
	
   1	
  

Responses to bg-2015-469: "Interannual variability of 1	
  

the atmospheric CO2 growth rate：Roles of 2	
  

precipitation and temperature" 3	
  
	
  4	
  

Dear	
  Editor	
  and	
  Referees,	
  5	
  

Thank	
  you	
  very	
  much	
  for	
  your	
  efforts	
  to	
  deal	
  with	
  our	
  manuscript	
  and	
  provide	
  6	
  

constructive	
  comments.	
  We	
  have	
  tried	
  our	
  best	
  to	
  re-­‐summarize	
  the	
  results,	
  and	
  7	
  

modify	
  this	
  manuscript	
  accordingly.	
  The	
  following	
  is	
  our	
  point-­‐by-­‐point	
  reply	
  to	
  8	
  

the	
  comments.	
  9	
  

 10	
  

Anonymous Referee #1 11	
  

Comments: 12	
  

1. I felt that the conclusion of the manuscript, ‘Because NPP is largely driven by 13	
  

precipitation, this suggests a key role of precipitation in CGR IAV despite the higher 14	
  

CGR correlation with temperature (P19074, L19-21 in abstract)’ is not sufficiently 15	
  

supported by the results. Therefore, this statement should be toned down (or add some 16	
  

more clear analysis). The authors claimed that ‘NPP is largely driven by precipitation 17	
  

(e.g. P19074L19, P19085L12-13)’, however, the statement is not based on this 18	
  

analysis, but based on existing literature. Important factors of tropical NPP are, I 19	
  

believe, still debatable and depending on the study (e.g. Clark et al. 2003 (cited in this 20	
  

study) suggests importance of temperature, plus many literature are listed in the 21	
  

introduction section). If the authors would like to clarify the importance of 22	
  

temperature/precipitation on NPP, further model sensitivity test is required. 23	
  

Reply: Thanks very much for your suggestions.  24	
  

  Firstly, to be precise, we changed this statement in abstract as "the models 25	
  

consistently show the variability in net primary productivity (NPP) dominates CGR, 26	
  

rather than heterotrophic respiration. Because previous studies have proved that NPP 27	
  

is largely driven by precipitation in tropics, it suggests a key role of precipitation in 28	
  

CGR IAV despite the higher CGR correlation with temperature." 29	
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  Secondly, if we re-run some sensitive experiments to clarify the relative importance 30	
  

of temperature and precipitation on NPP, we think we will get the same results, 31	
  

indicated by Zeng et al. (2005) and Qian et al (2008), that precipitation dominates 32	
  

NPP variability. Of course, in another separate work, we decide to make some 33	
  

comparisons between the linear statistical decomposition and model sensitive 34	
  

experiments, in order to clearly illustrate the importance of the analysis on the 35	
  

biological process. 36	
  

  Thirdly, previous most studies that suggested the importance of temperature on 37	
  

CGR IAV are primarily based on the high correlation coefficient between them (Clark 38	
  

et al., 2003; W. Wang et al., 2013; X. Wang et al., 2014). In the first half of this work, 39	
  

we also give out these correlation coefficients. In the second half, we show the NPP 40	
  

variability dominates the CGR IAV, based on 7 state-of-the-art DGVMs participating 41	
  

in TRENDY project. In addition, we can find out that tropical land precipitation and 42	
  

temperature are highly correlated (Figure 1), partly owing to that less land 43	
  

precipitation (for instance during El Niño) can inhibit the evapotranspiration over 44	
  

Tropics, promoting the higher temperature (Zeng et al., 2005a), and also is due to 45	
  

ENSO-related circulation adjustments (Gu and Adler, 2010). Precipitation will 46	
  

mislead the correlation coefficient between temperature and CGR. Therefore, 47	
  

mechanistic analyses may give out more convincing explanations than the correlation 48	
  

coefficients. 49	
  

   50	
  

	
  51	
  

2. Furthermore, it might be helpful to add why this study made a different conclusion 52	
  

compared with Wang et al. (2013) PNAS paper (cited in the manuscript) in discussion 53	
  

section. Wang et al. (2013) claimed importance of temperature in tropics on Mauna 54	
  

Loa CO2 growth rate based on the datasets similar to this study. Therefore, adding 55	
  

some statement is helpful to understand the differences between this study and Wang 56	
  

et al. (2013).  57	
  

Reply: Thanks very much for your good suggestions. Actually, the result of Wang et 58	
  

al. (2013) is based on the high correlation coefficient between Mauna Loa CGR and 59	
  

temperature. They point out the temperature-CO2 coupling is owing to the additive 60	
  

responses of Rh and NPP to temperature, while the weaker interannual 61	
  

precipitation-CO2 coupling is because of the subtractive responses of Rh and NPP to 62	
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precipitation. In this study, we also find out that the correlation coefficient between 63	
  

CGR and temperature is somewhat higher than that between CGR and precipitation. 64	
  

However, the state-of-the-art DGVMs consistently show that NPP is the dominant 65	
  

process (standard deviation is 0.99 PgC yr–1), while Rh is relative smaller with 66	
  

standard deviation 0.29 PgC yr–1. This weak Rh variability is resulted from its 67	
  

subtractive responses to temperature and precipitation. Previous biogeochemical 68	
  

terrestrial models have proved that tropical NPP is largely driven by precipitation. 69	
  

Therefore, we conclude that precipitation is the dominant factor for CGR IAV beyond 70	
  

the statistical correlation coefficient.  71	
  

  Here we add some statements as follows:  72	
  

  "Simultaneously, given that tropical land precipitation and air temperature are 73	
  

dynamically correlated (Fig. 1), we think these correlation coefficients favor neither 74	
  

temperature nor precipitation as the dominant factor of CGR IAV. It contrasts with 75	
  

the result of W. Wang et al. (2013) that is based on the high correlation coefficient 76	
  

between Mauna Loa CGR and temperature. Further, They pointed out that the 77	
  

temperature-CO2 coupling is mainly owing to the additive responses of NPP and Rh to 78	
  

temperature, while the weaker precipitation-CO2 coupling is because of the 79	
  

subtractive responses of NPP and Rh to precipitation. However, in this study, the 80	
  

biological dynamics underlying CGR IAV, based on 7 DGVMs, reveal that NPP is 81	
  

the dominant process, and Rh variability is obviously weaker caused by the opposing 82	
  

effects of precipitation and temperature. In the tropics, NPP turned out to be largely 83	
  

driven by precipitation through process-based terrestrial ecosystem models (Zeng et 84	
  

al., 2005a; Qian et al., 2008), indicating the key role of precipitation in CGR IAV. 85	
  

These mechanistic analyses may give out more convincing explanations than the 86	
  

correlation coefficients." 87	
  

 88	
  

3. P19074 L19: soil respiration -> heterotrophic respiration P19080 L23: (5) missing 89	
  

model name.  90	
  

Reply: Thanks very much for your suggestions. We have changed “soil respiration” 91	
  

into “heterotrophic respiration” and added the model name “OCN” there. 92	
  

 93	
  

 94	
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Anonymous Referee #3 95	
  

1. title: as per the claim, I do not feel the paper really attempted to quantify the 96	
  

"relative contribution" of temperature and precipitation on CO2 sources sinks. To be 97	
  

precise I was looking for number how much fraction of the CO2 IAVs is due to 98	
  

precipitation, and how of much of the CO2 IAVs is due to temperature. I only found 99	
  

the total sensitivities of CO2 IAVs to T & P.  100	
  

Reply: Thanks very much for your suggestions. Indeed, we do not think we can give 101	
  

out the detailed contributions from temperature and precipitation by linear statistical 102	
  

analyses. And we regard that sensitive experiments by models can show us more 103	
  

reasonable results, but we do not have these runs. So we do not present the statistical 104	
  

contributions from temperature and precipitation, though it is easy to do that. On the 105	
  

contrary, we regard the precipitation as the dominant factor by process analyses. We 106	
  

think we can remove the “relative contribution” from the title and change it as 107	
  

“Interannual variability of the atmospheric CO2 growth rate: roles of precipitation and 108	
  

temperature”. 109	
  

 110	
  

2. p.19074, l.15 : The models look to be more sensitive to T and P compared to 111	
  

measurements. Why is that. One of the reasons I can imagine is that the models do not 112	
  

include fires, but they are producing the IAV by increasing sensitivity to climate 113	
  

variables.  114	
  

Such tuning is probably also leading to the large sink increased simulated by the mod- 115	
  

els in the recent years.  116	
  

Reply: Thanks very much for your suggestions. From the Table 1, we can know that 117	
  

five out of these DGVMs include the fire modules, but few of them contain nitrogen 118	
  

limitations. Figure 8 shows the individual model’s sensitivities to temperature and 119	
  

precipitation. We can find out that CLM4C and TRIFFID are more sensitive to these 120	
  

two climatic elements than the other models. They will influence the ensemble result 121	
  

to some extent. The other models are more close to the observations.  122	
  

 123	
  

3. p.19076, l.1 : I think this is true mainly in the temperate and boreal regions. 124	
  

p.19078, l.1 : as you may know some part of this record has to come to Keeling’s data, 125	
  

until about 1970. including a reference to SCRIPS/Keeling is appropriate here. 126	
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Reply: Thanks very much. We also calculated the interannual variabilities of NPP and 127	
  

