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Abstract:	39	

Savanna	ecosystems	are	one	of	the	most	dominant	and	complex	terrestrial	biomes	that	40	
derives	from	a	distinct	vegetative	surface	comprised	of	co-dominant	tree	and	grass	41	
populations.	While	these	two	vegetation	types	co-exist	functionally,	demographically	42	
they	are	not	static,	but	are	dynamically	changing	in	response	to	environmental	forces	43	
such	as	annual	fire	events	and	rainfall	variability.	Modelling	savanna	environments	with	44	
the	current	generation	of	terrestrial	biosphere	models	(TBMs)	has	presented	many	45	
problems,	particularly	describing	fire	frequency	and	intensity,	phenology,	leaf	46	
biochemistry	of	C3	and	C4	photosynthesis	vegetation,	and	root	water	uptake.	In	order	to	47	
better	understand	why	TBMs	perform	so	poorly	in	savannas,	we	conducted	a	model	48	
inter-comparison	of	6	TBMs	and	assessed	their	performance	at	simulating	latent	energy	49	
(LE)	and	gross	primary	productivity	(GPP)	for	five	savanna	sites	along	a	rainfall	gradient	50	
in	northern	Australia.	Performance	in	predicting	LE	and	GPP	was	measured	using	an	51	
empirical	benchmarking	system,	which	ranks	models	by	their	ability	to	utilise	52	
meteorological	driving	information	to	predict	the	fluxes.	On	average,	the	TBMs	53	
performed	as	well	as	a	multi-linear	regression	of	the	fluxes	against	solar	radiation,	54	
temperature	and	vapour	pressure	deficit,	but	were	outperformed	by	a	more	complicated	55	
nonlinear	response	model	that	also	included	the	leaf	area	index	(LAI).	This	identified	56	
that	the	TBMs	are	not	fully	utilising	their	input	information	effectively	in	determining	57	
savanna	LE	and	GPP,	and	highlights	that	savanna	dynamics	cannot	be	calibrated	into	58	
models	and	that	there	are	problems	in	underlying	model	processes.	We	identified	key	59	
weaknesses	in	a	model’s	ability	to	simulate	savanna	fluxes	and	their	seasonal	variation,	60	
related	to	the	representation	of	vegetation	by	the	models	and	root	water	uptake.	We	61	
underline	these	weaknesses	in	terms	of	three	critical	areas	for	development.	First,	62	
prescribed	tree-rooting	depths	must	be	deep	enough,	enabling	the	extraction	of	deep	63	
soil	water	stores	to	maintain	photosynthesis	and	transpiration	during	the	dry	season.	64	
Second,	models	must	treat	grasses	as	a	co-dominant	interface	for	water	and	carbon	65	
exchange,	rather	than	a	secondary	one	to	trees.	Third,	models	need	a	dynamic	66	
representation	of	LAI	that	encompasses	the	dynamic	phenology	of	savanna	vegetation	67	
and	its	response	to	rainfall	interannual	variability.	We	believe	this	study	is	the	first	to	68	
assess	how	well	TBMs	simulate	savanna	ecosystems,	and	that	these	results	will	be	used	69	
to	improve	the	representation	of	savannas	ecosystems	in	future	global	climate	model	70	
studies.	71	

	72	



	 4	

Introduction	73	

Savanna	ecosystems	are	a	diverse	and	important	biome	that	play	a	significant	role	in	74	
global	land-surface	processes	(van	der	Werf	et	al.,	2008).	Globally,	they	occupy	regions	75	
around	the	wet-dry	tropical	to	sub-tropical	equatorial	zone,	covering	approximately	15	76	
to	20%	of	the	terrestrial	surface	and	contribute	~30%	to	global	net	primary	production	77	
(Grace	et	al.,	2006;	Lehmann	et	al.,	2014).	Savannas	are	water-limited	ecosystems	where	78	
rainfall	is	often	seasonal	or	monsoonal,	and	have	a	spatial	extent	that	can	cover	an	area	79	
with	annual	rainfall	in	the	range	of	500	to	2000	mm	(Bond,	2008;	Kanniah	et	al.,	2010;	80	
Sankaran	et	al.,	2005).	The	variability	in	the	amount	and	timing	of	annual	rainfall,	81	
coupled	with	local	topo-edaphic	properties,	and	the	frequency	and	intensity	of	seasonal	82	
fires	strongly	influences	the	structure	and	function	of	savanna	vegetation	(Beringer	et	83	
al.,	2007;	Kanniah	et	al.,	2010;	Ma	et	al.,	2013;	Sankaran	et	al.,	2005).	Savannas	are	84	
characterised	by	a	multi-layer	stratum	of	vegetation,	where	an	open	and	discontinuous	85	
canopy	overstorey	is	seasonally	dominated	by	understorey	grasses	(Scholes	and	Archer,	86	
1997).	These	tree	and	grass	layers	are	distinctly	and	functionally	different,	fixing	carbon	87	
using	different	photosynthetic	pathways,	C3	and	C4	photosynthesis	respectively	(Bond,	88	
2008;	Scholes	and	Archer,	1997;	Williams	et	al.,	1996b).	The	canopy	overstorey	can	be	89	
either	evergreen	or	deciduous	(depending	on	the	evolutionary	history),	while	the	grass	90	
understorey	is	annual:	active	only	in	the	wet	season	and	senescing	at	the	end	of	this	91	
period	(Williams	et	al.,	1996b).	Consequently,	water,	carbon	and	nutrient	cycling	in	92	
savannas	is	largely	determined	from	the	balance	and	co-existence	of	these	two	life	forms	93	
(Lehmann	et	al.,	2009;	Sankaran	et	al.,	2005).	94	

Given	the	complex	nature	of	savannas,	modelling	the	land	surface	exchange	and	95	
vegetation	dynamics	for	this	biome	is	challenging	for	terrestrial	biosphere	models	96	
(TBMs).	Here	we	define	TBMs	to	broadly	encompass	stand,	land-surface,	and	dynamic	97	
global	vegetation	models	(Pitman,	2003).	Most	land	surface	schemes	that	feed	into	98	
larger	earth	system	models	use	simplistic	representations	of	vegetation,	and	these	will	99	
have	difficulty	describing	the	complex	structure	of	savannas	ecosystems.	Such	issues	100	
may	be:	simplistic	assumptions	in	relation	to	rooting	depth	and	inadequate	responses	to	101	
drought	(De	Kauwe	et	al.,	2015;	Li	et	al.,	2012);	ignoring	the	multilayered	nature	of	102	
savannas	and	the	differing	structural	(including	radiation),	functional	(including	103	
different	plant	functional	types)	and	phenological	differences	(Whitley	et	al.,	2011);	and	104	
in	some	cases	neglecting	the	C4	photosynthetic	pathway	entirely	(Parton	et	al.,	1983;	105	
Schymanski	et	al.,	2007)	It	is	therefore	critical	that	TBMs	meet	the	challenges	that	106	
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savanna	dynamics	present	if	water	and	carbon	exchange	are	to	be	correctly	simulated	in	107	
response	to	global	change.		108	

Despite	these	issues,	there	have	been	significant	advances	in	modelling	savanna	109	
dynamics	in	recent	years,	and	this	has	been	focused	on	integrating	important	features	110	
specific	to	savanna	ecosystems,	namely	frequent	fire	and	tree-grass	competitive	111	
interactions,	processes	that	shape	savanna	structure	and	function	(Haverd	et	al.,	2015;	112	
Higgins	and	Scheiter,	2012;	Scheiter	and	Higgins,	2007;	Scheiter	et	al.,	2014;	Simioni	et	113	
al.,	2003).	Nevertheless,	little	work	has	been	undertaken	to	critically	evaluate	the	114	
performance	and	processes	of	TBMs	when	used	to	capture	water	and	carbon	cycling	in	115	
savannas,	most	notably	in	west	Africa	(Simioni	et	al.,	2000)	and	Australia	(Schymanski	116	
et	al.,	2007,	2008,	2009;	Whitley	et	al.,	2011).	Many	global	ecosystem	models	moreover	117	
use	broad	plant	functional	types	(PFTs)	with	single	parameter	values	to	describe	whole	118	
biomes	(Pitman,	2003),	making	them	unable	to	represent	changing	vegetation	structure	119	
(tree:grass	ratio)	in	the	continuum	of	grassland	to	woodland	savanna.	Approaches	have	120	
been	developed	that	can	account	for	savanna	dynamics,	such	as	using	mixed	tiles,	121	
whereby	trees	and	grasses	are	simulated	as	separate	surfaces	that	are	then	aggregated	122	
together	(Kowalczyk	et	al.,	2006).	However,	this	approach	fails	to	capture	the	123	
competition	between	trees	and	grasses	for	light,	water	and	nutrient	resources.	124	

In	this	study,	we	take	6	TBMs	of	distinctly	different	conceptual	frameworks,	and	assess	125	
their	ability	at	simulating	savanna	water	and	carbon	exchange	along	the	North	126	
Australian	Tropical	Transect	(NATT)	that	is	defined	by	a	strong	rainfall	gradient.	127	
Australian	tropical	savannas	can	be	considered	largely	intact	compared	to	South	128	
American	and	African	savannas,	and	provide	a	‘living	laboratory’	to	understand	the	links	129	
between	vegetation	structure	and	function	and	how	it	responds	to	environmental	130	
change	(Hutley	et	al.,	2011).	We	challenge	the	models	by	evaluating	them	along	the	131	
rainfall	gradient,	which	extends	over	a	broad	biogeographical	extent	and	strong	132	
interannual	variability	in	climate	(Koch	et	al.,	1995).	The	aim	of	this	study	is	to	highlight	133	
critical	processes	that	may	be	missing	in	current	TBMs	and	are	required	to	adequately	134	
simulate	savanna	ecosystems.	Specifically,	we	examine	whether	a	TBM’s	structural	135	
framework,	such	as	the	representation	of	the	understorey	grasses	(C4	photosynthesis),	136	
tree	rooting	depth,	and	description	of	phenology	(prescribed	vs.	dynamic)	can	137	
adequately	replicate	observed	carbon	and	water	fluxes.	To	achieve	this	we	measure	the	138	
performance	of	each	TBM	by	comparing	its	predictions	to	a	set	of	empirical	benchmarks	139	
that	describe	a	priori	expected	levels	of	model	performance.	We	identify	regions	of	low	140	
performance	among	sites	and	seasons,	to	diagnose	under	what	climate	conditions	141	
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reduced	model	performance	occurs.	We	then	infer	what	processes	(present	or	missing)	142	
may	be	the	cause	for	reduced	performance	when	applied	to	savannas	ecosystems.	Our	143	
intention	is	that	these	results	can	be	used	to	flag	high	priorities	for	future	development	144	
by	the	terrestrial	biosphere	modelling	community.	145	

