

1 **Author response to referee comments**

2 BGD 12, C8983-C8984, 2016

3 The points made by the referee in parentheses:

4 ***"The authors use different terms when talking about soil organic carbon (SOC), such as soil C, organic C, soil
5 organic matter...Please introduce SOC and use it throughout the manuscript."***

6 - We have now clarified this issue throughout the text ('Soil organic carbon' defined in abstract and
7 in introduction, and amended to 'SOC' subsequently).

8
9 ***"L12-13: The authors used "take place" in both sentences, which is not very elegant. Maybe you could
10 replace that by "occur" in the second sentence."***

11 - We have now changed the second instance of 'take place':

12 "Stabilisation pathways are likely through..."

13
14 ***"Could you think of 1 or 2 other examples from environmental science, in which this approach could be
15 useful?"***

16 - We have now added additional text in Section 3 ('A bootstrapped Loess regression (BLR) approach')
17 to highlight other potential uses of the approach in environmental science:

18 "Here, we provide an example comparing SOC depth profiles between land uses. The approach is, however, not limited to
19 comparing soil depth profiles between land uses. It could also be usefully adopted to examine, for example, depth
20 functions in lake systems or to compare temporal trajectories in soil metrics between experimental treatments."

21
22
23 BGD 12, C10124-C10127, 2016

24 The main points (paraphrased) made by the referee in parentheses:

25 ***"A 'new' approach"***

26 - We have now amended the title of the manuscript to 'Technical Note: A bootstrapped Loess
27 regression approach for comparing soil depth profiles'. We had used "new" in the title because we
28 had not come across the use of this bootstrapped Loess approach to compare and test soil depth
29 profiles. Though our combination of the non-parametric modelling with a bootstrapping approach in
30 the context of the manuscript is a new development, we acknowledge that this may come across as
31 ambiguous given other developments in non-linear modelling of soil depth profiles and associated
32 digital soil mapping.

33 - We have also added text to extend the discussion on these other examples of non-linear modelling
34 with soil depth data, particularly those using an equal-area splines approach [see details below].

35
36 ***"Failure to consider support for the measurement"***

37 - We acknowledge that we don't have higher resolution depth data to compare the Loess model
38 against (as per Bishop et al. 1999, Geoderma 91). We do, however, believe that our data derived
39 from continuous 10 cm increments to 100 cm depth is appropriate and useful, particularly with the
40 bootstrapping approach. To address the comment we have now included additional data as a
41 supplementary figure, with horizontal barplots which allow the reader to compare the fit of the
42 bootstrapped Loess means to the observed means, down the soil profile, for both SOC concentration
43 (Supplementary Figure 1a and c, revised MS) and SOC stock (Supplementary Figure 1b and d, revised
44 MS). These also include RMSE values for each profile based on observed and modelled means for the
45 ten depth increments. The inclusion of error metrics such as RMSE highlight how the modelling
46 approach presented is highly suitable for the type of data.

47 - We have now referred to these in the main text of Section 4 ('Applying a BLR approach – an
48 example of bioenergy land use change') generally describing the fit between observed and modelled
49 values, and the RMSE values, for each profile:

50 "There was generally a good fit between observed and modelled data, with all modelled means well within a standard
51 deviation of the observed means in each depth increment, and the majority very close to the actual observed mean
52 (Supplementary Figure 1). The poorest fits appeared to be for SOC concentration around the plough layer of the arable
53 land use (20-40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20 cm; Supplementary
54 Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487, 0.028 and 0.929 for arable SOC concentration, arable
55 SOC stock, SRC willow SOC concentration and SRC willow SOC stock, respectively."

56

57 ***"Depth functions with equal-area smoothing splines"***

58 - The referee has indicated that there is already much discussion on the rationale for using equal-
59 area smoothing spline functions, that the Loess function does not guarantee an equal-area criteria,
60 and that the paper has "completely missed the point". We fully acknowledge that the equal-area
61 spline method can improve depth functions based on bulk horizon data and have restructured and
62 added to the discussion around such methods in Section 2 ('Existing approaches to model soil depth
63 profiles'), citing several additional relevant publications:

64 "Non-linear relationships between SOC and soil depth across LUC transitions can also be incorporated by the inclusion of
65 flexible splines (Bishop et al. 1999; Wood, 2003; Malone et al. 2009). In particular, the use of equal-area smoothing splines
66 has long been considered as a beneficial approach to alleviate issues of modelling continuous soil depth functions using
67 increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the large-scale mapping of soil
68 properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al. 2014). Equal-area spline functions consist of locally fitted
69 quadratic functions tied together with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the
70 fitted curve optimised for equality in each horizon (Bishop et al. 1999)."