Rh in the temperate and boreal regions, and we can find out that NPP and Rh cancel 128	
  

each other strongly. Maybe temperature plays an important role in these regions. It 129	
  

still needs further studies. 130	
  

Thanks for your suggestion. We have added two references of Keeling et al., 1976 131	
  

and Masarie and Tans, 1995 for these datasets. 132	
  

  133	
  

4. p.19079, l.19 : Is this the real reason? how about low cloudiness and greater 134	
  

amount of incoming solar radiation?  135	
  

Reply: Thanks for your suggestions. Tropical land temperature and precipitation are 136	
  

closely correlated. The high correlation is partly due to that less land precipitation (for 137	
  

instance during El Niño) can inhibit the evapotranspiration over Tropics, promoting 138	
  

the higher temperature (Zeng et al., 2005), and also is due to the ENSO-related 139	
  

circulation adjustments (less low cloudiness and greater amount of incoming solar 140	
  

radiation) (Gu and Adler, 2010). We have modified it accordingly. 141	
  

 142	
  

5. p.19080, l.16 : is there a mismatch in ’-v1’ and ’/V2/’?  143	
  

Reply: It is right here. The datasets come from TRENDY-v1. But we do download the 144	
  

data from http://www-lscedods. cea.fr/invsat/RECCAP/V2/. We consulted Sitch for 145	
  

this information and he told us this /V2/ is because they re-run these experiments. 146	
  

 147	
  

6. p.19081, l.7 : if you are interested only in the region of 23S-23N, the previous step 148	
  

of making data at 1x1 deg wasn’t needed.  149	
  

Reply: Thanks. In the last figure, we attempt to give out the sensitivities to T & P grid 150	
  

by grid. So it is necessary to make data at 1x1 degree first. 151	
  

 152	
  

7. p.19083, l.10 : ’temperature over land lags ENSO by 4 months’. I cannot 153	
  

understand the significance of this general statement. The timing of heat wave due to 154	
  

ENSO cycle vary from continent to continents (America, Africa and Asia) and the 155	
  

location, say the northern and the southern Southeast Asia. This study would have 156	
  

been more useful for process-level understanding if the authors broke down the 157	
  

tropical regions by continents and by hemispheres.  158	
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Reply: Thanks for your good suggestions. Firstly, Cross correlation shows the 159	
  

temporal relationships among variables. It demonstrates the tropical land temperature 160	
  

lags ENSO by 4 months. Secondly, it is a good idea to study the relative process from 161	
  

continent to continent. But observations reflecting the regional interannual flux are 162	
  

unavailable. Therefore, the tropical or global total fluxes are most adopted. This is 163	
  

maybe a good idea for a future study. 164	
  

 165	
  

8. p.19083, l.17 : PCP or TMP and ENSO shows similar correlation coefficient. then 166	
  

why conclude the ’soil moisture plays a key role ...’?  167	
  

Reply: Thanks very much. The correlation coefficients are just statistical values. 168	
  

Physically, we can easily understand that ENSO results in precipitation and 169	
  

temperature fluctuations (T lags P by 4-5 month), affecting the terrestrial carbon 170	
  

fluxes. But precipitation does not directly affect them, but via soil moisture. Further, 171	
  

precipitation and temperature are physically correlated. The high correlation 172	
  

coefficient between temperature and carbon fluxes may come from precipitation 173	
  

effects. The model sensitivity experiments also show the precipitation (soil moisture) 174	
  

is more important than temperature (Qian et al., 2008). Here we modified this 175	
  

sentence as "soil moisture plays an important role …" 176	
  

 177	
  

9. p.19083, l.25 : why blame inverse models, if you are not analysing those results. 178	
  

The inversion models still have some advantages to be used..  179	
  

Reply: Thanks very much. We do not blame inverse models, and we just want to 180	
  

announce their different techniques. We have changed this sentence as "Different 181	
  

from inversion models, …" 182	
  

 183	
  

10. p.19086, l.2 : this is an overstatement - the bottom line is that the NPP models are 184	
  

oversensitive to climate, and the tuning of all 7 DGVMs are perhaps biased. for ex- 185	
  

ample, we may need greater disturbance flux compared to what is simulated by the 186	
  

models, if one compare the DGVM results with say fire emissions from say GFED.  187	
  

Reply: Thanks very much for your suggestions. Figure 8 illustrates that the 188	
  

sensitivities to temperature and precipitation of most models are close to observations. 189	
  

Only a few models are oversensitive to climate. Though DGVMs are perhaps biased, 190	
  

multi-model results are somewhat convincing. In addition, most models include the 191	
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fire processes (Table 1). And we agree that carbon emissions caused by fires, 192	
  

triggered by droughts, in some years are very important (Van der Werf et al., 2004). 193	
  

 194	
  

11. p.19086, l.13 : I think the negative correlation are a bit strange for VEGAS model. 195	
  

Any explanation?  196	
  

Reply: Thanks very much. The version of VEGAS participating in TRENDY behaves 197	
  

like this. Soil respiration is simultaneously influenced by temperature and soil 198	
  

moisture. For example, higher temperature can enhance Rh, but less precipitation can 199	
  

inhibit Rh during El Nino. In this version, Rh is too sensitive to soil moisture factor. 200	
  

And in later version, we have modified this process.  201	
  

 202	
  

12. p.19086, l.28 : does this mean CFta and NPP are not casually related?  203	
  

Reply: I do not agree. The little phase discrepancy between CFta and NPP can be 204	
  

caused by Rh and D variabilities, though their small amplitudes. And some individual 205	
  

model shows the in-phase variability.  206	
  

 207	
  

13. p.19089, l.15: need some reference on grided analysis, which seems to exist as per 208	
  

the sentence  209	
  

Reply: Thanks very much for your suggestions. We have added some references of 210	
  

Zeng et al., 2005a, Qian et al., 2008, W. Wang et al., 2013 here. 211	
  

 212	
  

14. p.19089, l.19: this is not the real world! some areas are more influenced by fires, 213	
  

which you do not capture by these DGVMs  214	
  

Reply: Thanks very much for your suggestions. I agree with you that this is not the 215	
  

real world. But models are good tools for understanding these processes. And five out 216	
  

of these DGVMs have taken the fire effect into considerations, though few models 217	
  

include the nitrogen limitations (Table 1). 218	
  

 219	
  

15. p.19089, l.26: interesting observations, but too speculative...  220	
  

Reply: Thanks very much. Owing to absence of observations, the results in this 221	
  

paragraph are difficult to validate. We give out this paragraph mainly due to their 222	
  

good performance in aggregated flux variability. Also we explain these phenomena 223	
  

based on the model structure.  224	
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 225	
  

16. p.19090, l.4 : you should mention whether your results agree with some others - 226	
  

from this sentence there seems to be some  227	
  

Reply: Thanks very much. We have added the reference of Qian et al., 2008 here. 228	
  

 229	
  

17. p.19092, l.2 : maybe because there is a time lag between emissions to occur and 230	
  

concentration growth rate. Also note that not the whole tropical land experience the 231	
  

severity of an El Nino at the same time. Do have an alternative explanation ?  232	
  

Reply: Thanks very much. It is actually true that there is a time lag between emissions 233	
  

and Mauna Loa CO2 growth rate. But we do not yet clearly understand their lag time 234	
  

scales, and which regions Mauna Loa CO2 growth rate is sensitive to. Therefore, It 235	
  

needs more work by transport models to understand these processes.   236	
  

 237	
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 284	
  

Abstract 285	
  

The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely 286	
  

connected with the El Niño–Southern Oscillation. However, sensitivities of CGR to 287	
  

temperature and precipitation remain largely uncertain. This paper analyzed the 288	
  

relationship between Mauna Loa CGR and tropical land climatic elements. We find 289	
  

that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of 290	
  

−0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (−0.65) 291	
  

with zero lag. Additionally, precipitation and temperature are highly correlated 292	
  

(−0.66), with precipitation leading by 4–5 months. Regression analysis shows that 293	
  

Carl � 16/2/22 11:49 AM
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sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92±0.20 PgC 295	
  

yr−1 K−1 and −0.46±0.07 PgC yr−1 100 mm−1, respectively. Unlike some recent 296	
  

suggestions, these empirical relationships favor neither temperature nor precipitation 297	
  

as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon 298	
  

cycle models, from the TRENDY project, to study the processes underlying CGR 299	
  

IAV. All models capture well the IAV of tropical land–atmosphere carbon flux 300	
  

(CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 301	
  

3.18±0.11 PgC yr−1 K−1 and −0.67±0.04 PgC yr−1 100 mm−1, close to Mauna Loa 302	
  

CGR. Importantly, the models consistently show the variability in net primary 303	
  

productivity (NPP) dominates CGR, rather than heterotrophic respiration. Because 304	
  

previous studies have proved that NPP is largely driven by precipitation in tropics, it 305	
  

suggests a key role of precipitation in CGR IAV despite the higher CGR correlation 306	
  

with temperature. Understanding the relative contribution of CO2 sensitivity to 307	
  

precipitation and temperature has important implications for future carbon-climate 308	
  

feedback using such ‘emergent constraint’. 309	
  

	
  310	
  

1 Introduction 311	
  

Increasing atmospheric carbon dioxide (CO2) concentration, from anthropogenic 312	
  

emissions, is the major contributing factor to global warming. This trend can be seen 313	
  

from the long-term CO2 records from the Mauna Loa Observatory, Hawaii, with a 314	
  

significant seasonal cycle and interannual variability (IAV) superimposed (Keeling et 315	
  

al., 1976; Keeling et al., 1995). The IAV of the atmospheric CO2 growth rate (CGR) 316	
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is closely connected to the El Niño–Southern Oscillation (ENSO), with noticeable 320	
  

increases during El Niño, and decreases during La Niña, events (Bacastow, 1976; 321	
  

