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Abstract 11	  

The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely 12	  

connected with the El Niño–Southern Oscillation. However, sensitivities of CGR to 13	  

temperature and precipitation remain largely uncertain. This paper analyzed the 14	  

relationship between Mauna Loa CGR and tropical land climatic elements. We find 15	  

that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of 16	  

−0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (−0.65) 17	  

with zero lag. Additionally, precipitation and temperature are highly correlated 18	  

(−0.66), with precipitation leading by 4–5 months. Regression analysis shows that 19	  

sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92±0.20 PgC 20	  

yr−1 K−1 and −0.46±0.07 PgC yr−1 100 mm−1, respectively. Unlike some recent 21	  

suggestions, these empirical relationships favor neither temperature nor precipitation 22	  
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as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon 23	  

cycle models, from the TRENDY project, to study the processes underlying CGR 24	  

IAV. All models capture well the IAV of tropical land–atmosphere carbon flux 25	  

(CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 26	  

3.18±0.11 PgC yr−1 K−1 and −0.67±0.04 PgC yr−1 100 mm−1, close to Mauna Loa 27	  

CGR. Importantly, the models consistently show the variability in net primary 28	  

productivity (NPP) dominates CGR, rather than heterotrophic respiration. Because 29	  

previous studies have proved that NPP is largely driven by precipitation in tropics, it 30	  

suggests a key role of precipitation in CGR IAV despite the higher CGR correlation 31	  

with temperature. Understanding the relative contribution of CO2 sensitivity to 32	  

precipitation and temperature has important implications for future carbon-climate 33	  

feedback using such ‘emergent constraint’. 34	  

	  35	  

1 Introduction 36	  

Increasing atmospheric carbon dioxide (CO2) concentration, from anthropogenic 37	  

emissions, is the major contributing factor to global warming. This trend can be seen 38	  

from the long-term CO2 records from the Mauna Loa Observatory, Hawaii, with a 39	  

significant seasonal cycle and interannual variability (IAV) superimposed (Keeling et 40	  

al., 1976; Keeling et al., 1995). The IAV of the atmospheric CO2 growth rate (CGR) 41	  

is closely connected to the El Niño–Southern Oscillation (ENSO), with noticeable 42	  

increases during El Niño, and decreases during La Niña, events (Bacastow, 1976; 43	  

Keeling and Revelle, 1985).  44	  
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 45	  

The IAV of the atmospheric CGR is the consequence of climate-induced variations in 46	  

oceanic and terrestrial carbon sources and sinks. Earlier studies have considered the 47	  

CO2 flux changes over the oceans, especially the equatorial Pacific Ocean, as the 48	  

cause of the atmospheric CO2 IAV (Bacastow, 1976; Francey et al., 1995). However, 49	  

later inversion modeling studies (Bousquet et al., 2000; Rodenbeck et al., 2003) and 50	  

many measurement campaigns (Nakazawa et al., 1997; Lee et al., 1998; Feely et al., 51	  

2002) have suggested only a small IAV in oceanic carbon uptake. These evidences 52	  

elucidate the dominant contributions from the terrestrial ecosystems, especially in the 53	  

tropics, to the IAV of the atmospheric CGR (Braswell et al., 1997; Bousquet et al., 54	  

2000; Zeng et al., 2005a; Qian et al., 2008). Recently, using the combination of land 55	  

surface models and the satellite-based land cover map, Ahlstrom et al. (2015) pointed 56	  

out that semi-arid ecosystems, largely occupying low-latitudes, dominated the 57	  

terrestrial carbon interannual variability. 58	  

 59	  

The influence of the ENSO on terrestrial carbon IAV can be largely explained by a 60	  

‘conspiracy’ between tropical climatic variations (a tropical-wide drought and 61	  

warming during El Niño) and the responses of soil and plant physiology (Kinderman 62	  

et al., 1996; Tian et al., 1998; Knorr et al., 2005; Patra et al., 2005a; Zeng et al., 63	  

2005a), as well as some abiotic processes such as fires (van der Werf et al., 2004). 64	  

However, the processes and strengths of the responses in such terrestrial biotic and 65	  

abiotic functions remain controversial. Temperature, an important physical variable 66	  
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affecting photosynthesis and respiration, is regarded as the dominant factor on the 67	  

basis of the significant correlation with Mauna Loa CGR anomalies and in situ 68	  

observations on tropical tree growth, as well as confirmation by terrestrial carbon 69	  

cycle models (Kindermann et al., 1996; Braswell et al., 1997; Clark et al., 2003; Cox 70	  

et al., 2013; Piao et al., 2013; W. Wang et al., 2013; X. Wang et al., 2014). Warming 71	  

anomalies during El Niño events above a certain threshold can result in a decrease in 72	  

the terrestrial primary productivity, in part due to the curtailment of the leaf gas 73	  

exchange (Doughty and Goulden, 2008; Corlett, 2011). Simultaneously, the 74	  

heterotrophic respiration, Rh, caused by microbial decomposition, increases 75	  

exponentially with warming temperature (Q10). These direct biological responses to 76	  

warming temperature variations account for the significant positive correlation 77	  

between the tropical temperature and CGR (W. Wang et al., 2013; X. Wang et al., 78	  

2014). Moreover, further analyses have suggested a two-fold increase in the 79	  

sensitivity of CGR to the tropical temperature variations in the past five decades (X. 80	  

Wang et al., 2014). 81	  

 82	  

Variation in precipitation over land was proposed as an alternative dominant factor 83	  

affecting the IAV of the CGR by process-based biogeochemical models of terrestrial 84	  

ecosystems (Tian et al., 1998; Zeng et al., 2005a; Qian et al., 2008). In order to 85	  

quantify the individual effects of the ENSO-induced climatic variations, Qian et al. 86	  

(2008) conducted a series of the sensitivity experiments using a dynamic global 87	  

vegetation and terrestrial carbon model (VEGAS). They revealed that the 88	  
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contributions from the tropical precipitation and temperature accounted for 56% and 89	  

44% of variations in air-land carbon fluxes during the ENSO events, respectively. In 90	  

situ records from multiple long-term monitoring plots in the Amazon rainforest have 91	  

been used to assess the severe drought in 2005, which caused a total biomass carbon 92	  

loss of 1.2–1.6 Pg (petagrams) (Phillips et al., 2009). Ahlstrom et al. (2015) also 93	  

found that precipitation and NBP IAV became more correlated with increasing spatial 94	  

and temporal disaggregation. 95	  

 96	  

These differing viewpoints indicate the current limited understanding of biological 97	  

processes’ response to ENSO. These interannual sensitivities may be important for 98	  

understanding the strengths of the positive carbon–climate feedback and climate 99	  

sensitivities of the terrestrial carbon cycle in future climate change (Cox et al., 2000; 100	  

Cox et al., 2013; Wang et al., 2014; Wenzel et al., 2014). Therefore, in this paper, we 101	  

again investigate the relationships between Mauna Loa CGR and the tropical climatic 102	  

variations, based on the up-to-date observations. The tropical climatic parameters are: 103	  

temperature, precipitation, soil moisture, and photosynthetically active radiation 104	  