	146	

2.	Methodology	147	

2.1	Observational	data	148	

The	North	Australian	Tropical	Transect	(NATT)	is	a	sub-continental	rainfall	gradient	in	149	
the	wet-dry	tropical	climate	zone	of	Northern	Australia,	which	encompasses	a	distance	150	
of	approximately	1000	km	over	a	latitudinal	range	of	-12	to	-23	°S	and	a	decline	in	mean	151	
annual	precipitation	(MAP)	from	1700	mm	to	300	mm	(Hutley	et	al.,	2011).	It	is	one	of	152	
three	savanna	transects	established	in	the	mid	1990’s,	forming	part	of	the	International	153	
Geosphere	Biosphere	Program	(IGBP)	along	with	the	SAvannas	in	the	Long	Term	(SALT)	154	
transect	in	West	Africa	and	the	Kalahari	Transect	(KT)	in	Southern	Africa	(Koch	et	al.,	155	
1995).	Soils	range	from	sand	dominated	red	Kandosols	to	black,	cracking	clay	soils	that	156	
are	more	extensive	in	the	southern	end	of	the	NATT	that	are	limiting	to	woody	plant	157	
growth	(Hutley	et	al.,	2011;	Williams	et	al.,	1996b).	Kandosols	are	ancient	and	158	
weathered,	such	that	they	have	been	leached	of	nutrients	by	the	large	monsoonal	159	
rainfall	(McKenzie	et	al.,	2004).	Close	to	the	northern	coastline,	vegetation	is	comprised	160	
primarily	of	evergreen	Eucalyptus	and	Corymbia	tree	species	that	overly	an	understorey	161	
of	C4	Sorghum	and	Heteropogon	spp.	grasses.	Inland,	tree	biomass,	leaf	area	index	(LAI)	162	
and	cover	tends	to	decline	and	by	-18	°S	savanna	vegetation	transitions	to	less	dense	163	
Acacia	woodlands,	shrublands	and	grasslands	that	are	dominated	by	Astrebla	grass	164	
species	(Hutley	et	al.,	2011).	Fires	occur	regularly	in	these	environments,	increasing	in	165	
frequency	with	higher	rainfall	(MAP	>	1000	mm),	and	are	fuelled	by	the	accumulation	of	166	
understorey	C4	grasses	that	cure	in	the	dry	season	(Beringer	et	al.,	2014;	Russell-Smith	167	
and	Edwards,	2006).		168	

The	five	flux	tower	sites	along	the	NATT	used	in	this	study	are	outlined	in	Table	1,	and	169	
describes	stand	soil	and	vegetation	characteristics,	as	well	as	a	summary	of	local	170	
meteorology	(Hutley	et	al.,	2011).	These	sites	represent	a	sampling	of	savanna	171	
environments	covering	a	wide	range	of	MAP	and	a	much	smaller	range	of	mean	annual	172	
temperature	(MAT)	(Fig.	1).	At	each	site,	an	eddy	covariance	system	was	used	to	173	
measure	the	ecosystem-atmosphere	exchange	of	radiation,	heat,	water	and	CO2.	Quality	174	
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assurance	and	control	(QA/QC)	and	corrections	on	the	fluxes	were	carried	out	on	the	30	175	
minute	dataset	using	the	OzFlux	QC/QA	protocol	(v2.8.5),	developed	by	the	OzFlux	176	
community	under	creative	commons	licensing	(www.ozflux.org.au)	(see	Eamus	et	al.,	177	
2013).	Missing	or	rejected	data	were	gap-filled	using	the	DINGO	(Dynamic	INtegrated	178	
Gap	filling	and	partitioning	for	Ozflux)	system	(see	Moore	et	al.	this	issue).	Gross	179	
primary	productivity	(GPP)	was	not	observed	but	determined	from	the	difference	180	
between	measured	net	ecosystem	exchange	(NEE)	and	modelled	ecosystem	respiration	181	
(Re).	Values	of	Re	were	determined	by	assuming	nocturnal	NEE	equals	Re	under	the	182	
conditions	for	sufficient	turbulent	transport.	Values	that	meet	these	requirements	are	183	
then	used	to	make	daytime	predictions	of	Re,	using	an	artificial	neural	network	(ANN),	184	
with	soil	moisture	and	temperature,	air	temperature,	and	the	normalised	difference	185	
vegetation	index	(NDVI)	used	as	predictors.	Additionally,	the	effect	of	fire	on	the	water	186	
and	carbon	fluxes	are	quantified	and	incorporated	into	the	datasets	accounting	for	the	187	
nonlinear	response	in	productivity	(becoming	a	carbon	source)	during	the	post-fire	188	
recovery	period	(Beringer	et	al.,	2007).	Because	the	TBMs	used	here	do	not	attempt	to	189	
simulate	stochastic	fire	events	(and	other	disturbance	regimes),	these	post-fire	recovery	190	
periods	were	removed	when	determining	the	benchmarks	and	model	performance	as	191	
described	below.	192	

Finally,	we	use	the	definitions	for	water	and	carbon	exchange	as	outlined	by	Chapin	et	193	
al.	(2006),	whereby	the	sub-daily	rate	of	GPP	is	expressed	in	µmol	m-2	s-1	and	uses	a	194	
negative	sign	(-)	to	denote	the	removal	of	CO2	from	the	atmosphere.	Similarly,	LE	is	195	
expressed	in	terms	of	energy	as	W	m-2	and	uses	a	positive	sign	to	denote	the	addition	of	196	
H2O	to	the	atmosphere.		197	

	198	

2.2	Terrestrial	biosphere	models	199	

The	6	TBMs	used	in	this	study	cover	a	wide	spectrum	of	characteristics	of	operation,	200	
scale	and	function,	and	include	differences	in	operational	time-step	(30min	vs.	daily),	201	
scope	of	simulated	processes	(soil	hydrology,	static	or	dynamic	vegetation,	multi-layer	202	
or	big	leaf	description	of	the	canopy)	and	intended	operational	use	(coupled	to	earth	203	
system	models,	offline	prediction,	driven	by	remote	sensing	products).	These	204	
characteristics	along	with	what	we	define	as	a	model	‘functional	class’	are	given	in	Table	205	
2	and	are	defined	as	follows.	Stand	models	(SMs)	give	detailed	multi-layer	descriptions	206	
of	canopy	and	soil	processes	for	a	particular	point,	operating	at	a	sub-daily	time-step	207	
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(Soil-Plant-Atmosphere	model:	SPA,	and	MAESPA).	Land-Surface	models	(LSMs)	operate	208	
at	the	same	temporal	resolution	as	SMs,	but	adopt	a	simpler	representation	of	canopy	209	
processes,	allowing	them	to	be	applied	spatially	(Community	Atmosphere	Biosphere	210	
Land	Exchange	model;	CABLE,	and	BIOS2;	a	modified	version	of	CABLE).	Dynamic	Global	211	
Vegetation	Models	(DGVMs)	simulate	water,	carbon	much	like	the	other	models,	but	212	
simulate	dynamic	rather	than	static	vegetation	that	changes	in	response	to	climate	and	213	
disturbance	(Lund-Potsdam-Jena	General	Ecosystem	Simulator;	LPJGUESS).	Lastly,	214	
Remote	Sensing	models	(RSMs)	are	driven	by	remotely	sensed	atmospheric	products,	215	
and	infer	water-stress	of	vegetation	through	changes	in	fractional	cover	rather	than	216	
detailed	soil	hydrological	processes	(Breathing	Earth	System	Simulator;	BESS).	Some	of	217	
the	TBMs	share	similar	structural	frameworks	in	parts:	for	example,	both	SPA	and	218	
MAESPA	use	similar	below-ground	soil	hydrology	and	root-water	uptake	schemes,	while	219	
BIOS2	is	fine-spatial-resolution	(0.05	degree),	offline	modelling	environment	for	220	
Australia,	in	which	predictions	of	CABLE	(with	alternate	parameterisations	of	drought	221	
response	and	soil	hydrology)	are	constrained	by	multiple	observation	types	(see	Haverd	222	
et	al.	2013).	Although	these	similarities	reduces	the	number	of	truly,	functionally,	223	
independent	models	used	in	the	experiment,	the	presence	of	such	overlap	can	be	useful	224	
in	identifying	if	particular	frameworks	are	the	cause	for	model	success	or	failure.	225	