Keeling and Revelle, 1985).  322	
  

 323	
  

The IAV of the atmospheric CGR is the consequence of climate-induced variations in 324	
  

oceanic and terrestrial carbon sources and sinks. Earlier studies have considered the 325	
  

CO2 flux changes over the oceans, especially the equatorial Pacific Ocean, as the 326	
  

cause of the atmospheric CO2 IAV (Bacastow, 1976; Francey et al., 1995). However, 327	
  

later inversion modeling studies (Bousquet et al., 2000; Rodenbeck et al., 2003) and 328	
  

many measurement campaigns (Nakazawa et al., 1997; Lee et al., 1998; Feely et al., 329	
  

2002) have suggested only a small IAV in oceanic carbon uptake. These evidences 330	
  

elucidate the dominant contributions from the terrestrial ecosystems, especially in the 331	
  

tropics, to the IAV of the atmospheric CGR (Braswell et al., 1997; Bousquet et al., 332	
  

2000; Zeng et al., 2005a; Qian et al., 2008). Recently, using the combination of land 333	
  

surface models and the satellite-based land cover map, Ahlstrom et al. (2015) pointed 334	
  

out that semi-arid ecosystems, largely occupying low-latitudes, dominated the 335	
  

terrestrial carbon interannual variability. 336	
  

 337	
  

The influence of the ENSO on terrestrial carbon IAV can be largely explained by a 338	
  

‘conspiracy’ between tropical climatic variations (a tropical-wide drought and 339	
  

warming during El Niño) and the responses of soil and plant physiology (Kinderman 340	
  

et al., 1996; Tian et al., 1998; Knorr et al., 2005; Patra et al., 2005a; Zeng et al., 341	
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2005a), as well as some abiotic processes such as fires (van der Werf et al., 2004). 342	
  

However, the processes and strengths of the responses in such terrestrial biotic and 343	
  

abiotic functions remain controversial. Temperature, an important physical variable 344	
  

affecting photosynthesis and respiration, is regarded as the dominant factor on the 345	
  

basis of the significant correlation with Mauna Loa CGR anomalies and in situ 346	
  

observations on tropical tree growth, as well as confirmation by terrestrial carbon 347	
  

cycle models (Kindermann et al., 1996; Braswell et al., 1997; Clark et al., 2003; Cox 348	
  

et al., 2013; Piao et al., 2013; W. Wang et al., 2013; X. Wang et al., 2014). Warming 349	
  

anomalies during El Niño events above a certain threshold can result in a decrease in 350	
  

the terrestrial primary productivity, in part due to the curtailment of the leaf gas 351	
  

exchange (Doughty and Goulden, 2008; Corlett, 2011). Simultaneously, the 352	
  

heterotrophic respiration, Rh, caused by microbial decomposition, increases 353	
  

exponentially with warming temperature (Q10). These direct biological responses to 354	
  

warming temperature variations account for the significant positive correlation 355	
  

between the tropical temperature and CGR (W. Wang et al., 2013; X. Wang et al., 356	
  

2014). Moreover, further analyses have suggested a two-fold increase in the 357	
  

sensitivity of CGR to the tropical temperature variations in the past five decades (X. 358	
  

Wang et al., 2014). 359	
  

 360	
  

Variation in precipitation over land was proposed as an alternative dominant factor 361	
  

affecting the IAV of the CGR by process-based biogeochemical models of terrestrial 362	
  

ecosystems (Tian et al., 1998; Zeng et al., 2005a; Qian et al., 2008). In order to 363	
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quantify the individual effects of the ENSO-induced climatic variations, Qian et al. 364	
  

(2008) conducted a series of the sensitivity experiments using a dynamic global 365	
  

vegetation and terrestrial carbon model (VEGAS). They revealed that the 366	
  

contributions from the tropical precipitation and temperature accounted for 56% and 367	
  

44% of variations in air-land carbon fluxes during the ENSO events, respectively. In 368	
  

situ records from multiple long-term monitoring plots in the Amazon rainforest have 369	
  

been used to assess the severe drought in 2005, which caused a total biomass carbon 370	
  

loss of 1.2–1.6 Pg (petagrams) (Phillips et al., 2009). Ahlstrom et al. (2015) also 371	
  

found that precipitation and NBP IAV became more correlated with increasing spatial 372	
  

and temporal disaggregation. 373	
  

 374	
  

These differing viewpoints indicate the current limited understanding of biological 375	
  

processes’ response to ENSO. These interannual sensitivities may be important for 376	
  

understanding the strengths of the positive carbon–climate feedback and climate 377	
  

sensitivities of the terrestrial carbon cycle in future climate change (Cox et al., 2000; 378	
  

Cox et al., 2013; Wang et al., 2014; Wenzel et al., 2014). Therefore, in this paper, we 379	
  

again investigate the relationships between Mauna Loa CGR and the tropical climatic 380	
  

variations, based on the up-to-date observations. The tropical climatic parameters are: 381	
  

temperature, precipitation, soil moisture, and photosynthetically active radiation 382	
  

(PAR). The performance of IAVs in the tropical terrestrial carbon cycle was 383	
  

simulated by 7 state-of-the-art terrestrial carbon cycle models with monthly outputs, 384	
  

from the TRENDY project (Trends in Net Land Atmosphere Carbon Exchanges) 385	
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(Canadell et al., 2011; Sitch et al., 2015). These mechanistic models are used to 386	
  

delineate the processes underlying the IAVs in CGR, and determine how strong their 387	
  

sensitivities to temperature and precipitation are. In return, these results also give out 388	
  

the evaluations on the 7 terrestrial carbon cycle models on the interannual time scale, 389	
  

which are important for improving them in their development communities. 390	
  

 391	
  

The paper is organized as follows: Section 2 describes the datasets, methodologies, 392	
  

and terrestrial carbon cycle models that are used. Section 3 presents related results 393	
  

covering three aspects: first, the observed relationships between Mauna Loa CGR and 394	
  

climatic variations; second, the performance and consistencies among the terrestrial 395	
  

carbon cycle models; and third, the climatic sensitivities of CGR and tropical 396	
  

terrestrial carbon cycle. Finally, discussions and concluding remarks are presented in 397	
  

Sect. 4 and 5. 398	
  

 399	
  

2 Datasets, methodologies, and models 400	
  

2.1 The observed and reanalysis datasets 401	
  

The long-term in situ records of atmospheric CO2 concentrations from the Mauna Loa 402	
  

Observatory were obtained from the website of the National Oceanic and 403	
  

Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) 404	
  

(http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html) (Keeling et al., 1976). We 405	
  

used the monthly mean concentrations to calculate the atmospheric CGR for 1960 to 406	
  

2012. Meanwhile, we took the globally averaged marine surface monthly mean data 407	
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from the NOAA (http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html) for 1980 to 408	
  

2012 as a comparison with the Mauna Loa datasets (Masarie and Tans, 1995). 409	
  

 410	
  

The near-surface air temperature and precipitation over land data, with a 0.5°×0.5° 411	
  

resolution, came from the Climatic Research Unit (CRU) Time-Series (TS) version 412	
  

3.21 of high resolution gridded data of month-by-month variations in climate (Harris 413	
  

et al., 2014). These datasets were compiled from observations by weather stations 414	
  

around the world, and have been widely used to validate the performance of model 415	
  

simulations in phase 5 of the Coupled Model Intercomparison Project (CMIP5). We 416	
  

took the PAR data from the NASA Global Energy and Water Exchanges (GEWEX) 417	
  

Surface Radiation Budget (SRB) Realease-3.0 datasets, with a 1°×1° resolution for 418	
  

the period 1984–2007 (Stackhouse et al., 2011). Soil moisture datasets from the 419	
  

Global Land Data Assimilation System Version 2 (GLDAS-2) monthly NOAH model 420	
  

products were adopted, with a 1°×1° resolution for 1960–2010 (Rodell et al., 2004). 421	
  

We used the sea surface temperature (SST) from the Hadley Center (HadSST2) 422	
  

(Rayner et al., 2005), generated from in situ observations held in the International 423	
  

Comprehensive Ocean–Atmosphere Data Set (ICOADS), to obtain the SST anomalies 424	
  

in the Niño 3.4 regions which refer to the ENSO activities. 425	
  

 426	
  

2.2 Statistical methods 427	
  

The CGR was estimated as the difference between the monthly mean concentrations 428	
  

in adjacent years (Patra et al., 2005c; Sarmiento et al., 2010): 429	
  

Carl � 16/2/22 3:40 PM
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 GR(t) = CO2 (t + 6)−CO2 (t − 6),  (1) 431	
  

where t denotes the specific month. We then converted the CGR from ppm yr−1 into 432	
  

