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Abstract

Understanding the consequences of different land uses for the soil system is important to better
inform decisions based on sustainability. The ability to assess change in soil properties,
throughout the soil profile, is a critical step in this process. We present an approach to examine
differences in soil depth profiles between land uses using bootstrapped Loess regressions
(BLR). This non-parametric approach is data-driven, unconstrained by distributional model
parameters and provides the ability to determine significant effects of land use at specific
locations down a soil profile. We demonstrate an example of the BLR approach using data
from a study examining the impacts of bioenergy land use change on soil organic carbon
(SOC). While this straightforward non-parametric approach may be most useful in comparing
SOC profiles between land uses, it can be applied to any soil property which has been measured
at satisfactory resolution down the soil profile. It is hoped that further studies of land use and
land management, based on new or existing data, can make use of this approach to examine

differences in soil profiles.

1 Introduction

Understanding the consequences of different land uses for the soil system is important to better
inform decisions based on sustainability (Foley et al., 2005; Haygarth and Ritz, 2009). The
ability to assess change in soil properties effected by altered land use or management is
therefore a critical step in this process. Greatest change is likely in the surface layers with
factors such as tillage and plant inputs impacting the physical, chemical and biological
properties of the soil. Many soil properties, however, will also be modified below this depth,
particularly as time since land use change (LUC) increases (Popelau et al., 2011). It is therefore
important that changes can be assessed below the topsoil and throughout the soil profile.

As a prime example, a number of studies, including global meta-analyses, have summarised
the impacts of LUC on soil organic carbon (SOC) concentration and stocks (e.g. Guo and
Gifford, 2002; Maquere et al., 2008; Laganiére et al., 2010; Poeplau et al., 2011). SOC (sensu
organic matter) is generally concentrated in the top 30 cm of the soil and so LUC is generally
expected to have the greatest impact on SOC in these upper layers (Lorenz and Lal, 2005;
Laganiére et al., 2010). Even within this surface soil, however, the magnitude and sometimes
direction of the effects of LUC on SOC can depend on the depth that is being considered (Guo
and Gifford, 2002; Popelau et al., 2011). It is also becoming more evident that, in addition to



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

there being a large proportion of total SOC stocks resident in the subsoil, important C dynamics
may also occur deeper in the soil (Jobbagy and Jackson, 2000; Lorenz and Lal, 2005).

The turnover time of SOC generally increases with depth and hence the stabilisation of C
may take place in deeper soil. Stabilisation pathways are likely through biochemical
stabilisation driving reduced decomposition, by the inherent recalcitrance of root litter (e.g.
lignins) and by physicochemical stabilisation (e.g. complexing with minerals and clay in
subsoils)(Lorenz and Lal, 2005). Conversely, priming of the decomposition of older SOC may
occur following LUC, especially with woody species (see Fontaine et al., 2007). This is
particularly relevant for LUC to perennial vegetation or forest where deeper rooting plants are
involved. For example, the root systems of perennial or tree species are likely to be more
permanent and extensive in the subsoil, with a greater contribution of recalcitrant litter and
potential priming down the soil profile (Fontaine et al., 2007). Altered land use or management
may also impact the translocation of particulate and dissolved organic C likely to occur down
the soil profile via effects on leaching. Such mechanisms may produce more complex
relationships between soil depth and soil characteristics, and even discontinuous horizonation,
rather than linear gradients.

2. Existing approaches to model soil depth profiles

Differences in SOC across transitions and soil depth profiles can be tested with both land use
and depth included as fixed factors in an interaction model, and appropriate random terms to
account for non-independence of depth increments within the same core and/or plots. There
are, however, various potential modelling approaches that have been used to examine soil depth
profiles including, for example, modified exponential decay (Maquere et al., 2008), depth
distribution functions which utilise multiple regression (Indorante et al., 2013) and spline
functions (Bishop et al., 1999; Malone et al., 2009; Wendt and Hauser, 2013). Another common
method for non-linear modelling is the use of Generalised Additive Models (Hastie and
Tibshirani, 1990).

