
Author response to referee comments 1 

BGD 12, C8983-C8984, 2016 2 

The points made by the referee in parentheses: 3 

“The authors use different terms when talking about soil organic carbon (SOC), such as soil C, organic C, soil 4 
organic matter…Please introduce SOC and use it throughout the manuscript.” 5 
- We have now clarified this issue throughout the text (‘Soil organic carbon’ defined in abstract and 6 
in introduction, and amended to ‘SOC’ subsequently). 7 
 8 
“L12-13: The authors used “take place” in both sentences, which is not very elegant. Maybe you could 9 
replace that by “occur” in the second sentence.” 10 
- We have now changed the second instance of ‘take place’: 11 
“Stabilisation pathways are likely through…”  12 
 13 
“Could you think of 1 or 2 other examples from environmental science, in which this approach could be 14 
useful?” 15 
- We have now added additional text in Section 3 (‘A bootstrapped Loess regression (BLR) approach’) 16 
to highlight other potential uses of the approach in environmental science: 17 
“Here, we provide an example comparing SOC depth profiles between land uses. The approach is, however, not limited to 18 
comparing soil depth profiles between land uses. It could also be usefully adopted to examine, for example, depth 19 
functions in lake systems or to compare temporal trajectories in soil metrics between experimental treatments.” 20 
 21 
 22 
BGD 12, C10124-C10127, 2016 23 

The main points (paraphrased) made by the referee in parentheses: 24 

“A ‘new’ approach” 25 
- We have now amended the title of the manuscript to ‘Technical Note: A bootstrapped Loess 26 
regression approach for comparing soil depth profiles’. We had used “new” in the title because we 27 
had not came across the use of this bootstrapped Loess approach to compare and test soil depth 28 
profiles. Though our combination of the non-parametric modelling with a bootstrapping approach in 29 
the context of the manuscript is a new development, we acknowledge that this may come across as 30 
ambiguous given other developments in non-linear modelling of soil depth profiles and associated 31 
digital soil mapping. 32 
- We have also added text to extend the discussion on these other examples of non-linear modelling 33 
with soil depth data, particularly those using an equal-area splines approach [see details below]. 34 
 35 
“Failure to consider support for the measurement” 36 
- We acknowledge that we don’t have higher resolution depth data to compare the Loess model 37 
against (as per Bishop et al. 1999, Geoderma 91). We do, however, believe that our data derived 38 
from continuous 10 cm increments to 100 cm depth is appropriate and useful, particularly with the 39 
bootstrapping approach. To address the comment we have now included additional data as a 40 
supplementary figure, with horizontal barplots which allow the reader to compare the fit of the 41 
bootstrapped Loess means to the observed means, down the soil profile, for both SOC concentration 42 
(Supplementary Figure 1a and c, revised MS) and SOC stock (Supplementary Figure 1b and d, revised 43 
MS). These also include RMSE values for each profile based on observed and modelled means for the 44 
ten depth increments. The inclusion of error metrics such as RMSE highlight how the modelling 45 
approach presented is highly suitable for the type of data. 46 
- We have now referred to these in the main text of Section 4 (‘Applying a BLR approach – an 47 
example of bioenergy land use change’) generally describing the fit between observed and modelled 48 
values, and the RMSE values, for each profile: 49 



