 2007; Burdige, 2007) compared
116 to seston and algal detritus (Laursen et al. 1996), which are more prone to
117 remineralization during early diagenesis (Henrichs, 1992).

118 From the above, it is clear that a large number of factors can potentially
119 influence the stocks and accumulation rates of C_{org} in seagrass meadows. Here we
120 studied *Posidonia sinuosa* meadows across a depth gradient, aiming to highlight key
121 biogeochemical factors affecting C_{org} storage in seagrass soils that need to be
122 accounted for when attempting to produce regional or global estimates of C_{org} storage
123 in seagrass meadows. Previous research at this site (Collier et al. 2007, 2008) showed
124 significant variation in plant biomass and productivity, water quality and sediment
125 biogeochemistry parameters across this depth gradient. Bare sediments were also

126 sampled and studied in order to determine the ‘background’ C_{org} stocks and fluxes in
127 the absence of a seagrass meadow.

128

129 **2. Material and methods**

130 **2.1. Study site and sampling**

131 The study was conducted at Cockburn Sound in Western Australia (Figure 1), in
132 dense and monospecific *P. sinuosa* meadows across a significant depth gradient.
133 Cockburn Sound is a sheltered marine embayment consisting of a deep central basin
134 surrounded by shallow sand banks and seagrass meadows (Kendrick et al. 2002). Four
135 vertical cores were sampled at four water depths in vegetated areas (1.6 m, 4 m, 5.7 m
136 and 8 m), while a single core at 4 m water depth was collected from a bare area
137 located at about 2 km distance from the nearest seagrass meadow. It was difficult or
138 impossible to find a ‘pure control’ (as per ecological definition) for this study.
139 Shallow unconsolidated substrates in the study area should be occupied by seagrasses
140 unless anthropogenic disturbances or hydrodynamic energy preclude so. In our case,
141 the reference site was chosen based on the absence of seagrass at least since 1960s
142 (Kendrick et al. 2002), similar water depth (4 m), and the low likelihood of seagrass
143 detritus from surrounding meadows being exported and accumulated in the area
144 (Skene et al. 2005).

145 The core barrels consisted of PVC pipes (65 mm inside diameter) with
146 removable coring heads to cut fibrous material and minimize core shortening
147 (compression) during coring (Serrano et al. 2012). The core barrels were driven into
148 the soil by a hydraulic drill (LHD 23M, Atlas-Copco) that combined percussion and
149 rotation. All cores were sealed at both ends, transported vertically to the laboratory
150 and stored at 5°C before processing.

151 The lengths of soil recovered ranged from 57 to 123 cm. Compression of loose
152 soils during coring is an inevitable phenomenon and is routinely corrected by
153 distributing the spatial discordances proportionally between the expected and the
154 observed soil column layers (e.g. Glew et al. 2001). The overall degree of core
155 shortening was low (less than 12%) in all cases (corrected decompressed depths
156 ranged from 65 to 134 cm). The results reported in this study (i.e. density, soil
157 accumulation rates, and C_{org} stocks and accumulation rates) have been corrected for
158 compression.

159

160 **2.2. Laboratory procedures**

161 The cores were cut longitudinally into two halves and sliced at regular intervals
162 (i.e. 1 cm-thick slices). Each slice/sample was weighed before and after oven drying
163 to constant weight at 70°C (DW), and subsequently sub-divided for analysis. The C_{org}
164 elemental and isotopic composition of the organic matter was measured in milled
165 subsamples from every second slice. These sub-samples were acidified with 1 M HCl,
166 centrifuged (3500 RPM; 5 minutes) and the supernatant with acid residues was
167 removed using a pipette, then washed in deionized water once, the residues were
168 centrifuged again and the supernatant removed. The residual samples were re-dried
169 (70°C) before carbon elemental and isotopic analyses. Samples were acid-rinsed to
170 ensure complete removal of inorganic carbon (i.e. carbonates) before C_{org} analysis,
171 despite this procedure may lead to an underestimation of soil C_{org} stocks (Phillips et
172 al. 2011; Brodie et al. 2011). The C_{org} elemental and isotopic composition was also
173 analyzed in *P. sinuosa* macro-detritus (i.e. sheaths, roots and rhizomes) collected at
174 different depths along all seagrass cores for the carbon source study. The samples
175 were washed in deionized water, dried at 70°C, encapsulated and the C_{org} elemental

176 and isotopic composition was analyzed using a Micro Cube elemental analyzer
177 (Elementar Analysensysteme GmbH, Hanau, Germany) interfaced with a PDZ Europa
178 20-20 isotope ratio mass spectrometer (Sercon Ltd., Cheshire, UK) at University
179 California Davis Facilities. The relative contents of C_{org} were calculated for the bulk
180 (pre-acidified) samples. Carbon isotope ratios are expressed as δ values in parts per
181 thousand (‰) relative to VPDB (Vienna Pee Dee Belemnite).

182 For sediment grain-size analysis, a Mastersizer 2000 laser-diffraction particle
183 analyzer was used following digestion of bulk samples with 10% hydrogen peroxide.
184 Sediments were classified as coarse sand (<1 mm and >0.5 mm) medium sand (<0.5
185 mm and >0.25 mm), fine sand (<0.25 mm and >0.125 mm), and very fine sand plus
186 mud (<0.125 mm).

187

188 **2.3. Age-depth chronology**

189 The age of the soil along the cores was determined combining ²¹⁰Pb and AMS-
190 ¹⁴C techniques for the recent (c.a. <100 y BP) and older (c.a. <500 cal y BP) material,
191 respectively. Concentrations of ²¹⁰Pb were determined by alpha spectrometry through
192 the measurement of its granddaughter ²¹⁰Po, assuming radioactive equilibrium
193 between the two radionuclides (Sánchez-Cabeza et al. 1998). Between 150 and 300
194 mg aliquots of each sample were acid digested after addition of ²⁰⁹Po as spike and
195 polonium isotopes were plated onto pure silver disks, and their alpha emissions were
196 measured by alpha spectrometry. The concentrations of ²¹⁰Pb at depths were found to
197 be constant were used to determine the average supported ²¹⁰Pb concentrations, which
198 were then used to obtain the concentrations of excess ²¹⁰Pb. A selection of samples of
199 each core was measured for ²²⁶Ra by gamma spectrometry to confirm the validity of
200 the estimates of ²¹⁰Pb-supported values. Concentrations of ²²⁶Ra were determined

201 using a high-purity Ge well-type detector (CANBERRA, mod. GCW3523) through
202 the 351 keV emission line of ^{210}Pb .