Recent work modelling depth profiles has focussed on deriving parametric non-linear
relationships between soil depth and the response of interest. Maquere et al. (2008) adopt a
parametric form with modified exponential decay, whereas Myers et al. (2011) use an approach
based on asymmetric peak functions. Whilst capturing the non-linear form of the soil depth
profile, neither exponential decay nor polynomial methods adequately handles the associated
uncertainty and hence confidence intervals, with the method in Maquere et al. (2011) assuming
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a t-distribution and the method in Myers et al. (2008) failing to produce confidence envelopes
at all. Regression-based approaches similar to the popular GAM method have also been
adopted using multiple covariates to account for any non-linearity (Indorante et al., 2013) and
fitting cubic splines directly (Wendt and Hauser, 2013). However, the multiple regression
approach assumed a normal distribution of the response variables, which is often not realised,
and the cubic spline method presented by Wendt and Hauser does not provide any measure of
uncertainty.

Non-linear relationships between SOC and soil depth across LUC transitions can also be
incorporated by the inclusion of flexible splines (Bishop et al. 1999; Wood, 2003; Malone et
al. 2009). In particular, the use of equal-area smoothing splines has long been considered as a
beneficial approach to alleviate issues of modelling continuous soil depth functions using
increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the
large-scale mapping of soil properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al.
2014). Equal-area spline functions consist of locally fitted quadratic functions tied together
with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the fitted curve
optimised for equality in each horizon (Bishop et al. 1999). Confidence intervals and
significance tests are, however, based upon the assumption that the response variable is drawn
from the exponential family of distributions and inference is very sensitive to this assumption.
Malone et al. (2009), in their study mapping continuous depth functions of SOC and water
storage, highlighted the need for better estimation of uncertainty in such model outputs,
suggesting the use of simulation and re-sampling approaches.

Simulation and re-sampling techniques avoid the necessity to assume a distributional form
for the response variable in order to obtain confidence intervals and test hypotheses. Such
approaches are rarely used to investigate soil depth relationships despite the often flawed
assumptions made by the more commonly applied methods. Clifford et al. (2014) adopted a
simulation routine from a master database to impute missing values and this clearly
demonstrated another strength of the simulation approach, though they did not apply the
method directly to test specific hypotheses relating to changes along the soil profile.

We sought to develop an approach which 1) would be able to compare and test for
significant differences between potentially non-linear depth profiles of land uses (or across
land use transitions), 2) did not need to meet any parametric distribution assumptions given
that individual datapoints in soil datasets are typically non-independent (i.e. vertically or

horizontally nested measurements) and 3) would be generally applicable regardless of specific
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contexts of land use and soil type. Below, we describe the resulting non-parametric approach

and provide an example comparing SOC depth profiles across a land use transition.

3. A bootstrapped Loess regression (BLR) approach

The developed approach combines bootstrapped resampling of data with local least squares-
based polynomial smoothing (Loess) regression. Consequently, this non-parametric method
benefits from being data-driven and unconstrained by distributional form or rigid model
parameterisation. Like spline approaches (Malone et al. 2009; Wendt and Hauser, 2013), it
doesn’t assume constant values for soil layers or horizons. Such a non-parametric approach is
highly suitable where data are non-independent. This is particularly applicable in soil profiles
where measurements made in depth increments down a soil profile may be correlated and even
more relevant where data are cumulative (e.g. cumulative C stocks). It is also appropriate where
soil cores have been sampled using a nested spatial design with multiple cores taken from
within plots.

The BLR approach is intended to make use of soil data which has been measured at fixed-
depth intervals down the soil profile at a generally high resolution, or at least at a resolution
satisfactory for the purposes of an assessment. The vertical sampling resolution is not limited
to any specific depth interval (e.g. 10 cm increments) but clearly a greater, and regular,
resolution provides more detailed information on potential differences and their specific
location in the soil profile. Low sample sizes will affect the amount of smoothing that can be
done by the Loess algorithm. As the algorithm fits polynomial regressions within local
neighbourhoods, the definition and size of the neighbourhood determines the smoothness and
sensitivity of the fitted regression line. Typically a minimum of 3 observations per
neighbourhood would be required.