(PAR). The performance of IAVs in the tropical terrestrial carbon cycle was 105	  

simulated by 7 state-of-the-art terrestrial carbon cycle models with monthly outputs, 106	  

from the TRENDY project (Trends in Net Land Atmosphere Carbon Exchanges) 107	  

(Canadell et al., 2011; Sitch et al., 2015). These mechanistic models are used to 108	  

delineate the processes underlying the IAVs in CGR, and determine how strong their 109	  

sensitivities to temperature and precipitation are. In return, these results also give out 110	  
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the evaluations on the 7 terrestrial carbon cycle models on the interannual time scale, 111	  

which are important for improving them in their development communities. 112	  

 113	  

The paper is organized as follows: Section 2 describes the datasets, methodologies, 114	  

and terrestrial carbon cycle models that are used. Section 3 presents related results 115	  

covering three aspects: first, the observed relationships between Mauna Loa CGR and 116	  

climatic variations; second, the performance and consistencies among the terrestrial 117	  

carbon cycle models; and third, the climatic sensitivities of CGR and tropical 118	  

terrestrial carbon cycle. Finally, discussions and concluding remarks are presented in 119	  

Sect. 4 and 5. 120	  

 121	  

2 Datasets, methodologies, and models 122	  

2.1 The observed and reanalysis datasets 123	  

The long-term in situ records of atmospheric CO2 concentrations from the Mauna Loa 124	  

Observatory were obtained from the website of the National Oceanic and 125	  

Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) 126	  

(http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html) (Keeling et al., 1976). We 127	  

used the monthly mean concentrations to calculate the atmospheric CGR for 1960 to 128	  

2012. Meanwhile, we took the globally averaged marine surface monthly mean data 129	  

from the NOAA (http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html) for 1980 to 130	  

2012 as a comparison with the Mauna Loa datasets (Masarie and Tans, 1995). 131	  

 132	  
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The near-surface air temperature and precipitation over land data, with a 0.5°×0.5° 133	  

resolution, came from the Climatic Research Unit (CRU) Time-Series (TS) version 134	  

3.21 of high resolution gridded data of month-by-month variations in climate (Harris 135	  

et al., 2014). These datasets were compiled from observations by weather stations 136	  

around the world, and have been widely used to validate the performance of model 137	  

simulations in phase 5 of the Coupled Model Intercomparison Project (CMIP5). We 138	  

took the PAR data from the NASA Global Energy and Water Exchanges (GEWEX) 139	  

Surface Radiation Budget (SRB) Realease-3.0 datasets, with a 1°×1° resolution for 140	  

the period 1984–2007 (Stackhouse et al., 2011). Soil moisture datasets from the 141	  

Global Land Data Assimilation System Version 2 (GLDAS-2) monthly NOAH model 142	  

products were adopted, with a 1°×1° resolution for 1960–2010 (Rodell et al., 2004). 143	  

We used the sea surface temperature (SST) from the Hadley Center (HadSST2) 144	  

(Rayner et al., 2005), generated from in situ observations held in the International 145	  

Comprehensive Ocean–Atmosphere Data Set (ICOADS), to obtain the SST anomalies 146	  

in the Niño 3.4 regions which refer to the ENSO activities. 147	  

 148	  

2.2 Statistical methods 149	  

The CGR was estimated as the difference between the monthly mean concentrations 150	  

in adjacent years (Patra et al., 2005c; Sarmiento et al., 2010): 151	  

 GR(t) = CO2 (t + 6)−CO2 (t − 6),  (1) 152	  

where t denotes the specific month. We then converted the CGR from ppm yr−1 into 153	  

PgC yr−1, based on the conversion factor 1 PgC = 0.471 ppm. The time series of the 154	  
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climatic variables in the tropics (23°S–23°N) over land were area-weighted and 155	  

averaged. The long-term seasonal cycle was removed from these time series, and in 156	  

order to precisely extract variations on the interannual timescale, we further applied 157	  

the Lanczos band-pass filter (Duchon, 1979) with cut-off periods at 12 and 120 158	  

months and 121 weights to these time series, which filters out the seasonal cycle and 159	  

decadal variabilities with 1–10 years window for our analyses. 160	  

 161	  

The relationships between the atmospheric CGR and the climatic variables on an 162	  

interannual timescale were deciphered via the cross-correlation (Chatfield, 1982): 163	  

 c(k) = 1
n

(X(t)− X)(Y (t + k)−Y )
σ (X)σ (Y )

,
t=1

n

∑  (2) 164	  

where k denotes the lag months, 𝑋  and 𝑌 are the means of the time series, and 𝜎 𝑋  165	  

and 𝜎 𝑌  are the standard deviations. These filtered time series are strongly 166	  

persistent (or highly auto-correlated), so the effective degrees of freedom (dof) were 167	  

simply estimated with the approach of Bretherton et al. (1999): 168	  

 dof
n

= 1− r(Δt)
2

1+ r(Δt)2
,  (3) 169	  

where n denotes the sample size, 𝑟(∆𝑡)  is the coefficient of the first order 170	  

autocorrelation, and ∆𝑡 is 1 month. 171	  

 172	  

Figure 1 shows how the tropical land temperature and precipitation are closely 173	  

correlated. Cross-correlation analysis indicates that their relationship peaks at a 174	  

correlation coefficient of −0.66, with a time lag of about 4–5 months in temperature. 175	  
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This high correlation coefficient is partly owing to that less land precipitation (for 176	  

instance during El Niño) can inhibit the evapotranspiration over Tropics, promoting 177	  

the higher temperature (Zeng et al., 2005a), and also is due to ENSO-related 178	  

circulation adjustments (Gu and Adler, 2010). Sensitivities of the atmospheric CGR – 179	  

or tropical land–atmosphere carbon flux (CFTA) – to temperature and precipitation 180	  

were estimated according to the ridge regression method (Hoerl and Kennard, 2000), 181	  

the biased estimation for non-orthogonal problems. The linear relationship can be 182	  

expressed as: 183	  

 y(t) = γ intxTas (t)+δ
intxPr (t − 4)+ ε ,  (4) 184	  

where 𝑦(𝑡) denotes the IAVs in the Mauna Loa CGR, CFTA, or NPP; 𝑥!"# and 𝑥!" 185	  

denote the IAVs in the tropical land temperature and precipitation; 𝛾!"# and 𝛿!"# 186	  

are the estimated sensitivities by ridge regression; and 𝜀  is the residual error. 187	  

Precipitation leads by 4 months in the regression, according to below analyses. 188	  

However, these estimated sensitivities only account for the “contributive” effects of 189	  

temperature and precipitation variations, but not the "true" sensitivities of Mauna Loa 190	  

CGR, CFTA, or NPP to these variables (Piao et al., 2013). The responses of terrestrial 191	  

ecosystems to temperature and precipitation are actually nonlinear, so it is difficult to 192	  

disentangle the individual effects of temperature and precipitation based on the linear 193	  

statistical method. Additionally, we did not take into consideration the other climatic 194	  

drivers such as variation in PAR or humidity, which may also contribute to the IAV in 195	  

atmospheric CGR. 196	  

 197	  
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2.3 Terrestrial carbon cycle models and post-processing 198	  