203 For radiocarbon analyses, four samples of shells and one sample of *P. sinuosa*
204 sheath remains were radiocarbon dated at the National Ocean Sciences AMS Facility
205 (Woods Hole Oceanographic Institution, Woods Hole, MA; Table A in supporting
206 information) following standard procedures (Stuiver and Pollack, 1977). Sheaths and
207 shells were washed in ultrapure MQ water in order to remove fine sediment particles,
208 examined under a stereomicroscope for lack of attached reworked materials, and dried
209 at 60 °C before radiocarbon dating. The conventional radiocarbon ages were
210 converted into calendar dates in years BP (cal y BP) using the Calib 7.1 software
211 (Marine13 curve) and the local marine reservoir effect due to the C dissolved in
212 marine water was adjusted by deducting 71 years from the calibrated radiocarbon
213 ages (Ulm, 2006). The calibrated ^{14}C ages corrected for the marine reservoir effect
214 were used to produce an age-depth model (linear regression; present is 2012).

215

216 **2.4. Numerical procedures**

217 The C_{org} stocks per unit area ($\text{kg C}_{\text{org}} \text{ m}^{-2}$) were estimated by computing the
218 cumulative mass of C_{org} accumulated over the last ca. 100 years and 500 years
219 (inventories in 13 to 30 cm and 40 to 75 cm thick deposits, respectively). The short-
220 and long-term accumulation rates ($\text{g DW m}^{-2} \text{ y}^{-1}$) of C_{org} were calculated by dividing
221 the C_{org} inventories in the soil by the ages (for 100 and 500 years old deposits,
222 respectively). The decay rates of soil C_{org} were calculated by fitting an exponential
223 equation to the decreasing trends in C_{org} content ($\text{mg C}_{\text{org}} \text{ cm}^{-3}$) with aging. The data
224 reported for seagrass soil properties at different water depths and bare sediments

225 (Average \pm SE) were normalized for ca. 100 and/or 500 years old deposits (specified
226 in each case).

227 A one-way ANOVA was applied to test for any significant effect of water depth
228 on the C_{org} elemental and isotopic composition, C_{org} stocks and accumulation rates,
229 and fine sediment content (<0.125 mm). When significant effects were detected,
230 pairwise *a posteriori* comparisons were performed using a Tukey's HSD test. Data
231 were fourth root transformed to meet ANOVA assumptions. Pearson correlation
232 analysis was used to test for significant relationships among the variables studied.

233 The Bayesian mixing model SIAR 4.2 (Parnell et al. 2010) was used to estimate
234 the contribution of potential sources to the sedimentary C_{org}. The model was run with
235 3 sources (seagrass detritus, epiphytes/macroalgae, and seston). Separate mixing
236 models were computed for each core, and for both 100 and 500 years of
237 accumulation. The $\delta^{13}\text{C}$ values for all sources were assumed to be constant for each
238 core, except the $\delta^{13}\text{C}$ signatures of seagrass detritus. Previous studies showed that the
239 $\delta^{13}\text{C}$ values of *P. sinuosa* varied along this depth gradient (Collier et al. 2008). To
240 account for this variability in seagrass tissue $\delta^{13}\text{C}$, the $\delta^{13}\text{C}$ signatures of seagrass
241 detritus measured directly in the seagrass detritus present in each core were used in
242 the corresponding mixing model. Concentration dependence was incorporated to the
243 model because elemental concentrations were different between sources (Phillips and
244 Koch 2002). We did not consider any fractionation with aging (0 \pm 0‰) in the model
245 because previous studies suggest small diagenetic shifts for $\delta^{13}\text{C}$ during
246 decomposition (Zieman et al. 1984; Mateo et al. 2010).

247

248 **3. Results**

249 The soil characteristics of the *P. sinuosa* meadows in Cockburn Sound changed
250 significantly with soil depth (and thus age), starting as low-density, highly organic
251 soils that turned into inorganic-dominated material 20 cm below the soil surface (after
252 c.a. 50 to 150 years of burial; Figure B in supporting information). Over 500 years of
253 accumulation, soils in the *P. sinuosa* meadows closer to the upper limit of distribution
254 (at 2 and 4 m depths) were significantly richer in C_{org} (mean \pm standard error of the
255 mean = $1.2 \pm 0.2\%$ C_{org}) than those from deeper areas (at 6 and 8 m depths; $0.5 \pm$
256 0.1% C_{org}; Table 1 and 2). The properties of the bare sediment core were
257 homogeneous with depth/age (Figure B in supporting information) and, on average,
258 the C_{org} content was lower (0.06%) and the density higher (1.2 g cm^{-3}) compared to
259 the vegetated cores (Table 1 and 2). Medium and fine sands dominated in all seagrass
260 cores (87% in average), while medium and coarse sands dominated in the bare
261 sediment core (78% in total; Table 1 and Figure 2a). The proportion of fine grain-size
262 material (<0.125 mm) increased from the bare core (averaging 1%) to *P. sinuosa*
263 meadows closer to the deeper limit of distribution (4-5% at 6 and 8 m depth) and
264 meadows closer to the upper limit of distribution (6 to 11% at 2 and 4 m depth; Table
265 1 and 2).

266 Concentration profiles of ^{210}Pb showed decreasing trends from the surface down
267 to depths of 10 to 16 cm (decompressed depths). The concentrations of ^{226}Ra
268 (average: $0.4 \pm 2.1 \text{ Bq kg}^{-1}$) were in agreement with those of ^{210}Pb in the deepest
269 sections of the cores, indicating absence of excess ^{210}Pb ($^{210}\text{Pb}_{\text{ex}}$; Fig. 3). All cores
270 had similar concentrations of supported ^{210}Pb ($10.5 \pm 0.9 \text{ Bq kg}^{-1}$), whereas the $^{210}\text{Pb}_{\text{ex}}$
271 inventories in the vegetated soils ranged from 427 ± 45 to $723 \pm 48 \text{ Bq m}^{-2}$. Mixing of
272 the upper soil layers was most severe in seagrass cores from the 2 and 6 m depth sites,
273 where mixing was apparent in the top 3 and 7 cm, respectively. Average short-term

274 soil accumulation rates (SAR; ca. last 100 years) for each core were determined by
275 applying the CF:CS model below the base of the mixed layer (Krishnaswamy et al.,
276 1971; Masqué et al. 2002; Figure 3), ranging from 1.3 ± 0.2 to $3.0 \pm 1.1 \text{ mm y}^{-1}$
277 (Table 3). Total ^{210}Pb concentrations measured in the reference core (i.e. bare
278 sediment) were low ($10.1 \pm 1.2 \text{ Bq kg}^{-1}$) and not statistically different from the
279 supported ^{210}Pb concentrations measured in the *P. sinuosa* cores ($10.4 \pm 1.2 \text{ Bq kg}^{-1}$).
280 The absence of excess ^{210}Pb accumulation in bare sediment suggests negligible recent
281 net accumulation of ^{210}Pb (and thus sediments) in the absence of vegetation (i.e. last
282 ca. 100 years). According to the age-depth models based on ^{14}C ages, long-term SAR
283 (ca. last 500 cal y BP) in *P. sinuosa* cores ranged from 0.8 to 1.3 mm y^{-1} , while long-
284 term SAR in bare sediments averaged 1.5 mm y^{-1} (Table 3).