“There was generally a good fit between observed and modelled data, with all modelled means well within a standard 50 
deviation of the observed means in each depth increment, and the majority very close to the actual observed mean 51 
(Supplementary Figure 1). The poorest fits appeared to be for SOC concentration around the plough layer of the arable 52 
land use (20-40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20 cm; Supplementary 53 
Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487, 0.028 and 0.929 for arable SOC concentration, arable 54 
SOC stock, SRC willow SOC concentation and SRC willow SOC stock, respectively.”  55 
 56 
“Depth functions with equal-area smoothing splines” 57 
- The referee has indicated that there is already much discussion on the rationale for using equal-58 
area smoothing spline functions, that the Loess function does not guarantee an equal-area criteria, 59 
and that the paper has “completely missed the point”. We fully acknowledge that the equal-area 60 
spline method can improve depth functions based on bulk horizon data and have restructured and 61 
added to the discussion around such methods in Section 2 (‘Existing approaches to model soil depth 62 
profiles’), citing several additional relevant publications: 63 
“Non-linear relationships between SOC and soil depth across LUC transitions can also be incorporated by the inclusion of 64 
flexible splines (Bishop et al. 1999; Wood, 2003; Malone et al. 2009). In particular, the use of equal-area smoothing splines 65 
has long been considered as a beneficial approach to alleviate issues of modelling continuous soil depth functions using 66 
increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the large-scale mapping of soil 67 
properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al. 2014). Equal-area spline functions consist of locally fitted 68 
quadratic functions tied together with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the 69 
fitted curve optimised for equality in each horizon (Bishop et al. 1999).”  70 
 71 
We also agree that the Loess approach doesn’t guarantee an equal-area criteria. However, neither 72 
does it appear that fitting equal-area quadratic splines guarantee an equal-area criteria for all 73 
horizons in published examples (See Figure 4 and 5 in Bishop et al. 1999, Figure 5 in Malone et al. 74 
2009, Figure 4 in Odgers et al. 2012). Indeed, Odgers et al. 2012 discuss the limitations of the equal-75 
area spline method and how they can be inadequate when depth profiles change abruptly. We have 76 
now added text to Section 5 (‘Conclusions’) to highlight that both the bootstrapped Loess regression 77 
and equal-area spline approaches can both suffer from this issue and several recent papers in which 78 
it has been discussed: 79 
“There can be issues of model fit when profiles are discontinuous or change abruptly. This is not exclusive to the BLR 80 
approach though and it also affects equal-area spline models (see Odgers et al., 2012). It has been proposed that the use of 81 
pseudo-horizons may help towards overcoming this challenge (Malone et al. 2009; Odgers et al., 2012).“  82 
 83 
The new figure that we have now presented (Supplementary Figure 1) allows readers to see the 84 
bootstrapped loess depth profile in relation to the increment data and link well with the further 85 
discussion on the equal-area splines approach and equal-area criteria. 86 
 87 
This approach taken in our study was used primarily to compare depth profiles between different 88 
land uses in a transition. Rather than having “completely missed the point” we feel that our use of 89 
bootstrapping with a flexible non-parametric regression presents a valuable example of how this can 90 
be done. The equal area spline approach could be used instead of the Loess but the bootstrap 91 
element would still need to be included. We have now acknowledged in Section 5 (‘Conclusions’) 92 
that equal area spline functions can be a viable alternative to Loess regression for producing a fitted 93 
profile:  94 
“We acknowledge that in some circumstances the equal area spline functions are a viable alternative to Loess regression 95 
for producing a fitted profile. This could, however, easily be incorporated into the non-parametric estimation and 96 
bootstrapping framework that we present here.” 97 
 98 
Overall, we believe that our non-parametric approach can be extremely useful and, by providing our 99 
data and code for others to use, the opportunity for further comparison exists. 100 

  101 
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Abstract 110 

Understanding the consequences of different land uses for the soil system is important to better 111 

inform decisions based on sustainability. The ability to assess change in soil properties, 112 

throughout the soil profile, is a critical step in this process. We present an approach to examine 113 

differences in soil depth profiles between land uses using bootstrapped Loess regressions 114 

(BLR). This non-parametric approach is data-driven, unconstrained by distributional model 115 

parameters and provides the ability to determine significant effects of land use at specific 116 

locations down a soil profile. We demonstrate an example of the BLR approach using data 117 

from a study examining the impacts of bioenergy land use change on soil organic carbon 118 

(SOC). While this straightforward non-parametric approach may be most useful in comparing 119 

SOC profiles between land uses, it can be applied to any soil property which has been measured 120 

at satisfactory resolution down the soil profile. It is hoped that further studies of land use and 121 

land management, based on new or existing data, can make use of this approach to examine 122 

differences in soil profiles. 123 

 124 

1 Introduction 125 

Understanding the consequences of different land uses for the soil system is important to better 126 

inform decisions based on sustainability (Foley et al., 2005; Haygarth and Ritz, 2009). The 127 

ability to assess change in soil properties effected by altered land use or management is 128 

therefore a critical step in this process. Greatest change is likely in the surface layers with 129 

factors such as tillage and plant inputs impacting the physical, chemical and biological 130 

properties of the soil. Many soil properties, however, will also be modified below this depth, 131 

particularly as time since land use change (LUC) increases (Popelau et al., 2011). It is therefore 132 

important that changes can be assessed below the topsoil and throughout the soil profile. 133 