In order to understand the contributions of tropical terrestrial ecosystems to the 199	  

atmospheric CGR and its underlying processes, we used the monthly outputs of 7 200	  

state-of-the-art dynamic global vegetation models (DGVMs) that participated in the 201	  

TRENDY project (TRENDY-v1; Canadell et al., 2011; Sitch et al., 2015) 202	  

(http://www-lscedods.cea.fr/invsat/RECCAP/V2/). All the DGVMs were forced by 203	  

observed change in atmospheric CO2 concentration and historical climate change. The 204	  

land use was kept time-invariant during the entire S2 simulation. Information on 205	  

model resolution, nitrogen and fire modules is summarized in Table 1. The models 206	  

used were: (1) CLM4C (Lawrence et al., 2011); (2) CLM4CN (Bonan and Levis, 207	  

2010; Lawrence et al., 2011); (3) LPJ (Sitch et al., 2003); (4) LPJ-GUESS (Smith et 208	  

al., 2001); (5) OCN (Zaehle and Friend, 2010; Zaehle et al., 2010); (6) TRIFFID 209	  

(Cox, 2001); and (7) VEGAS (Zeng et al., 2005a). Due to the different horizontal 210	  

resolution of the DGVMs, we interpolated the simulated terrestrial carbon fluxes into 211	  

a consistent 1°×1° resolution using the first order conservative remapping scheme 212	  

(Jones, 1999) following the equation: 213	  

 Fk =
1
Ak

f dA,
Ak∫  (5) 214	  

where 𝐹! is the area-averaged destination flux, 𝐴! is the area of cell 𝑘, and 𝑓 is 215	  

the flux on an old grid which has overlapping area 𝐴 with the destination grid. After 216	  

that, the tropical terrestrial carbon fluxes were obtained according to the equation: 217	  

 F = Fk
k
∑ Ak ,  (6) 218	  
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between 23°S–23°N. 219	  

 220	  

3 Results 221	  

3.1  The relationships between the atmospheric CGR and climatic 222	  

variables 223	  

Significant IAV was first detected in the atmospheric CO2 record at the Mauna Loa 224	  

Laboratory, Hawaii (Keeling et al., 1995; Keeling et al., 1976). Figure 2e presents the 225	  

long-term IAVs of Mauna Loa CGR during 1960–2012 and the globally averaged 226	  

marine surface data during 1980–2012. The IAVs of the two datasets are highly 227	  

consistent, so we mainly focus on the long-term Mauna Loa CGR. Shown in Figs. 2a 228	  

and 2e, the standard deviation of Mauna Loa CGR is about 1.03 PgC yr−1, with 229	  

noticeable increases in the positive anomalies in the Niño 3.4 index, and vice versa 230	  

for the negative anomalies. The ENSO activities, the dominant year-to-year mode of 231	  

global climate fluctuations, greatly impact tropical precipitation and temperature on 232	  

land, through adjustments in atmospheric circulations (Gu and Adler, 2011). 233	  

Importantly, temperature and precipitation have opposite signs (Figs. 2b and 2c), with 234	  

the respective correlation coefficients, relative to the Niño 3.4 index, of 0.55 and 235	  

−0.83 (p < 0.05). These ENSO-induced tropical land temperature and precipitation 236	  

variations contribute to the CFTA in the same direction due to a 'conspiracy' between 237	  

climate anomalies and vegetation–soil response (Qian et al., 2008; Zeng et al., 2005a). 238	  

For example, warmer and drier conditions during El Niño events can result in the 239	  

suppression of NPP and enhancement of Rh, both leading to anomalous flux into the 240	  
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atmosphere. However, precipitation does not directly interact with vegetation 241	  

physiology. Rather, vegetation responds to soil moisture, which is determined not 242	  

only by precipitation but also by temperature, as higher temperatures lead to increased 243	  

evaporative water loss (Qian et al., 2008). We also calculated the tropical IAVs in soil 244	  

moisture from the surface to a 2m depth, and found that the soil moisture decreased 245	  

during El Niño events, and increased during La Niña events (r of −0.63, with p = 246	  

0.017 in Fig. 2d). As decreases in soil moisture can suppress NPP and Rh, and vice 247	  

versa for increases in soil moisture, this may further affect the atmospheric CGR. 248	  

Besides temperature, precipitation, and soil moisture, other climatic IAVs, such as 249	  

PAR (Fig. S1), may also influence the variations in terrestrial ecosystems (Nemani et 250	  

al., 2003). 251	  

 252	  

The coupling between the tropical temperature and precipitation induced by ENSO 253	  

can be perturbed or interrupted by strong volcanic eruptions, such as those of El 254	  

Chichón in March 1982 and Mount Pinatubo in June 1991 (Fig. 2). Especially during 255	  

the post-Pinatubo years, the temperature and precipitation both decreased in the 256	  

1991–92 El Niño events. This unusual relationship resulted from radiative forcing of 257	  

volcanic sulfate aerosols in the stratosphere (Stenchikov et al., 1998). Meanwhile, 258	  

there was a hiatus in the coupling between the Niño 3.4 and Mauna Loa CGR in this 259	  

period. W. Wang et al. (2013) used this decoupling between the Niño 3.4–260	  

precipitation–Mauna Loa CGR relationship to highlight the temperature–CO2 261	  

relationship. However, the anomalous growth in vegetation was largely attributed to 262	  
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diffuse light fertilization (Mercado et al., 2009). In general, the canonical ENSO–263	  

CGR relationship is robust, although it can occasionally be externally perturbed. 264	  

 265	  

To elucidate the relationship between Mauna Loa CGR and the variations in climatic 266	  

variables, we conducted cross-correlations of anomalies in Mauna Loa CGR with 267	  

anomalies in the Niño 3.4 index, tropical surface air temperature, precipitation, soil 268	  

moisture, and PAR (Fig. 3). We find that ENSO activities generally lead Mauna Loa 269	  

CGR by about 3–4 months, with a correlation coefficient of 0.70 (p = 0.007). The 270	  

precipitation over land immediately responds to ENSO, and thus also lead Mauna Loa 271	  

CGR by about 4 months, with a correlation coefficient of –0.63 (p = 0.016), similar to 272	  

the results of W. Wang et al. (2013) (Table 2): this phenomenon may explain the 273	  

weak correlation of Mauna Loa CGR with concurrent precipitation. However, the 274	  

temperature over land lags ENSO by about 4 months, suggesting a certain time was 275	  

needed for surface energy adjustment along with the ENSO-induced circulation and 276	  

precipitation anomalies (Gu and Adler, 2011). Consequently, the correlation between 277	  

land temperature and Mauna Loa CGR peaks with the correlation coefficient of 0.77 278	  

(p = 0.002), with a 1-month lag in temperature, a little different from the previous 279	  

results (W. Wang et al., 2013; X. Wang et al., 2014) (Table 2). This discrepancy in 280	  

phase implicitly proves that temperature was not the only dominant factor in 281	  

controlling IAV in atmospheric CGR. The relationship between land precipitation and 282	  