PgC yr−1, based on the conversion factor 1 PgC = 0.471 ppm. The time series of the 433	
  

climatic variables in the tropics (23°S–23°N) over land were area-weighted and 434	
  

averaged. The long-term seasonal cycle was removed from these time series, and in 435	
  

order to precisely extract variations on the interannual timescale, we further applied 436	
  

the Lanczos band-pass filter (Duchon, 1979) with cut-off periods at 12 and 120 437	
  

months and 121 weights to these time series, which filters out the seasonal cycle and 438	
  

decadal variabilities with 1–10 years window for our analyses. 439	
  

 440	
  

The relationships between the atmospheric CGR and the climatic variables on an 441	
  

interannual timescale were deciphered via the cross-correlation (Chatfield, 1982): 442	
  

 c(k) = 1
n

(X(t)− X)(Y (t + k)−Y )
σ (X)σ (Y )

,
t=1

n

∑  (2) 443	
  

where k denotes the lag months, 𝑋  and 𝑌 are the means of the time series, and 𝜎 𝑋  444	
  

and 𝜎 𝑌  are the standard deviations. These filtered time series are strongly 445	
  

persistent (or highly auto-correlated), so the effective degrees of freedom (dof) were 446	
  

simply estimated with the approach of Bretherton et al. (1999): 447	
  

 dof
n

= 1− r(Δt)
2

1+ r(Δt)2
,  (3) 448	
  

where n denotes the sample size, 𝑟(∆𝑡)  is the coefficient of the first order 449	
  

autocorrelation, and ∆𝑡 is 1 month. 450	
  

 451	
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Figure 1 shows how the tropical land temperature and precipitation are closely 452	
  

correlated. Cross-correlation analysis indicates that their relationship peaks at a 453	
  

correlation coefficient of −0.66, with a time lag of about 4–5 months in temperature. 454	
  

This high correlation coefficient is partly owing to that less land precipitation (for 455	
  

instance during El Niño) can inhibit the evapotranspiration over Tropics, promoting 456	
  

the higher temperature (Zeng et al., 2005a), and also is due to ENSO-related 457	
  

circulation adjustments (Gu and Adler, 2010). Sensitivities of the atmospheric CGR – 458	
  

or tropical land–atmosphere carbon flux (CFTA) – to temperature and precipitation 459	
  

were estimated according to the ridge regression method (Hoerl and Kennard, 2000), 460	
  

the biased estimation for non-orthogonal problems. The linear relationship can be 461	
  

expressed as: 462	
  

 y(t) = γ intxTas (t)+δ
intxPr (t − 4)+ ε ,  (4) 463	
  

where 𝑦(𝑡) denotes the IAVs in the Mauna Loa CGR, CFTA, or NPP; 𝑥!"# and 𝑥!" 464	
  

denote the IAVs in the tropical land temperature and precipitation; 𝛾!"# and 𝛿!"# 465	
  

are the estimated sensitivities by ridge regression; and 𝜀  is the residual error. 466	
  

Precipitation leads by 4 months in the regression, according to below analyses. 467	
  

However, these estimated sensitivities only account for the “contributive” effects of 468	
  

temperature and precipitation variations, but not the "true" sensitivities of Mauna Loa 469	
  

CGR, CFTA, or NPP to these variables (Piao et al., 2013). The responses of terrestrial 470	
  

ecosystems to temperature and precipitation are actually nonlinear, so it is difficult to 471	
  

disentangle the individual effects of temperature and precipitation based on the linear 472	
  

statistical method. Additionally, we did not take into consideration the other climatic 473	
  



	
   19	
  

drivers such as variation in PAR or humidity, which may also contribute to the IAV in 474	
  

atmospheric CGR. 475	
  

 476	
  

2.3 Terrestrial carbon cycle models and post-processing 477	
  

In order to understand the contributions of tropical terrestrial ecosystems to the 478	
  

atmospheric CGR and its underlying processes, we used the monthly outputs of 7 479	
  

state-of-the-art dynamic global vegetation models (DGVMs) that participated in the 480	
  

TRENDY project (TRENDY-v1; Canadell et al., 2011; Sitch et al., 2015) 481	
  

(http://www-lscedods.cea.fr/invsat/RECCAP/V2/). All the DGVMs were forced by 482	
  

observed change in atmospheric CO2 concentration and historical climate change. The 483	
  

land use was kept time-invariant during the entire S2 simulation. Information on 484	
  

model resolution, nitrogen and fire modules is summarized in Table 1. The models 485	
  

used were: (1) CLM4C (Lawrence et al., 2011); (2) CLM4CN (Bonan and Levis, 486	
  

2010; Lawrence et al., 2011); (3) LPJ (Sitch et al., 2003); (4) LPJ-GUESS (Smith et 487	
  

al., 2001); (5) OCN (Zaehle and Friend, 2010; Zaehle et al., 2010); (6) TRIFFID 488	
  

(Cox, 2001); and (7) VEGAS (Zeng et al., 2005a). Due to the different horizontal 489	
  

resolution of the DGVMs, we interpolated the simulated terrestrial carbon fluxes into 490	
  

a consistent 1°×1° resolution using the first order conservative remapping scheme 491	
  

(Jones, 1999) following the equation: 492	
  

 Fk =
1
Ak

f dA,
Ak∫  (5) 493	
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where 𝐹! is the area-averaged destination flux, 𝐴! is the area of cell 𝑘, and 𝑓 is 494	
  

the flux on an old grid which has overlapping area 𝐴 with the destination grid. After 495	
  

that, the tropical terrestrial carbon fluxes were obtained according to the equation: 496	
  

 F = Fk
k
∑ Ak ,  (6) 497	
  

between 23°S–23°N. 498	
  

 499	
  

3 Results 500	
  

3.1  The relationships between the atmospheric CGR and climatic 501	
  

variables 502	
  

Significant IAV was first detected in the atmospheric CO2 record at the Mauna Loa 503	
  

Laboratory, Hawaii (Keeling et al., 1995; Keeling et al., 1976). Figure 2e presents the 504	
  

long-term IAVs of Mauna Loa CGR during 1960–2012 and the globally averaged 505	
  

marine surface data during 1980–2012. The IAVs of the two datasets are highly 506	
  

consistent, so we mainly focus on the long-term Mauna Loa CGR. Shown in Figs. 2a 507	
  

and 2e, the standard deviation of Mauna Loa CGR is about 1.03 PgC yr−1, with 508	
  

noticeable increases in the positive anomalies in the Niño 3.4 index, and vice versa 509	
  

for the negative anomalies. The ENSO activities, the dominant year-to-year mode of 510	
  

global climate fluctuations, greatly impact tropical precipitation and temperature on 511	
  

land, through adjustments in atmospheric circulations (Gu and Adler, 2011). 512	
  

Importantly, temperature and precipitation have opposite signs (Figs. 2b and 2c), with 513	
  

the respective correlation coefficients, relative to the Niño 3.4 index, of 0.55 and 514	
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−0.83 (p < 0.05). These ENSO-induced tropical land temperature and precipitation 515	
  

variations contribute to the CFTA in the same direction due to a 'conspiracy' between 516	
  

climate anomalies and vegetation–soil response (Qian et al., 2008; Zeng et al., 2005a). 517	
  

For example, warming and drier conditions during El Niño events can result in the 518	
  

suppression of NPP and enhancement of Rh, both leading to anomalous flux into the 519	
  

atmosphere. However, precipitation does not directly interact with vegetation 520	
  

physiology. Rather, vegetation responds to soil moisture, which is determined not 521	
  

only by precipitation but also by temperature, as higher temperatures lead to increased 522	
  

evaporative water loss (Qian et al., 2008). We also calculated the tropical IAVs in soil 523	
  

moisture from the surface to a 2m depth, and found that the soil moisture decreased 524	
  

during El Niño events, and increased during La Niña events (r of −0.63, with p = 525	
  

0.017 in Fig. 2d). As decreases in soil moisture can suppress the NPP and Rh, and vice 526	
  

versa for increases in soil moisture, this may further affect the atmospheric CGR. 527	
  

Besides temperature, precipitation, and soil moisture, other climatic IAVs, such as 528	
  

PAR (Fig. S1), may also influence the variations in terrestrial ecosystems (Nemani et 529	
  

al., 2003). 530	
  

 531	
  

The coupling between the tropical temperature and precipitation induced by the 532	
  

ENSO can be perturbed or interrupted by strong volcanic eruptions, such as those of 533	
  

El Chichón in March 1982 and Mount Pinatubo in June 1991 (Fig. 2). Especially 534	
  

during the post-Pinatubo years, the temperature and precipitation both decreased in 535	
  

the 1991–92 El Niño events. This unusual relationship resulted from radiative forcing 536	
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of volcanic sulfate aerosols in the stratosphere (Stenchikov et al., 1998). Meanwhile, 537	
  

there was a hiatus in the coupling between the Niño 3.4 and Mauna Loa CGR in this 538	
  

period. W. Wang et al. (2013) used this decoupling between the Niño 3.4–539	
  

precipitation–Mauna Loa CGR relationship to highlight the temperature–CO2 540	
  

relationship. However, the anomalous growth in vegetation was largely attributed to 541	
  

diffuse light fertilization (Mercado et al., 2009). In general, the canonical ENSO–542	
  

CGR relationship is robust, although it can occasionally be externally perturbed. 543	
  

 544	
  

To elucidate the relationship between Mauna Loa CGR and the variations in climatic 545	
  

variables, we conducted cross-correlations of anomalies in Mauna Loa CGR with 546	
  

anomalies in the Niño 3.4 index, tropical surface air temperature, precipitation, soil 547	
  

moisture, and PAR (Fig. 3). We find that ENSO activities generally lead Mauna Loa 548	
  