285 Over 100 and 500 years of accumulation, the shallow *P. sinuosa* meadows (at 2
286 and 4 m depths) stored more carbon (averaging 4.0 and $6.3 \text{ kg C}_{\text{org}} \text{ m}^{-2}$, respectively)
287 than the deeper counterparts at 6 and 8 m depths (1.2 and $1.8 \text{ kg C}_{\text{org}} \text{ m}^{-2}$,
288 respectively; Table 3 and Figure 4). The lowest C_{org} inventories (500 years of
289 accumulation; $0.6 \text{ kg C}_{\text{org}} \text{ m}^{-2}$) and accumulation rates ($1.2 \text{ g C}_{\text{org}} \text{ m}^{-2} \text{ y}^{-1}$ over 500
290 years) were found in the bare sediment core. The soil C_{org} content ($\text{mg C}_{\text{org}} \text{ cm}^{-3}$) in
291 the shallower meadows (at 2 and 4 m depth) decreased exponentially at rates of
292 $0.0058 \pm 0.0012 \text{ y}^{-1}$ ($R = 0.76$) and $0.0043 \pm 0.0005 \text{ y}^{-1}$ ($R = 0.86$), respectively, while
293 in meadows closer to the deeper limit of distribution (at 6 and 8 m depth) it decreased
294 at $0.0037 \pm 0.0014 \text{ y}^{-1}$ ($R = 0.65$) and $0.0085 \pm 0.0011 \text{ y}^{-1}$ ($R = 0.92$), respectively.

295 The $\delta^{13}\text{C}$ values of sedimentary organic matter in soils from shallow meadows
296 (at 2 and 4 m depths) were higher (-12‰) than those from the 6 and 8 m depths (-
297 14‰ to -16‰; Fig. 2b; Tables 1 and 2). Organic carbon in bare sediments was the
298 most depleted in ^{13}C (overall mean - 20‰). Carbon isotopic ratios in extant seagrass

299 tissues also varied between cores (Table 4a). On average, $\delta^{13}\text{C}$ signatures of seagrass
300 detritus preserved in the cores at 2, 4 and 6 m water depth were ^{13}C -enriched (-10 to -
301 11‰) compared with those from 8 m depth (-13‰). The $\delta^{13}\text{C}$ signatures of living
302 epiphytes and macroalgae at Cockburn Sound averaged -16 and -19‰, respectively
303 (Table 4a).

304 The mixing models applied indicated that seagrass detritus was the most
305 important source of soil C_{org} in all meadows studied (ranged from 43 to 94%; Table
306 4b) over 500 years of accumulation, but its contribution decreased with water depth.
307 In meadows closer to the upper limit of distribution (at 2 and 4 m depth) seagrass-
308 derived detritus contributed 80 to 94% of the sedimentary C_{org} , about 2-fold higher
309 than in deeper meadows (at 6 and 8 m depth; ranging from 43 to 46%). The
310 contribution of epiphytes/macroalgae was 3- to 10-fold higher in deeper meadows
311 (ranging from 35 to 39%) compared to shallow meadows (4 to 11%; Table 4b). The
312 contribution of seston increased with depth, but was always less than the contributions
313 from *Posidonia* and epiphytes/macroalgae (Table 4b). Bare sediments had the lowest
314 seagrass contribution to the C_{org} pool and the highest proportion from seston (20%
315 and 58%, respectively; Table 4b).

316 Considering all soil layers from all cores, the C_{org} concentration increased with
317 increasing fine sediment content ($r^2 = 0.52$), $\delta^{13}\text{C}$ values ($r^2 = 0.33$) and %
318 contribution of seagrass detritus ($r^2 = 0.9$) (Fig 5). The $\delta^{13}\text{C}$ signatures and % particles
319 <0.125 mm were positively correlated ($r^2 = 0.57$; Fig. 5).

320

321 **4. Discussion**

322 The results show a consistent decline in C_{org} stocks and accumulation rates with
323 water depth in *P. sinuosa* meadows, where shallow meadows closer to the upper limit

324 of distribution, accumulated 3 to 4-fold higher C_{org} stocks and at higher rates than
325 those nearer the depth limits of distribution. We interpret the associated changes in
326 biological (e.g. productivity, cover and density), chemical (e.g. recalcitrance of C_{org}
327 stocks) and physical (e.g. hydrodynamic energy and SAR) factors within the
328 meadows as evidence that the production, trapping and preservation of soil C_{org} in
329 coastal areas is the result of complex interaction among all three sets of factors, as we
330 represent in Figure 6, and discussed below.

331 The findings from this study are consistent and complement earlier findings by
332 Serrano et al. (2014). The analyses of new variables in the same cores (i.e. ²¹⁰Pb
333 dating, sediment grain-size, stable carbon isotopes in organic matter) provided new
334 insights into the factors driving differences in C_{org} storage along a depth gradient. We
335 also compare the biogeochemical characteristics of seagrass soils with adjacent bare
336 sediments. Differences in C_{org} stocks and accumulation rates between this and the
337 previous study (Serrano et al. 2014) are related to the new age-depth models obtained
338 in the cores (i.e. based on ²¹⁰Pb dating). The results obtained lead us to conclude that
339 in order to assess differences and compare C_{org} storage between seagrass habitats it is
340 recommended to normalize C_{org} stocks by a period of accumulation (Rozaimi et al.
341 2016), rather than soil depth as commonly used (e.g. Serrano et al. 2014). Therefore,
342 we present the results and develop the discussion according to the period of
343 accumulation (²¹⁰Pb-derived, short-term, last 100 years; and ¹⁴C-derived, long-term,
344 last 500 years).

345 The results indicate that the *P. sinuosa* plants themselves play a key role in
346 determining the amount of C_{org} available for burial along the depth gradient. It is well
347 established that accumulation of C_{org} in sediments and soils is strongly affected by net
348 primary production (Cao and Woodward, 1998; Serrano et al. 2014). The decline with

349 depth of C_{org} stocks, C_{org} accumulation rates and seagrass-derived inputs into the
350 sedimentary pool that we observed coincides with reduced seagrass abundance and
351 production reported by Collier et al. (2007). These authors reported 18-24 fold
352 reductions from shallow (2 m) to deep (8 m) *P. sinuosa* meadows in shoot density
353 (from 1435 to 80 shoots m⁻²), aboveground biomass (from 899 to 47 g DW m⁻²) and
354 belowground biomass (from 1028 to 43 g DW m⁻²) on the same depth gradient.
355 Similar trends in meadow structure and productivity with depth have been found in
356 other *Posidonia* meadows, linked to reductions in irradiance (West, 1990; Duarte,
357 1991; Mateo and Romero, 1997; Alcoverro et al. 2001; Olesen et al. 2002).

358 Relationships between water column depth, seagrass canopy structure and C_{org}
359 stocks have been reported for *Zostera muelleri* and *Halophila ovalis* meadows (e.g.
360 Samper-Villarreal et. al. 2016). However, previous studies based their comparisons on
361 soil thickness rather than C_{org} accumulation rates (e.g. period of accumulation) and
362 rely on the assumption that environmental gradients linked to e.g. anthropogenic
363 disturbances remained constant over the period reconstructed. Seagrass meadow
364 structure (e.g. density, cover, biomass) and even presence/absence can vary over
365 seasonal, annual and decadal time scales, in particular for short-lived and highly
366 dynamic meadows such as those formed by genera *Zostera*, *Halophila* and *Halodule*.
367 The presence of a clear and stable environmental gradient (i.e. depth) over the last
368 millennia (Skene et al. 2005), together with the presence of seagrass remains along
369 the cores studied, provide further strength on the relationships between
370 biogeochemical factors and seagrass soil C_{org} storage reported in this study.