71

72 We also agree that the Loess approach doesn't guarantee an equal-area criteria. However, neither
73 does it appear that fitting equal-area quadratic splines guarantee an equal-area criteria for all
74 horizons in published examples (See Figure 4 and 5 in Bishop et al. 1999, Figure 5 in Malone et al.
75 2009, Figure 4 in Odgers et al. 2012). Indeed, Odgers et al. 2012 discuss the limitations of the equal-
76 area spline method and how they can be inadequate when depth profiles change abruptly. We have
77 now added text to Section 5 ('Conclusions') to highlight that both the bootstrapped Loess regression
78 and equal-area spline approaches can both suffer from this issue and several recent papers in which
79 it has been discussed:

80 "There can be issues of model fit when profiles are discontinuous or change abruptly. This is not exclusive to the BLR
81 approach though and it also affects equal-area spline models (see Odgers et al., 2012). It has been proposed that the use of
82 pseudo-horizons may help towards overcoming this challenge (Malone et al. 2009; Odgers et al., 2012)."

83

84 The new figure that we have now presented (Supplementary Figure 1) allows readers to see the
85 bootstrapped loess depth profile in relation to the increment data and link well with the further
86 discussion on the equal-area splines approach and equal-area criteria.

87

88 This approach taken in our study was used primarily to compare depth profiles between different
89 land uses in a transition. Rather than having "completely missed the point" we feel that our use of
90 bootstrapping with a flexible non-parametric regression presents a valuable example of how this can
91 be done. The equal area spline approach could be used instead of the Loess but the bootstrap
92 element would still need to be included. We have now acknowledged in Section 5 ('Conclusions')
93 that equal area spline functions can be a viable alternative to Loess regression for producing a fitted
94 profile:

95 "We acknowledge that in some circumstances the equal area spline functions are a viable alternative to Loess regression
96 for producing a fitted profile. This could, however, easily be incorporated into the non-parametric estimation and
97 bootstrapping framework that we present here."

98

99 Overall, we believe that our non-parametric approach can be extremely useful and, by providing our
100 data and code for others to use, the opportunity for further comparison exists.

102 **Technical Note: A bootstrapped Loess regression**
103 **approach for comparing soil depth profiles**

104

105 **A. M. Keith*, P. Henrys, R. L. Rowe and N. P. McNamara**

106 {Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg,
107 Lancaster, LA1 4AP, United Kingdom}

108 *Correspondence to: A. M. Keith (ake@ceh.ac.uk)

109

110 **Abstract**

111 Understanding the consequences of different land uses for the soil system is important to better
112 inform decisions based on sustainability. The ability to assess change in soil properties,
113 throughout the soil profile, is a critical step in this process. We present an approach to examine
114 differences in soil depth profiles between land uses using bootstrapped Loess regressions
115 (BLR). This non-parametric approach is data-driven, unconstrained by distributional model
116 parameters and provides the ability to determine significant effects of land use at specific
117 locations down a soil profile. We demonstrate an example of the BLR approach using data
118 from a study examining the impacts of bioenergy land use change on **soil organic carbon**
119 (**SOC**). While this straightforward non-parametric approach may be most useful in comparing
120 SOC profiles between land uses, it can be applied to any soil property which has been measured
121 at satisfactory resolution down the soil profile. It is hoped that further studies of land use and
122 land management, based on new or existing data, can make use of this approach to examine
123 differences in soil profiles.

124

125 **1 Introduction**

126 Understanding the consequences of different land uses for the soil system is important to better
127 inform decisions based on sustainability (Foley et al., 2005; Haygarth and Ritz, 2009). The
128 ability to assess change in soil properties effected by altered land use or management is
129 therefore a critical step in this process. Greatest change is likely in the surface layers with
130 factors such as tillage and plant inputs impacting the physical, chemical and biological
131 properties of the soil. Many soil properties, however, will also be modified below this depth,
132 particularly as time since land use change (LUC) increases (Popelau et al., 2011). It is therefore
133 important that changes can be assessed below the topsoil and throughout the soil profile.