CGR by about 3–4 months, with a correlation coefficient of 0.70 (p = 0.007). The 549	
  

precipitation over land immediately responds to the ENSO, and thus also lead Mauna 550	
  

Loa CGR by about 4 months, with a correlation coefficient of –0.63 (p = 0.016), 551	
  

similar to the results of W. Wang et al. (2013) (Table 2): this phenomenon may 552	
  

explain the weak correlation of Mauna Loa CGR with concurrent precipitation. 553	
  

However, the temperature over land lags the ENSO by about 4 months, suggesting a 554	
  

certain time was needed for surface energy adjustment along with the ENSO-induced 555	
  

circulation and precipitation anomalies (Gu and Adler, 2011). Consequently, the 556	
  

correlation between land temperature and Mauna Loa CGR peaks with the correlation 557	
  

coefficient of 0.77 (p = 0.002), with a 1-month lag in temperature, a little different 558	
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from the previous results (W. Wang et al., 2013; X. Wang et al., 2014) (Table 2). This 559	
  

discrepancy in phase implicitly proves that temperature was not the only dominant 560	
  

factor in controlling IAV in atmospheric CGR. The relationship between land 561	
  

precipitation and Mauna Loa CGR can be bridged by the soil moisture. The 562	
  

correlation of Mauna Loa CGR with concurrent soil moisture has the maximum 563	
  

correlation coefficient of –0.65 (p = 0.022), suggesting the soil moisture plays an 564	
  

important role in IAV of atmospheric CGR, as analyzed by Qian et al. (2008), though 565	
  

soil moisture is not well constrained by observations. We also show the 566	
  

cross-correlation of Mauna Loa CGR with PAR, but the correlation is not statistically 567	
  

significant. 568	
  

 569	
  

3.2  Simulations using dynamic global vegetation models 570	
  

Different from inversion models, process-based terrestrial carbon cycle models can 571	
  

determine the biological dynamics underlying the IAV in atmospheric CGR. Previous 572	
  

studies (Jones et al., 2001; Zeng et al., 2005a; Qian et al., 2008) have analyzed 573	
  

individual models. The TRENDY model output archives provide the opportunity to 574	
  

analyze the mechanisms with an ensemble of state-of-the-art carbon cycle models. 575	
  

 576	
  

The IAV in ensemble mean tropical CFTA, derived from six state-of-the-art DGVMs, 577	
  

is presented in Fig. 4a with the 1-𝜎 inter-model spread and IAV in Mauna Loa CGR. 578	
  

We excluded the CLM4CN to calculate the ensemble mean because of its different 579	
  

response of CFTA and NPP to temperature and precipitation, according to our 580	
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analyses. The co-variation coefficient, 0.79 with p = 0.003, indicates: first, that the 583	
  

tropical terrestrial ecosystems dominate the IAV in atmospheric CGR, confirming 584	
  

previous findings (Braswell et al., 1997; Bousquet et al., 2000; Zeng et al., 2005a); 585	
  

and second, that these state-of-the-art DGVMs have the capacity for capturing the 586	
  

historical IAV in terrestrial ecosystems. There is also a significant inconsistency 587	
  

during the post-Pinatubo period 1991–1992, owing to diffuse light fertilization 588	
  

(Mercado et al., 2009). To better understand the contribution from other regions, we 589	
  

also show the IAVs in carbon fluxes for the Northern Hemisphere (23°N–90°N) and 590	
  

Southern Hemisphere (60°S–23°S) (Fig. S2). It is clear that the magnitudes of IAVs 591	
  

in carbon fluxes from the Northern Hemisphere (𝜎 = 0.38 PgC yr–1) and Southern 592	
  

Hemisphere (0.21 PgC yr–1) are much weaker than the tropical CFTA (1.03 PgC yr–1). 593	
  

Further, the correlations between the variations in carbon fluxes from the extratropical 594	
  

regions and Mauna Loa CGR are insignificant, suggesting that these IAVs may not be 595	
  

caused by ENSO. Therefore, we will only focus on the tropical CFTA below. 596	
  

 597	
  

The net land–atmosphere carbon flux CFTA results from carbon adjustments in many 598	
  

biotic and abiotic processes. It can be decomposed as: 599	
  

 CFTA = Rh − NPP + D,  (7) 600	
  

where D denotes the disturbances, mainly caused by fires here. We decomposed the 601	
  

simulated ensemble CFTA into three terms (–NPP, Rh, and D; Figs. 4b–d), to 602	
  

understand which process was the major factor. (To be precise, we obtained the term 603	
  

D as the residual according to Eq. (7), because it was not explicitly provided in the S2 604	
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simulation.) We find that the –NPP has the strongest magnitude in the IAVs (0.99 605	
  

PgC yr–1, Table 3) among these three processes. The correlation coefficient of –NPP 606	
  

with CFTA reaches 0.97 (p < 0.0001, Table 3), explaining about 94% of variance. The 607	
  

standard deviations of Rh and D are 0.29 PgC yr–1 and 0.10 PgC yr–1 (Table 3), 608	
  

respectively, and their correlation coefficients with CFTA are –0.02 (p = 0.94) and 609	
  

0.76 (p = 0.001). The weaker IAVs and insignificant correlation of Rh with CFTA may 610	
  

arise from the opposing effects of temperature and precipitation. For example, higher 611	
  

temperatures can enhance Rh, whereas less precipitation – drier conditions – can 612	
  

suppress it. This result agrees with the C4MIP results in which NPP also dominates 613	
  

CFTA (Fig. S3). In contrast, the weakest term (D) has the very significant correlation 614	
  

with CFTA (Table 3) because both higher temperature and less precipitation promote 615	
  

fires. In summary, the IAV in tropical NPP largely accounts for tropical CFTA 616	
  

variation, dominating the IAV in atmospheric CGR. Because NPP is mainly driven by 617	
  

precipitation（Zeng et al., 2005a; Qian et al., 2008）, this suggests precipitation plays 618	
  

an important role in CGR IAV. 619	
  

 620	
  

Though the ensemble tropical CFTA (and –NPP) can well explain the historical IAV in 621	
  

atmospheric CGR, it is necessary to understand the performance of each individual 622	
  

DGVM. Figure 5 shows the color-coded correlation matrices for the interannual 623	
  

anomalies in the tropical CFTA and –NPP estimated by the 7 DGVMs, as well as 624	
  

Mauna Loa CGR and ensemble mean results ("ENS"). As expected, each correlation 625	
  

in pairs among the tropical CFTA is statistically significant (p < 0.03, Fig. 5a), 626	
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indicating that these 7 DGVMs have great consistency in simulating the IAV in 627	
  

tropical terrestrial ecosystems under the same climatic forcing, although their 628	
  

considerations and parameterizations on the biotic and abiotic processes differ. 629	
  

Moreover, this consistency also suggests the ensemble result is not fortuitous, and 630	
  

well represents the individual DGVM. Therefore, all the correlations of the Mauna 631	
  

Loa CGR with the CFTA simulated by each DGVM are significant (p < 0.02), like the 632	
  

ensemble CFTA. But it is interesting that the correlation coefficients of Mauna Loa 633	
  

CGR with CLM4CN (0.64, p = 0.02) and OCN (0.61, p = 0.01) are weaker compared 634	
  

to the other models. We notice that the correlations of these two models with the other 635	
  

models in pairs are the weakest. These two DGVMs share a common feature, as both 636	
  

take the nitrogen limitation for the plant growth into consideration (Table 1). Though 637	
  

accounting for these factors suggests these models are more complete in structure, 638	
  

they do not produce better simulations, indicating that the impact of nitrogen on the 639	
  

carbon cycle remains uncertain. 640	
  

 641	
  

The correlation coefficients in pairs for NPP also show high consistency (Fig. 5b), 642	
  

further confirming the conclusion that the IAV in NPP domination of the CFTA 643	
  

variation is common to all DGVMs. On the contrary, there are discrepancies in the 644	
  

variations of the simulated Rh and D (Fig. S4). Specifically, we find that four 645	
  

(CLM4C, CLM4CN, LPJ, and LPJ-GUESS) have consistent variations in estimated 646	
  

Rh, whereas the others (OCN, TRIFFID, and VEGAS) are different (Fig. S4a). All the 647	
  

simulated Rh, except TRIFFID and VEGAS have insignificant correlation with the 648	
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Mauna Loa CGR, like the behavior of the ensemble mean. Even if the correlations are 649	
  

significant in TRIFFID and VEGAS, they have opposite behaviors (TRIFFID: 0.64, p 650	
  

= 0.01; VEGAS: –0.52, p = 0.08). The various responses to temperature and 651	
  

precipitation result in the occurrence of large uncertainties in the simulated Rh. It is 652	
  

even more difficult to explain the disturbance term D (Fig. S4b). However, although 653	
  

large uncertainties exist in Rh and D, we still conclude with confidence that the 654	
  

variations in tropical vegetation on the interannual timescale largely account for the 655	
  

atmospheric CGR variability, because the variation magnitudes of Rh and D are much 656	
  

smaller. 657	
  

 658	
  

Although the correlations of Mauna Loa CGR with the concurrent individual 659	
  

simulated CFTA are all statistically significant (Fig. 5a), the cross-correlations of 660	
  