	226	

2.3	Experimental	protocol	227	

All	TBMs	were	parameterised	for	each	of	the	five	savanna	sites	using	standardised	228	
information	on	vegetation	and	soil	profile	characteristics	(Table	1).	For	TBMs	that	229	
required	them,	parameter	values	pertaining	to	leaf	biochemistry,	such	as	maximum	230	
Rubisco	activity	(Vcmax)	and	leaf	nitrogen	content	per	leaf	area	(Narea),	were	assigned	231	
from	Cernusak	et	al.	(2011),	who	undertook	a	physiological	measurement	campaign	232	
during	the	SPECIAL	program	(Beringer	et	al.	2011).	Parameters	relating	to	soil	sand	and	233	
clay	content	were	taken	from	the	Australian	Soil	Classification	(Isbell,	2002),	while	root	234	
profile	information	was	sourced	from	Chen	et	al.	(2003)	and	Eamus	et	al.	(2002).	Each	235	
TBM	was	setup	to	describe	a	C3	evergreen	overstorey	with	an	underlying	C4	grass	236	
understorey,	and	conforms	well	with	the	characteristics	of	savannas	in	Northern	237	
Australia	(Bowman	and	Prior,	2005).	All	TBMs	(excluding	LPJGUESS)	prescribed	LAI	as	238	
an	input,	to	characterise	the	phenology	of	vegetation	at	each	site.	In	these	cases	LAI	was	239	
determined	from	MODIS	derived	approximations	that	were	well	matched	to	ground-240	
based	estimations	of	LAI	at	the	SPECIAL	sites	(Sea	et	al.,	2011).	The	fraction	of	C3	to	C4	241	
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vegetation	was	handled	differently	by	each	model	and	was	determined	for	each	as	242	
follows.	For	MAESPA	and	SPA,	the	models	allowed	for	time-varying	tree	and	grass	243	
fractions	to	be	assigned	as	direct	inputs,	and	these	time-varying	fractions	were	244	
determined	using	the	method	of	Donohue	et	al.	(2009).	BIOS2	similarly	used	the	same	245	
method	to	extract	time-varying	fractions,	while	CABLE	used	a	static	fraction	that	did	not	246	
change.	The	BESS	model	derived	the	C3:C4	fraction	from	the	C3	and	C4	distribution	map	of	247	
Still	et	al.	(2003),	while	for	LPJGUESS	this	fraction	is	a	prognostic	determination	248	
resulting	from	the	competition	between	trees	and	grasses	(see	Smith	et	al.,	2001).	Model	249	
simulations	were	driven	using	observations	of	solar	radiation,	air	temperature,	relative	250	
humidity	(or	vapour	pressure	deficit;	VPD),	rainfall,	atmospheric	CO2	concentration	and	251	
LAI	(if	prescribed),	and	included	a	spin-up	period	of	5	years	to	allow	internal	states,	252	
such	as	the	soil	water	balance	and	soil	temperature	to	reach	equilibrium.	The	exception	253	
to	the	above	was	the	BIOS2	model,	which	was	run	using	gridded	meteorological	inputs	254	
and	had	its	model	parameters	optimised	through	a	model-data	fusion	process	(see	255	
Haverd	et	al.,	2013).	256	

Simulations	for	each	savanna	site	covered	a	period	of	2	to	10	years	depending	on	the	257	
availability	of	data	from	each	flux	site	(Table	1)	and	results	were	standardised	to	the	258	
ALMA	(Assistance	for	Land-surface	Modelling	Activities)	convention.	Model	predictions	259	
of	LE	and	GPP	were	then	evaluated	against	local	observations	at	each	site	from	the	eddy	260	
covariance	datasets	and	benchmarked	following	the	methodology	proposed	by	the	PALS	261	
Land	SUrface	Model	Benchmarking	Evaluation	PRoject	(PLUMBER)	(Abramowitz,	2012;	262	
Best	et	al.,	2015)	as	described	below.		263	

	264	

2.4	Empirical	benchmarking	265	

The	paradigm	for	model	assessment	set	out	in	the	Protocol	for	the	Analysis	of	Land-266	
surface	models	(PALS)	(Abramowitz,	2012)	suggests	that	model	assessment	is	more	267	
meaningful	when	a	priori	expectations	of	performance	in	any	given	metric	can	be	268	
defined.	Such	benchmarks	can	be	created	using	simple	empirical	models,	built	on	269	
statistical	relationships	between	the	fluxes	and	drivers,	and	establish	the	degree	to	270	
which	models	utilise	the	information	available	in	their	driving	data	about	the	fluxes	they	271	
aim	to	predict.	Additionally,	these	empirical	models	are	simple	in	the	sense	that	they	are	272	
purely	instantaneous	response	to	time-varying	meteorological	forcing	and	contain	no	273	
internal	states	or	expression	of	ecophysiological	processes.	This	is	in	comparison	to	274	
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TBMs	that	are	complex,	having	some	20+	soil	and	vegetation	parameters,	internal	states,	275	
partitioning	of	light,	as	well	as	soil	and	vegetation,	carbon	and	nitrogen	pools	276	
(Abramowitz	et	al.,	2008).	277	

We	created	a	set	of	3	empirical	models	of	increasing	complexity	following	the	procedure	278	
of	Abramowitz	(2012),	which	we	compared	with	the	TBMs.	The	first	benchmark	(emp1)	279	
is	simply	a	linear	relationship	between	a	turbulent	flux	(LE	or	GPP)	and	downward	280	
short-wave	radiation	(Rs).	The	second	benchmark	(emp2)	is	slightly	more	complex,	and	281	
is	a	multi-linear	regression	between	a	flux	and	Rs,	air	temperature	(Ta),	and	vapour	282	
pressure	deficit	(VPD).	Finally,	the	third	benchmark	(emp3)	is	the	most	complex	and	is	a	283	
nonlinear	regression	of	the	fluxes	against	Rs,	Ta,	VPD	and	LAI,	determined	from	an	ANN.	284	
This	benchmark	is	constructed	using	a	self-organising	linear	output	map	that	clusters	285	
the	four	covariates	into	102	distinct	nodes	and	performs	a	multi-linear	regression	286	
between	the	fluxes	and	the	4	covariates	at	each	node,	resulting	in	a	nonlinear	(piece-287	
wise	linear)	response	to	the	meteorological	forcing	data	(Abramowitz	et	al.,	2008;	Hsu,	288	
2002).	In	a	departure	from	Abramowitz	(2012),	we	include	LAI	as	an	additional	289	
covariate,	as	the	seasonal	variance	of	savanna	water	and	carbon	exchange	is	strongly	290	
coupled	to	the	phenology	of	the	grasses	and	to	the	deciduous	and	semi-deciduous	291	
woody	species	(Moore	et	al.,	this	issue).	The	seasonal	behaviour	of	the	empirical	292	
benchmark	drivers	along	the	NATT	can	be	referred	to	in	the	supplementary	information.	293	
Empirical	benchmarks	are	created	for	each	of	the	five	flux	sites	using	non	gap-filled	data,	294	
and	are	parameterised	out-of-sample,	such	that	they	use	data	from	all	sites	except	the	295	
one	in	question.	For	example,	the	Howard	Springs	empirical	benchmark	models	would	296	
use	information	from	Adelaide	River,	Daly	Uncleared,	Dry	River	and	Sturt	Plains	to	297	
establish	their	parameter	values,	but	would	exclude	Howard	Springs	itself.	Constructing	298	
the	benchmarks	out-of-sample	results	in	what	is	effectively	a	generalised	response	to	an	299	
independent	dataset.	Once	the	empirical	models	were	calibrated	for	each	site,	300	
benchmarks	were	then	created	for	both	fluxes	using	the	same	meteorological	forcing	301	
used	to	run	the	TBMs.	302	

Finally,	we	assess	ecosystem	model	performance	in	terms	of	a	ranking	system,	following	303	
the	PLUMBER	methodology	of	Best	et	al.	(2015).	The	performance	of	each	individual	304	
ecosystem	model	in	predicting	both	LE	and	GPP	at	each	site	was	determined	using	four	305	
statistical	metrics	that	describe	the	mean	and	variability	of	a	model	compared	to	the	306	
observations.	These	metrics	included	the	correlation	coefficient	(r),	standard	deviation	307	
(sd),	normalised	mean	error	(NME),	and	mean	bias	error	(MBE)	(see	Table	B1).	308	
Similarly,	the	same	metrics	were	determined	for	each	of	the	3	benchmarks	at	each	309	
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savanna	site.	Each	TBM	was	then	ranked	against	the	benchmarks	(independently	of	the	310	
other	models)	for	each	of	the	metrics	listed	above.,	where	the	ranking	is	between	1	and	311	
4	(1	model	+	3	benchmarks)	and	the	best	performing	model	for	a	given	metric	is	ranked	312	
as	1.	An	average	ranking	is	then	determined	across	all	metrics	for	each	TBM	and	all	313	
benchmarks	to	give	a	final	ranking	of	performance	for	each	savanna	site.	The	ranks	314	
denote	the	number	of	metrics	being	met	by	the	models	and	are	not	a	measure	of	the	315	
smallest	absolute	error.	In	determining	the	average	ranks,	the	metrics	were	evaluated	at	316	
the	daily	time	scale,	as	this	was	the	lowest	temporal	resolution	common	amongst	the	6	317	
TBMs.	Additionally,	days	where	either	driver	or	flux	had	been	gap-filled	were	removed	318	
in	the	determination	of	these	metrics.	Herewith	we	use	the	term	performance	to	relate	319	
to	how	well	the	TBMs	compare	to	the	benchmarks	as	expressed	by	the	ranks.	320	

	321	

3.	Results	322	

3.1	Model	predictions	323	

Figure	2	shows	the	daily	time-course	of	LE	and	GPP	from	the	flux	tower,	models,	and	324	
benchmarks	at	each	of	the	five	savanna	sites.	Models,	benchmarks	and	observations	are	325	
represented	as	a	smoothed	time-series	(7-day	running	mean)	and	have	been	aggregated	326	
into	an	ensemble	year	to	express	the	typical	seasonality	of	savanna	water	and	carbon	327	
exchange.	Visually,	the	TBMs	showed	varying	levels	of	performance	across	the	rainfall	328	
gradient.	None	of	the	models	showed	a	clear	consistency	in	simulating	either	flux	and	329	
responded	differently	to	the	meteorological	drivers	across	sites.	Additionally,	some	of	330	
the	models,	such	as	CABLE	and	LPJGUESS,	showed	difficulty	in	simulating	the	331	
seasonality	of	the	fluxes	across	the	transect,	particularly	GPP.	Differences	among	model	332	
simulated	LE	and	GPP	were	larger	in	the	wet	season	than	the	dry	season.	However,	333	
modelled	LE	and	GPP	appeared	to	co-vary	quite	strongly;	overall	both	fluxes	were	334	
underestimated	across	sites	by	most	models.	Simulations	by	SPA	and	MAESPA	were	the	335	
exception	to	this,	broadly	capturing	tower	GPP	despite	consistently	underestimating	LE	336	
across	sites.		337	