371 The higher SAR, fine-grained sediment contents and plant detritus inputs in
372 meadows closer to the upper limit of distribution would contribute to higher
373 accumulation and preservation of C_{org} after burial. The SAR in seagrass meadows is

374 mainly controlled by the canopy structure, which affects the trapping and retention of
375 sediment particles (Gacia and Duarte, 2001; Peralta et al. 2008; Hendriks et al. 2010),
376 the hydrodynamic energy, the availability of fine-grained suspended particles in the
377 water column, and the production of biogenic carbonates within the meadow (De
378 Falco et al. 2000, 2010; Mazarrasa et al. 2015). High plant biomass and density is
379 associated with greater retention of particles (in particular, fine-grained sediments),
380 lower hydrodynamic energy, and higher production of biogenic carbonates within the
381 meadow (De Falco et al. 2000), ultimately enhancing soil accumulation. The presence
382 of a dense rhizome mat underlying shallow meadows may provide a positive feedback
383 mechanism for enhanced SAR (i.e. presence of cavities reducing erosion and
384 increasing soil accumulation; De Falco et al. 2000; Le Hir et al. 2007). The higher
385 content of fine sediments we observed in shallow meadows would contribute to the
386 higher C_{org} accumulation, since fine sediments generally retain more C_{org} compared to
387 medium and coarse sands (Keil and Hedges, 1993; Burdige, 2007), and because
388 remineralization rates tend to be reduced in fine sediments due to lower oxygen
389 exchange and redox potentials (Hedges and Keil, 1995; Dauwe et al. 2001; Burdige,
390 2007; Pedersen et al. 2011).

391 The differences in decay rates highlight different levels of C_{org} preservation in
392 the different meadows. This is likely a result of both the sources of C_{org} being buried
393 and the biogeochemical conditions within the soils. Previous studies demonstrated
394 that both autochthonous (e.g. seagrass and epiphyte detritus) and allochthonous
395 (seston and terrestrial matter) sources contribute to the C_{org} pool in seagrass soils
396 (50% each on average; Kennedy et al. 2010). Here, we observed larger amounts of
397 seagrass-derived C_{org} in shallow meadows (85% in average), pointing to an important
398 factor driving their higher C_{org} storage capacities compared to that of deeper

399 meadows, namely the carbon preservation potential. *Posidonia* tissues contain
400 relatively high amounts of degradation-resistant organic compounds in their tissues
401 (e.g. lignin and cellulose; Harrison. 1989; Klap et al. 2000; Torbatinejad et al. 2007)
402 and high C/N ratios (Duarte, 1990; Pedersen et al. 2011; Kaal et al. 2016). In contrast,
403 seston and algal detritus, which contributed as much as 64-75% of the C_{org} in the
404 deeper sites, have a higher labile C_{org} content (Laursen et al. 1996) more likely to be
405 remineralized during early diagenesis (Henrichs, 1992), potentially explaining the
406 higher soil C_{org} decay rates in the deep (at 8 m) *P. sinuosa* meadows. However, the
407 soil C_{org} decay rates in *P. sinuosa* meadows at 6 m depth were in the range of those
408 found at 2 and 4 m depths. This may be due to the limitations of the approach used
409 here. For example, we assumed that C_{org} inputs (i.e. quantity and quality) and
410 decomposition have been constant during the period of accumulation under study, but
411 this may not have been the case. Further, obtaining reliable estimates of C_{org} decay
412 rates is also complicated by the presence of living biomass in the upper part of the
413 soils, which is the case for the seagrass core sampled at 6 m depth, where fluctuations
414 in the concentration of C_{org} are evident.

415 The C_{org} decay rates of *P. sinuosa* meadows (0.0056 y⁻¹ in average) are much
416 higher than those reported for the similarly sized species *P. oceanica* (ranging from
417 0.00008 to 0.0005 y⁻¹; Mateo et al. 1997; Serrano et al. 2012). This may contribute to
418 the up to 16-fold lower C_{org} stocks and accumulation rates in the soil beneath *P.*
419 *sinuosa* compared to *P. oceanica* (Serrano et al. 2014).

420 Despite the limitations involved in using bare sediments as reference sites (e.g.
421 inherent biogeochemical differences that preclude the settlement of seagrasses in bare
422 sediments), the results suggest that C_{org} stocks and accumulation rates are much
423 higher in seagrass meadows than in adjacent bare sediments. The 3 to 11-fold lower

424 C_{org} storage capacity of bare sediments compared to *P. sinuosa* meadows at
425 comparable depths is due mainly to the absence of seagrass inputs. However, it may
426 also result from the absence of a canopy that would otherwise enhance the trapping
427 and retention of organic-rich, fine sediment particles (Hendriks et al. 2008), as
428 reflected in the low content of fine-grained sediments. Since all continental margins
429 store C_{org}, there is a need to account for the net C_{org} storage capacity due to the
430 presence of seagrasses when evaluating their role as carbon sinks.

431 The processes described in this study highlight the importance of meadow
432 structure and productivity for C_{org} accumulation, supporting the hypothesis that the
433 higher production of shallow meadows lead to higher accumulation rates of soil, fine-
434 grained particles and seagrass detritus, which ultimately lead to the higher
435 preservation and accumulation of C_{org}. The relative importance of the biogeochemical
436 factors identified in this study (e.g. hydrodynamic energy, sediment accumulation
437 rates, fine sediment content, water depth, seagrass net primary production and
438 density) in driving C_{org} storage was not addressed, but rather we discussed the reasons
439 why they can play a role in driving organic carbon storage and highlight potential
440 synergistic and/or antagonistic interactions among them. Understanding the factors
441 controlling C_{org} storage in seagrasses is at its onset, and a much better understanding
442 is required before being able to disentangle the relative role/importance of each factor.

443

444 **Acknowledgements**

445 This work was supported by the ECU Faculty Research Grant Scheme, the ECU Early
446 Career Research Grant Scheme, and the CSIRO Flagship Marine & Coastal Carbon
447 Biogeochemical Cluster (Coastal Carbon Cluster) with funding from the CSIRO
448 Flagship Collaboration Fund and the Generalitat de Catalunya (MERS, 2014 SGR-

449 1356). PM was supported in part by a Gledden Visiting Fellowship awarded by the
450 Institute of Advanced Studies at The University of Western Australia and AAO by
451 a PhD grant of Obra Social "la Caixa". The authors are grateful to A. Gera, P.
452 Bouvais and A. Esteban for their help in field and/or laboratory tasks.