134 As a prime example, a number of studies, including global meta-analyses, have summarised
135 the impacts of LUC on **soil organic carbon (SOC)** concentration and stocks (e.g. Guo and
136 Gifford, 2002; Maquere et al., 2008; Laganière et al., 2010; Poeplau et al., 2011). SOC (*sensu*
137 organic matter) is generally concentrated in the top 30 cm of the soil and so LUC is generally
138 expected to have the greatest impact on SOC in these upper layers (Lorenz and Lal, 2005;
139 Laganière et al., 2010). Even within this surface soil, however, the magnitude and sometimes
140 direction of the effects of LUC on SOC can depend on the depth that is being considered (Guo
141 and Gifford, 2002; Popelau et al., 2011). It is also becoming more evident that, in addition to

142 there being a large proportion of total SOC stocks resident in the subsoil, important C dynamics
143 may also occur deeper in the soil (Jobbágy and Jackson, 2000; Lorenz and Lal, 2005).

144 The turnover time of SOC generally increases with depth and hence the stabilisation of C
145 may take place in deeper soil. **Stabilisation pathways are likely through** biochemical
146 stabilisation driving reduced decomposition, by the inherent recalcitrance of root litter (e.g.
147 lignins) and by physicochemical stabilisation (e.g. complexing with minerals and clay in
148 subsoils)(Lorenz and Lal, 2005). Conversely, priming of the decomposition of older SOC may
149 occur following LUC, especially with woody species (see Fontaine et al., 2007). This is
150 particularly relevant for LUC to perennial vegetation or forest where deeper rooting plants are
151 involved. For example, the root systems of perennial or tree species are likely to be more
152 permanent and extensive in the subsoil, with a greater contribution of recalcitrant litter and
153 potential priming down the soil profile (Fontaine et al., 2007). Altered land use or management
154 may also impact the translocation of particulate and dissolved organic C likely to occur down
155 the soil profile via effects on leaching. Such mechanisms may produce more complex
156 relationships between soil depth and soil characteristics, and even discontinuous horizonation,
157 rather than linear gradients.

158

159 **2. Existing approaches to model soil depth profiles**

160 Differences in SOC across transitions and soil depth profiles can be tested with both land use
161 and depth included as fixed factors in an interaction model, and appropriate random terms to
162 account for non-independence of depth increments within the same core and/or plots. There
163 are, however, various potential modelling approaches that have been used to examine soil depth
164 profiles including, for example, modified exponential decay (Maquere et al., 2008), depth
165 distribution functions which utilise multiple regression (Indorante et al., 2013) and spline
166 functions (Bishop et al., 1999; Malone et al., 2009; Wendt and Hauser, 2013). Another common
167 method for non-linear modelling is the use of Generalised Additive Models (Hastie and
168 Tibshirani, 1990).

169 Recent work modelling depth profiles has focussed on deriving parametric non-linear
170 relationships between soil depth and the response of interest. Maquere et al. (2008) adopt a
171 parametric form with modified exponential decay, whereas Myers et al. (2011) use an approach
172 based on asymmetric peak functions. Whilst capturing the non-linear form of the soil depth
173 profile, neither exponential decay nor polynomial methods adequately handles the associated
174 uncertainty and hence confidence intervals, with the method in Maquere et al. (2011) assuming

175 a *t*-distribution and the method in Myers et al. (2008) failing to produce confidence envelopes
176 at all. Regression-based approaches similar to the popular GAM method have also been
177 adopted using multiple covariates to account for any non-linearity (Indorante et al., 2013) and
178 fitting cubic splines directly (Wendt and Hauser, 2013). However, the multiple regression
179 approach assumed a normal distribution of the response variables, which is often not realised,
180 and the cubic spline method presented by Wendt and Hauser does not provide any measure of
181 uncertainty.