Mauna Loa CGR can be bridged by the soil moisture. The correlation of Mauna Loa 283	  

CGR with concurrent soil moisture has the maximum correlation coefficient of –0.65 284	  
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(p = 0.022), suggesting the soil moisture plays an important role in IAV of 285	  

atmospheric CGR, as analyzed by Qian et al. (2008), though soil moisture is not well 286	  

constrained by observations. We also show the cross-correlation of Mauna Loa CGR 287	  

with PAR, but the correlation is not statistically significant. 288	  

 289	  

3.2  Simulations using dynamic global vegetation models 290	  

Different from inversion models, process-based terrestrial carbon cycle models can 291	  

determine the biological dynamics underlying the IAV in atmospheric CGR. Previous 292	  

studies (Jones et al., 2001; Zeng et al., 2005a; Qian et al., 2008) have analyzed 293	  

individual models. The TRENDY model output archives provide the opportunity to 294	  

analyze the mechanisms with an ensemble of state-of-the-art carbon cycle models. 295	  

 296	  

The IAV in ensemble mean tropical CFTA, derived from six state-of-the-art DGVMs, 297	  

is presented in Fig. 4a with the 1-𝜎 inter-model spread and IAV in Mauna Loa CGR. 298	  

We excluded the CLM4CN to calculate the ensemble mean because of its different 299	  

response of CFTA and NPP to temperature and precipitation, according to our 300	  

analyses. The co-variation coefficient, 0.79 with p = 0.003, indicates: first, that the 301	  

tropical terrestrial ecosystems dominate the IAV in atmospheric CGR, confirming 302	  

previous findings (Braswell et al., 1997; Bousquet et al., 2000; Zeng et al., 2005a); 303	  

and second, that these state-of-the-art DGVMs have the capacity for capturing the 304	  

historical IAV in terrestrial ecosystems. There is also a significant inconsistency 305	  

during the post-Pinatubo period 1991–1992, owing to diffuse light fertilization 306	  
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(Mercado et al., 2009). To better understand the contribution from other regions, we 307	  

also show the IAVs in carbon fluxes for the Northern Hemisphere (23°N–90°N) and 308	  

Southern Hemisphere (60°S–23°S) (Fig. S2). It is clear that the magnitudes of IAVs 309	  

in carbon fluxes from the Northern Hemisphere (𝜎 = 0.38 PgC yr–1) and Southern 310	  

Hemisphere (0.21 PgC yr–1) are much weaker than the tropical CFTA (1.03 PgC yr–1). 311	  

Further, the correlations between the variations in carbon fluxes from the extratropical 312	  

regions and Mauna Loa CGR are insignificant, suggesting that these IAVs may not be 313	  

caused by ENSO. Therefore, we will only focus on the tropical CFTA below. 314	  

 315	  

The net land–atmosphere carbon flux CFTA results from carbon adjustments in many 316	  

biotic and abiotic processes. It can be decomposed as: 317	  

 CFTA = Rh − NPP + D,  (7) 318	  

where D denotes the disturbances, mainly caused by fires here. We decomposed the 319	  

simulated ensemble CFTA into three terms (–NPP, Rh, and D; Figs. 4b–d), to 320	  

understand which process was the major factor. (To be precise, we obtained the term 321	  

D as the residual according to Eq. (7), because it was not explicitly provided in the S2 322	  

simulation.) We find that the –NPP has the strongest magnitude in the IAVs (0.99 323	  

PgC yr–1, Table 3) among these three processes. The correlation coefficient of –NPP 324	  

with CFTA reaches 0.97 (p < 0.0001, Table 3), explaining about 94% of variance. The 325	  

standard deviations of Rh and D are 0.29 PgC yr–1 and 0.10 PgC yr–1 (Table 3), 326	  

respectively, and their correlation coefficients with CFTA are –0.02 (p = 0.94) and 327	  

0.76 (p = 0.001). The weaker IAVs and insignificant correlation of Rh with CFTA may 328	  
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arise from the opposing effects of temperature and precipitation. For example, higher 329	  

temperatures can enhance Rh, whereas less precipitation – drier conditions – can 330	  

suppress it. This result agrees with the C4MIP results in which NPP also dominates 331	  

CFTA (Fig. S3). In contrast, the weakest term (D) has the very significant correlation 332	  

with CFTA (Table 3) because both higher temperature and less precipitation promote 333	  

fires. In summary, the IAV in tropical NPP largely accounts for tropical CFTA 334	  

variation, dominating the IAV in atmospheric CGR. Because NPP is mainly driven by 335	  

precipitation（Zeng et al., 2005a; Qian et al., 2008）, this suggests precipitation plays 336	  

an important role in CGR IAV. 337	  

 338	  

Though the ensemble tropical CFTA (and –NPP) can well explain the historical IAV in 339	  

atmospheric CGR, it is necessary to understand the performance of each individual 340	  

DGVM. Figure 5 shows the color-coded correlation matrices for the interannual 341	  

anomalies in the tropical CFTA and –NPP estimated by the 7 DGVMs, as well as 342	  

Mauna Loa CGR and ensemble mean results ("ENS"). As expected, each correlation 343	  

in pairs among the tropical CFTA is statistically significant (p < 0.03, Fig. 5a), 344	  

indicating that these 7 DGVMs have great consistency in simulating the IAV in 345	  

tropical terrestrial ecosystems under the same climatic forcing, although their 346	  

considerations and parameterizations on the biotic and abiotic processes differ. 347	  

Moreover, this consistency also suggests the ensemble result is not fortuitous, and 348	  

well represents the individual DGVM. Therefore, all the correlations of Mauna Loa 349	  

CGR with the CFTA simulated by each DGVM are significant (p < 0.02), like the 350	  
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ensemble CFTA. But it is interesting that the correlation coefficients of Mauna Loa 351	  

CGR with CLM4CN (0.64, p = 0.02) and OCN (0.61, p = 0.01) are weaker compared 352	  

to the other models. We notice that the correlations of these two models with the other 353	  

models in pairs are the weakest. These two DGVMs share a common feature, as both 354	  

take the nitrogen limitation for the plant growth into consideration (Table 1). Though 355	  

accounting for these factors suggests these models are more complete in structure, 356	  

they do not produce better simulations, indicating that the impact of nitrogen on the 357	  

carbon cycle remains uncertain. 358	  

 359	  

The correlation coefficients in pairs for NPP also show high consistency (Fig. 5b), 360	  

further confirming the conclusion that the IAV in NPP domination of the CFTA 361	  

variation is common to all DGVMs. On the contrary, there are discrepancies in the 362	  

variations of the simulated Rh and D (Fig. S4). Specifically, we find that four 363	  

(CLM4C, CLM4CN, LPJ, and LPJ-GUESS) have consistent variations in estimated 364	  

Rh, whereas the others (OCN, TRIFFID, and VEGAS) are different (Fig. S4a). All the 365	  

simulated Rh, except TRIFFID and VEGAS have insignificant correlation with Mauna 366	  