Figure	3	shows	the	probability	density	functions	(PDFs)	for	the	wet	(Nov	–	Apr)	and	dry	338	
season	(May	–	Oct)	fluxes	at	each	savanna	site.	Tower	and	model	PDFs	were	determined	339	
by	binning	each	flux	into	the	respective	seasons	and	using	kernel	density	estimation	340	
(Bashtannyk	and	Hyndman,	2001)	to	determine	smoothed	distributions.	The	shape	and	341	
spread	of	the	distributions	highlight	possible	biases	in	the	models	(over-	or	342	
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underestimating	the	tower	fluxes),	as	well	as	their	ability	to	capture	the	spread	of	343	
values.	The	PDFs	for	the	tower	fluxes	tended	to	shift	to	low	values	and	became	narrower	344	
as	annual	rainfall	declined,	and	this	was	most	prominent	in	the	dry	season.	By	contrast,	345	
the	PDFs	of	the	model	simulations	did	not	replicate	this	trend,	being	mostly	stationary	346	
(i.e.	density	of	values	do	not	shift)	across	sites,	especially	for	wet	season	GPP.	For	347	
example,	the	LPJGUESS	and	MAESPA	models	showed	distributions	with	higher	densities	348	
at	low	LE	(20	–	40	W	m-2)	across	all	sites	and	seasons,	whereas	during	the	wet	season	349	
almost	all	models	except	MAESPA	and	SPA	had	higher	densities	of	GPP	at	low	values	(3	–	350	
4	µmol	m-2	s-1).	In	models	that	did	replicate	the	observed	spread	and	shape	of	the	tower	351	
fluxes	(CABLE,	LPJGUESS),	PDFs	were	biased	towards	lower	values	particularly	for	LE,	352	
where	there	was	little	overlap.	A	consistent	pattern	emerged	among	the	models,	353	
suggesting	that	drier	conditions	resulted	in	PDFs	with	higher	densities	at	low	values	for	354	
both	fluxes.	355	

The	benchmarks	showed	that	there	was	enough	information	in	Rs	(emp1)	to	predict	the	356	
magnitude	and	daily	time-course	of	the	tower	fluxes	(data	not	shown).	However,	357	
additional	information	contained	in	Ta	and	VPD	(emp2)	was	needed	to	capture	the	358	
water	and	carbon	flux	seasonality.	Importantly	additional	phenological	information	359	
(provided	as	LAI	in	emp3)	was	required	in	order	to	fully	capture	the	seasonality	of	the	360	
savannas	fluxes	and	provide	predictions	with	the	lowest	absolute	error.	This	indicates	361	
that	in	order	for	models	to	achieve	the	best	possible	performance	simulating	savanna	362	
ecosystems	they	will	require	correct	information	on	phenology.	363	

	364	

3.2	Residual	analysis	365	

Figure	4	shows	how	model	structure	(internal	processes)	is	affecting	predictions	of	366	
savanna	fluxes	across	the	rainfall	gradient.	To	do	this	we	examine	the	standardised	367	
model	residuals	from	each	TBM	where	the	scale	is	expressed	in	terms	of	standard	368	
deviations.	Figure	4	shows	the	LE	and	GPP	residuals	at	each	savanna	site	represented	in	369	
two	ways:	(i)	against	time,	and	(ii)	against	the	flux	prediction	itself.	Plotting	the	370	
residuals	against	time	provides	an	effective	way	of	examining	how	a	model	responds	to	371	
progressive	changes	in	the	environment,	while	plotting	the	residuals	against	the	model	372	
prediction	gives	a	measure	of	a	model’s	bias	(Medlyn	et	al.,	2005).	A	linear	regression	373	
has	been	applied	to	the	residuals	versus	flux	prediction	scatter	plots	in	order	to	better	374	
visualise	the	degree	of	bias.	375	
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Model	residuals	for	both	LE	and	GPP	illustrated	a	larger	tendency	towards	376	
underestimation	in	the	wet	than	in	the	dry	season.	The	LE	residuals	showed	a	larger	377	
between-day	variance	than	the	GPP	residuals	in	the	wet	season.	A	possible	explanation	378	
for	this	is	that	LE	is	the	sum	of	multiple	evaporation	components:	vegetation	379	
transpiration,	soil	evaporation,	and	wet	canopy	evaporation,	i.e.	3	sources	for	potential	380	
error.	However,	the	error	and	variance	of	the	LE	residuals	reduced	into	the	dry	season,	381	
and	as	the	site	itself	became	drier.	It	is	likely	that	this	reduced	error	and	variance	in	LE	382	
was	a	combination	of	the	increasing	contribution	of	woody	transpiration	to	bulk	land-383	
surface	LE	as	the	grass	transpiration	and	soil	evaporation	declined	(via	senescence	and	384	
low	surface	soil	moisture	respectively).	Despite	this	reduction	in	error,	there	was	still	an	385	
underestimation	of	dry	season	LE	that	was	larger	at	wetter	sites,	suggesting	that	386	
processes	affecting	simulated	plant	hydrology	(e.g.	root-water	uptake,	plant	387	
conductance,	rooting	depth)	are	inadequate	for	some	of	the	TBMs	(e.g.	LPJGUESS,	388	
CABLE).	The	GPP	residuals	broadly	showed	a	similar	response	over	time,	with	the	389	
exception	that	the	between-day	variance	was	lower	and	did	not	change	between	390	
seasons.	Again,	moving	into	the	dry	season	where	the	grasses	become	inactive,	the	391	
residuals	go	to	zero.	This	suggests	that	tree	transpiration	and	photosynthesis	are	in	392	
general	being	adequately	modelled,	albeit	with	some	underestimation.	A	possible	393	
explanation	for	this	is	too	shallow	tree	rooting	depths	at	the	wetter	sites.	The	large	error	394	
in	the	wet	season	that	is	visible	across	the	transect	points	to	a	structural	issue	with	how	395	
the	grasses	are	modelled.		396	

All	models	show	different	biases	in	their	predictions	(indicated	by	the	slope),	and	these	397	
biases	in	almost	all	cases	change	with	site	and	are	not	consistent	among	the	models.	The	398	
biasing	for	the	CABLE	and	BIOS2	models	is	similar	and	positive	for	LE,	yet	divergent	for	399	
GPP.	For	the	LPJGUESS,	MAESPA	and	SPA	models,	there	is	significant	negative	bias	in	400	
predicted	LE,	while	for	the	GPP	predictions	the	bias	is	smaller.	The	BESS	model	shows	401	
both	negative	and	positive	biasing,	but	is	small	and	somewhat	consistent	among	sites.		402	

	403	

3.3	Model	performance	404	

Figure	5	shows	a	comparison	of	individual	TBM	performance	ordered	by	site	from	405	
wettest	(Howard	Springs)	to	driest	(Sturt	Plains)	and	in	terms	of	their	annual,	wet	and	406	
dry	season	predictions	for	each	flux.	Despite	differences	in	model	complexity	(Table	1),	407	
the	TBMs	showed	a	similar	performance	across	sites	and	seasons.	For	almost	all	sites,	408	
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the	TBMs	outperformed	the	emp1	benchmark	for	annual	flux	predictions	(Fig.	5a).	409	
However,	there	were	some	exceptions	to	this,	and	good	performance	in	one	flux	did	not	410	
necessarily	result	in	good	performance	in	the	other.	For	example,	MAESPA	was	unable	411	
to	beat	the	emp1	benchmark	for	LE	at	sites	where	MAP	>	1000	mm,	but	performed	412	
better	than	the	emp2	benchmark	for	GPP.	In	general,	there	was	a	slight	pattern	of	413	
increased	model	performance	as	annual	rainfall	declined,	though	with	a	degree	of	site-414	
to-site	variability	in	the	rankings	for	some	of	the	TBMs.	415	

In	order	to	examine	how	seasonal	changes	affect	model	performance,	we	additionally	416	
determined	the	metrics	and	rankings	for	the	wet	and	dry	season	periods	(Fig.	5b-c).	417	
Seasonal	differences	were	immediately	obvious.	Model	performance	for	wet	season	LE	418	
and	GPP	was	low	to	moderate,	and	the	majority	of	the	TBMs	showed	a	performance	that	419	
ranged	between	the	emp1	and	emp2	benchmarks.	In	contrast,	there	were	noticeable	420	
improvements	to	dry	season	model	performance	amongst	the	TBMs.	For	dry	season	LE,	421	
half	the	models	(BIOS2,	BESS,	and	SPA)	were	able	to	consistently	outperform	the	emp2	422	
benchmark,	and	come	close	to	meeting	the	same	number	of	metrics	as	the	emp3	423	
benchmark	particularly	at	the	drier	sites.	In	comparison,	predicted	dry	season	GPP	saw	424	
a	larger	enhancement	in	model	performance,	with	TBMS	more	frequently	outperforming	425	
the	emp2	benchmark	and	even	some	outperforming	the	emp3	benchmark	(LPJGUESS,	426	
BESS,	and	SPA	at	the	Daly	Uncleared	site).	The	exception	to	all	this	was	the	CABLE	427	
model,	which	showed	surprisingly	little	loss	or	gain	in	performance	despite	the	season.	428	
The	results	give	an	indication	that	as	a	whole,	input	information	was	better	utilised	by	429	
each	TBM	at	drier	sites	and	in	the	dry	season,	suggesting	that	there	are	problems	in	wet	430	
season	processes.	431	