182 Non-linear relationships between SOC and soil depth across LUC transitions can also be
183 incorporated by the inclusion of flexible splines (Bishop et al. 1999; Wood, 2003; Malone et
184 al. 2009). In particular, the use of equal-area smoothing splines has long been considered as a
185 beneficial approach to alleviate issues of modelling continuous soil depth functions using
186 increment or horizon data (Bishop et al. 1999) and recent work has utilised the approach in the
187 large-scale mapping of soil properties (Malone et al. 2009; Odgers et al. 2012; Adhikari et al.
188 2014). Equal-area spline functions consist of locally fitted quadratic functions tied together
189 with knots at horizon boundaries (Malone et al. 2009), and the areas under/over the fitted curve
190 optimised for equality in each horizon (Bishop et al. 1999). Confidence intervals and
191 significance tests are, however, based upon the assumption that the response variable is drawn
192 from the exponential family of distributions and inference is very sensitive to this assumption.
193 Malone et al. (2009), in their study mapping continuous depth functions of SOC and water
194 storage, highlighted the need for better estimation of uncertainty in such model outputs,
195 suggesting the use of simulation and re-sampling approaches.

196 Simulation and re-sampling techniques avoid the necessity to assume a distributional form
197 for the response variable in order to obtain confidence intervals and test hypotheses. Such
198 approaches are rarely used to investigate soil depth relationships despite the often flawed
199 assumptions made by the more commonly applied methods. Clifford et al. (2014) adopted a
200 simulation routine from a master database to impute missing values and this clearly
201 demonstrated another strength of the simulation approach, though they did not apply the
202 method directly to test specific hypotheses relating to changes along the soil profile.

203 We sought to develop an approach which 1) would be able to compare and test for
204 significant differences between potentially non-linear depth profiles of land uses (or across
205 land use transitions), 2) did not need to meet any parametric distribution assumptions given
206 that individual datapoints in soil datasets are typically non-independent (i.e. vertically or
207 horizontally nested measurements) and 3) would be generally applicable regardless of specific

208 contexts of land use and soil type. Below, we describe the resulting non-parametric approach
209 and provide an example comparing SOC depth profiles across a land use transition.

210

211 **3. A bootstrapped Loess regression (BLR) approach**

212 The developed approach combines bootstrapped resampling of data with local least squares-
213 based polynomial smoothing (Loess) regression. Consequently, this non-parametric method
214 benefits from being data-driven and unconstrained by distributional form or rigid model
215 parameterisation. Like spline approaches (Malone et al. 2009; Wendt and Hauser, 2013), it
216 doesn't assume constant values for soil layers or horizons. Such a non-parametric approach is
217 highly suitable where data are non-independent. This is particularly applicable in soil profiles
218 where measurements made in depth increments down a soil profile may be correlated and even
219 more relevant where data are cumulative (e.g. cumulative C stocks). It is also appropriate where
220 soil cores have been sampled using a nested spatial design with multiple cores taken from
221 within plots.

222 The BLR approach is intended to make use of soil data which has been measured at fixed-
223 depth intervals down the soil profile at a generally high resolution, or at least at a resolution
224 satisfactory for the purposes of an assessment. The vertical sampling resolution is not limited
225 to any specific depth interval (e.g. 10 cm increments) but clearly a greater, and regular,
226 resolution provides more detailed information on potential differences and their specific
227 location in the soil profile. Low sample sizes will affect the amount of smoothing that can be
228 done by the Loess algorithm. As the algorithm fits polynomial regressions within local
229 neighbourhoods, the definition and size of the neighbourhood determines the smoothness and
230 sensitivity of the fitted regression line. Typically a minimum of 3 observations per
231 neighbourhood would be required.

232 The initial dataset comprises all data for the soil variable of interest from the two land uses
233 ($LU_1 \cup LU_2 = LU_{ALL}$) which are to be compared, with the associated depth and/or soil mass as
234 reference. A subset is then created containing only data from the 'second' land use (LU_2). In
235 theory, it doesn't matter which of the land uses are subsetted for LU_2 but one may be more
236 intuitive given the direction of a specific land use transition. It is also useful to plot the data to
237 determine whether the datasets contain outliers that may need to be excluded before
238 bootstrapping to prevent skewing the Loess regression. For cumulative mass-based data, if
239 datapoints from the bottom depths of either LU_1 or LU_2 are at distinctly greater cumulative
240 masses than others, these could also be trimmed so that the comparison is made to the same

241 approximate lower bounds of the reference. Using a large number of bootstrap samples,
242 however, should negate the need for extensive data cleansing prior to analysis.