As a prime example, a number of studies, including global meta-analyses, have summarised 134 

the impacts of LUC on soil organic carbon (SOC) concentration and stocks (e.g. Guo and 135 

Gifford, 2002; Maquere et al., 2008; Laganière et al., 2010; Poeplau et al., 2011). SOC (sensu 136 

organic matter) is generally concentrated in the top 30 cm of the soil and so LUC is generally 137 

expected to have the greatest impact on SOC in these upper layers (Lorenz and Lal, 2005; 138 

Laganière et al., 2010). Even within this surface soil, however, the magnitude and sometimes 139 

direction of the effects of LUC on SOC can depend on the depth that is being considered (Guo 140 

and Gifford, 2002; Popelau et al., 2011). It is also becoming more evident that, in addition to 141 



there being a large proportion of total SOC stocks resident in the subsoil, important C dynamics 142 

may also occur deeper in the soil (Jobbágy and Jackson, 2000; Lorenz and Lal, 2005). 143 

The turnover time of SOC generally increases with depth and hence the stabilisation of C 144 

may take place in deeper soil. Stabilisation pathways are likely through biochemical 145 

stabilisation driving reduced decomposition, by the inherent recalcitrance of root litter (e.g. 146 

lignins) and by physicochemical stabilisation (e.g. complexing with minerals and clay in 147 

subsoils)(Lorenz and Lal, 2005). Conversely, priming of the decomposition of older SOC may 148 

occur following LUC, especially with woody species (see Fontaine et al., 2007). This is 149 

particularly relevant for LUC to perennial vegetation or forest where deeper rooting plants are 150 

involved. For example, the root systems of perennial or tree species are likely to be more 151 

permanent and extensive in the subsoil, with a greater contribution of recalcitrant litter and 152 

potential priming down the soil profile (Fontaine et al., 2007). Altered land use or management 153 

may also impact the translocation of particulate and dissolved organic C likely to occur down 154 

the soil profile via effects on leaching. Such mechanisms may produce more complex 155 

relationships between soil depth and soil characteristics, and even discontinuous horizonation, 156 

rather than linear gradients. 157 

 158 

2. Existing approaches to model soil depth profiles 159 

Differences in SOC across transitions and soil depth profiles can be tested with both land use 160 

and depth included as fixed factors in an interaction model, and appropriate random terms to 161 

account for non-independence of depth increments within the same core and/or plots. There 162 

are, however, various potential modelling approaches that have been used to examine soil depth 163 

profiles including, for example, modified exponential decay (Maquere et al., 2008), depth 164 

distribution functions which utilise multiple regression (Indorante et al., 2013) and spline 165 

functions (Bishop et al., 1999; Malone et al., 2009; Wendt and Hauser, 2013). Another common 166 

method for non-linear modelling is the use of Generalised Additive Models (Hastie and 167 

Tibshirani, 1990).   168 

Recent work modelling depth profiles has focussed on deriving parametric non-linear 169 

relationships between soil depth and the response of interest. Maquere et al. (2008) adopt a 170 

parametric form with modified exponential decay, whereas Myers et al. (2011) use an approach 171 

based on asymmetric peak functions. Whilst capturing the non-linear form of the soil depth 172 

profile, neither exponential decay nor polynomial methods adequately handles the associated 173 

uncertainty and hence confidence intervals, with the method in Maquere et al. (2011) assuming 174 



a t-distribution and the method in Myers et al. (2008) failing to produce confidence envelopes 175 

at all. Regression-based approaches similar to the popular GAM method have also been 176 

adopted using multiple covariates to account for any non-linearity (Indorante et al., 2013) and 177 

fitting cubic splines directly (Wendt and Hauser, 2013). However, the multiple regression 178 

approach assumed a normal distribution of the response variables, which is often not realised, 179 

and the cubic spline method presented by Wendt and Hauser does not provide any measure of 180 

uncertainty.  181 

Non-linear relationships between SOC and soil depth across LUC transitions can also be 182 

incorporated by the inclusion of flexible splines (Bishop et al. 1999; Wood, 2003; Malone et 183 

al. 2009). In particular, the use of equal-area smoothing splines has long been considered as a 184 

beneficial approach to alleviate issues of modelling continuous soil depth functions using 185 

increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the 186 

large-scale mapping of soil properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al. 187 