	432	

4.	Discussion	433	

The	NATT,	which	covers	a	marked	rainfall	gradient,	presents	a	natural	‘living	laboratory’	434	
with	which	a	models	ability	to	simulate	fluxes	in	savanna	ecosystems	may	be	assessed.	435	
Our	results	have	highlighted	that	there	is	a	clear	failure	of	the	models	to	adequately	436	
perform	at	predicting	wet	season	dynamics,	as	compared	to	the	dry	season,	and	437	
suggests	that	modelled	processes	relating	to	the	C4	grass	understorey	are	insufficient.	438	
This	highlights	a	key	weakness	of	this	group	of	TBMs,	which	likely	extends	to	other	439	
models	outside	of	this	study.	The	inability	of	these	TBMs	to	capture	wet	season	440	
dynamics	is	highlighted	by	the	benchmarking,	where	the	performance	for	many	of	the	441	
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models	was	at	best	equivalent	to	that	of	a	multi-linear	regression	against	Rs,	Ta	and	VPD	442	
(emp2)	and	in	some	cases	no	better	than	a	linear	regression	against	Rs	(emp1).	Given	443	
that	this	subset	of	TBMs	are	sophisticated	process-based	models	that	represent	our	best	444	
understanding	of	land-surface,	atmospheric	exchange	processes,	we	would	expect	them	445	
to	perform	as	well	as	a	neural	network	prediction	(emp3).	Consequently	there	is	an	446	
evident	underutilisation	of	the	driving	information	(i.e.	a	failure	to	describe	the	447	
underlying	relationships	in	the	data)	impeding	the	performance	of	these	models	when	448	
predicting	savanna	fluxes.	However,	there	were	instances	where	some	of	the	TBMs	were	449	
able	to	reach	similar	levels	of	performance	with	the	emp3	benchmark,	and	strongly	450	
suggests	that	each	of	these	models	is	capable	of	replicating	savanna	dynamics	under	451	
certain	conditions	(e.g.	during	the	dry	season).		452	
	453	
Our	results	suggest	that	errors	among	models	are	likely	to	be	systematic,	rather	than	454	
related	to	calibration	of	existing	parameters.	For	example,	BIOS2	had	previously	455	
optimised	model	parameters	for	Australian	vegetation	(see	Haverd	et	al.2013),	but	was	456	
still	unable	to	out-perform	the	emp3	benchmark	in	most	cases,	although	performed	457	
better	than	an	un-calibrated	CABLE,	to	which	it	is	functionally	similar.	Similarly,	458	
MAESPA	and	SPA,	which	used	considerable	site	characteristic	information	to	459	
parameterise	their	simulations,	did	not	significantly	outperform	un-calibrated	models	460	
(e.g.	CABLE).	Additionally,	despite	these	models	using	the	same	leaf,	root	and	soil	461	
parameterisations,	both	SPA	and	MAESPA	displayed	markedly	different	performances	in	462	
predicting	LE.	Consequently,	improving	how	models	represent	key	processes	that	drive	463	
savanna	dynamics	is	critical	to	improving	model	performance	across	this	ecosystem.	464	
	465	
There	is	certainly	enough	information	in	the	time-varying	model	inputs	to	be	able	to	466	
adequately	simulate	wet	and	dry	season	dynamics,	as	is	evidenced	by	the	benchmarks.	467	
We	therefore	consider	the	implications	of	our	results,	and	present	possible	reasons	468	
below	for	why	this	group	of	TBMs	is	failing	to	capture	water	and	carbon	exchange	along	469	
the	NATT,	and	make	suggestions	as	to	how	this	could	be	improved.	470	
	471	

4.1	Water	access	and	tree	rooting	depth	472	

During	the	late	dry	season	surface	soil	moisture	in	the	sandy	soils	declines	to	less	than	473	
3%	volumetric	water	content,	with	an	equivalent	matric	potential	of	3	to	4	MPa	(Prior	et	474	
al.,	1997).	During	this	seasonal	phase,	the	grass	understorey	becomes	inactive	and	LE	475	
can	be	considered	as	equivalent	to	tree	transpiration,	such	that	it	is	the	only	active	476	
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component	during	this	period	(O’Grady	et	al.,	1999).	Using	this	equivalence,	one	can	477	
infer	the	relative	effect	that	rooting	depth	has	on	LE	during	this	period.	Previous	studies	478	
have	shown	that	for	these	savanna	sites	along	the	NATT,	tree	transpiration	is	479	
maintained	throughout	the	dry	season	by	deep	root	systems	that	access	deep	soil-water	480	
stores,	which	in	turn	are	recharged	over	the	wet	season	(Eamus	et	al.,	2000;	Hutley	et	481	
al.,	2001;	Kelley	et	al.,	2007;	O’Grady	et	al.,	1999).	In	order	for	models	to	perform	well	482	
they	will	need	to	set	adequate	rooting	depths	and	distributions,	along	with	root	water	483	
uptake	process,	to	enable	a	model	response	to	such	seasonal	variation.	Examining	484	
performance	across	the	models,	we	can	infer	this	to	be	a	key	deficiency.	As	expected,	485	
TBMs	that	prescribed	shallow	rooting	depths	(e.g.	LPJGUESS)	did	not	simulate	this	486	
process	well,	and	underestimated	dry	season	LE	at	3	of	the	5	savanna	sites	by	up	to	30	487	
to	40%.	The	two	sites	at	Adelaide	River	and	Sturt	Plains	were	an	exception	to	this	with	488	
the	TBMs	displaying	a	low	residual	error,	which	is	likely	to	be	a	consequence	of	heavier	489	
textured	soils	and	trees	at	these	sites	having	shallow	root	profiles.	At	Adelaide	River	490	
shallow	root	profiles	are	a	consequence	of	shallow,	heavier	textured	soils,	however	dry	491	
season	transpiration	is	sustained	due	to	the	presence	of	saturated	yellow	hydrosol	soils.	492	
Sturt	Plains	is	a	grassland	(end	member	of	the	savanna	continuum)	where	C4	grasses	493	
dominate	and	no	trees	are	present	such	that	transpiration	is	close	to	zero	in	the	dry	494	
season.	The	few	small	shrubs	that	have	established	have	shallow	root	profiles	that	have	495	
adapted	to	isolated	rainfall	events	driven	by	convective	storms	(Eamus	et	al.,	2001;	496	
Hutley	et	al.,	2001,	2011).	Consequently,	the	TBMs	would	be	expected	to	perform	better	497	
at	these	sites,	as	water	and	carbon	exchange	will	be	modulated	by	the	soil-water	status	498	
of	the	sub-surface	soil	layers.	For	the	other	sites,	models	which	assumed	a	root	depth	>	5	499	
m	(BIOS2,	SPA	and	MAESPA),	showed	the	most	consistent	performance	in	predicting	dry	500	
season	LE,	and	we	suggest	for	seasonally	water-limited	ecosystems,	such	as	savanna,	501	
that	deeper	soil	water	access	is	critical.	Our	results	highlight	the	need	for	data	with	502	
which	to	derive	more	mechanistic	approaches	to	setting	rooting	depth,	such	as	that	of	503	
Schymanski	et	al.	(2009).		504	

Interestingly,	a	low	residual	error	for	LE	in	the	dry	season,	did	not	translate	as	good	505	
performance	in	the	overall	model	ranking.	This	suggests	that	other	processes	along	the	506	
soil-vegetation-atmosphere	continuum	need	to	be	considered	to	improve	simulated	507	
woody	transpiration.	Such	processes	may	include	root-water	uptake	(distribution	of	508	
roots	and	how	water	is	extracted),	and	the	effect	of	water	stress	and	increased	509	
atmospheric	demand	at	the	leaf-level	(adjustment	of	stomatal	conductance	due	to	510	
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changes	in	leaf	water	potential).	More	detailed	model	experiments	that	examine	how	511	
each	TBM	simulates	these	processes	would	help	identify	how	they	can	be	improved.	512	

An	exception	to	the	above	is	the	BESS	model,	which	forgoes	simulating	belowground	513	
processes	of	soil	hydrology	and	root-water	uptake	entirely.	Rather,	this	model	assumes	514	
that	the	effects	of	soil-moisture	stress	on	water	and	carbon	exchange	is	expressed	515	
through	changes	in	LAI	(and	by	extension	Vcmax),	which	acts	as	a	proxy	for	changes	in	soil	516	
moisture	content	(Ryu	et	al.,	2011).	The	fact	that	BESS	performed	moderately	well	along	517	
the	NATT,	coupled	with	the	fact	that	tree	transpiration	continues	through	the	dry	season	518	
suggests	that	there	may	be	enough	active	green	material	for	remote	sensing	proxies	of	519	
water-stress	to	generally	work	rather	well	for	savanna	ecosystems.	It	is	notable	that	520	
BESS	overestimated	both	GPP	and	ET	in	dry	season	at	the	driest	site,	Sturt	Plains	(Fig	521	
2e),	implying	that	greenness	detected	by	satellite	remote	sensing	might	not	capture	522	
carbon	and	water	dynamics	well	in	such	a	dry	site.		523	