453

454 **References**

455 Adame, M. F., Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal J. P.,
456 Reza, M. and Herrera-Silveira, J.: Carbon stocks of tropical coastal wetlands
457 within the karstic landscape of the Mexican Caribbean, PLoS ONE, 8 e56569.
458 doi:10.1371/journal.pone.0056569, 2013.

459 Alcoverro, T., Duarte C. M. and Romero J.: Annual growth dynamics of *Posidonia*
460 *oceanica*: Contribution of large-scale versus local factors to seasonality, Mar. Ecol.
461 Prog. Ser., 120, 203–210, 1995.

462 Alcoverro, T., Cebrian, E. and Ballesteros, E.: The photosynthetic capacity of the
463 seagrass *Posidonia oceanica*: influence of nitrogen and light., J. Exp. Mar. Bio.
464 Ecol., 261(1), 107–120, 2001.

465 Amundson, R.: The carbon budget in soils. Ann. Rev. Earth Planet. Sci., 29, 535–562,
466 2001.

467 Brodie, C.R., Leng, M.J., Casford, J.S.L., Kendrick, C.P., Lloyd, J.M., Yongqiang, Z.
468 and Bird, M.I., Evidence for bias in C and N concentrations and $\delta^{13}\text{C}$ composition
469 of terrestrial and aquatic organic materials due to pre-analysis acid preparation
470 methods. Chem. Geol., 282, 67–83, 2011.

471 Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls,
472 Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem.
473 Rev., 107, 467–485, doi:10.1021/cr050347q, 2007.

474 Cao, M. and Woodward IaN.: Net primary and ecosystem production and carbon
475 stocks of terrestrial ecosystems and their responses to climate change, Glob.
476 Chang. Biol., 4, 185–198, doi:10.1046/j.1365-2486.1998.00125.x, 1998.

477 Carruthers, T. J. B., Dennison, W. C., Kendrick, G. A., Waycott, M., Walker, D. I.
478 and Cambridge, M. L.: Seagrasses of south-west Australia: A conceptual synthesis
479 of the world's most diverse and extensive seagrass meadows, J. Exp. Mar. Bio.
480 Ecol., 350, 21–45, doi:10.1016/j.jembe.2007.05.036, 2007.

481 Collier, C.J., Lavery, P. S., Masini, R. and Ralph, P.: Morphological, growth and
482 meadow characteristics of the seagrass *Posidonia sinuosa* along a depth-related
483 gradient of light availability, Mar. Ecol. Prog. Ser., 337, 103–115,
484 doi:10.3354/meps337103, 2007.

485 Collier, C.J., Lavery, P. S., Masini, R.J. and Ralph, P.: Physiological characteristics of
486 the seagrass *Posidonia sinuosa* along a depth-related gradient of light availability.
487 Mar. Ecol. Prog. Ser., 353, 65-79, 2008

488 Dauwe, B., Middelburg J. J. and Herman P. M. J.: Effect of oxygen on the
489 degradability of organic matter in subtidal and intertidal sediments of the North
490 Sea area, Mar. Ecol. Prog. Ser., 215, 13–22, 2001.

491 De Deyn, G. B., Cornelissen J. H. and Bardgett R. D.: Plant functional traits and soil
492 carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531.
493 doi:10.1111/j.1461-0248.2008.01164.x, 2008.

494 De Falco, S., Ferrari, G., Cancemi, M. and Baroli, M.: Relationship between sediment
495 distribution and *Posidonia oceanica* seagrass. Geo-Mar. Let., 20, 50–57, 2000.

496 De Falco, S., Tonielli, R., Di Martino, G., Innangi, S., Simeone, S., and Parnum, I.
497 M.: Relationships between multibeam backscatter, sediment grain size and
498 *Posidonia oceanica* seagrass distribution, *Cont. Shelf Res.*, 30, 1941–1950, 2010.

499 Dennison, W. C.: Effects of light on seagrass photosynthesis, growth and depth
500 distribution, *Aquat. Bot.*, 27, 15–26, 1987.

501 Donato, D. C., Kauffman J. B., Murdiyarsa D., Kurnianto S., Stidham M. and
502 Kanninen M.: Mangroves among the most carbon-rich forests in the tropics. *Nat.*
503 *Geosci.* 4, 293-297. doi:10.1038/ngeo1123, 2011.

504 Duarte, C.: Seagrass nutrient content. *Mar. Ecol. Prog. Ser.*, 67, 201–207, 1990.

505 Duarte, C. M.: Seagrass depth limits, *Aquat. Bot.*, 40, 363–377, 1991.

506 Duarte, C. M., Middelburg, J. J. and Caraco, N.: Major role of marine vegetation on
507 the oceanic carbon cycle, *Biogeosciences*, 1, 1–8, 2005.

508 Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C. and
509 Apostolaki, E. T.: Seagrass community metabolism: Assessing the carbon sink
510 capacity of seagrass meadows, *Global Biogeochem. Cycles*, 24(4), GB4032,
511 doi:10.1029/2010GB003793, 2010.

512 Duarte, C. M., Losada, I., Hendriks, I., Mazarrasa, I. and Marbà, N.: The role of
513 coastal plant communities for climate change mitigation and adaptation, *Nat. Clim.
514 Chang.*, 3(11), 961–968, doi:10.1038/nclimate1970, 2013.

515 Fourqurean, J., Duarte, C., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A.,
516 Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J. and
517 Serrano, O.: Seagrass ecosystems as a globally significant carbon stock, *Nat.
518 Geosci.*, 5, 1–7, doi:10.1038/NGEO1477, 2012.

519 Gacia, E. and Duarte, C. M.: Sediment Retention by a Mediterranean *Posidonia*
520 *oceanica* Meadow: The Balance between Deposition and Resuspension, *Estuar.
521 Coast. Shelf Sci.*, 52(4), 505–514, doi:10.1006/ecss.2000.0753, 2001.

522 Glew, J. R., Smol J. P. and Last W. M.: Sediment core collection and extrusion, in
523 Tracking Environmental Change Using Lake Sediments, edited by W. M. Last and
524 J. P. Smol, pp. 73–105, Kluwer Acad., Dordrecht, Netherlands, 2001.

525 Harrison, P. G.: Detrital Processing in Seagrass Systems - a Review of Factors
526 Affecting Decay-Rates, Remineralization and Detritivory, *Aquat. Bot.*, 35(3-4),
527 263–288, doi:10.1016/0304-3770(89)90002-8, 1989.

528 Hedges, J. I. and Keil R. G.: Sedimentary organic matter preservation: An assessment
529 and speculative synthesis, *Mar. Chem.*, 49, 81–115, 1995.

530 Hendriks, I., Sintes, T., Bouma, T. J. and Duarte, C. M.: Experimental assessment and
531 modeling evaluation of the effects of the seagrass *Posidonia oceanica* on flow and
532 particle trapping, *Mar. Ecol. Prog. Ser.*, 356, 163–173, doi:10.3354/meps07316,
533 2008.