Mauna Loa CGR with CFTA show that small discrepancies in phase exist among 7 661	
  

DGVMs (Fig. 6a), and of course, are associated with NPP (Fig. 7a). Nevertheless, the 662	
  

correlations of Mauna Loa CGR with the concurrent ensemble CFTA and –NPP have 663	
  

maximum values, indicating the multi-model simulated ensemble tropical CFTA and –664	
  

NPP well represent the variations in Mauna Loa CGR. Of course, the small 665	
  

discrepancies in phase of the individual models originate from their different 666	
  

responses to temperature and precipitation. The correlation of ensemble CFTA with 667	
  

temperature peaks at 0.91, without a time lag (Fig. 6b, Table 4), while the correlation 668	
  

between –NPP and temperature peaks at 0.82, with around a 1-month lag in 669	
  

temperature (Fig. 7b, Table 4). On the other hand, the correlations of the ensemble 670	
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CFTA and –NPP with precipitation peak at –0.81 and –0.86 with time lags of 4 and 3 671	
  

months (Figs. 6c and 7c, Table 4). These behaviors are highly consistent with those in 672	
  

Mauna Loa CGR (Fig. 3). The responses of each DGVM to temperature and 673	
  

precipitation are listed in Table 4. Though there are small discrepancies in phase, their 674	
  

behaviors are similar to each other, except for the CLM4CN model. The responses of 675	
  

CFTA and NPP in CLM4CN to precipitation are too immediate, possibly indicating 676	
  

that the soil moisture adjusts too quickly along with precipitation changes. Unlike 677	
  

NPP, the responses of Rh and D to temperature and precipitation are not so consistent 678	
  

among the models (Figs. S5 and S6), resulting in the discrepancies shown in Fig. S4. 679	
  

 680	
  

3.3  Sensitivities to temperature and precipitation 681	
  

As discussed above (Fig. 3), the variations in atmospheric CGR are correlated with 682	
  

the variations in temperature and precipitation induced by ENSO. Simulations by the 683	
  

process-based terrestrial carbon cycle models have demonstrated that the tropical 684	
  

CFTA variability, dominated by the plant primary productivity process, largely 685	
  

accounts for the variations in atmospheric CGR. It further confirms the key 686	
  

importance in precipitation. But quantitatively how sensitive is the atmospheric CGR 687	
  

(CFTA/NPP) to temperature and precipitation, respectively? Currently, there is no 688	
  

direct observational evidence. Therefore, for simplicity, we took the ridge regression 689	
  

(Hoerl and Kennard, 2000) to linearly decompose the variations in atmospheric CGR, 690	
  

CFTA, and NPP into two parts, as per Eq. (4). Simultaneously, as the precipitation is 691	
  

not a direct forcing to the terrestrial ecosystems in the models, it usually leads the 692	
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Mauna Loa CGR by about 4 months (Fig. 3). The precipitation also leads the tropical 693	
  

CFTA and reversed NPP simulated by the DGVMs for about 3–4 months (Table 4). To 694	
  

be consistent, we chose a 4-month lead, to use precipitation as an explanatory 695	
  

variable. The other explanatory variable was the concurrent temperature, owing to its 696	
  

direct impact. We excluded the CLM4CN simulations, because of the model’s 697	
  

differing responses to temperature and precipitation (Figs. 6 and 7). 698	
  

 699	
  

The sensitivity of Mauna Loa CGR to the tropical temperature IAV is about 700	
  

2.92±0.20 PgC yr–1 K–1 (Fig. 8a). This positive response is weaker than that found by 701	
  

Piao et al. (2013) who obtained the contributive effect of temperature variations on 702	
  

residual land sink (RLS, (Le Quere, 2009)) of about –3.9±1.1 PgC yr–1 K–1 (the 703	
  

negative sign is because the opposite variability between Mauna Loa CGR and RLS) 704	
  

using multiple linear regression on the global scale. The IAV in the RLS like Mauna 705	
  

Loa CGR is basically determined by the tropical terrestrial ecosystems. Considering 706	
  

the inhomogeneity of temperature variations on the global scale, it is more reasonable 707	
  

to use the tropical temperature variability to estimate their temperature-dependence. 708	
  

The sensitivity of the ensemble tropical CFTA to the temperature variability is about 709	
  

3.18±0.11 PgC yr–1 K–1, very close to the sensitivity of Mauna Loa CGR. The 710	
  

sensitivities of the tropical CFTA in the individual DGVMs are all positive, ranging 711	
  

from 1.95±0.12 PgC yr–1 K–1 in the OCN model, to 4.78±0.17 PgC yr–1 K–1 in 712	
  

TRIFFID. Three models well simulate this sensitivity: LPJ is 2.88±0.09 PgC yr–1 K–1; 713	
  

LPJ-GUESS is 2.79±0.12 PgC yr–1 K–1; and VEGAS is 2.98±0.08 PgC yr–1 K–1. 714	
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These CFTA sensitivities are linearly correlated with those of –NPP with a slope of 715	
  

0.61, and a correlation coefficient of 0.83 (p < 0.05), in accord with the conclusion 716	
  

that variabilities in vegetation primary production dominate the CFTA variabilities. 717	
  

This is in accord with the result in Piao et al. (2013), that the response of gross 718	
  

primary production (GPP) to temperature accounts for the response of net biosphere 719	
  

production (NBP). 720	
  

 721	
  

On the other hand, the sensitivity of Mauna Loa CGR to the tropical precipitation 722	
  

IAV has a value of −0.46±0.07 PgC yr−1 100 mm−1 (Fig. 8b). However, Piao et al. 723	
  

(2013) showed that the correlation between RLS and precipitation was not statistically 724	
  

significant with a value of 0.8±1.1 PgC yr−1 100 mm−1. This difference is mainly due 725	
  

to the usage of a) annually averaged RLS and precipitation, and b) globally averaged 726	
  

precipitation variability. The sensitivity of the ensemble tropical CFTA simulated by 727	
  

the DGVMs to precipitation variability is −0.67±0.04 PgC yr−1 100 mm−1, a little 728	
  

stronger than the estimation in Mauna Loa CGR. In the individual DGVMs, three 729	
  

have values within the uncertainty of Mauna Loa CGR: LPJ at −0.54±0.04 PgC yr−1 730	
  

100 mm−1; LPJ-GUESS at −0.36±0.04 PgC yr−1 100mm−1; and OCN at −0.34±0.05 731	
  

PgC yr−1 100 mm−1. The estimation in VEGAS is a little weaker, with a value of 732	
  

−0.29±0.03 PgC yr−1 100 mm−1, whereas the estimations in CLM4C (−1.34±0.05 733	
  

PgC yr−1 100 mm−1) and TRIFFID (−1.14±0.06 PgC yr−1 100 mm−1) are too strong. 734	
  

Clearly, a significant linear relationship also exists between these sensitivities in CFTA 735	
  

and −NPP, with a slope of 0.65, and correlation coefficient 0.86, with p < 0.05. 736	
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 737	
  

Based on the combination of sensitivities to temperature and precipitation, CLM4C 738	
  

and TRIFFID are more sensitive to these climatic variabilities than the other DGVMs, 739	
  

resulting in a stronger IAVs in these two models (CLM4C: 𝜎 = 1.73 PgC yr−1, 740	
  

TRIFFID: 𝜎 = 1.62 PgC yr−1; Table 3), whereas the other DGVMs have more 741	
  

reasonable magnitudes except CLM4CN (Table 3). Overall, the models simulate well 742	
  

the historical IAV, due to their reasonable sensitivity to the tropical terrestrial 743	
  

ecosystems’ temperature and precipitation. 744	
  

 745	
  

Past studies on the interannual CO2 variability have mostly focused on the 746	
  

sensitivities of the aggregated carbon flux to temperature and precipitation (Zeng et 747	
  

al., 2005a; Qian et al., 2008; W. Wang et al., 2013). Here we present the sensitivities 748	
  

of the ensemble CFTA grid by grid to temperature and precipitation, in order to 749	
  

roughly have an insight into the regional responses (Fig. 9). The sensitivities to 750	
  

temperature in the tropics are all positive, with remarkably stronger responses in the 751	
  

regions of dense vegetation, especially in the Amazon (Fig. 9a). The African savannas 752	
  

and South Asian forests are weaker with a response of about 0.05–0.15 kgC m−2 yr−1 753	
  

K−1. Correspondingly, the sensitivity to precipitation in the tropics is negative for 754	
  

models, except for some regions with insignificant values (Fig. 9b). But interestingly 755	
  

the sensitivities over the African savannas are stronger than those in the Amazon, 756	
  

suggesting that grasses (or shrubs) are more sensitive to precipitation than forests, 757	
  

perhaps because they are more closely associated with the surface soil moisture which 758	
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is more sensitive to rainfall. However, it is difficult to validate such fine details in the 759	
  

models due to lack of observations. 760	
  

 761	
  

4 Discussion 762	
  

In this study, after taking the lag effect of precipitation into consideration (Qian et al., 763	
  

2008), we find that Mauna Loa CGR has a high correlation coefficient with 764	
  

precipitation (r = −0.63), which is only slightly different from the correlation 765	
  

coefficient with temperature (r = 0.77). It contrasts with the result of X. Wang et al. 766	
  