	524	

4.2	Savanna	wet	season	dynamics	525	

The	relative	performance	of	the	TBMs	at	predicting	LE	was	much	poorer	in	the	wet	526	
season	compared	to	the	dry	season.	The	reason	for	this	difference	is	that	wet	season	LE	527	
is	the	sum	of	woody	and	herbaceous	transpiration	(Eveg)	as	well	as	soil	and	wet-surface	528	
evaporation	(Esoil);	in	contrast	dry	season	LE	is	predominantly	woody	transpiration	as	529	
described	previously.	During	the	wet	season,	up	to	75%	of	total	LE	arises	from	530	
understorey	herbaceous	transpiration	and	soil	evaporation	(Eamus	et	al.,	2001;	Hutley	531	
et	al.,	2000;	Moore	et	al.,	this	issue)	and	of	this	fraction	the	C4	understorey	contributes	a	532	
significant	daily	amount	(Hutley	et	al.,	2000).	In	the	absence	of	observations	of	533	
understory	LE	it	can	be	difficult	to	determine	whether	grass	transpiration	is	being	534	
simulated	correctly.	However,	separating	out	the	components	of	wet	season	LE	into	soil	535	
and	vegetation	can	help	identify	which	of	these	components	are	causes	for	error.		536	
	537	
Separating	the	outputs	of	simulated	Eveg	and	Esoil	from	each	TBM	(excluding	BESS	which	538	
did	not	determine	these	as	outputs	during	the	study)	shows	that	simulated	wet	season	539	
Eveg	was	particularly	low	for	a	lot	of	the	models,	despite	high	LAI	and	non-limiting	soil-540	
water	conditions	(Figure	6).	A	previous	study	at	Howard	Springs	by	Hutley	et	al.	(2000)	541	
observed	that	during	the	wet	season,	the	grass	understorey	could	transpire	~2.8	mm	d-1,	542	
while	the	tree	canopy	transpired	only	0.9	mm	d-1	(Eveg	=	3.7	mm	d-1).	Of	the	6	TBMs	at	543	
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Howard	Springs,	only	CABLE	and	SPA	were	able	to	predict	an	Eveg	close	to	this	level,	544	
while	the	other	models	predicted	values	closer	to	tree	transpiration	(i.e.	an	under-545	
estimate).	This	pattern	is	similar	for	other	NATT	sites,	where	predicted	wet	season	Eveg	546	
remained	low	and	was	dominated	by	Esoil	at	the	southern	end	of	the	NATT.	An	547	
underestimation	of	wet	season	LE	could	be	due	to	underestimated	Esoil	in	some	of	the	548	
models.	Conversely,	CABLE	and	BIOS2	predicted	a	higher	Esoil	than	the	other	models,	and	549	
this	could	be	a	reason	for	their	higher	LE	performance	during	the	wet	season.	Although	550	
Esoil	has	been	reported	to	reach	as	high	as	2.8	mm	d-1	at	Howard	Springs	(Hutley	et	al.,	551	
2000),	predicted	Esoil	by	these	models	may	still	be	overestimated,	given	that	vegetation	552	
cover	during	this	period	is	at	a	seasonal	peak	(limiting	energy	available	at	the	soil	553	
surface)	and	transpiration	is	only	limited	by	available	energy	not	water	(Hutley	et	al.,	554	
2000;	Ma	et	al.,	2013;	Schymanski	et	al.,	2009;	Whitley	et	al.,	2011).	Given	the	limited	555	
data	for	Esoil	along	the	NATT,	it	is	difficult	to	determine	how	large	Esoil	should	be.	556	
However,	the	ratios	displayed	by	the	TBMs	appear	to	be	reasonable	though,	with	557	
vegetation	acting	as	the	predominant	pathway	for	surface	water	flux.		558	
	559	
Grass	transpiration	is	thus	clearly	being	under-represented	by	most	of	TBMs,	and	560	
reasons	for	this	could	be	due	to	multiple	factors	that	we	discuss	below.	The	evolution	of	561	
C4	grasses	to	fix	carbon	under	low	light,	low	CO2	concentrations	and	high	temperatures	562	
has	resulted	in	a	gas-exchange	process	that	is	highly	water-use	efficient	(von	563	
Caemmerer	and	Furbank,	1999).	Consequently,	this	life	form	is	abundant	in	tropical,	564	
water-limited	ecosystems,	where	it	can	contribute	to	more	than	50%	of	total	LAI	(2.0	to	565	
2.5),	particularly	at	high	rainfall	sites	(Sea	et	al.,	2011).	The	annual	strategy	of	the	C4	566	
grasses	at	these	sites	is	to	indiscriminately	expend	all	available	resources	to	maximise	567	
productivity	during	the	monsoon	period,	for	growth	and	to	increase	leaf	area.	This	568	
therefore	allows	grass	transpiration	to	exceed	tree	transpiration	during	the	peak	wet	569	
season	as	evergreen	trees	will	be	more	conservative	in	their	water-use,	allowing	them	to	570	
remain	active	in	the	dry	season	(Eamus	et	al.,	2001;	Hutley	et	al.,	2000;	Scholes	and	571	
Archer,	1997).	Following	this	logic,	our	results	suggest	that	the	TBMs	are	either:	i)	572	
incorrectly	ascribing	leaf	area	to	the	understorey	(i.e.	the	C4	fractional	cover	is	too	low),	573	
ii)	incorrectly	describing	the	C4	leaf-gas	exchange	physiology,	iii)	incorrectly	describing	574	
the	understory	micro	climatic	environment	(Rs,	Ta,	VPD),	or	iv)	a	combination	of	these	575	
causes.	Furthermore,	it	should	be	noted	that	the	TBMs	used	in	this	study	are	not	truly	576	
modelling	grasses,	but	approximating	them.	Grasses	are	effectively	simulated	as	‘stem-577	
less’	trees,	and	the	distinction	between	the	two	life	forms	is	reliant	on	different	578	
parameter	sets	(e.g.	Vcmax,	height,	etc.)	and	slight	modifications	of	the	same	process	(e.g.	579	
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rate	of	assimilation,	respiration,	etc.).	While	our	results	and	the	tower	data	do	not	allow	580	
us	to	directly	determine	how	C4	grasses	may	be	misrepresented	in	these	TBMs,	they	581	
clearly	indicate	that	future	development	and	evaluation	should	be	focused	on	these	582	
issues.	Eddy	covariance	studies	of	understorey	savanna	vegetation	as	conducted	by	583	
Moore	et	al.	(this	issue)	will	be	critical	to	this	process.	584	
		585	

4.3	Savanna	phenology	586	

The	results	from	this	study	have	shown	that	to	simulate	savanna	fluxes,	TBMs	must	be	587	
able	to	simulate	the	dynamics	of	savanna	phenology,	expressed	by	LAI.	This	was	588	
highlighted	by	the	empirical	benchmarks,	where	the	results	showed	that	while	Rs,	Ta	and	589	
VPD	were	important	drivers,	LAI	was	required	to	capture	the	seasonality	and	magnitude	590	
of	the	fluxes	to	achieve	good	performance.	LAI	integrates	the	observed	structural	591	
changes	of	the	savanna	as	annual	rainfall	declines	with	reduced	woody	stem	density;	592	
driving	water	and	carbon	exchange	as	a	result	(Kanniah	et	al.,	2010;	Ma	et	al.,	2013;	Sea	593	
et	al.,	2011).	If	LAI	is	prescribed	in	a	model,	it	is	important	that	leaf	area	is	partitioned	594	
correctly	between	the	trees	and	grass	layers	to	describe	their	respective	phenology.	This	595	
partitioning	is	important,	as	the	C4	grass	understorey	explains	most	of	the	seasonal	596	
variation	in	LAI,	and	is	a	consequence	of	an	annual	phenology	that	exhibits	rapid	growth	597	
at	the	onset	of	the	wet	season	and	senescence	at	the	onset	of	the	dry	(Williams	et	al.,	598	
1996b).	By	contrast	the	evergreen	eucalypt	canopy	shows	modest	reductions	in	canopy	599	
leaf	area	during	the	dry	season,	especially	as	mean	annual	rainfall	declines	(Bowman	600	
and	Prior,	2005;	Kelley	et	al.,	2007).	The	strong	seasonal	dynamics	of	the	grasses	result	601	
in	large	changes	in	LAI,	with	levels	varying	between	0.7	and	2.5	at	high	rainfall	sites	(Sea	602	
et	al.,	2011).	The	phenological	strategy	of	the	C4	grasses	also	changes	with	rainfall	603	
interannual	variability,	with	the	onset	of	the	greening	period	becoming	progressively	604	
delayed	as	sites	become	drier,	to	become	eventually	rain-pulse	driven	as	the	monsoonal	605	
influence	weakens	(Ma	et	al.,	2013).	606	
	607	
With	the	exception	of	LPJGUESS,	all	models	prescribed	LAI	as	an	input	driver.	608	
Prescribing	LAI	can	be	problematic	depending	on	the	time-scale	and	how	it	is	609	
partitioned	between	trees	and	grass	layers.	At	large	time-steps	(months)	it	will	fail	to	610	
capture	the	rapidly	changing	dynamics	of	vegetation	during	the	transition	periods,	and	611	
this	is	particularly	true	for	the	onset	of	the	wet	season	(Sep-Nov)	especially	at	drier	sites	612	
that	are	subject	to	larger	interannual	rainfall	variability	(Hutley	et	al.,	2011).	613	
Additionally,	as	the	sites	become	drier	the	tree:grass	ratio	will	become	smaller	and	this	614	
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dynamic	can	be	difficult	to	predict,	although	methods	do	exist	(see	Donohue	et	al.	2009).	615	
From	the	results,	we	infer	that	TBMs	that	prescribe	LAI	and	allow	for	a	dynamic	616	
representation	of	tree	and	grass	ratios	are	better	able	to	capture	the	changing	dynamics	617	
of	the	savanna	system.	This	is	a	possible	explanation	for	the	better	performance	of	the	618	
BIOS2,	MAESPA	and	SPA	models	in	simulating	GPP	as	these	models	dynamically	619	
partition	leaf	area	between	trees	and	grasses	at	the	sub-monthly	time-scale,	rather	than	620	
using	a	bulk	value.	However,	there	are	limitations	to	using	prescribed	LAI,	621	
predominantly	in	that	it	describes	a	stable	system,	of	which	savannas	are	typically	not;	622	
having	a	large	sensitivity	to	changes	in	climate;	particularly	rainfall	variability	and	623	
disturbance	(Sankaran	et	al.,	2005).	DGVMs	that	consider	dynamic	vegetation	and	use	a	624	
prognostic	LAI	can	simulate	the	feedback	between	the	climate	and	the	relative	cover	of	625	
trees	and	grasses,	which	shapes	the	savanna	continuum.	This	feedback	allows	the	626	
simulated	savanna	structure	to	potentially	shift	to	alternate	states	(e.g.	grassland	or	627	
forest)	in	response	to	changes	in	annual	rainfall	and	fire	severity	(Scheiter	and	Higgins,	628	
2007,	2009).	While	LPJGUESS	was	the	only	TBM	to	use	a	prognostic	LAI	in	our	study,	it	629	
achieved	only	moderate	performance,	and	this	may	be	due	to	how	carbon	is	allocated	630	
from	the	pool	on	an	annual	time	step,	such	that	it	is	not	as	dynamic	as	it	could	be.	631	
However,	its	capability	to	simulate	the	feedback	between	climate	and	LAI	is	critical	for	632	
simulating	how	savanna	dynamics	may	change	from	year	to	year.	There	may	also	be	633	
issues	with	how	phenology	is	simulated,	particularly	as	it	is	determined	from	empirical	634	
formulations,	which	are:	i)	not	specifically	developed	for	savanna	environments	and	ii)	635	
calculated	before	the	growing	season	begins.	Such	formulations	are	therefore	not	636	
mechanistic,	and	do	not	respond	to	actual	season	dynamics	(e.g.	limiting	soil	water),	but	637	
are	empirically	determined	(Richardson	et	al.,	2013).	638	