534 Hendriks, I. E., Bouma T. J., Morris E. P. and Duarte C. M.: Effects of seagrasses and
535 algae of the *Caulerpa* family on hydrodynamics and particle-trapping rates. *Mar.
536 Biol.*, 157, 473–481, 2010.

537 Henrichs, S. M.: Early diagenesis of organic matter in marine sediments: progress and
538 perplexity, *Mar. Chem.* 39, 119–149, 1992.

539 Jonsson, M., and Wardle D. A.: Structural equation modelling reveals plant-
540 community drivers of carbon storage in boreal forest ecosystems. *Biol. Lett.*:
541 rsbl20090613. doi:10.1098/rsbl.2009.0613, 2009.

542 Kaal, J., Serrano, O., Nierop, K.G., Schellekens, J., Cortizas, A.M. and Mateo, M.Á.,
543 2016. Molecular composition of plant parts and sediment organic matter in a
544 Mediterranean seagrass (*Posidonia oceanica*) mat. *Aquat. Bot.*, 133, 50-61, 2016.

545 Keil, R. and Hedges J.: Sorption of organic matter to mineral surfaces and the
546 preservation of organic matter in coastal marine sediments. *Chem. Geol.* 107, 385–
547 388, 1993.

548 Kendrick, G. A., Aylward M. J., Hegge B. J., Cambridge M. L., Hillman K., Wyllie
549 A. and Lord D. A.: Changes in seagrass coverage in Cockburn Sound, Western
550 Australia between 1967 and 1999, *Aquat. Bot.*, 73, 75–87, 2002.

551 Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marba, N.
552 and Middelburg, J. J.: Seagrass sediments as a global carbon sink: Isotopic
553 constraints, *Global Biogeochem. Cycles*, 24(4), GB4026,
554 doi:10.1029/2010GB003848, 2010.

555 Klap, V. A., Hemminga, M. A. and Boon, J. J.: Retention of lignin in seagrasses:
556 Angiosperms that returned to the sea, *Mar. Ecol. Prog. Ser.*, 194, 1–11,
557 doi:10.3354/meps194001, 2000.

558 Krishnaswamy, S., Lal, D., Martin, J. and Meybeck, M.: Geochronology of lake
559 sediments. *Earth Planet. Sci. Lett.*, 11, 407–414, 1971.

560 Kristensen, E. and Rabenhorst, M.C.: Do marine rooted plants grow in sediment or
561 soil? A critical appraisal on definitions, methodology and communication. *Earth-
562 Sci. Rev.*, 145, 1–8, 2015.

563 Laursen, A. K., Mayer L. and Townsend D.: Lability of proteinaceous material in
564 estuarine seston and subcellular fractions of phytoplankton. *Mar. Ecol. Prog. Ser.*,
565 136, 227–234, 1996.

566 Lavery, P. S., Mateo, M. A., Serrano, O. and Rozaimi, M.: Variability in the carbon
567 storage of seagrass habitats and its implications for global estimates of blue carbon
568 ecosystem service, *PLoS One*, 8(9), e73748, doi:10.1371/journal.pone.0073748,
569 2013.

570 Le Hir, P., Monbet, Y. and Orvain, F.: Sediment erodability in sediment transport
571 modeling: can we account for biota effects? *Cont. Shelf Res.*, 27, 1116–1142,
572 2007.

573 Masqué P., Isla E., Sanchez-Cabeza J. A., Palanques A., Bruach J. M., Puig, P. and
574 Guillén J.: Sediment accumulation rates and carbon fluxes to bottom sediments at
575 Western Bransfield Strait basin (Antarctica), *Deep-Sea Res. II*, 49, 921–933, 2002.

576 Mateo, M. A. and Romero, J.: Detritus dynamics in the seagrass *Posidonia oceanica*:
577 Elements for an ecosystem carbon and nutrient budget, *Mar. Ecol. Ser.*, 151(1-3),
578 43–53, 1997.

579 Mateo, M. A., Romero, J., Pérez, M., Littler, M. M. and Littler, D. S.: Dynamics of
580 Millenary Organic Deposits Resulting from the Growth of the Mediterranean
581 Seagrass *Posidonia oceanica*, *Estuar. Coast. Shelf Sci.*, 44(1), 103–110, 1997.

582 Mateo, M. Á., Renom, P. and Michener, R. H.: Long-term stability in the production
583 of a NW Mediterranean *Posidonia oceanica* (L.) Delile meadow, *Palaeogeogr.*
584 *Palaeoclimatol. Palaeoecol.*, 291(3-4), 286–296, doi:10.1016/j.palaeo.2010.03.001,
585 2010.

586 Mazarrasa, I., Marba, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J.
587 W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L. and Duarte C.
588 M.: Seagrass meadows as a globally significant carbonate reservoir. *Biogeosc.*
589 *Discuss.*, 12, 4107–4138, 2015.

590 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M.,
591 Lovelock, C. E., Schlesinger, W. H. and Silliman, B. R.: A blueprint for blue
592 carbon: toward an improved understanding of the role of vegetated coastal habitats
593 in sequestering CO₂, *Front. Ecol. Environ.*, 9(10), 552–560, doi:10.1890/110004,
594 2011.

595 Miyajima, T., Hori, M., Hamaguchi, M., Shimabukuro, H., Adachi, H., Yamano, H.
596 and Nakaoka, M.: Geographic variability in organic carbon stock and accumulation
597 rate in sediments of East and Southeast Asian seagrass meadows, *Global*
598 *Biogeochem. Cycles*, 29, 397–415, doi:10.1002/2014GB004979, 2015.

599 Nellemann, C., Corcoran, E., Duarte, C., Valdés, L., DeYoung, C., Fonseca, L. and
600 Grimsditch, G. (Eds): *Blue carbon. A rapid response assessment*, United Nations
601 *Environ. Program. GRID-Arendal*, www.grida.no, 2009.

602 Olesen, B., Enríquez, S., Duarte, C. and Sand-Jensen K.: Depth-acclimation of
603 photosynthesis, morphology and demography of *Posidonia oceanica* and
604 *Cymodocea nodosa* in the Spanish Mediterranean Sea, *Mar. Ecol. Prog. Ser.*, 236,
605 89–97, 2002.

606 Ouyang, X. and Lee, S. Y.: Updated estimates of carbon accumulation rates in coastal
607 marsh sediments, *Biogeosciences*, 11, 5057–5071, 2014.

608 Parnell, A. C., Inger, R., Bearhop, S. and Jackson, A. L.: Source partitioning using
609 stable isotopes: coping with too much variation., *PLoS One*, 5(3), e9672,
610 doi:10.1371/journal.pone.0009672, 2010.

611 Pedersen, M. Ø., Serrano O., Mateo M. A. and Holmer M.: Decomposition of
612 *Posidonia oceanica* matte in a climate change setting, *Aquat. Microb. Ecol.*, 65,
613 169–182, 2011.

614 Peralta, G., Van Duren, L. A., Morris, E. P., and Bouma, T. J.: Consequences of shoot
615 density and stiffness for ecosystem engineering by benthic macrophytes in flow
616 dominated areas: a hydrodynamic flume study, *Mar. Ecol. Prog. Ser.*, 368, 103–
617 115, 2008.