(2014). Simultaneously, given that tropical land precipitation and air temperature are 767	
  

dynamically correlated (Fig. 1), we think these correlation coefficients favor neither 768	
  

temperature nor precipitation as the dominant factor of CGR IAV. It contrasts with 769	
  

the result of W. Wang et al. (2013) that is based on the high correlation coefficient 770	
  

between Mauna Loa CGR and temperature. Further, They pointed out that the 771	
  

temperature-CO2 coupling is mainly owing to the additive responses of NPP and Rh to 772	
  

temperature, while the weaker precipitation-CO2 coupling is because of the 773	
  

subtractive responses of NPP and Rh to precipitation. However, in this study, the 774	
  

biological dynamics underlying CGR IAV, based on 7 DGVMs, reveal that NPP is 775	
  

the dominant process, and Rh variability is obviously weaker caused by the opposing 776	
  

effects of precipitation and temperature. In the tropics, NPP turned out to be largely 777	
  

driven by precipitation through process-based terrestrial ecosystem models (Zeng et 778	
  

al., 2005a; Qian et al., 2008), indicating the key role of precipitation in CGR IAV. 779	
  

These mechanistic analyses may give out more convincing explanations than the 780	
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correlation coefficients. Conversely, if NPP dominates the atmospheric CGR, or in 784	
  

other words, precipitation dominates the atmospheric CGR, why does Mauna Loa 785	
  

CGR have a high (or even higher) correlation coefficient with tropical land 786	
  

temperature (than tropical precipitation) (Fig. 3)? This possibly can be explained in 787	
  

part by the high correlation coefficient between the tropical land precipitation and 788	
  

temperature (Fig. 1). On the other hand, Rh and D, though with smaller contributions, 789	
  

can still influence their correlation coefficient (Table 4). Also, we should be cautious 790	
  

of the method for separating the roles of temperature and precipitation in CGR IAV 791	
  

used in this paper and previous studies (Piao et al., 2013; W. Wang et al., 2013; X. 792	
  

Wang et al., 2014). These statistical methods are based on linear decompositions, 793	
  

which may miss important nonlinearities in the physical and biological systems, and 794	
  

cannot accurately deal with the correlations between precipitation and temperature. 795	
  

Therefore, the separate sensitivities of temperature and precipitation diagnosed by 796	
  

these statistical methods are only as the contributive effects (Piao et al., 2013). A 797	
  

better estimation of the contributions of temperature and precipitation should use 798	
  

simulations of processed-based terrestrial carbon cycle models via several sensitivity 799	
  

experiments, while recognizing major uncertainties in the current generation of 800	
  

carbon cycle models. 801	
  

 802	
  

Although we find that the majority of 7 DGVMs can well simulate the IAV in tropical 803	
  

terrestrial ecosystems, the discrepancies in the Rh simulations (Fig. S4) reveal that the 804	
  

soil carbon decomposition processes and microbial activities are not yet to be fully 805	
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understood. Previous studies (Zeng et al., 2005a; Qian et al., 2008; W. Wang et al., 806	
  

2013) found that Rh contributes in the same direction of NPP to the IAV of the 807	
  

atmospheric CGR. However, in this study the model ensemble Rh is weaker and not 808	
  

significantly correlated with Mauna Loa CGR. 809	
  

 810	
  

Besides the tropical NPP and Rh, which are the main foci of our analyses, the 811	
  

atmospheric CGR IAV may also have contributions from other processes or regions, 812	
  

such as variability of the terrestrial carbon flux at mid–high latitude, air–sea carbon 813	
  

fluxes, and the fluxes caused by fire events and land use. Though variabilities of 814	
  

carbon fluxes from the Northern and Southern hemispheres are weak and not induced 815	
  

by ENSO (Fig. S2), some severe events may also modify the canonical 816	
  

tropically-dominated ENSO response. For instance, the anomalous carbon release 817	
  

from 1998 to 2002 across the Northern Hemisphere’s mid-latitude regions originated 818	
  

from decreased biological productivity (0.9 PgC yr−1) and forests wildfires, induced 819	
  

by drought and warming (Balzter et al., 2005; Jones and Cox, 2005; Zeng et al., 820	
  

2005b). The Ocean, another important carbon sink, has a moderate sea-air carbon flux 821	
  

variability of about ±0.5 PgC yr−1, dominated over by equatorial Pacific Ocean 822	
  

(Bousquet et al., 2000; McKinley et al., 2004; Patra et al., 2005b; Le Quere, 2009). 823	
  

However, during El Niño events, the ocean acts as a sink of atmospheric CO2, owing 824	
  

to the decrease in equatorial Pacific outgassing caused by the weakened upwelling 825	
  

within the carbon-rich deep water; the opposite occurs during La Niña (Jones et al., 826	
  

2001; McKinley et al., 2004). This variability opposes that of the atmospheric CGR. 827	
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Fires also play an important role in the atmospheric CO2 variability. During the 1997–828	
  

1998 El Niño event, a fire emissions anomaly, triggered by widespread drought, was 829	
  

2.1±0.8 PgC, or 66±24% of CGR anomaly with a 60% contribution from the 830	
  

Southeast Asia (van der Werf et al., 2004). 831	
  

 832	
  

At last, there is a concern on the direct comparison between the non-transported 833	
  

modeled carbon fluxes and CO2 observations. Patra et al. (2005c) conducted multiple 834	
  

regression analysis between Mauna Loa CGR and a time-dependent inverse (TDI) 835	
  

modeled flux anomalies over 22 TransCom-3 regions, showing the TDI flux 836	
  

anomalies do not explain the detail features in Mauna Loa CGR without any time lag.  837	
  

 838	
  

5 Concluding Remarks 839	
  

The IAV in atmospheric CGR is closely connected with ENSO activities, as a 840	
  

consequence of the tropical terrestrial carbon sources and sinks, induced by a 841	
  

'conspiracy' between climate anomalies and the responses of vegetation physiology 842	
  

and soil (Zeng et al., 2005a). Understanding the relative contribution of CO2 843	
  

sensitivity to tropical precipitation and temperature variabilities has important 844	
  

implications for future carbon-climate feedback using such ‘emergent constraint’ 845	
  

proposed by Cox et al. (2013). Therefore, in this paper, we re-examined the 846	
  

relationship between atmospheric CGR and climatic variables (temperature, 847	
  

precipitation, soil moisture, and PAR). Moreover, we used 7 DGVMs, all 848	
  

participating in the TRENDY project, to delineate the processes underlying the CGR. 849	
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We applied ridge regression to statistically disentangle the separate effects of 850	
  

temperature and precipitation on the IAV in CGR. Simultaneously, we can better 851	
  

understand the performance of the individual DGVM from these results. The key 852	
  

results are summarized below: 853	
  

 854	
  

(1) We find that tropical precipitation and temperature are highly correlated, r = 855	
  

−0.66, with precipitation leading temperature by 4–5 months, and both are closely 856	
  

connected with ENSO activities. Mauna Loa CGR lags behind the tropical land 857	
  

precipitation variability by about 4 months (r = −0.63), but leads temperature by about 858	
  

1 month (0.77). However, in contrast to some recent suggestions, we argue that these 859	
  

relationships alone do not strongly favor temperature over precipitation as the leading 860	
  

driving factor of CO2 IAV, nor vice versa. Further, we find that Mauna Loa CGR 861	
  

coincides with soil moisture (−0.65), which is not only determined by precipitation 862	
  

but also by temperature as higher temperatures increase the evapotranspiration effect. 863	
  

 864	
  

(2) All 7 DGVMs capture well the IAV of tropical CFTA. The ensemble CFTA (𝜎 = 865	
  

1.03 PgC yr−1) is highly correlated with Mauna Loa CGR at r = 0.79 (p = 0.003). 866	
  

Importantly, the models consistently show that the variability in NPP dominates the 867	
  

CFTA variability, while the responses of soil respiration and fire disturbance are much 868	
  

weaker. The standard deviation in ensemble NPP is 0.99 PgC yr−1, and in contrast, 869	
  

they are 0.29 PgC yr−1 and 0.10 PgC yr−1 for ensemble Rh and D respectively. As NPP 870	
  

is largely driven by precipitation (via soil moisture), these state-of-the-art DGVMs 871	
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suggest a key role for precipitation in the IAV of atmospheric CGR. 872	
  

 873	
  

(3) The sensitivities of Mauna Loa CGR to temperature and precipitation are 874	
  

2.92±0.20 PgC yr−1 K−1 and −0.46±0.07 PgC yr−1 100 mm−1, respectively. 875	
  

Meanwhile, the sensitivities of the ensemble mean tropical CFTA produced by the 876	
  

state-of-the-art DGVMs to temperature and precipitation are 3.18±0.11 PgC yr−1 K−1 877	
  

and −0.67±0.04 PgC yr−1 100 mm−1, close to those of Mauna Loa CGR. Spatially, the 878	
  

sensitivities to temperature in the tropics are all positive, with remarkably stronger 879	
  

responses over the dense vegetation regions, especially in the Amazon. The 880	
  

sensitivities to precipitation are all negative, with the strongest responses over the 881	
  

African savannas, indicating that grasses (or shrubs) are more sensitive to 882	
  

precipitation than forests. 883	
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Tables and Figures 1131	
  

Table 1. Characteristics of the terrestrial carbon cycle models used in this study. 1132	
  