	639	
5.	Conclusions	640	
	641	
This	study	set	out	to	assess	how	well	a	set	of	functionally	different,	state-of-the-art	642	
TBMs	perform	at	predicting	the	bulk	exchanges	of	carbon	and	water	over	savanna	land	643	
surfaces.	Our	model	inter-comparison	has	identified	key	weaknesses	in	the	assumptions	644	
of	biosphere-atmosphere	processes,	which	do	not	hold	for	savanna	environments.	Our	645	
benchmarking	has	identified	low	model	performance	by	TBMs	is	likely	a	result	of	646	
incorrect	assumptions	related	to:	i)	deep	soil	water	access,	ii)	a	systematic	under-647	
estimation	of	the	contribution	of	the	grass	understorey	in	the	wet	season,	and	iii)	the	648	
use	of	static	phenology	to	represent	dynamic	vegetation.	Our	results	showed	that	these	649	
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assumptions,	as	they	currently	exist	in	TBMs,	are	not	wholly	supported	by	‘observations’	650	
of	savanna	water	and	carbon	exchange	and	need	to	be	addressed	if	more	reliable	651	
projections	are	to	be	made	on	how	savannas	respond	to	environmental	change.	Despite	652	
this,	our	benchmarking	has	shown	that	all	TBMs	could	potentially	operate	well	for	653	
savanna	ecosystems,	provided	that	the	above	issues	are	developed	on.	We	suggest	that	654	
further	work	investigates	how	particular	processes	in	the	models	may	be	affecting	655	
overall	predicted	water	and	carbon	fluxes,	and	may	include	testing	variable	rooting	656	
depths,	alternate	root-water	uptake	schemes	and	how	these	might	affect	leaf-level	657	
outputs	(e.g.	stomatal	conductance,	leaf	water	potential)	among	TBMs,	and	different	658	
phenology	schemes.	The	issues	highlighted	here	also	have	scope	beyond	savanna	659	
environments,	and	are	relevant	to	other	water-limited	ecosystems.	The	results	from	this	660	
study	provide	a	foundation	for	improving	how	savanna	ecosystem	dynamics	are	661	
simulated.	662	
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	 Howard	Springsa	 Adelaide	Riverb	 Daly	Unclearedc	 Dry	Riverd	 Sturt	Plainse	

Years	(inclusive)	 2001	–	2012	 2007	–	2009	 2008	–	2012	 2008	–	2012	 2008	–	2012	

Co-ordinates	 12◦29'39.12''	S	

131◦09'09''	E	

13◦04'36.84''	S	

131◦07'04.08''	E	

14◦09'33.12''	S	

131◦23'17.16''	E	

15◦15'31.62''	S		

132◦22'14.04''	E	

17◦09'02.76''	S	

133◦21'01.14''	E	
Elevation	(m)	 64	 90	 110	 175	 250	

fMeteorology	
	 	 	 	 	

Annual	Rainfall	(mm)	 1714	 1460	 1170	 850	 535	
Min/Max	Daily	Temperature	(°C)	 22.0/33.0	 21.8/35.3	 20.8/35.0	 20.0/34.8	 19.0/34.2	

Min/Max	Absolute	Humidity	(g	m-3)	 11.0/18.5	 8.9/17.7	 8.6/15.1	 7.8/12.3	 6.1/9.0	
Min/Max	Soil	Moisture	(m3	m-3)	 0.06/0.1	 0.09/0.14	 0.03/0.06	 0.03/0.05	 0.04/0.1	

Soil	Temperature	(°C)	 32.7	 35.7	 32.8	 n.a.	 30.2	
Solar	Radiation	(W	m-2)	 256.5	 258.1	 270.6	 266.5	 269.7	

Bowen	Ratio	 1.7	 3.1	 3.2	 4.6	 15.8	
fVegetation	 	 	 	 	 	

Overstorey	specices	 Eu.	Miniata	
Eu.	tetrodonta	
Er.	chlorostachys	
	

Eu.	tectifica	
Pl.	careya	
Co.	latifolia	

Te.	grandiflora	
Eu.	tetrodonta	
Co.	latifolia	

Eu.	tetrodonta	
Co.	terminalis	
Eu.	dichromophloia	

n.a.	

Understorey	species	 Sorghum	spp.	
He.	triticeus	

Sorghum	spp.	
Ch.	fallax	

Sorghum	spp.	
He.	triticeus	

Sorghum	intrans	
Th.	Tiandra	
Ch.	fallax	

Astrabla	spp.	

Basal	Area	(m2	ha-1)	 9.7	 5.1	 8.3	 5.4	 n.a.	
Canopy	Height	(m)	 18.9	 12.5	 16.4	 12.3	 0.2	

LAI	(m2	m-2)	 1.04	±	0.07	 0.68	±	0.07	 0.80	±	0.12	 0.58	±	0.11	 0.39	±	0.11	
Total	Leaf	Nitrogen	(g	m-3)	 1.42	±	0.20	 1.27	±	0.18	 1.35	±	0.19	 1.97	±	0.15	 2.37	±	0.17	

gSoil	 	 	 	 	 	

Type	 Red	kandosol	 Yellow	hydrosol	 Red	kandosol	 Red	kandosol	 Grey	vertosol	

A	Horizon	 Texture	 Sandy	loam	 Sandy	loam	 Loam	 Clay	 loam	
Clay	PSD	(%)	 15	 20	 20	 50	 20	
Sand	PSD	(%)	 60	 50	 40	 25	 40	
Thickness	(m)	 0.30	 0.30	 0.20	 0.15	 0.20	

Bulk	Density	(Mg	m-3)	 1.29	 1.60	 1.39	 1.20	 1.39	
Hydraulic	Conductivity	(mm	hr-1)	 9	 7	 9	 3	 9	

Field	Capacity	(mm	m-1)	 156	 132	 147	 140	 147	
	 	

B	Horizon	 Texture	 Clay	loam	 Clay	 Clay	loam	 Clay	 Clay	loam	
Clay	PSD	(%)	 40	 55	 35	 55	 35	
Sand	PSD	(%)	 30	 20	 30	 20	 30	
Thickness	(m)	 1.20	 0.60	 0.69	 1.29	 0.69	

Bulk	Density	(Mg	m-3)	 1.39	 1.70	 1.39	 1.39	 1.39	
Hydraulic	Conductivity	(mm	hr-1)	 8	 5	 7	 2	 7	

Field	Capacity	(mm	m-1)	 146	 31	 146	 107	 146	
	930	

Table	1:	Summarised	dataset	information	for	each	of	the	five	savanna	sites	used	in	this	study.	This	includes	site	descriptions	pertaining	to	931	

local	meteorology,	vegetation	and	below	ground	soil	characteristics.	Where	data	were	not	available,	the	abbreviation	n.a.	is	used.	Definitions	932	

for	the	species	genus	mentioned	in	the	table	are	as	follows:	Eucalytpus	(Eu.),	Erythrophleum	(Er.),	Terminalia	(Te.),	Corymbia	(Co.),	933	

Planchonia	(Pl.),	Buchanania	(Bu.),	Themda	(Th.),	Hetropogan	(He.),	and	Chrysopogon	(Ch.).	Eddy	covariance	datasets	relating	to	each	of	the	934	

5	sites	here	can	be	download	from	www.ozflux.org.au	and	hdl	references	are	given	by	order	of	column	(Jason	Beringer	(2013)	–	ahdl:	935	

102.100.100/14228,	bhdl:	102.100.100/14239,	chdl:	102.100.100/14229,	dhdl:	102.100.100/14234,	ehdl:	102.100.100/14230).	Site	936	

meteorology	is	given	as	30	year	averages	with	values	taken	from	fHutley,	et	al.	(2011).	Soil	descriptions	are	taken	from	the	Digital	Atlas	of	937	

Australian	Soils	(www.asris.csiro.au)	gIsbell,	(2002).	938	
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Model	Name	 SPA	 MAESPA	 CABLE	 BIOS2	 BESS	 LPJGUESS	

Model	definition	
Soil-Plant-Atmosphere	

Model	
MAESTRA-SPA	

Community	

Atmosphere	Biosphere		

Land-surface	Exchange	

Model	

Modified	CABLE	(CABLE	

+	SLI	+	CASA-CNP)	

Breathing	Earth	System	

Simulator	

Lund-Potsdam-Jena	

General	Ecosystem	

Simulator	

Version	 1.0	 1.0	 2.0	 2.0	 1.0	 2.1	

Reference	 Williams	et	al.	(1996a)	
Duursma	&	Medlyn	

(2012)	

Kowalyzck	et	al.	(2006),	

Wang	et	al.	(2011)	
Haverd	et	al.	(2013)	 Ryu	et	al.	(2011,	2012)	 Smith	et	al.	(2001)	

Temporal	resolution	 30-min	 30-min	 30-min	

Daily	(30-min	time-

steps	are	generated	

from	daily	time-series)		

Snap	shot	with	MODIS	

overpass,	then	up-

scaled	to	a	daily	and	8-

day	time	series	

Daily	

Spatial	resolution	 Point	 Point	 0.05°	(5	km)	 0.05°	(5	km)	 0.05°	(5	km)	 Patch	(c.	0.1	ha)	

Functional	class	 Stand	model	
Individual	Plant	or	

Stand	Model	
Land-Surface	Model	 Land-Surface	Model	 Remote	Sensing	Model	

Dynamic	Global	

Vegetation	Model		

Canopy	Description	

C3	Assimilation	 Farquhar	et	al.	(1980)	 Farquhar	et	al.	(1980)	 Farquhar	et	al.	(1980)	 Farquhar	et	al.	(1980)	 Farquhar	et	al.	(1980)	 Collatz	et	al.	(1991)	

C4	Assimilation	 Collatz	et	al.	(1992)	 Collatz	et	al.	(1992)	 Collatz	et	al.	(1992)	 Collatz	et	al.	(1992)	 Collatz	et	al.	(1992)	 Collatz	et	al.	(1992)	

Stomatal	conductance	 Williams	et	al.	(1996a)	 Medlyn	et	al.	(2011)	 Leuning	(1995)	 Leuning	(1995)	 Ball	et	al.	(1987)	
Haxeltine	&	Prentice	

(1996)	

Transpiration	

Penman-Monteith	

calculated	at	leaf-scale	

accounting	for	gb	and	
limitation	of	soil-water	

supply	via	Ψl	

Penman-Monteith		

calculated	at	the	leaf	

scale	

Penman-Monteith	 Penman-Monteith	 Penman-Monteith	
Haxeltine	&	Prentice	

(1996)	

Boundary	layer	
resistance	

f(wind	speed,	leaf	
width,	air	temperature)	

f(wind	speed,	leaf	
width,	air	temperature	

and	atmospheric	
pressure)	

f(wind	speed,	leaf	
width,	air	temperature	

f(wind	speed,	leaf	
width,	air	temperature	 Not	Modelled	 Huntingford	&	

Monteith	(1998)	

Aerodynamic	
resistance	

f(wind	speed,	canopy	
height)	

Not	calculated	unless	

transpiration	is	

calculated	at	the	

canopy	scale,	in	which	

case	gb	above	isn't	
calculated.	

f(wind	speed,	canopy	
height)	

f(wind	speed,	canopy	
height)	

f(wind	speed,	canopy	
height)	

Huntingford	&	

Monteith	(1998)	

Leaf	area	index	 Prescribed	(MODIS)	 Prescribed	(MODIS)	 Prescribed	(MODIS)	 Prescribed	(MODIS)	 Prescribed	(MODIS)	
Prognostic		

(C	allocation)	

Canopy	structure	
Canopy	+	understorey	

	divided	into	10	layers	

Individual	plant	crowns,		

spatially	explicit	

locations	and	uniform	

understorey	

2	(tree/grass)	big	leaf	

(sunlit/shaded)	

2	(tree/grass)	big	leaf	

(sunlit/shaded)	

2	(tree/grass)	big	leaf	

(sunlit/shaded)	

5-year	age/size	cohorts	

for	trees,	single-layer	

grass	understorey	

C3:C4	fraction	
Dynamic	ratio	variable	

with	time.	Compete	for	

water	and	light.	

