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Abstract 9 

Understanding the consequences of different land uses for the soil system is important to better 10 

inform decisions based on sustainability. The ability to assess change in soil properties, 11 

throughout the soil profile, is a critical step in this process. We present an approach to examine 12 

differences in soil depth profiles between land uses using bootstrapped Loess regressions 13 

(BLR). This non-parametric approach is data-driven, unconstrained by distributional model 14 

parameters and provides the ability to determine significant effects of land use at specific 15 

locations down a soil profile. We demonstrate an example of the BLR approach using data 16 

from a study examining the impacts of bioenergy land use change on soil organic carbon 17 

(SOC). While this straightforward non-parametric approach may be most useful in comparing 18 

SOC profiles between land uses, it can be applied to any soil property which has been measured 19 

at satisfactory resolution down the soil profile. It is hoped that further studies of land use and 20 

land management, based on new or existing data, can make use of this approach to examine 21 

differences in soil profiles. 22 

 23 

1 Introduction 24 

Understanding the consequences of different land uses for the soil system is important to better 25 

inform decisions based on sustainability (Foley et al., 2005; Haygarth and Ritz, 2009). The 26 

ability to assess change in soil properties effected by altered land use or management is 27 

therefore a critical step in this process. Greatest change is likely in the surface layers with 28 

factors such as tillage and plant inputs impacting the physical, chemical and biological 29 

properties of the soil. Many soil properties, however, will also be modified below this depth, 30 

particularly as time since land use change (LUC) increases (Popelau et al., 2011). It is therefore 31 

important that changes can be assessed below the topsoil and throughout the soil profile. 32 

As a prime example, a number of studies, including global meta-analyses, have summarised 33 

the impacts of LUC on soil organic carbon (SOC) concentration and stocks (e.g. Guo and 34 

Gifford, 2002; Maquere et al., 2008; Laganière et al., 2010; Poeplau et al., 2011). SOC (sensu 35 

organic matter) is generally concentrated in the top 30 cm of the soil and so LUC is generally 36 

expected to have the greatest impact on SOC in these upper layers (Lorenz and Lal, 2005; 37 

Laganière et al., 2010). Even within this surface soil, however, the magnitude and sometimes 38 

direction of the effects of LUC on SOC can depend on the depth that is being considered (Guo 39 

and Gifford, 2002; Popelau et al., 2011). It is also becoming more evident that, in addition to 40 



there being a large proportion of total SOC stocks resident in the subsoil, important C dynamics 41 

may also occur deeper in the soil (Jobbágy and Jackson, 2000; Lorenz and Lal, 2005). 42 

The turnover time of SOC generally increases with depth and hence the stabilisation of C 43 

may take place in deeper soil. Stabilisation pathways are likely through biochemical 44 

stabilisation driving reduced decomposition, by the inherent recalcitrance of root litter (e.g. 45 

lignins) and by physicochemical stabilisation (e.g. complexing with minerals and clay in 46 

subsoils)(Lorenz and Lal, 2005). Conversely, priming of the decomposition of older SOC may 47 

occur following LUC, especially with woody species (see Fontaine et al., 2007). This is 48 

particularly relevant for LUC to perennial vegetation or forest where deeper rooting plants are 49 

involved. For example, the root systems of perennial or tree species are likely to be more 50 

permanent and extensive in the subsoil, with a greater contribution of recalcitrant litter and 51 

potential priming down the soil profile (Fontaine et al., 2007). Altered land use or management 52 

may also impact the translocation of particulate and dissolved organic C likely to occur down 53 

the soil profile via effects on leaching. Such mechanisms may produce more complex 54 

relationships between soil depth and soil characteristics, and even discontinuous horizonation, 55 

rather than linear gradients. 56 

 57 

2. Existing approaches to model soil depth profiles 58 

Differences in SOC across transitions and soil depth profiles can be tested with both land use 59 

and depth included as fixed factors in an interaction model, and appropriate random terms to 60 

account for non-independence of depth increments within the same core and/or plots. There 61 

are, however, various potential modelling approaches that have been used to examine soil depth 62 

profiles including, for example, modified exponential decay (Maquere et al., 2008), depth 63 

distribution functions which utilise multiple regression (Indorante et al., 2013) and spline 64 

functions (Bishop et al., 1999; Malone et al., 2009; Wendt and Hauser, 2013). Another common 65 

method for non-linear modelling is the use of Generalised Additive Models (Hastie and 66 