The initial dataset comprises all data for the soil variable of interest from the two land uses
(LU1 U LU2 =LUAaLL) which are to be compared, with the associated depth and/or soil mass as
reference. A subset is then created containing only data from the ‘second’ land use (LU>). In
theory, it doesn’t matter which of the land uses are subsetted for LU> but one may be more
intuitive given the direction of a specific land use transition. It is also useful to plot the data to
determine whether the datasets contain outliers that may need to be excluded before
bootstrapping to prevent skewing the Loess regression. For cumulative mass-based data, if
datapoints from the bottom depths of either LU1 or LU are at distinctly greater cumulative

masses than others, these could also be trimmed so that the comparison is made to the same
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approximate lower bounds of the reference. Using a large number of bootstrap samples,
however, should negate the need for extensive data cleansing prior to analysis.

The combined data (LUAaLL) is re-sampled by bootstrap with replacement, with the number
of data-points resampled equal to the number of data-points in LU>. This is repeated n=1000
times. Each bootstrapped set of data are then modelled using Loess regression and these
regressions are used to generate 95% confidence intervals around a modelled soil depth profile
by taking pointwise percentiles at each depth. As each sub-sample is taken from the union of
the two land uses, this confidence interval (or confidence envelope) represents the null
hypothesis that there is no difference between the LU and LU>. The data from only LU is then
modelled using Loess regression; if the modelled line for the LU, profile sits outside the
confidence envelope of the null hypothesis it can be inferred that the soil variable is
significantly different between LUz and LU at that particular point in the profile. Overall P
values for the difference between depth profiles can be obtained by taking normalised test
statistics across the full set of bootstrap samples and taking the percentile of these values
corresponding to the same statistic obtained from the LU> data. This is a similar approach to
that adopted in the spatial statistics literature when analysing K functions under resampling as
demonstrated in Diggle et al. (2008) and Henrys and Brown (2009) for example.

This relatively straightforward non-parametric method may be most useful in comparing
SOC profiles between land uses, but it can be applied to any soil property which has been
measured at satisfactory resolution down the soil profile. Many of these other properties
measured in soil (e.g. bulk density, pH, root biomass) can vary in a non-linear fashion down
the soil profile, with potential horizonation. The effects of land use change are typically
examined using either a paired-site or chronosequence approach. These assume that each
paired or chronosequence site only differs in their age or, for example, time since disturbance
and have comparable biotic and abiotic histories (Laganiére et al., 2010). While this BLR
method benefits from being unconstrained by assumptions of parametric methods, it must
still satisfy the assumptions of the paired-site and chronosequence approaches, particularly if
space-for-time substitution is used (Indorante et al., 2013). Here, we provide an example
comparing SOC depth profiles between land uses. The approach is, however, not limited to
comparing soil depth profiles between land uses. It could also be usefully adopted to
examine, for example, depth functions in lake systems or to compare temporal trajectories in

soil metrics between experimental treatments.

4. Applying a BLR approach - an example of bioenergy land use change
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The bootstrap re-sampling and Loess regression used to test differences between soil profiles
was conducted using the R statistical programming language (R Core Team, 2015). Example
code to demonstrate the BLR approach using real data are available via
http://doi.org/10/f3jp5d (Keith et al., 2015). These data are from a study examining the
impacts of bioenergy LUC on SOC in the UK (Rowe et al., 2016). A LUC transition from
arable to Short-Rotation Coppice (SRC) willow was selected and the data were separated into
subsets of those from each component of the transition (i.e. arable and SRC willow samples)
before analysis. Data on SOC concentration (expressed as a percentage), cumulative SOC
stock and cumulative dry soil mass were derived at 10 cm increments to 1 m depth in order to
construct fixed-depth profiles of SOC concentration (Figure 1a) and mass-based depth
profiles of SOC stocks (i.e. the relationship between soil mass and SOC sensu Gifford and
Roderick, 2003) (Figure 1a). Cumulative soil mass was used because measured SOC stock in
small fixed-depth increments (as was required in this study) may not be directly comparable
across LUC transitions, due to potential variation in bulk densities and any compression or
expansion introduced through sampling (e.g. Gél et al., 2007). An approach using soil mass
as the independent variable overcomes this issue more generally because profiles can be
directly compared at a particular reference soil mass (Gifford and Roderick, 2003; Wendt and
Hauser, 2013). Gifford and Roderick (2003) suggest a reference dry soil mass of 4000 t ha*
and 12000 t ha'* may be used to approximate sampling to 30 cm and 1 m depth in agricultural
systems, respectively. This is not an issue when examining SOC concentration, as these data
are not directly influenced by core volume and apparent bulk density.