2014). Equal-area spline functions consist of locally fitted quadratic functions tied together 188 

with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the fitted curve 189 

optimised for equality in each horizon (Bishop et al. 1999). Confidence intervals and 190 

significance tests are, however, based upon the assumption that the response variable is drawn 191 

from the exponential family of distributions and inference is very sensitive to this assumption. 192 

Malone et al. (2009), in their study mapping continuous depth functions of SOC and water 193 

storage, highlighted the need for better estimation of uncertainty in such model outputs, 194 

suggesting the use of simulation and re-sampling approaches. 195 

Simulation and re-sampling techniques avoid the necessity to assume a distributional form 196 

for the response variable in order to obtain confidence intervals and test hypotheses. Such 197 

approaches are rarely used to investigate soil depth relationships despite the often flawed 198 

assumptions made by the more commonly applied methods. Clifford et al. (2014) adopted a 199 

simulation routine from a master database to impute missing values and this clearly 200 

demonstrated another strength of the simulation approach, though they did not apply the 201 

method directly to test specific hypotheses relating to changes along the soil profile.  202 

We sought to develop an approach which 1) would be able to compare and test for 203 

significant differences between potentially non-linear depth profiles of land uses (or across 204 

land use transitions), 2) did not need to meet any parametric distribution assumptions given 205 

that individual datapoints in soil datasets are typically non-independent (i.e. vertically or 206 

horizontally nested measurements) and 3) would be generally applicable regardless of specific 207 



contexts of land use and soil type. Below, we describe the resulting non-parametric approach 208 

and provide an example comparing SOC depth profiles across a land use transition. 209 

 210 

3. A bootstrapped Loess regression (BLR) approach 211 

The developed approach combines bootstrapped resampling of data with local least squares-212 

based polynomial smoothing (Loess) regression. Consequently, this non-parametric method 213 

benefits from being data-driven and unconstrained by distributional form or rigid model 214 

parameterisation. Like spline approaches (Malone et al. 2009; Wendt and Hauser, 2013), it 215 

doesn’t assume constant values for soil layers or horizons. Such a non-parametric approach is 216 

highly suitable where data are non-independent. This is particularly applicable in soil profiles 217 

where measurements made in depth increments down a soil profile may be correlated and even 218 

more relevant where data are cumulative (e.g. cumulative C stocks). It is also appropriate where 219 

soil cores have been sampled using a nested spatial design with multiple cores taken from 220 

within plots. 221 

The BLR approach is intended to make use of soil data which has been measured at fixed-222 

depth intervals down the soil profile at a generally high resolution, or at least at a resolution 223 

satisfactory for the purposes of an assessment. The vertical sampling resolution is not limited 224 

to any specific depth interval (e.g. 10 cm increments) but clearly a greater, and regular, 225 

resolution provides more detailed information on potential differences and their specific 226 

location in the soil profile. Low sample sizes will affect the amount of smoothing that can be 227 

done by the Loess algorithm. As the algorithm fits polynomial regressions within local 228 

neighbourhoods, the definition and size of the neighbourhood determines the smoothness and 229 

sensitivity of the fitted regression line. Typically a minimum of 3 observations per 230 

neighbourhood would be required.  231 

The initial dataset comprises all data for the soil variable of interest from the two land uses 232 

(LU1 ∪ LU2 = LUALL) which are to be compared, with the associated depth and/or soil mass as 233 

reference. A subset is then created containing only data from the ‘second’ land use (LU2). In 234 

theory, it doesn’t matter which of the land uses are subsetted for LU2 but one may be more 235 

intuitive given the direction of a specific land use transition. It is also useful to plot the data to 236 

determine whether the datasets contain outliers that may need to be excluded before 237 

bootstrapping to prevent skewing the Loess regression. For cumulative mass-based data, if 238 

datapoints from the bottom depths of either LU1 or LU2 are at distinctly greater cumulative 239 

masses than others, these could also be trimmed so that the comparison is made to the same 240 



approximate lower bounds of the reference. Using a large number of bootstrap samples, 241 

however, should negate the need for extensive data cleansing prior to analysis.  242 