618 Phillips, D. and Koch, P.: Incorporating concentration dependence in stable isotope
619 mixing models, *Oecologia*, 114–125, doi:10.1007/s004420100786, 2002.

620 Phillips, S.C., Johnson, J.E., Miranda, E. and Disenhofer, C. Improving CHN
621 measurements in carbonate-rich marine sediments. *Limnol. Oceanogr.-Meth.* 9,
622 194–203, 2011.

623 Rozaimi, M., Lavery, P.S., Serrano, O. and Kyrwood, D., 2016. Long-term carbon
624 storage and its recent loss in an estuarine *Posidonia australis* meadow (Albany,
625 Western Australia). *Estuar. Coast. Shelf S.*, 171, 58–65.

626 Samper-Villarreal, J., Lovelock, C.E., Saunders, M.I., Roelfsema, C. and Mumby,
627 P.J.: Organic carbon in seagrass sediments is influenced by seagrass canopy
628 complexity, turbidity, wave height, and water depth. Limnol. Ocean., 61, 938–952,
629 2016.

630 Sanchez-Cabeza, J. A., Masqué, P. and Ani-Ragolta, I.: 210Pb and 210Po analysis in
631 sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem.
632 227, 19–22, 1998.

633 Serrano, O., Mateo, M. A., Renom P. and Julià R.: Characterization of soils beneath a
634 *Posidonia oceanica* meadow, Geoderma, 185–186, 26–36, 2012.

635 Serrano, O., Lavery, P. S., Rozaimi, M. and Mateo, M. A.: Influence of water depth
636 on the carbon sequestration capacity of seagrasses, Global Biogeochem. Cycles,
637 301–314, doi:10.1002/2014GB004872. Received, 2014.

638 Skene, D., Ryan, D., Brooke, B., Smith, J., Radke, L.: The Geomorphology and
639 Sediments of Cockburn Sound. Geoscience Australia, Record 2005/10, 2005.

640 Stuiver, M. and Pollack, H. A.: Discussion reporting C-14 data, Radiocarbon, 19,
641 355–363, 1977.

642 Torbatinejad, N. M., Annison, G., Rutherford-Markwick, K. and Sabine, J. R.:
643 Structural constituents of the seagrass *Posidonia australis*, J. Agric. Food Chem.,
644 55, 4021–4026, doi:10.1021/jf063061a, 2007.

645 Ulm, S.: Australian marine reservoir effects: A guide to ΔR values, Austral.
646 Archaeol., 63, 57–60, 2006.

647 Waite, M., Muhling, B., Holl, C. M., Beckley, L. E., Montoya, J. P., Strzelecki, J.,
648 Thompson, P. and Pesant, S.: Food web structure in two counter-rotating eddies
649 based on $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ isotopic analyses, Deep Res. Part II Top Stud. Oceanogr.,
650 54, 1055–1075, 2007.

651 West, R. J.: Depth-related structural and morphological variations in an Australian
652 *Posidonia* seagrass bed, Aquat. Bot., 36, 153–166, 1990.

653 Zieman, J., Macko, S. and Mills, A.: Role of seagrasses and mangroves in estuarine
654 food webs: temporal and spatial changes in stable isotope composition and amino
655 acid content during decomposition, Bull. Mar. Sci., 35(3), 380–392, 1984.

656

657 **Table 1.** Average \pm SE density (in g cm^{-3}), C_{org} content (in %), $\delta^{13}\text{C}$ signatures and
 658 sediment grain-size content at Cockburn Sound (normalized for ca. 500 years old
 659 deposits).

660

Habitat	Water depth (m)	Thick (cm)	Age (cal yr BP)	Density (g cm^{-3})	C_{org} (%)	$\delta^{13}\text{C}$ (‰)	% Sediment grain size (mm)							
							<0.125			>0.125				
							N	Mean \pm SE	N	Mean \pm SE	N	Mean \pm SE	Mean \pm SE	
<i>P. sinuosa</i>	2	66	498	61	0.86 \pm 0.03	31	1.28 \pm 0.22	28	-11.6 \pm 0.2	28	11 \pm 0.8	43 \pm 1.0	36 \pm 0.8	9 \pm 0.9
	4	75	485	67	0.96 \pm 0.02	34	1.06 \pm 0.16	31	-12.2 \pm 0.3	34	6 \pm 0.3	47 \pm 1.0	43 \pm 0.4	5 \pm 0.6
	6	40	490	35	0.90 \pm 0.04	18	0.59 \pm 0.15	18	-13.9 \pm 0.4	18	5 \pm 0.4	44 \pm 0.9	46 \pm 0.4	5 \pm 0.5
	8	53	497	47	1.04 \pm 0.02	24	0.38 \pm 0.10	24	-16.2 \pm 0.4	23	4 \pm 0.7	43 \pm 0.7	47 \pm 0.7	6 \pm 0.5
bare	66 ¹⁴	75	490	70	1.22 \pm 0.02	36	0.06 \pm 0.00	36	-20.3 \pm 0.1	36	1 \pm 0.2	21 \pm 0.7	51 \pm 0.2	27 \pm 0.8

662

663 **Table 2. a)** Results of one-way ANOVA on soil properties (normalized for ca. 500
664 years old deposits). P-values correspond with those provided by F-test. **b)** Results of
665 statistical testing (Tukey's HSD) for significant effects of water depth on the
666 physicochemical parameters in the cores. Levels of significance are as follows: *P <
667 0.05; **P < 0.01; ***P < 0.001; NS, P ≥ 0.05

668 **a)**

	df	SS	F	P
C _{org} (%)	4	5.16	36.28	<0.001
Error	138	4.91		
δ ¹³ C (‰)	4	1610	210.90	<0.001
Error	1320	252		
C _{org} stock (g cm ⁻³)	4	39.98	40.16	<0.001
Error	138	33.48		
<0.125 mm (%)	4	25.49	60.99	<0.001
Error	131	13.69		

669 **b)**

		C _{org} (%)					
		δ ¹³ C (‰)	2 m	4 m	6 m	8 m	Bare
2 m			NS	*	***	***	
4 m			NS		*	***	***
6 m			***	**		NS	***
8 m			***	***	***		***
Bare			***	***	***	***	

		<0.125 mm (%)					
		C _{org} stock (g cm ⁻³)	2 m	4 m	6 m	8 m	Bare
2 m			NS	*	***	***	
4 m			NS		NS	NS	***
6 m			**	**		NS	***
8 m			***	***	NS		***
Bare			***	***	***	***	

671

672

673

674

675

676 **Table 3.** Soil accumulation rates (SAR), C_{org} accumulation rates and C_{org} inventories677 in the seagrass cores studied (average \pm SD). Estimates over short-term (derived from678 ^{210}Pb dating, last 100 years) and long-term (derived from ^{14}C dating, last 500) periods

679 are provided. The thicknesses of seagrass soils corresponding to 100 and 500 years

680 are provided.