243 The combined data (LU_{ALL}) is re-sampled by bootstrap with replacement, with the number
244 of data-points resampled equal to the number of data-points in LU_2 . This is repeated $n=1000$
245 times. Each bootstrapped set of data are then modelled using Loess regression and these
246 regressions are used to generate 95% confidence intervals around a modelled soil depth profile
247 by taking pointwise percentiles at each depth. As each sub-sample is taken from the union of
248 the two land uses, this confidence interval (or confidence envelope) represents the null
249 hypothesis that there is no difference between the LU_1 and LU_2 . The data from only LU_2 is then
250 modelled using Loess regression; if the modelled line for the LU_2 profile sits outside the
251 confidence envelope of the null hypothesis it can be inferred that the soil variable is
252 significantly different between LU_1 and LU_2 at that particular point in the profile. Overall P
253 values for the difference between depth profiles can be obtained by taking normalised test
254 statistics across the full set of bootstrap samples and taking the percentile of these values
255 corresponding to the same statistic obtained from the LU_2 data. This is a similar approach to
256 that adopted in the spatial statistics literature when analysing K functions under resampling as
257 demonstrated in Diggle et al. (2008) and Henrys and Brown (2009) for example.

258 This relatively straightforward non-parametric method may be most useful in comparing
259 SOC profiles between land uses, but it can be applied to any soil property which has been
260 measured at satisfactory resolution down the soil profile. Many of these other properties
261 measured in soil (e.g. bulk density, pH, root biomass) can vary in a non-linear fashion down
262 the soil profile, with potential horizonation. The effects of land use change are typically
263 examined using either a paired-site or chronosequence approach. These assume that each
264 paired or chronosequence site only differs in their age or, for example, time since disturbance
265 and have comparable biotic and abiotic histories (Laganière et al., 2010). While this BLR
266 method benefits from being unconstrained by assumptions of parametric methods, it must
267 still satisfy the assumptions of the paired-site and chronosequence approaches, particularly if
268 space-for-time substitution is used (Indorante et al., 2013). **Here, we provide an example**
269 **comparing SOC depth profiles between land uses. The approach is, however, not limited to**
270 **comparing soil depth profiles between land uses. It could also be usefully adopted to**
271 **examine, for example, depth functions in lake systems or to compare temporal trajectories in**
272 **soil metrics between experimental treatments.**

273

274 **4. Applying a BLR approach - an example of bioenergy land use change**

275 The bootstrap re-sampling and Loess regression used to test differences between soil profiles
276 was conducted using the R statistical programming language (R Core Team, 2015). Example
277 code to demonstrate the BLR approach using real data are available via
278 <http://doi.org/10/f3jp5d> (Keith et al., 2015). These data are from a study examining the
279 impacts of bioenergy LUC on SOC in the UK (Rowe et al., 2016). A LUC transition from
280 arable to Short-Rotation Coppice (SRC) willow was selected and the data were separated into
281 subsets of those from each component of the transition (i.e. arable and SRC willow samples)
282 before analysis. Data on SOC concentration (expressed as a percentage), cumulative SOC
283 stock and cumulative dry soil mass were derived at 10 cm increments to 1 m depth in order to
284 construct fixed-depth profiles of SOC concentration (Figure 1a) and mass-based depth
285 profiles of SOC stocks (i.e. the relationship between soil mass and SOC *sensu* Gifford and
286 Roderick, 2003) (Figure 1a). Cumulative soil mass was used because measured SOC stock in
287 small fixed-depth increments (as was required in this study) may not be directly comparable
288 across LUC transitions, due to potential variation in bulk densities and any compression or
289 expansion introduced through sampling (e.g. Gál et al., 2007). An approach using soil mass
290 as the independent variable overcomes this issue more generally because profiles can be
291 directly compared at a particular reference soil mass (Gifford and Roderick, 2003; Wendt and
292 Hauser, 2013). Gifford and Roderick (2003) suggest a reference dry soil mass of 4000 t ha⁻¹
293 and 12000 t ha⁻¹ may be used to approximate sampling to 30 cm and 1 m depth in agricultural
294 systems, respectively. This is not an issue when examining SOC concentration, as these data
295 are not directly influenced by core volume and apparent bulk density.