Loa CGR, like the behavior of the ensemble mean. Even if the correlations are 367	  

significant in TRIFFID and VEGAS, they have opposite behaviors (TRIFFID: 0.64, p 368	  

= 0.01; VEGAS: –0.52, p = 0.08). The various responses to temperature and 369	  

precipitation result in the occurrence of large uncertainties in the simulated Rh. It is 370	  

even more difficult to explain the disturbance term D (Fig. S4b). However, although 371	  

large uncertainties exist in Rh and D, we still conclude with confidence that the 372	  
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variations in tropical vegetation on the interannual timescale largely account for the 373	  

atmospheric CGR variability, because the variation magnitudes of Rh and D are much 374	  

smaller. 375	  

 376	  

Although the correlations of Mauna Loa CGR with the concurrent individual 377	  

simulated CFTA are all statistically significant (Fig. 5a), the cross-correlations of 378	  

Mauna Loa CGR with CFTA show that small discrepancies in phase exist among 7 379	  

DGVMs (Fig. 6a), and of course, are associated with NPP (Fig. 7a). Nevertheless, the 380	  

correlations of Mauna Loa CGR with the concurrent ensemble CFTA and –NPP have 381	  

maximum values, indicating the multi-model simulated ensemble tropical CFTA and –382	  

NPP well represent the variations in Mauna Loa CGR. Of course, the small 383	  

discrepancies in phase of the individual models originate from their different 384	  

responses to temperature and precipitation. The correlation of ensemble CFTA with 385	  

temperature peaks at 0.91, without a time lag (Fig. 6b, Table 4), while the correlation 386	  

between –NPP and temperature peaks at 0.82, with around a 1-month lag in 387	  

temperature (Fig. 7b, Table 4). On the other hand, the correlations of the ensemble 388	  

CFTA and –NPP with precipitation peak at –0.81 and –0.86 with time lags of 4 and 3 389	  

months (Figs. 6c and 7c, Table 4). These behaviors are highly consistent with those in 390	  

Mauna Loa CGR (Fig. 3). The responses of each DGVM to temperature and 391	  

precipitation are listed in Table 4. Though there are small discrepancies in phase, their 392	  

behaviors are similar to each other, except for the CLM4CN model. The responses of 393	  

CFTA and NPP in CLM4CN to precipitation are too immediate, possibly indicating 394	  
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that the soil moisture adjusts too quickly along with precipitation changes. Unlike 395	  

NPP, the responses of Rh and D to temperature and precipitation are not so consistent 396	  

among the models (Figs. S5 and S6), resulting in the discrepancies shown in Fig. S4. 397	  

 398	  

3.3  Sensitivities to temperature and precipitation 399	  

As discussed above (Fig. 3), the variations in atmospheric CGR are correlated with 400	  

the variations in temperature and precipitation induced by ENSO. Simulations by the 401	  

process-based terrestrial carbon cycle models have demonstrated that the tropical 402	  

CFTA variability, dominated by the plant primary productivity process, largely 403	  

accounts for the variations in atmospheric CGR. It further confirms the key 404	  

importance in precipitation. But quantitatively how sensitive is the atmospheric CGR 405	  

(CFTA/NPP) to temperature and precipitation, respectively? Currently, there is no 406	  

direct observational evidence. Therefore, for simplicity, we took the ridge regression 407	  

(Hoerl and Kennard, 2000) to linearly decompose the variations in atmospheric CGR, 408	  

CFTA, and NPP into two parts, as per Eq. (4). Simultaneously, as the precipitation is 409	  

not a direct forcing to the terrestrial ecosystems in the models, it usually leads the 410	  

Mauna Loa CGR by about 4 months (Fig. 3). The precipitation also leads the tropical 411	  

CFTA and reversed NPP simulated by the DGVMs for about 3–4 months (Table 4). To 412	  

be consistent, we chose a 4-month lead, to use precipitation as an explanatory 413	  

variable. The other explanatory variable was the concurrent temperature, owing to its 414	  

direct impact. We excluded the CLM4CN simulations, because of the model’s 415	  

differing responses to temperature and precipitation (Figs. 6 and 7). 416	  
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 417	  

The sensitivity of Mauna Loa CGR to the tropical temperature IAV is about 418	  

2.92±0.20 PgC yr–1 K–1 (Fig. 8a). This positive response is weaker than that found by 419	  

Piao et al. (2013) who obtained the contributive effect of temperature variations on 420	  

residual land sink (RLS, (Le Quere, 2009)) of about –3.9±1.1 PgC yr–1 K–1 (the 421	  

negative sign is because the opposite variability between Mauna Loa CGR and RLS) 422	  

using multiple linear regression on the global scale. The IAV in the RLS like Mauna 423	  

Loa CGR is basically determined by the tropical terrestrial ecosystems. Considering 424	  

the inhomogeneity of temperature variations on the global scale, it is more reasonable 425	  

to use the tropical temperature variability to estimate their temperature-dependence. 426	  

The sensitivity of the ensemble tropical CFTA to the temperature variability is about 427	  

3.18±0.11 PgC yr–1 K–1, very close to the sensitivity of Mauna Loa CGR. The 428	  

sensitivities of the tropical CFTA in the individual DGVMs are all positive, ranging 429	  

from 1.95±0.12 PgC yr–1 K–1 in the OCN model, to 4.78±0.17 PgC yr–1 K–1 in 430	  

TRIFFID. Three models well simulate this sensitivity: LPJ is 2.88±0.09 PgC yr–1 K–1; 431	  

LPJ-GUESS is 2.79±0.12 PgC yr–1 K–1; and VEGAS is 2.98±0.08 PgC yr–1 K–1. 432	  

These CFTA sensitivities are linearly correlated with those of –NPP with a slope of 433	  

0.61, and a correlation coefficient of 0.83 (p < 0.05), in accord with the conclusion 434	  

that variabilities in vegetation primary production dominate the CFTA variabilities. 435	  

This is in accord with the result in Piao et al. (2013), that the response of gross 436	  

primary production (GPP) to temperature accounts for the response of net biosphere 437	  

production (NBP). 438	  
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 439	  

On the other hand, the sensitivity of Mauna Loa CGR to the tropical precipitation 440	  

IAV has a value of −0.46±0.07 PgC yr−1 100 mm−1 (Fig. 8b). However, Piao et al. 441	  

(2013) showed that the correlation between RLS and precipitation was not statistically 442	  

significant with a value of 0.8±1.1 PgC yr−1 100 mm−1. This difference is mainly due 443	  

to the usage of a) annually averaged RLS and precipitation, and b) globally averaged 444	  

precipitation variability. The sensitivity of the ensemble tropical CFTA simulated by 445	  

the DGVMs to precipitation variability is −0.67±0.04 PgC yr−1 100 mm−1, a little 446	  

stronger than the estimation in Mauna Loa CGR. In the individual DGVMs, three 447	  

have values within the uncertainty of Mauna Loa CGR: LPJ at −0.54±0.04 PgC yr−1 448	  