There was generally a good fit between observed and modelled data, with all modelled
means well within a standard deviation of the observed means in each depth increment, and
the majority very close to the actual observed mean (Supplementary Figure 1). The poorest
fits appeared to be for SOC concentration around the plough layer of the arable land use (20-
40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20
cm; Supplementary Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487,
0.028 and 0.929 for arable SOC concentration, arable SOC stock, SRC willow SOC
concentration and SRC willow SOC stock, respectively.

Individual datapoints for each land use, the confidence envelope of the null hypothesis and
the modelled profile for the SRC willow were plotted following BLR (Figure 1). Where the
modelled line sits outside the confidence envelope it can be inferred whether there are
significant effects of land use in the soil profile, at either a particular depth or references soil
mass. In Figure 1a, the SOC concentration is significantly greater under SRC willow
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compared with arable at 10 cm and 20 cm, where the modelled line sits to the right of the
confidence envelope. The modelled line sits within the confidence envelope between 40 cm —
100 cm and so there is no significant difference (Figure 1a). Nevertheless, the two depth
profiles are significantly different overall (P < 0.01). The depth profile of SOC concentration
is reflected in the cumulative SOC stock profile, with the modelled line for SRC willow
moving further from the confidence envelope up to approximately 5000 t ha™* (Figure 1b).
The difference in cumulative SOC stock between arable and SRC willow is maintained to
100 cm and, consequently, is significantly different down the whole soil profile (P < 0.01;
Figure 1b).

5. Conclusions

We modelled soil profiles and tested differences in soil characteristics between land use or land
management using a non-parametric approach combining bootstrap sampling and Loess
regression. The development of this approach was driven by a need for a flexible method which
could compare potential non-linear relationships between land uses (or across land use
transitions) and would not be constrained to specific contexts. While there are several other
methods which can be used to model non-linear relationships in soil depth profiles, the BLR
approach is flexible because it is data-driven and does not need to meet any distributional
assumptions. The confidence envelopes obtained are robust to miss-specification of the error
distribution and provide clear inspection of significant differences across the full depth profile.
There can be issues of model fit when profiles are discontinuous or change abruptly. This is
not exclusive to the BLR approach though and it also affects equal-area spline models (see
Odgers et al., 2012). It has been proposed that the use of pseudo-horizons may help towards
overcoming this challenge (Malone et al. 2009; Odgers et al., 2012). We acknowledge that in
some circumstances the equal area spline functions are a viable alternative to Loess regression
for producing a fitted profile. This could, however, easily be incorporated into the non-
parametric estimation and bootstrapping framework that we present here.

Sampling to depth and increasing the resolution of depth increments can provide useful
profiles or ‘fingerprints’ of soil properties under different land uses and soil types. In particular,
assessment of SOC to depth, and determining the response of SOC to land use change (LUC)
or land management change is essential to understand the sustainability of different soil use
options. This may be particularly important for land-use transitions to perennial crops, which
have deeper and more permanent rooting systems that may influence the C balance deeper in
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the subsoil via priming of decomposition, C stabilisation or translocation. The BLR approach
can be, however, applied to any soil property of interest giving the ability to assess land use
effects at any point down the soil profile. Being data-driven and flexible, it is hoped that further
studies of land use and land management, based on new or existing data, can make use of this

approach to examine differences in soil profiles.
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Figure 1. Depth profiles of (A) Soil C concentration as a function of sampling depth and (B)
Cumulative soil C stock as a function of soil mass. Depth represents values of samples from
10 cm increments. Grey and black symbols represent SRC willow and arable data-points,
respectively. Dashed lines represent upper and lower bounds of 95% confidence intervals from
bootstrapped (n = 1000) Loess regressions of combined arable and SRC willow data; solid lines
represents Loess regression of percent C and cumulative soil C in SRC willow only, if this line
sits outside the confidence interval it can be inferred that arable and SRC willow are

significantly different.