The combined data (LUALL) is re-sampled by bootstrap with replacement, with the number 243 

of data-points resampled equal to the number of data-points in LU2. This is repeated n=1000 244 

times. Each bootstrapped set of data are then modelled using Loess regression and these 245 

regressions are used to generate 95% confidence intervals around a modelled soil depth profile 246 

by taking pointwise percentiles at each depth. As each sub-sample is taken from the union of 247 

the two land uses, this confidence interval (or confidence envelope) represents the null 248 

hypothesis that there is no difference between the LU1 and LU2. The data from only LU2 is then 249 

modelled using Loess regression; if the modelled line for the LU2 profile sits outside the 250 

confidence envelope of the null hypothesis it can be inferred that the soil variable is 251 

significantly different between LU1 and LU2 at that particular point in the profile. Overall P 252 

values for the difference between depth profiles can be obtained by taking normalised test 253 

statistics across the full set of bootstrap samples and taking the percentile of these values 254 

corresponding to the same statistic obtained from the LU2 data. This is a similar approach to 255 

that adopted in the spatial statistics literature when analysing K functions under resampling as 256 

demonstrated in Diggle et al. (2008) and Henrys and Brown (2009) for example. 257 

This relatively straightforward non-parametric method may be most useful in comparing 258 

SOC profiles between land uses, but it can be applied to any soil property which has been 259 

measured at satisfactory resolution down the soil profile. Many of these other properties 260 

measured in soil (e.g. bulk density, pH, root biomass) can vary in a non-linear fashion down 261 

the soil profile, with potential horizonation. The effects of land use change are typically 262 

examined using either a paired-site or chronosequence approach. These assume that each 263 

paired or chronosequence site only differs in their age or, for example, time since disturbance 264 

and have comparable biotic and abiotic histories (Laganière et al., 2010). While this BLR 265 

method benefits from being unconstrained by assumptions of parametric methods, it must 266 

still satisfy the assumptions of the paired-site and chronosequence approaches, particularly if 267 

space-for-time substitution is used (Indorante et al., 2013). Here, we provide an example 268 

comparing SOC depth profiles between land uses. The approach is, however, not limited to 269 

comparing soil depth profiles between land uses. It could also be usefully adopted to 270 

examine, for example, depth functions in lake systems or to compare temporal trajectories in 271 

soil metrics between experimental treatments.  272 

 273 

4. Applying a BLR approach - an example of bioenergy land use change 274 



The bootstrap re-sampling and Loess regression used to test differences between soil profiles 275 

was conducted using the R statistical programming language (R Core Team, 2015). Example 276 

code to demonstrate the BLR approach using real data are available via 277 

http://doi.org/10/f3jp5d (Keith et al., 2015). These data are from a study examining the 278 

impacts of bioenergy LUC on SOC in the UK (Rowe et al., 2016). A LUC transition from 279 

arable to Short-Rotation Coppice (SRC) willow was selected and the data were separated into 280 

subsets of those from each component of the transition (i.e. arable and SRC willow samples) 281 

before analysis. Data on SOC concentration (expressed as a percentage), cumulative SOC 282 

stock and cumulative dry soil mass were derived at 10 cm increments to 1 m depth in order to 283 

construct fixed-depth profiles of SOC concentration (Figure 1a) and mass-based depth 284 

profiles of SOC stocks (i.e. the relationship between soil mass and SOC sensu Gifford and 285 

Roderick, 2003) (Figure 1a). Cumulative soil mass was used because measured SOC stock in 286 

small fixed-depth increments (as was required in this study) may not be directly comparable 287 

across LUC transitions, due to potential variation in bulk densities and any compression or 288 

expansion introduced through sampling (e.g. Gál et al., 2007). An approach using soil mass 289 

as the independent variable overcomes this issue more generally because profiles can be 290 

directly compared at a particular reference soil mass (Gifford and Roderick, 2003; Wendt and 291 

Hauser, 2013). Gifford and Roderick (2003) suggest a reference dry soil mass of 4000 t ha-1 292 

and 12000 t ha-1 may be used to approximate sampling to 30 cm and 1 m depth in agricultural 293 

systems, respectively. This is not an issue when examining SOC concentration, as these data 294 

are not directly influenced by core volume and apparent bulk density. 295 

There was generally a good fit between observed and modelled data, with all modelled 296 

means well within a standard deviation of the observed means in each depth increment, and 297 

the majority very close to the actual observed mean (Supplementary Figure 1). The poorest 298 

fits appeared to be for SOC concentration around the plough layer of the arable land use (20-299 