100 mm−1; LPJ-GUESS at −0.36±0.04 PgC yr−1 100mm−1; and OCN at −0.34±0.05 449	  

PgC yr−1 100 mm−1. The estimation in VEGAS is a little weaker, with a value of 450	  

−0.29±0.03 PgC yr−1 100 mm−1, whereas the estimations in CLM4C (−1.34±0.05 451	  

PgC yr−1 100 mm−1) and TRIFFID (−1.14±0.06 PgC yr−1 100 mm−1) are too strong. 452	  

Clearly, a significant linear relationship also exists between these sensitivities in CFTA 453	  

and −NPP, with a slope of 0.65, and correlation coefficient 0.86, with p < 0.05. 454	  

 455	  

Based on the combination of sensitivities to temperature and precipitation, CLM4C 456	  

and TRIFFID are more sensitive to these climatic variabilities than the other DGVMs, 457	  

resulting in a stronger IAVs in these two models (CLM4C: 𝜎 = 1.73 PgC yr−1, 458	  

TRIFFID: 𝜎 = 1.62 PgC yr−1; Table 3), whereas the other DGVMs have more 459	  

reasonable magnitudes except CLM4CN (Table 3). Overall, the models simulate well 460	  
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the historical IAV, due to their reasonable sensitivity to the tropical terrestrial 461	  

ecosystems’ temperature and precipitation. 462	  

 463	  

Past studies on the interannual CO2 variability have mostly focused on the 464	  

sensitivities of the aggregated carbon flux to temperature and precipitation (Zeng et 465	  

al., 2005a; Qian et al., 2008; W. Wang et al., 2013). Here we present the sensitivities 466	  

of the ensemble CFTA grid by grid to temperature and precipitation, in order to 467	  

roughly have an insight into the regional responses (Fig. 9). The sensitivities to 468	  

temperature in the tropics are all positive, with remarkably stronger responses in the 469	  

regions of dense vegetation, especially in the Amazon (Fig. 9a). The African savannas 470	  

and South Asian forests are weaker with a response of about 0.05–0.15 kgC m−2 yr−1 471	  

K−1. Correspondingly, the sensitivity to precipitation in the tropics is negative for 472	  

models, except for some regions with insignificant values (Fig. 9b). But interestingly 473	  

the sensitivities over the African savannas are stronger than those in the Amazon, 474	  

suggesting that grasses (or shrubs) are more sensitive to precipitation than forests, 475	  

perhaps because they are more closely associated with the surface soil moisture which 476	  

is more sensitive to rainfall. However, it is difficult to validate such fine details in the 477	  

models due to lack of observations. 478	  

 479	  

4 Discussion 480	  

In this study, after taking the lag effect of precipitation into consideration (Qian et al., 481	  

2008), we find that Mauna Loa CGR has a high correlation coefficient with 482	  
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precipitation (r = −0.63), which is only slightly different from the correlation 483	  

coefficient with temperature (r = 0.77). It contrasts with the result of X. Wang et al. 484	  

(2014). Simultaneously, given that tropical land precipitation and air temperature are 485	  

dynamically correlated (Fig. 1), we think these correlation coefficients favor neither 486	  

temperature nor precipitation as the dominant factor of CGR IAV. It contrasts with 487	  

the result of W. Wang et al. (2013) that is based on the high correlation coefficient 488	  

between Mauna Loa CGR and temperature. Further, They pointed out that the 489	  

temperature-CO2 coupling is mainly owing to the additive responses of NPP and Rh to 490	  

temperature, while the weaker precipitation-CO2 coupling is because of the 491	  

subtractive responses of NPP and Rh to precipitation. However, in this study, the 492	  

biological dynamics underlying CGR IAV, based on 7 DGVMs, reveal that NPP is 493	  

the dominant process, and Rh variability is obviously weaker caused by the opposing 494	  

effects of precipitation and temperature. In the tropics, NPP turned out to be largely 495	  

driven by precipitation through process-based terrestrial ecosystem models (Zeng et 496	  

al., 2005a; Qian et al., 2008), indicating the key role of precipitation in CGR IAV. 497	  

These mechanistic analyses may give out more convincing explanations than the 498	  

correlation coefficients. Conversely, if NPP dominates the atmospheric CGR, or in 499	  

other words, precipitation dominates the atmospheric CGR, why does Mauna Loa 500	  

CGR have a high (or even higher) correlation coefficient with tropical land 501	  

temperature (than tropical precipitation) (Fig. 3)? This possibly can be explained in 502	  

part by the high correlation coefficient between the tropical land precipitation and 503	  

temperature (Fig. 1). On the other hand, Rh and D, though with smaller contributions, 504	  
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can still influence their correlation coefficient (Table 4). Also, we should be cautious 505	  

of the method for separating the roles of temperature and precipitation in CGR IAV 506	  

used in this paper and previous studies (Piao et al., 2013; W. Wang et al., 2013; X. 507	  

Wang et al., 2014). These statistical methods are based on linear decompositions, 508	  

which may miss important nonlinearities in the physical and biological systems, and 509	  

cannot accurately deal with the correlations between precipitation and temperature. 510	  

Therefore, the separate sensitivities of temperature and precipitation diagnosed by 511	  

these statistical methods are only as the contributive effects (Piao et al., 2013). A 512	  

better estimation of the contributions of temperature and precipitation should use 513	  

simulations of processed-based terrestrial carbon cycle models via several sensitivity 514	  

experiments, while recognizing major uncertainties in the current generation of 515	  

carbon cycle models. 516	  

 517	  

Although we find that the majority of 7 DGVMs can well simulate the IAV in tropical 518	  

terrestrial ecosystems, the discrepancies in the Rh simulations (Fig. S4) reveal that the 519	  

soil carbon decomposition processes and microbial activities are not yet to be fully 520	  

understood. Previous studies (Zeng et al., 2005a; Qian et al., 2008; W. Wang et al., 521	  

2013) found that Rh contributes in the same direction of NPP to the IAV of the 522	  

atmospheric CGR. However, in this study the model ensemble Rh is weaker and not 523	  

significantly correlated with Mauna Loa CGR. 524	  

 525	  
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Besides the tropical NPP and Rh, which are the main foci of our analyses, the 526	  

atmospheric CGR IAV may also have contributions from other processes or regions, 527	  

such as variability of the terrestrial carbon flux at mid–high latitude, air–sea carbon 528	  

fluxes, and the fluxes caused by fire events and land use. Though variabilities of 529	  

carbon fluxes from the Northern and Southern hemispheres are weak and not induced 530	  

by ENSO (Fig. S2), some severe events may also modify the canonical 531	  

tropically-dominated ENSO response. For instance, the anomalous carbon release 532	  

from 1998 to 2002 across the Northern Hemisphere’s mid-latitude regions originated 533	  

from decreased biological productivity (0.9 PgC yr−1) and forests wildfires, induced 534	  

by drought and warming (Balzter et al., 2005; Jones and Cox, 2005; Zeng et al., 535	  

2005b). The Ocean, another important carbon sink, has a moderate sea-air carbon flux 536	  

variability of about ±0.5 PgC yr−1, dominated over by equatorial Pacific Ocean 537	  