Tibshirani, 1990).   67 

Recent work modelling depth profiles has focussed on deriving parametric non-linear 68 

relationships between soil depth and the response of interest. Maquere et al. (2008) adopt a 69 

parametric form with modified exponential decay, whereas Myers et al. (2011) use an approach 70 

based on asymmetric peak functions. Whilst capturing the non-linear form of the soil depth 71 

profile, neither exponential decay nor polynomial methods adequately handles the associated 72 

uncertainty and hence confidence intervals, with the method in Maquere et al. (2011) assuming 73 



a t-distribution and the method in Myers et al. (2008) failing to produce confidence envelopes 74 

at all. Regression-based approaches similar to the popular GAM method have also been 75 

adopted using multiple covariates to account for any non-linearity (Indorante et al., 2013) and 76 

fitting cubic splines directly (Wendt and Hauser, 2013). However, the multiple regression 77 

approach assumed a normal distribution of the response variables, which is often not realised, 78 

and the cubic spline method presented by Wendt and Hauser does not provide any measure of 79 

uncertainty.  80 

Non-linear relationships between SOC and soil depth across LUC transitions can also be 81 

incorporated by the inclusion of flexible splines (Bishop et al. 1999; Wood, 2003; Malone et 82 

al. 2009). In particular, the use of equal-area smoothing splines has long been considered as a 83 

beneficial approach to alleviate issues of modelling continuous soil depth functions using 84 

increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the 85 

large-scale mapping of soil properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al. 86 

2014). Equal-area spline functions consist of locally fitted quadratic functions tied together 87 

with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the fitted curve 88 

optimised for equality in each horizon (Bishop et al. 1999). Confidence intervals and 89 

significance tests are, however, based upon the assumption that the response variable is drawn 90 

from the exponential family of distributions and inference is very sensitive to this assumption. 91 

Malone et al. (2009), in their study mapping continuous depth functions of SOC and water 92 

storage, highlighted the need for better estimation of uncertainty in such model outputs, 93 

suggesting the use of simulation and re-sampling approaches. 94 

Simulation and re-sampling techniques avoid the necessity to assume a distributional form 95 

for the response variable in order to obtain confidence intervals and test hypotheses. Such 96 

approaches are rarely used to investigate soil depth relationships despite the often flawed 97 

assumptions made by the more commonly applied methods. Clifford et al. (2014) adopted a 98 

simulation routine from a master database to impute missing values and this clearly 99 

demonstrated another strength of the simulation approach, though they did not apply the 100 

method directly to test specific hypotheses relating to changes along the soil profile.  101 

We sought to develop an approach which 1) would be able to compare and test for 102 

significant differences between potentially non-linear depth profiles of land uses (or across 103 

land use transitions), 2) did not need to meet any parametric distribution assumptions given 104 

that individual datapoints in soil datasets are typically non-independent (i.e. vertically or 105 

horizontally nested measurements) and 3) would be generally applicable regardless of specific 106 



contexts of land use and soil type. Below, we describe the resulting non-parametric approach 107 

and provide an example comparing SOC depth profiles across a land use transition. 108 

 109 

3. A bootstrapped Loess regression (BLR) approach 110 

The developed approach combines bootstrapped resampling of data with local least squares-111 

based polynomial smoothing (Loess) regression. Consequently, this non-parametric method 112 

benefits from being data-driven and unconstrained by distributional form or rigid model 113 

parameterisation. Like spline approaches (Malone et al. 2009; Wendt and Hauser, 2013), it 114 

doesn’t assume constant values for soil layers or horizons. Such a non-parametric approach is 115 

highly suitable where data are non-independent. This is particularly applicable in soil profiles 116 

where measurements made in depth increments down a soil profile may be correlated and even 117 

more relevant where data are cumulative (e.g. cumulative C stocks). It is also appropriate where 118 

soil cores have been sampled using a nested spatial design with multiple cores taken from 119 

within plots. 120 

The BLR approach is intended to make use of soil data which has been measured at fixed-121 

depth intervals down the soil profile at a generally high resolution, or at least at a resolution 122 

satisfactory for the purposes of an assessment. The vertical sampling resolution is not limited 123 

to any specific depth interval (e.g. 10 cm increments) but clearly a greater, and regular, 124 

resolution provides more detailed information on potential differences and their specific 125 

location in the soil profile. Low sample sizes will affect the amount of smoothing that can be 126 

done by the Loess algorithm. As the algorithm fits polynomial regressions within local 127 

neighbourhoods, the definition and size of the neighbourhood determines the smoothness and 128 

sensitivity of the fitted regression line. Typically a minimum of 3 observations per 129 

neighbourhood would be required.  130 

The initial dataset comprises all data for the soil variable of interest from the two land uses 131 