DGVMs 
Horizontal 

resolution 

Nitrogen 

limitation 

Fire 

modules 
References 

CLM4C 2.5°×1.875° No Yes 
Oleson et al., 2010；  

Lawrence et al., 2011 
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CLM4CN 2.5°×1.875° Yes Yes 
Bonan and Levis, 2010; 

Lawrence et al., 2011 

LPJ 0.5°×0.5° No Yes Sitch et al., 2003 

LPJ-GUESS 0.5°×0.5° No Yes Smith et al., 2001 

OCN 3.75°×2.5° Yes No 
Zaehle and Friend, 2010; 

 Zaehle et al., 2010 

TRIFFID 3.75°×2.5° No No Cox, 2001 

VEGAS 0.5°×0.5° No Yes Zeng et al., 2005a 

 1133	
  

Table 2. Summary of previous studies of the relationships between the Mauna Loa 1134	
  

CGR and climatic variables. 1135	
  

Studies 
Correlations of Mauna Loa CGR with climatic variables 

Temperature Lead-laga Precipitation Lead-lag 

W. Wang et al., 2013 0.70 0 −0.50 −6 

X. Wang et al., 2014 0.53 0 −0.19b — 

In this paper 0.77 1 −0.63 −4 
a Lead-lag months between Mauna Loa CGR and climatic variables. Positive values 1136	
  

indicate the climatic variables lag Mauna Loa CGR. 1137	
  
b This insignificant correlation coefficient was obtained with concurrent precipitation 1138	
  

in X. Wang et al. [2014]. 1139	
  

 1140	
  

 1141	
  

Table 3. Standard deviations of the terrestrial carbon cycle processes. 1142	
  

DGVMs 
Standard deviations (PgC yr−1) 

CFTA −NPP(ra) Rh(r) D(r) 

CLM4C 1.73 1.49(0.97) 0.56(0.00) 0.37(0.79) 

CLM4CN 1.54 1.33(0.94) 0.60(0.06) 0.33(0.77) 

LPJ 0.90 1.05(0.92) 0.40(−0.04) 0.08(−0.54) 

LPJ-GUESS 0.84 0.58(0.93) 0.33(0.34) 0.27(0.69) 



	
   50	
  

OCN 0.70 0.72(0.94) 0.25(0.11) 0.01(−0.10) 

TRIFFID 1.62 1.34(0.97) 0.45(0.71) 0.00(−0.28) 

VEGAS 0.79 1.05(0.95) 0.45(−0.61) 0.08(0.81) 

ENSb 1.03 0.99(0.97) 0.29(−0.02) 0.10(0.76) 

Mauna Loa CGR 1.03c — — — 

a It shows the correlation coefficient with CFTA. 1143	
  
b The ensemble means were calculated excluding the CLM4CN data because of its 1144	
  

large discrepancies responding to temperature and precipitation. 1145	
  
c This value denotes the standard deviation of Mauna Loa CGR, as a reference to the 1146	
  

simulated tropical CFTA. 1147	
  

 1148	
  

Table 4. The maximum correlations of the simulated tropical terrestrial carbon cycle 1149	
  

variability with temperature and precipitation. Lead-lag months between the carbon 1150	
  

cycle variability and climatic variables are given in brackets. Positive values indicate 1151	
  

that climatic variables lag behind. 1152	
  

DGVMs 

Tropical CFTA 

(Mauna Loa CGR) 
  Tropical −NPP 

temperature precipitation   temperature precipitation 

CLM4C 0.78(1) −0.77(−3)   0.76(2) −0.83(−2) 

CLM4CN 0.64(2) −0.79(−2)   0.63(4) −0.86(−1) 

LPJ 0.92(0) −0.80(−4)   0.76(1) −0.85(−4) 

LPJ-GUESS 0.89(−1) −0.74(−5)   0.79(0) −0.75(−3) 

OCN 0.79(1) −0.69(−3)   0.70(1) −0.79(−3) 

TRIFFID 0.92(1) −0.83(−3)   0.83(1) −0.84(−3) 

VEGAS 0.95(0) −0.74(−4)   0.86(0) −0.84(−3) 

ENS 0.91(0) −0.81(−4)   0.82(1) −0.86(−3) 

Mauna Loa CGR 0.77(1) −0.63(−4)   — — 

 1153	
  

 1154	
  
 1155	
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 1156	
  

Figure 1. The cross-correlation coefficients between the tropical land precipitation (Pr) 1157	
  

and temperature (Tas). The horizontal axis denotes the lead-lag months between 1158	
  

precipitation and temperature, with negative values indicating that precipitation leads 1159	
  

temperature. Bold line indicates correlation above 95% significance (p ≤ 0.05). 1160	
  

 1161	
  

 1162	
  

Figure 2. Interannual variabilities (IAVs) in the Niño 3.4 index, tropical land surface 1163	
  

air temperature, precipitation, and soil moisture, and atmospheric CO2 growth rate 1164	
  

(CGR). The soil moisture was calculated from the surface layer to a 2 m depth. The 1165	
  

atmospheric CGR, for the Scripps Mauna Loa CO2 data from 1960 to 2012 (solid line) 1166	
  

and the globally averaged marine surface CO2 data from 1980 to 2012 (dashed line), 1167	
  

are shown as the difference between the monthly averaged concentrations in the 1168	
  

adjacent two years. The gray bars represent the three strongest El Niño events during 1169	
  

1965–66, 1982–83, and 1997–98 years and vertical dashed lines show the eruptions of 1170	
  

El Chichón and Mount Pinatubo volcanoes in 1982 and 1991, respectively. 1171	
  

 1172	
  

 1173	
  

Figure 3. The cross-correlations of anomalies in Mauna Loa CGR with anomalies in 1174	
  

the Niño 3.4 index, tropical terrestrial surface air temperature (Tas), precipitation (Pr), 1175	
  

soil moisture (SM), and photosynthetically active radiation (PAR). The horizontal 1176	
  

axis shows the lead-lag months between them. Negative month values indicate the 1177	
  

anomalies in Mauna Loa CGR lag behind. Bold lines indicate correlation above 95% 1178	
  

significance (p ≤ 0.05), estimated by the effective degree of freedom. 1179	
  

 1180	
  

 1181	
  

Figure 4. The simulated IAVs of tropical land–atmosphere carbon flux (CFTA), 1182	
  

reversed net primary productivity (−NPP), heterotrophic respiration (Rh), and 1183	
  

disturbances (D) by the 7 terrestrial carbon cycle models, involved in the TRENDY 1184	
  

project. The solid black lines in the figures denote the ensemble means (excluding 1185	
  

CLM4CN), bounded by the 1-𝜎  inter-model spread (green shaded areas). The 1186	
  

observed IAVs of Mauna Loa CGR from 1960 to 2012 are also shown in (a) as a red 1187	
  

dashed line. We reversed the NPP in order to make the sign consistent, positive values 1188	
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indicate carbon release from the terrestrial ecosystems. 1189	
  

 1190	
  

 1191	
  

Figure 5. Color-coded correlation matrices for the interannual anomalies in the 1192	
  

tropical CFTA and −NPP estimated by the 7 terrestrial carbon cycle models. Panel (a) 1193	
  

shows correlation coefficients in pairs among the estimated CFTA, and (b) correlation 1194	
  

coefficients in pairs among −NPP in the period 1960–2010. Mauna Loa CGR and 1195	
  

modeled ensemble mean (ENS) are included in these correlations as well. The values 1196	
  

in each cell demonstrate the significance levels (p ≤ 0.05 refers to above 95% 1197	
  

significance). 1198	
  

 1199	
  

 1200	
  

Figure 6. The cross-correlations of the simulated tropical CFTA anomalies with Mauna 1201	
  

Loa CGR, tropical near-surface temperature, and precipitation over land. The negative 1202	
  

months on the horizontal axis indicate that the anomalies in CFTA lag behind. Bold 1203	
  

lines indicate correlation above 95% significance (p ≤ 0.05). 1204	
  

 1205	
  

 1206	
  

Figure 7. The cross-correlations of −NPP with Mauna Loa CGR, tropical near-surface 1207	
  

temperature, and precipitation over land. The negative months on the horizontal axis 1208	
  

indicate that the anomalies in −NPP lag behind. Bold lines indicate correlation above 1209	
  

95% significance (p ≤ 0.05). 1210	
  

 1211	
  

 1212	
  

Figure 8. Sensitivities of the tropical anomalies in CFTA, −NPP, and Mauna Loa CGR 1213	
  

to (a) interannual variability in tropical near-surface temperature over land (PgC yr−1 1214	
  

K−1) and (b) interannual variability in tropical precipitation over land (PgC yr−1 100 1215	
  

mm−1) in 1960–2010. The grey areas show the values of the sensitivities of Mauna 1216	
  

Loa CGR with standard errors. Error bars indicate the standard errors of the estimated 1217	
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sensitivities for each model. 1218	
  

 1219	
  

 1220	
  

Figure 9. Spatial sensitivities of the ensemble mean in tropical CFTA interannual 1221	
  

anomalies to tropical near-surface air temperature (kgC m−2 yr−1 K−1) and 1222	
  

precipitation (kgC m−2 yr−1 100 mm−1) over land. The dotted areas in both figures 1223	
  

indicate correlation above 95% significance (p ≤ 0.05). 1224	
  

 1225	
  