Dynamic	ratio	variable	

with	time.	Compete	for	

water	and	light.	

Simulated	as	

independent	layers	

Dynamic	ratio	variable	

with	time.	Compete	for	

water	not	light.	

Still	et	al.	(2003)	

Ratio	changes	70:30	to	

10:90	down	transect	

Prognostic,	determined	

as	the	outcome	of	the	

competition	with	trees	

Canopy	interception	 YES	 YES	 YES	 YES	 NO	 YES	

Simulates	growth	 NO	 NO	 NO	 NO	 NO	 YES	

Soil	Profile	Description	

Soil	profile	structure	
Profile	divided	into	N		

layers	(prescribed	-	20	

in	this	case.)	

Profile	divided	into	N		

layers	(prescribed	-	20	

in	this	case.)	

Profile	divided	into	6	

layers	

Profile	divided	into	12	

layers	(adjustable)	
Not	Modelled	

2	layers	(0-0.5,	0.5-2	m)	

with	10	cm	evaporation	

sub-layer	

Soil	hydraulic	
properties	

Function	of	sand	and	

clay	particle	size	

distributions	

Function	of	sand	and	

clay	particle	size	

distributions	

Prescribed	

Australian	Soils	

Resource	Information	

System	(ASRIS)	

Not	Modelled	 Sitch	et	al.	(2003)	

Soil	depth	 6.5	m	 5.0	m	 4.5	m	 10.0	m	 Not	Modelled	 2	m	

Root	depth	 6.5	m	 5.0	m	 4.5	m	
0.5	m	(grasses),	5.0	m	

(trees)	
Not	Modelled	 2	m	

Root	distribution	

Prescribed;	exponential	

decay	as	a	function	of	

surface	biomass	and	

the	total	root	biomass	

of	the	column	

Prescribed;	exponential	

decay	as	a	function	of	

surface	biomass	and	

the	total	root	biomass	

of	the	column	

Prescribed;	exponential	

decay	

Prescribed;	exponential	

decay	
Not	Modelled	

PFT-specific,	trees	have	

deeper	roots	on	

average	

Soil-water	stress	
modifier	

Et	via	gs	is	increased	to	
meet	atmospheric	

demand	while	Ψl	

remains	above	a	critical	

threshold	

Maximum	transpiration	

rate	calculated	from	

hydraulic	conductance	

(soil-to-leaf)	sets	limit	

on	actual	transpiration,		

OR	uses	the	Tuzet	et	al.	

(2003)	model	of	

stomatal	conductance	

Supply/Demand	

gs	scaled	by	a	soil	
moisture	limitation	

function	related	to	

extractible	water	

accessible	by	roots	

Assumes	LAI	and	

seasonal	variation	of	

Vcmax	reflect	soil	water	

stress	

Supply/Demand	

Hydraulic	pathway	
resistance	

Rsoil	+	Rplant	 Rsoil	+	Rplant	 Not	Modelled	 Not	Modelled	 Not	Modelled	
Not	explicit,	

min(supply,	demand)	

determines	sapflow	

	939	
Table	2:	Summary	table	of	the	ecosystem	models	used	in	the	experiment;	highlighting	differences	and	similarities	in	model	structure	and	940	
shared	processes.	Information	is	broken	down	into	how	each	model	describes	aboveground	canopy	and	belowground	soil	processes.	941	
	942	
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Statistical Metric Definition 

Correlation coefficient (r) 

n OiMi( )− Oi
i=1

n

∑
i=1

n

∑ Mi
i=1

n

∑

n Oi
2 − Oi

i=1

n

∑
#

$
%

&

'
(

2

i=1

n

∑
#

$

%
%

&

'

(
( n Mi

2 − Mi
i=1

n

∑
#

$
%

&

'
(

2

i=1

n

∑
#

$

%
%

&

'

(
(

 

Standard Deviation (sd) 1−

1
n−1

Mi −M( )
2

i=1

n

∑

1
n−1

Oi −O( )
2

i=1

n

∑
 

Normalised mean error (NME) 

Mi−Oi
i=1

n

∑

O−Oi
i=1

n

∑  

Normalised mean bias (MBE) 
1
n

Mi −Oi( )
i=1

n

∑  

	943	
Table	A1:	Definition	of	common	metrics	used	to	determine	ranks	against	the	empirical	benchmarks.	944	
The	terms	M	and	O	stand	for	model	and	observations	respectively,	while	n	denotes	the	length	of	the	945	
data,	and	i	is	the	datum.	946	
	947	
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Figure	Captions	948	
	949	
Figure	1:	The	Northern	Territory	of	Australia	and	the	North	Australian	Tropical	Transect	(NATT)	950	
showing	(a)	the	flux	site	locations	with	an	accompanying	30-year	(1970	to	2000)	expression	of	the	951	
average	meteorological	conditions	for	(b)	mean	annual	temperature,	and	(c)	total	annual	952	
precipitation	derived	from	ANUCLIM	v6.1	climate	surfaces	(Hutchinson	and	Xu,	2010).	953	
	954	
Figure	2:	Time-series	of	daily	mean	latent	heat	(LE)	flux	and	gross	primary	productivity	(GPP)	955	
depicting	an	average	year	for	each	of	the	5	savanna	sites	using	a	smoothed,	7-day	moving	average.	956	
The	sites	are	ordered	from	wettest	to	driest;	(a)	Howard	Springs,	(b)	Adelaide	River,	(c)	Daly	River,	957	
(d)	Dry	River	and	(e)	Sturt	Plains.	The	joined,	black	dots	are	the	tower	flux	time-series,	while	the	958	
grey	lines	are	the	performance	benchmarks	(emp1,	emp2,	emp3).	Predictions	of	LE	and	GPP	for	each	959	
of	the	six	terrestrial	biosphere	models	are	given	by	a	spectrum	of	colours	described	in	the	legend.	960	
	961	
Figure	3:	Probability	densities	(expressed	in	scientific	notation)	of	daily	mean	latent	heat	(LE)	flux	962	
and	gross	primary	productivity	(GPP)	at	each	of	the	5	savanna	sites,	where	the	distributions	for	each	963	
flux	are	partitioned	into	wet	and	dry	seasons.	The	order	of	the	sites	are	from	wettest	to	driest;	(a)	964	
Howard	Springs,	(b)	Adelaide	River,	(c)	Daly	River,	(d)	Dry	River	and	(e)	Sturt	Plains.	The	grey	965	
region	is	the	tower	flux,	while	the	dotted	lines	are	the	empirical	benchmarks.	Predicted	LE	and	GPP	966	
probability	densities	from	each	of	the	six	process-based	models	are	given	by	a	spectrum	of	colours	967	
described	in	the	legend.	968	
	969	
Figure	4:	Standardised	model	residuals	for	latent	energy	(LE)	and	gross	primary	productivity	(GPP)	970	
expressed	in	units	of	standard	deviations	(sd)	[(modelled	flux	—	observed	flux)/sd(observed	flux)].	971	
Residuals	are	presented	for	each	model:	(a)	CABLE,	(b)	BIOS2,	(c)	LPJGUESS,	(d)	MAESPA,	(d)	BESS	972	
and	(e)	SPA,	where	each	flux	site	is	represented	by	a	blue-green-yellow	gradient.	For	both	fluxes,	the	973	
residuals	are	plotted	against	time	(ensemble	average	year)	and	against	the	flux	prediction	(bias).	974	
	975	
Figure	5:	Average	rank	plot	showing	the	performance	of	the	terrestrial	biosphere	models	for	all	976	
sites	across	the	North	Australian	Tropical	Transect	(NATT)	ordered	in	terms	of	annual	rainfall	as	977	
follows:	Howard	Springs	(HowSpr),	Adelaide	River	(AdrRiv),	Daly	Uncleared	(DalUnc),	Dry	River	978	
(DryRiv),	and	Sturt	Plains	(StuPla).	Models	are	individually	ranked	against	the	benchmarks	in	order	979	
of	1	to	4	(1	model	+	3	benchmarks)	and	express	the	amount	of	metrics	the	models	are	meeting	listed	980	
in	Table	S1.	The	rankings	are	determined	individually	for	latent	energy	(LE)	and	gross	primary	981	
productivity	(GPP).	The	coloured	lines	represent	each	of	the	6	models	in	the	study,	while	the	grey	982	
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lines	represent	the	empirical	benchmarks.	The	average	ranking	for	each	model	was	determined	for	983	
(a)	a	complete	year,	(b)	the	wet	season	and	(c)	the	dry	season.	984	
	985	
Figure	6:	Average	year	outputs	of	vegetation	transpiration	(grass	+	trees)	and	soil	evaporation,	as	986	
well	as	their	percentage	contributions	to	total	latent	energy	(LE)	for	each	of	the	6	terrestrial	987	
biosphere	models	at	each	of	the	5	savanna	sites.	988	
	989	
Figure	S1:	A	smoothed	(7-day	moving	average)	representation	of	the	environmental	drivers	used	to	990	
construct	the	empirical	benchmarks	at	each	of	the	5	savanna	sites,	and	are	shown	from	wettest	to	991	
driest;	(a)	Howard	Springs,	(b)	Adelaide	River,	(c)	Daly	River,	(d)	Dry	River	and	(e)	Sturt	Plains.	The	992	
time-series	represents	the	seasonality	over	an	average	year	for	mean	daily	solar	radiation	(Rs),	mean	993	
daily	air	temperature	(Ta),	mean	daily	vapour	pressure	deficit	(VPD)	and	leaf	area	index	(LAI).		994	
	995	
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