(LU1 ∪ LU2 = LUALL) which are to be compared, with the associated depth and/or soil mass as 132 

reference. A subset is then created containing only data from the ‘second’ land use (LU2). In 133 

theory, it doesn’t matter which of the land uses are subsetted for LU2 but one may be more 134 

intuitive given the direction of a specific land use transition. It is also useful to plot the data to 135 

determine whether the datasets contain outliers that may need to be excluded before 136 

bootstrapping to prevent skewing the Loess regression. For cumulative mass-based data, if 137 

datapoints from the bottom depths of either LU1 or LU2 are at distinctly greater cumulative 138 

masses than others, these could also be trimmed so that the comparison is made to the same 139 



approximate lower bounds of the reference. Using a large number of bootstrap samples, 140 

however, should negate the need for extensive data cleansing prior to analysis.  141 

The combined data (LUALL) is re-sampled by bootstrap with replacement, with the number 142 

of data-points resampled equal to the number of data-points in LU2. This is repeated n=1000 143 

times. Each bootstrapped set of data are then modelled using Loess regression and these 144 

regressions are used to generate 95% confidence intervals around a modelled soil depth profile 145 

by taking pointwise percentiles at each depth. As each sub-sample is taken from the union of 146 

the two land uses, this confidence interval (or confidence envelope) represents the null 147 

hypothesis that there is no difference between the LU1 and LU2. The data from only LU2 is then 148 

modelled using Loess regression; if the modelled line for the LU2 profile sits outside the 149 

confidence envelope of the null hypothesis it can be inferred that the soil variable is 150 

significantly different between LU1 and LU2 at that particular point in the profile. Overall P 151 

values for the difference between depth profiles can be obtained by taking normalised test 152 

statistics across the full set of bootstrap samples and taking the percentile of these values 153 

corresponding to the same statistic obtained from the LU2 data. This is a similar approach to 154 

that adopted in the spatial statistics literature when analysing K functions under resampling as 155 

demonstrated in Diggle et al. (2008) and Henrys and Brown (2009) for example. 156 

This relatively straightforward non-parametric method may be most useful in comparing 157 

SOC profiles between land uses, but it can be applied to any soil property which has been 158 

measured at satisfactory resolution down the soil profile. Many of these other properties 159 

measured in soil (e.g. bulk density, pH, root biomass) can vary in a non-linear fashion down 160 

the soil profile, with potential horizonation. The effects of land use change are typically 161 

examined using either a paired-site or chronosequence approach. These assume that each 162 

paired or chronosequence site only differs in their age or, for example, time since disturbance 163 

and have comparable biotic and abiotic histories (Laganière et al., 2010). While this BLR 164 

method benefits from being unconstrained by assumptions of parametric methods, it must 165 

still satisfy the assumptions of the paired-site and chronosequence approaches, particularly if 166 

space-for-time substitution is used (Indorante et al., 2013). Here, we provide an example 167 

comparing SOC depth profiles between land uses. The approach is, however, not limited to 168 

comparing soil depth profiles between land uses. It could also be usefully adopted to 169 

examine, for example, depth functions in lake systems or to compare temporal trajectories in 170 

soil metrics between experimental treatments.  171 

 172 

4. Applying a BLR approach - an example of bioenergy land use change 173 



The bootstrap re-sampling and Loess regression used to test differences between soil profiles 174 

was conducted using the R statistical programming language (R Core Team, 2015). Example 175 

code to demonstrate the BLR approach using real data are available via 176 

http://doi.org/10/f3jp5d (Keith et al., 2015). These data are from a study examining the 177 

impacts of bioenergy LUC on SOC in the UK (Rowe et al., 2016). A LUC transition from 178 

arable to Short-Rotation Coppice (SRC) willow was selected and the data were separated into 179 

subsets of those from each component of the transition (i.e. arable and SRC willow samples) 180 

before analysis. Data on SOC concentration (expressed as a percentage), cumulative SOC 181 

stock and cumulative dry soil mass were derived at 10 cm increments to 1 m depth in order to 182 

construct fixed-depth profiles of SOC concentration (Figure 1a) and mass-based depth 183 

profiles of SOC stocks (i.e. the relationship between soil mass and SOC sensu Gifford and 184 

Roderick, 2003) (Figure 1a). Cumulative soil mass was used because measured SOC stock in 185 

small fixed-depth increments (as was required in this study) may not be directly comparable 186 

across LUC transitions, due to potential variation in bulk densities and any compression or 187 

expansion introduced through sampling (e.g. Gál et al., 2007). An approach using soil mass 188 

as the independent variable overcomes this issue more generally because profiles can be 189 

directly compared at a particular reference soil mass (Gifford and Roderick, 2003; Wendt and 190 