40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20 300 

cm; Supplementary Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487, 301 

0.028 and 0.929 for arable SOC concentration, arable SOC stock, SRC willow SOC 302 

concentration and SRC willow SOC stock, respectively. 303 

Individual datapoints for each land use, the confidence envelope of the null hypothesis and 304 

the modelled profile for the SRC willow were plotted following BLR (Figure 1). Where the 305 

modelled line sits outside the confidence envelope it can be inferred whether there are 306 

significant effects of land use in the soil profile, at either a particular depth or references soil 307 

mass. In Figure 1a, the SOC concentration is significantly greater under SRC willow 308 



compared with arable at 10 cm and 20 cm, where the modelled line sits to the right of the 309 

confidence envelope. The modelled line sits within the confidence envelope between 40 cm – 310 

100 cm and so there is no significant difference (Figure 1a). Nevertheless, the two depth 311 

profiles are significantly different overall (P < 0.01). The depth profile of SOC concentration 312 

is reflected in the cumulative SOC stock profile, with the modelled line for SRC willow 313 

moving further from the confidence envelope up to approximately 5000 t ha-1 (Figure 1b). 314 

The difference in cumulative SOC stock between arable and SRC willow is maintained to 315 

100 cm and, consequently, is significantly different down the whole soil profile (P < 0.01; 316 

Figure 1b). 317 

 318 

5. Conclusions 319 

We modelled soil profiles and tested differences in soil characteristics between land use or land 320 

management using a non-parametric approach combining bootstrap sampling and Loess 321 

regression. The development of this approach was driven by a need for a flexible method which 322 

could compare potential non-linear relationships between land uses (or across land use 323 

transitions) and would not be constrained to specific contexts. While there are several other 324 

methods which can be used to model non-linear relationships in soil depth profiles, the BLR 325 

approach is flexible because it is data-driven and does not need to meet any distributional 326 

assumptions. The confidence envelopes obtained are robust to miss-specification of the error 327 

distribution and provide clear inspection of significant differences across the full depth profile. 328 

There can be issues of model fit when profiles are discontinuous or change abruptly. This is 329 

not exclusive to the BLR approach though and it also affects equal-area spline models (see 330 

Odgers et al., 2012). It has been proposed that the use of pseudo-horizons may help towards 331 

overcoming this challenge (Malone et al. 2009; Odgers et al., 2012). We acknowledge that in 332 

some circumstances the equal area spline functions are a viable alternative to Loess regression 333 

for producing a fitted profile. This could, however, easily be incorporated into the non-334 

parametric estimation and bootstrapping framework that we present here. 335 

Sampling to depth and increasing the resolution of depth increments can provide useful 336 

profiles or ‘fingerprints’ of soil properties under different land uses and soil types. In particular, 337 

assessment of SOC to depth, and determining the response of SOC to land use change (LUC) 338 

or land management change is essential to understand the sustainability of different soil use 339 

options. This may be particularly important for land-use transitions to perennial crops, which 340 

have deeper and more permanent rooting systems that may influence the C balance deeper in 341 



the subsoil via priming of decomposition, C stabilisation or translocation. The BLR approach 342 

can be, however, applied to any soil property of interest giving the ability to assess land use 343 

effects at any point down the soil profile. Being data-driven and flexible, it is hoped that further 344 

studies of land use and land management, based on new or existing data, can make use of this 345 

approach to examine differences in soil profiles. 346 

 347 
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Figure captions 

Figure 1. Depth profiles of (A) Soil C concentration as a function of sampling depth and (B) 

Cumulative soil C stock as a function of soil mass. Depth represents values of samples from 

10 cm increments. Grey and black symbols represent SRC willow and arable data-points, 

respectively. Dashed lines represent upper and lower bounds of 95% confidence intervals from 

bootstrapped (n = 1000) Loess regressions of combined arable and SRC willow data; solid lines 

represents Loess regression of percent C and cumulative soil C in SRC willow only, if this line 

sits outside the confidence interval it can be inferred that arable and SRC willow are 

significantly different.  