296 There was generally a good fit between observed and modelled data, with all modelled
297 means well within a standard deviation of the observed means in each depth increment, and
298 the majority very close to the actual observed mean (Supplementary Figure 1). The poorest
299 fits appeared to be for SOC concentration around the plough layer of the arable land use (20-
300 40 cm; Supplementary Figure 1a) and in the upper layers of the SRC willow land use (0-20
301 cm; Supplementary Figure 1c). The RMSE values for the depth profiles were 0.037, 0.487,
302 0.028 and 0.929 for arable SOC concentration, arable SOC stock, SRC willow SOC
303 concentration and SRC willow SOC stock, respectively.

304 Individual datapoints for each land use, the confidence envelope of the null hypothesis and
305 the modelled profile for the SRC willow were plotted following BLR (Figure 1). Where the
306 modelled line sits outside the confidence envelope it can be inferred whether there are
307 significant effects of land use in the soil profile, at either a particular depth or references soil
308 mass. In Figure 1a, the SOC concentration is significantly greater under SRC willow

309 compared with arable at 10 cm and 20 cm, where the modelled line sits to the right of the
310 confidence envelope. The modelled line sits within the confidence envelope between 40 cm –
311 100 cm and so there is no significant difference (Figure 1a). Nevertheless, the two depth
312 profiles are significantly different overall ($P < 0.01$). The depth profile of SOC concentration
313 is reflected in the cumulative SOC stock profile, with the modelled line for SRC willow
314 moving further from the confidence envelope up to approximately 5000 t ha^{-1} (Figure 1b).
315 The difference in cumulative SOC stock between arable and SRC willow is maintained to
316 100 cm and, consequently, is significantly different down the whole soil profile ($P < 0.01$;
317 Figure 1b).

318

319 **5. Conclusions**

320 We modelled soil profiles and tested differences in soil characteristics between land use or land
321 management using a non-parametric approach combining bootstrap sampling and Loess
322 regression. The development of this approach was driven by a need for a flexible method which
323 could compare potential non-linear relationships between land uses (or across land use
324 transitions) and would not be constrained to specific contexts. While there are several other
325 methods which can be used to model non-linear relationships in soil depth profiles, the BLR
326 approach is flexible because it is data-driven and does not need to meet any distributional
327 assumptions. The confidence envelopes obtained are robust to miss-specification of the error
328 distribution and provide clear inspection of significant differences across the full depth profile.
329 **There can be issues of model fit when profiles are discontinuous or change abruptly. This is**
330 **not exclusive to the BLR approach though and it also affects equal-area spline models (see**
331 **Odgers et al., 2012). It has been proposed that the use of pseudo-horizons may help towards**
332 **overcoming this challenge (Malone et al. 2009; Odgers et al., 2012). We acknowledge that in**
333 **some circumstances the equal area spline functions are a viable alternative to Loess regression**
334 **for producing a fitted profile. This could, however, easily be incorporated into the non-**
335 **parametric estimation and bootstrapping framework that we present here.**

336 Sampling to depth and increasing the resolution of depth increments can provide useful
337 profiles or ‘fingerprints’ of soil properties under different land uses and soil types. In particular,
338 assessment of SOC to depth, and determining the response of SOC to land use change (LUC)
339 or land management change is essential to understand the sustainability of different soil use
340 options. This may be particularly important for land-use transitions to perennial crops, which
341 have deeper and more permanent rooting systems that may influence the C balance deeper in

342 the subsoil via priming of decomposition, C stabilisation or translocation. The BLR approach
343 can be, however, applied to any soil property of interest giving the ability to assess land use
344 effects at any point down the soil profile. Being data-driven and flexible, it is hoped that further
345 studies of land use and land management, based on new or existing data, can make use of this
346 approach to examine differences in soil profiles.

347

348

349 *Author contributions.* A. M. Keith and R. L. Rowe conducted sampling and created the data.
350 A. M. Keith and P. Henrys developed the statistical approach. All authors contributed to
351 preparation of the manuscript.

352 *Acknowledgement.* This work was supported by the ELUM (Ecosystem Land Use Modelling
353 & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy
354 Technologies Institute (ETI).

355 **References**

356 Adhikari, K., Hartemink, A. E., Minasny, B., Bou Kheir, R., Greve, M. B., and Greve, M. H.:
357 Digital mapping of soil organic carbon contents and stocks in Denmark, PLoS One 9,
358 e105519, 2014.