(Bousquet et al., 2000; McKinley et al., 2004; Patra et al., 2005b; Le Quere, 2009). 538	  

However, during El Niño events, the ocean acts as a sink of atmospheric CO2, owing 539	  

to the decrease in equatorial Pacific outgassing caused by the weakened upwelling 540	  

within the carbon-rich deep water; the opposite occurs during La Niña (Jones et al., 541	  

2001; McKinley et al., 2004). This variability opposes that of the atmospheric CGR. 542	  

Fires also play an important role in the atmospheric CO2 variability. During the 1997–543	  

1998 El Niño event, a fire emissions anomaly, triggered by widespread drought, was 544	  

2.1±0.8 PgC, or 66±24% of CGR anomaly with a 60% contribution from the 545	  

Southeast Asia (van der Werf et al., 2004). 546	  

 547	  
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At last, there is a concern on the direct comparison between the non-transported 548	  

modeled carbon fluxes and CO2 observations. Patra et al. (2005c) conducted multiple 549	  

regression analysis between Mauna Loa CGR and a time-dependent inverse (TDI) 550	  

modeled flux anomalies over 22 TransCom-3 regions, showing the TDI flux 551	  

anomalies do not explain the detail features in Mauna Loa CGR without any time lag.  552	  

 553	  

5 Concluding Remarks 554	  

The IAV in atmospheric CGR is closely connected with ENSO activities, as a 555	  

consequence of the tropical terrestrial carbon sources and sinks, induced by a 556	  

'conspiracy' between climate anomalies and the responses of vegetation physiology 557	  

and soil (Zeng et al., 2005a). Understanding the relative contribution of CO2 558	  

sensitivity to tropical precipitation and temperature variabilities has important 559	  

implications for future carbon-climate feedback using such ‘emergent constraint’ 560	  

proposed by Cox et al. (2013). Therefore, in this paper, we re-examined the 561	  

relationship between atmospheric CGR and climatic variables (temperature, 562	  

precipitation, soil moisture, and PAR). Moreover, we used 7 DGVMs, all 563	  

participating in the TRENDY project, to delineate the processes underlying the CGR. 564	  

We applied ridge regression to statistically disentangle the separate effects of 565	  

temperature and precipitation on the IAV in CGR. Simultaneously, we can better 566	  

understand the performance of the individual DGVM from these results. The key 567	  

results are summarized below: 568	  

 569	  
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(1) We find that tropical precipitation and temperature are highly correlated, r = 570	  

−0.66, with precipitation leading temperature by 4–5 months, and both are closely 571	  

connected with ENSO activities. Mauna Loa CGR lags behind the tropical land 572	  

precipitation variability by about 4 months (r = −0.63), but leads temperature by about 573	  

1 month (0.77). However, in contrast to some recent suggestions, we argue that these 574	  

relationships alone do not strongly favor temperature over precipitation as the leading 575	  

driving factor of CO2 IAV, nor vice versa. Further, we find that Mauna Loa CGR 576	  

coincides with soil moisture (−0.65), which is not only determined by precipitation 577	  

but also by temperature as higher temperatures increase the evapotranspiration effect. 578	  

 579	  

(2) All 7 DGVMs capture well the IAV of tropical CFTA. The ensemble CFTA (𝜎 = 580	  

1.03 PgC yr−1) is highly correlated with Mauna Loa CGR at r = 0.79 (p = 0.003). 581	  

Importantly, the models consistently show that the variability in NPP dominates the 582	  

CFTA variability, while the responses of soil respiration and fire disturbance are much 583	  

weaker. The standard deviation in ensemble NPP is 0.99 PgC yr−1, and in contrast, 584	  

they are 0.29 PgC yr−1 and 0.10 PgC yr−1 for ensemble Rh and D respectively. As NPP 585	  

is largely driven by precipitation (via soil moisture), these state-of-the-art DGVMs 586	  

suggest a key role of precipitation in the IAV of atmospheric CGR. 587	  

 588	  

(3) The sensitivities of Mauna Loa CGR to temperature and precipitation are 589	  

2.92±0.20 PgC yr−1 K−1 and −0.46±0.07 PgC yr−1 100 mm−1, respectively. 590	  

Meanwhile, the sensitivities of the ensemble mean tropical CFTA produced by the 591	  
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state-of-the-art DGVMs to temperature and precipitation are 3.18±0.11 PgC yr−1 K−1 592	  

and −0.67±0.04 PgC yr−1 100 mm−1, close to those of Mauna Loa CGR. Spatially, the 593	  

sensitivities to temperature in the tropics are all positive, with remarkably stronger 594	  

responses over the dense vegetation regions, especially in the Amazon. The 595	  

sensitivities to precipitation are all negative, with the strongest responses over the 596	  

African savannas, indicating that grasses (or shrubs) are more sensitive to 597	  

precipitation than forests. 598	  

 599	  
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Tables and Figures 856	  

Table 1. Characteristics of the terrestrial carbon cycle models used in this study. 857	  

DGVMs 
Horizontal 

resolution 

Nitrogen 

limitation 

Fire 

modules 
References 

CLM4C 2.5°×1.875° No Yes 
Oleson et al., 2010；  

Lawrence et al., 2011 

CLM4CN 2.5°×1.875° Yes Yes 
Bonan and Levis, 2010; 

Lawrence et al., 2011 

LPJ 0.5°×0.5° No Yes Sitch et al., 2003 

LPJ-GUESS 0.5°×0.5° No Yes Smith et al., 2001 

OCN 3.75°×2.5° Yes No 
Zaehle and Friend, 2010; 

 Zaehle et al., 2010 

TRIFFID 3.75°×2.5° No No Cox, 2001 

VEGAS 0.5°×0.5° No Yes Zeng et al., 2005a 

 858	  

Table 2. Summary of previous studies of the relationships between Mauna Loa CGR 859	  

and climatic variables. 860	  

Studies 
Correlations of Mauna Loa CGR with climatic variables 

Temperature Lead-laga Precipitation Lead-lag 

W. Wang et al., 2013 0.70 0 −0.50 −6 

X. Wang et al., 2014 0.53 0 −0.19b — 

In this paper 0.77 1 −0.63 −4 
a Lead-lag months between Mauna Loa CGR and climatic variables. Positive values 861	  

indicate the climatic variables lag Mauna Loa CGR. 862	  
b This insignificant correlation coefficient was obtained with concurrent precipitation 863	  

in X. Wang et al. [2014]. 864	  

 865	  

 866	  
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Table 3. Standard deviations of the terrestrial carbon cycle processes. 867	  

DGVMs 
Standard deviations (PgC yr−1) 

CFTA −NPP(ra) Rh(r) D(r) 

CLM4C 1.73 1.49(0.97) 0.56(0.00) 0.37(0.79) 

CLM4CN 1.54 1.33(0.94) 0.60(0.06) 0.33(0.77) 

LPJ 0.90 1.05(0.92) 0.40(−0.04) 0.08(−0.54) 