Habitat	Water		Short-term (100 years)			Long-term (500 years)			
	depth (m)	Thick (cm)	Stock (kg C _{org} m ⁻²)	SAR (mm yr ⁻¹)	C _{org} acc. rates (g C _{org} m ⁻² y ⁻¹)	Thick (cm)	Stock (kg C _{org} m ⁻²)	SAR (mm yr ⁻¹)	C _{org} acc. Rates (g C _{org} m ⁻² y ⁻¹)
<i>P. sinuosa</i>	2	30	4.5	3.0 \pm 1.1	44.9 \pm 6.5	66	6.0	1.3 \pm 0.1	12.1 \pm 0.6
	4	20	3.4	2.0 \pm 0.7	34.3 \pm 7.1	75	6.5	1.5 \pm 0.1	13.5 \pm 0.7
	6	16	1.2	1.6 \pm 0.7	11.8 \pm 3.5	40	1.7	0.8 \pm 0.03	3.5 \pm 0.1
	8	13	1.1	1.3 \pm 0.2	11.4 \pm 1.0	53	1.8	1.1 \pm 0.04	3.7 \pm 0.1
	bare	4	16	0.1	1.6 \pm 1.8	75	0.6	1.5 \pm 0.1	1.2 \pm 0.1

682

683

684

685 **Table 4. a)** Stable carbon isotopic composition values ($\delta^{13}\text{C}$) of potential organic
 686 matter sources used for the different sources in the Bayesian mixing models. Data for
 687 *P. sinuosa* detritus (sheaths, roots and rhizomes) along the cores at 2, 4, 6 and 8 m
 688 water depth is presented. **b)** Relative contributions of potential sources of organic
 689 carbon to soils of *P. sinuosa* meadows in different depths and bare sediment (over 500
 690 years of accumulation) as modeled by SIAR. Mean and lower and upper 95% credible
 691 interval (CI95) for all the range of feasible solutions in each bayesian mixing model.

692 **a)**

693

Source	$\delta^{13}\text{C}$ (‰)			References
	N	Mean	SD	
<i>P. sinuosa</i> 2m	8	-11.5	1.4	this study
<i>P. sinuosa</i> 4m	6	-10.6	1.9	this study
<i>P. sinuosa</i> 6m	6	-10.3	1.7	this study
<i>P. sinuosa</i> 8m	7	-13.3	1.2	this study
Epiphytes	6	-15.9	0.4	this study
Macroalgae	6	-18.6	1.8	this study
Seston	40	-24.2	0.6	Waite et al. 2007

694 **b)**

Habitat	<i>Posidonia sinuosa</i>		Macroalgae + Epiphytes		Seston	
	mean	CI95	mean	CI95	mean	CI95
2m	0.94	0.88-0.99	0.04	0.00-0.09	0.02	0.00-0.05
4m	0.83	0.70-0.90	0.11	0.00-0.23	0.06	0.00-0.12
6m	0.46	0.29-0.63	0.35	0.01-0.64	0.20	0.01-0.38
8m	0.43	0.20-0.65	0.39	0.01-0.75	0.18	0.01-0.34
Bare	0.20	0.11-0.31	0.22	0.01-0.40	0.58	0.48-0.69

695

696

697

698

699

700 **Figure 1.** Location of the study sites, Cockburn Sound, Western Australia (Australia).
701 White dot points represent the coring sites in seagrass *P. sinuosa* meadows at 2, 4, 6
702 and 8 m depth (from West to East). Bare sediment core is indicated by a black dot
703 point.

704
705
706

707 **Figure 2. a)** Sediment grain-size contents in *P. sinuosa* meadows (at 2, 4, 6 and 8 m
708 depth) and bare sediment cores (normalized for 500 years old deposits) at Cockburn
709 Sound; **b)** $\delta^{13}\text{C}$ signatures of the sedimentary organic carbon in *P. sinuosa* meadows
710 (at 2, 4, 6 and 8 m depth) and bare sediment cores from Cockburn Sound (normalized
711 for 500 years old deposits). Boxplot from top to bottom: largest observation, upper
712 interquartile, median, lower interquartile and lowest observation.

713

714 **a)**

715

719 **Figure 3.** Concentration profiles of total and excess ^{210}Pb in seagrass and bare
720 sediment cores from Cockburn Sound. Grey shaded area indicates the concentration
721 of supported ^{210}Pb ($^{210}\text{Pb}_{\text{sup}}$).

722

723

724

725

726

727

728 **Figure 4.** Inventories of C_{org} ($kg\ C_{org}\ m^{-2}$) in *P. sinuosa* meadows (at 2, 4, 6 and 8 m
729 depth) and bare sediments at Cockburn Sound ((normalized for ca. 500 years old
730 deposits).

731

732

733

734

735

736

737

738

739

740

741

742 **Figure 5.** Biplots showing the relationships among the variables studied in the
 743 seagrass and bare sediment cores from Cockburn Sound (normalized for 500 years old
 744 deposits). **a)** $\delta^{13}\text{C}$ signatures (‰) plotted against C_{org} stocks ($\text{mg C}_{\text{org}} \text{cm}^{-3}$); **b)**
 745 Sediment grain size $<0.125 \text{ mm}$ (%) plotted against C_{org} stocks ($\text{mg C}_{\text{org}} \text{cm}^{-3}$); **c)** $\delta^{13}\text{C}$
 746 signatures (‰) plotted against sediment grain size $<0.125 \text{ mm}$ (%); and **d)**
 747 Contribution of seagrass detritus (%) plotted against soil C_{org} stocks ($\text{kg C}_{\text{org}} \text{m}^{-2}$, over
 748 100 years – small symbols – and 500 years – big symbols – of accumulation).

749

750

751

752

753 **Figure 6.** Influence of biogeochemical factors on the organic carbon storage capacity
754 of seagrass ecosystems. Organic carbon in seagrass soil increases with high SAR, fine
755 sediment content, seagrass NPP and density; and decreases with high hydrodynamic
756 energy and water depth. SAR, soil accumulation rates; NPP, net primary production.

757

758

759

760 **Supporting information**

761 **Table A.** Details of radiocarbon dating of the *P. sinuosa* sheaths and shells from the
762 cores. The accession laboratory sample assigned by NOSAMS is indicated.

Habitat	Water depth (m)	Soil depth (cm)	NOSAMS #	Raw age (year BP)	Age error (+/-)	Material
<i>P. sinuosa</i>	2	87	109170	803	25	shell
	4	79	109174	600	25	sheath
	6	64	109171	1020	20	shell
	8	97	109173	1120	20	shell
	bare	4	109172	530	30	shell

763

764

765

766 **Figure B.** Substrate properties plotted against age at Cockburn Sound (*P. sinuosa*
767 cores at 2, 4, 6 and 8 m depth and bare sediment core at 4 m depth). **a)** Organic
768 carbon content (%); **b)** Organic carbon stocks ($\text{mg C}_{\text{org}} \text{ cm}^{-3}$); **c)** Sediment grain size
769 <0.125 mm; **d)** $\delta^{13}\text{C}$ signatures (‰) of organic carbon.