Hauser, 2013). Gifford and Roderick (2003) suggest a reference dry soil mass of 4000 t ha-1 191 

and 12000 t ha-1 may be used to approximate sampling to 30 cm and 1 m depth in agricultural 192 

systems, respectively. This is not an issue when examining SOC concentration, as these data 193 

are not directly influenced by core volume and apparent bulk density. 194 

There was generally a good fit between observed and modelled data, with all modelled 195 

means well within a standard deviation of the observed means in each depth increment, and 196 

the majority very close to the actual observed mean (Supplementary Figure 1). The poorest 197 

fits appeared to be for SOC concentration around the plough layer of the arable land use (20-198 

40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20 199 

cm; Supplementary Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487, 200 

0.028 and 0.929 for arable SOC concentration, arable SOC stock, SRC willow SOC 201 

concentration and SRC willow SOC stock, respectively. 202 

Individual datapoints for each land use, the confidence envelope of the null hypothesis and 203 

the modelled profile for the SRC willow were plotted following BLR (Figure 1). Where the 204 

modelled line sits outside the confidence envelope it can be inferred whether there are 205 

significant effects of land use in the soil profile, at either a particular depth or references soil 206 

mass. In Figure 1a, the SOC concentration is significantly greater under SRC willow 207 



compared with arable at 10 cm and 20 cm, where the modelled line sits to the right of the 208 

confidence envelope. The modelled line sits within the confidence envelope between 40 cm – 209 

100 cm and so there is no significant difference (Figure 1a). Nevertheless, the two depth 210 

profiles are significantly different overall (P < 0.01). The depth profile of SOC concentration 211 

is reflected in the cumulative SOC stock profile, with the modelled line for SRC willow 212 

moving further from the confidence envelope up to approximately 5000 t ha-1 (Figure 1b). 213 

The difference in cumulative SOC stock between arable and SRC willow is maintained to 214 

100 cm and, consequently, is significantly different down the whole soil profile (P < 0.01; 215 

Figure 1b). 216 

 217 

5. Conclusions 218 

We modelled soil profiles and tested differences in soil characteristics between land use or land 219 

management using a non-parametric approach combining bootstrap sampling and Loess 220 

regression. The development of this approach was driven by a need for a flexible method which 221 

could compare potential non-linear relationships between land uses (or across land use 222 

transitions) and would not be constrained to specific contexts. While there are several other 223 

methods which can be used to model non-linear relationships in soil depth profiles, the BLR 224 

approach is flexible because it is data-driven and does not need to meet any distributional 225 

assumptions. The confidence envelopes obtained are robust to miss-specification of the error 226 

distribution and provide clear inspection of significant differences across the full depth profile. 227 

There can be issues of model fit when profiles are discontinuous or change abruptly. This is 228 

not exclusive to the BLR approach though and it also affects equal-area spline models (see 229 

Odgers et al., 2012). It has been proposed that the use of pseudo-horizons may help towards 230 

overcoming this challenge (Malone et al. 2009; Odgers et al., 2012). We acknowledge that in 231 

some circumstances the equal area spline functions are a viable alternative to Loess regression 232 

for producing a fitted profile. This could, however, easily be incorporated into the non-233 

parametric estimation and bootstrapping framework that we present here. 234 

Sampling to depth and increasing the resolution of depth increments can provide useful 235 

profiles or ‘fingerprints’ of soil properties under different land uses and soil types. In particular, 236 

assessment of SOC to depth, and determining the response of SOC to land use change (LUC) 237 

or land management change is essential to understand the sustainability of different soil use 238 

options. This may be particularly important for land-use transitions to perennial crops, which 239 

have deeper and more permanent rooting systems that may influence the C balance deeper in 240 



the subsoil via priming of decomposition, C stabilisation or translocation. The BLR approach 241 

can be, however, applied to any soil property of interest giving the ability to assess land use 242 

effects at any point down the soil profile. Being data-driven and flexible, it is hoped that further 243 

studies of land use and land management, based on new or existing data, can make use of this 244 

approach to examine differences in soil profiles. 245 

 246 
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Figure 

 

 

Figure 1. Depth profiles of (A) Soil C concentration as a function of sampling depth and (B) 

Cumulative soil C stock as a function of soil mass. Depth represents values of samples from 

10 cm increments. Grey and black symbols represent SRC willow and arable data-points, 

respectively. Dashed lines represent upper and lower bounds of 95% confidence intervals from 

bootstrapped (n = 1000) Loess regressions of combined arable and SRC willow data; solid lines 

represents Loess regression of percent C and cumulative soil C in SRC willow only, if this line 

sits outside the confidence interval it can be inferred that arable and SRC willow are 

significantly different.  