LPJ-GUESS 0.84 0.58(0.93) 0.33(0.34) 0.27(0.69) 

OCN 0.70 0.72(0.94) 0.25(0.11) 0.01(−0.10) 

TRIFFID 1.62 1.34(0.97) 0.45(0.71) 0.00(−0.28) 

VEGAS 0.79 1.05(0.95) 0.45(−0.61) 0.08(0.81) 

ENSb 1.03 0.99(0.97) 0.29(−0.02) 0.10(0.76) 

Mauna Loa CGR 1.03c — — — 

a It shows the correlation coefficient with CFTA. 868	  
b The ensemble means were calculated excluding the CLM4CN data because of its 869	  

large discrepancies responding to temperature and precipitation. 870	  
c This value denotes the standard deviation of Mauna Loa CGR, as a reference to the 871	  

simulated tropical CFTA. 872	  

 873	  

Table 4. The maximum correlations of the simulated tropical terrestrial carbon cycle 874	  

variability with temperature and precipitation. Lead-lag months between the carbon 875	  

cycle variability and climatic variables are given in brackets. Positive values indicate 876	  

that climatic variables lag behind. 877	  

DGVMs 

Tropical CFTA 

(Mauna Loa CGR) 
  Tropical −NPP 

temperature precipitation   temperature precipitation 

CLM4C 0.78(1) −0.77(−3)   0.76(2) −0.83(−2) 

CLM4CN 0.64(2) −0.79(−2)   0.63(4) −0.86(−1) 

LPJ 0.92(0) −0.80(−4)   0.76(1) −0.85(−4) 

LPJ-GUESS 0.89(−1) −0.74(−5)   0.79(0) −0.75(−3) 

OCN 0.79(1) −0.69(−3)   0.70(1) −0.79(−3) 

TRIFFID 0.92(1) −0.83(−3)   0.83(1) −0.84(−3) 
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VEGAS 0.95(0) −0.74(−4)   0.86(0) −0.84(−3) 

ENS 0.91(0) −0.81(−4)   0.82(1) −0.86(−3) 

Mauna Loa CGR 0.77(1) −0.63(−4)   — — 

 878	  

 879	  
 880	  

 881	  
Figure 1. The cross-correlation coefficients between the tropical land precipitation (Pr) 882	  

and temperature (Tas). The horizontal axis denotes the lead-lag months between 883	  

precipitation and temperature, with negative values indicating that precipitation leads 884	  

temperature. Bold line indicates correlation above 95% significance (p ≤ 0.05). 885	  

 886	  

(Pr leads Tas by 4–5 mo)
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 887	  
Figure 2. Interannual variabilities (IAVs) in the Niño 3.4 index, tropical land surface 888	  

air temperature, precipitation, and soil moisture, and atmospheric CO2 growth rate 889	  

(CGR). The soil moisture was calculated from the surface layer to a 2 m depth. The 890	  

atmospheric CGR, for the Scripps Mauna Loa CO2 data from 1960 to 2012 (solid line) 891	  

and the globally averaged marine surface CO2 data from 1980 to 2012 (dashed line), 892	  
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are shown as the difference between the monthly averaged concentrations in the 893	  

adjacent two years. The gray bars represent the three strongest El Niño events during 894	  

1965–66, 1982–83, and 1997–98 years and vertical dashed lines show the eruptions of 895	  

El Chichón and Mount Pinatubo volcanoes in 1982 and 1991, respectively. 896	  

 897	  

 898	  
Figure 3. The cross-correlations of anomalies in Mauna Loa CGR with anomalies in 899	  

the Niño 3.4 index, tropical terrestrial surface air temperature (Tas), precipitation (Pr), 900	  

soil moisture (SM), and photosynthetically active radiation (PAR). The horizontal 901	  

axis shows the lead-lag months between them. Negative month values indicate the 902	  

anomalies in Mauna Loa CGR lag behind. Bold lines indicate correlation above 95% 903	  

significance (p ≤ 0.05), estimated by the effective degree of freedom. 904	  

 905	  

(Nino3.4 leads by 3–4 mo) (Tas lags by 1 mo)

(Pr leads by 4 mo)
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 906	  

Figure 4. The simulated IAVs of tropical land–atmosphere carbon flux (CFTA), 907	  

reversed net primary productivity (−NPP), heterotrophic respiration (Rh), and 908	  

disturbances (D) by the 7 terrestrial carbon cycle models, involved in the TRENDY 909	  

project. The solid black lines in the figures denote the ensemble means (excluding 910	  

CLM4CN), bounded by the 1-𝜎  inter-model spread (green shaded areas). The 911	  

observed IAVs of Mauna Loa CGR from 1960 to 2012 are also shown in (a) as a red 912	  

dashed line. We reversed the NPP in order to make the sign consistent, positive values 913	  
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indicate carbon release from the terrestrial ecosystems. 914	  

 915	  

 916	  

Figure 5. Color-coded correlation matrices for the interannual anomalies in the 917	  

tropical CFTA and −NPP estimated by the 7 terrestrial carbon cycle models. Panel (a) 918	  

shows correlation coefficients in pairs among the estimated CFTA, and (b) correlation 919	  

coefficients in pairs among −NPP in the period 1960–2010. Mauna Loa CGR and 920	  
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modeled ensemble mean (ENS) are included in these correlations as well. The values 921	  

in each cell demonstrate the significance levels (p ≤ 0.05 refers to above 95% 922	  

significance). 923	  

 924	  

 925	  

Figure 6. The cross-correlations of the simulated tropical CFTA anomalies with Mauna 926	  
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Loa CGR, tropical near-surface temperature, and precipitation over land. The negative 927	  

months on the horizontal axis indicate that the anomalies in CFTA lag behind. Bold 928	  

lines indicate correlation above 95% significance (p ≤ 0.05). 929	  

 930	  

 931	  
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Figure 7. The cross-correlations of −NPP with Mauna Loa CGR, tropical near-surface 932	  

temperature, and precipitation over land. The negative months on the horizontal axis 933	  

indicate that the anomalies in −NPP lag behind. Bold lines indicate correlation above 934	  

95% significance (p ≤ 0.05). 935	  

 936	  
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 937	  

Figure 8. Sensitivities of the tropical anomalies in CFTA, −NPP, and Mauna Loa CGR 938	  

to (a) interannual variability in tropical near-surface temperature over land (PgC yr−1 939	  

K−1) and (b) interannual variability in tropical precipitation over land (PgC yr−1 100 940	  

mm−1) in 1960–2010. The grey areas show the values of the sensitivities of Mauna 941	  

Loa CGR with standard errors. Error bars indicate the standard errors of the estimated 942	  
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sensitivities for each model. 943	  

 944	  

 945	  
Figure 9. Spatial sensitivities of the ensemble mean in tropical CFTA interannual 946	  

anomalies to tropical near-surface air temperature (kgC m−2 yr−1 K−1) and 947	  

precipitation (kgC m−2 yr−1 100 mm−1) over land. The dotted areas in both figures 948	  

indicate correlation above 95% significance (p ≤ 0.05). 949	  

 950	  