359 Bishop, T. F. A., McBratney, A. B., and Laslett, G. M.: Modelling soil attribute depth
360 functions with equal-area quadratic smoothing splines, Geoderma, 91, 27-45, 1999.

361 Clifford, D., Dobbie, M. J., and Searle, R.: Non-parametric imputation of properties for soil
362 profiles with sparse observations, Geoderma, 232-234, 10-18, 2014.

363 Diggle, P. J., Gómez-Rubio, V., Brown, P. E., Chetwynd, A. G., and Gooding, S.: Second-
364 Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data,
365 Biometrics, 63, 550-557, 2007.

366 Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F.
367 S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowksi, J. H., Holloway, T., Howard, E. A.,
368 Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.:
369 Global consequences of land use, Science, 309, 570-574, 2005.

370 Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C.: Stability of organic
371 carbon in deep soil layers controlled by fresh carbon supply, Nature, 450, 277-280, 2007.

372 Gál, A., Vyn, T. J., Michéli, E., Kladivko, E. J., and McFee, W. W.: Soil carbon and nitrogen
373 accumulation with long-term no-till versus mouldboard plowing overestimated with tilled-
374 zone sampling depths, Soil Till. Res., 96, 42-51, 2007.

375 Gifford, R. M., and Roderick, M. L.: Soil carbon stocks and bulk density: spatial or
376 cumulative mass coordinates as a basis of expression? Glob. Change Biol., 9, 1507-1514,
377 2003.

378 Guo, L. B., and Gifford, R. M.: Soil carbon stocks and land use change: a meta analysis,
379 Glob. Change Biol., 8, 345-360, 2002.

380 Hastie, T. J., and Tibshirani, R. J.: Generalized additive models (Vol. 43), CRC Press, 1990.

381 Haygarth, P. M., and Ritz, K.: The future of soils and land use in the UK: Soil systems for the
382 provision of land-based ecosystem services, Land Use Policy, 26S, S187-S197, 2009.

383 Henrys, P. A., and Brown, P. E.: Inference for clustered inhomogeneous spatial point
384 processes, *Biometrics*, 65, 423-430, 2009.

385 Indorante, S. J., Kabrick, J. M., Lee, B. D., and Maatta, J. M.: Quantifying Soil Profile
386 Change Caused by Land Use in Central Missouri Loess Hillslopes, *Soil Sci. Soc. Am. J.*, 78,
387 225-237, 2013.

388 Jobbágy, E. G., and Jackson, R. B.: The vertical distribution of soil organic carbon and its
389 relation to climate and vegetation, *Ecol. Appl.*, 10, 423-436, 2000.

390 Keith, A.M., Henrys, P. A., Rowe, R. L., and McNamara, N. P.: Bootstrapped local
391 regression (LOESS) for soil depth profile comparison. NERC Environmental Information
392 Data Centre, doi: 10.5285/d4f92cd8-43e8-49e4-8f9e-efcc0e3b2478, 2015.

393 Laganière, J., Angers, D. A., and Parè, D.: Carbon accumulation in agricultural soils after
394 afforestation: a meta-analysis, *Glob. Change Biol.*, 16, 439-453, 2010.

395 Lorenz, K., and Lal, R.: The depth distribution of soil organic carbon in relation to land use
396 and management and the potential of carbon sequestration in subsoil horizons. *Adv. Agron.*,
397 88, 35-66, 2005.

398 Malone, B. P., McBratney, A. B., Minasny, B., and Laslett, G. M.: Mapping continuous depth
399 functions of soil carbon storage and available water capacity, *Geoderma*, 154, 138-152, 2009.

400 Maquere, V., Laclau, J. P., Bernoux, M., Saint-Andre, L., Gonçalves, J. L. M., Cerri, C. C.,
401 Piccolo, M. C., and Ranger, J.: Influence of land use (savanna, pasture, *Eucalyptus*
402 plantations) on soil carbon and nitrogen stocks in Brazil, *Eur. J. Soil Sci.*, 59, 863-877, 2008.

403 Myers, D. B., Kitchen, N. R., Sudduth, K. A., Miles, R. J., Sadler, E. J., and Grunwald, S.:
404 Peak functions for modelling high resolution soil profile data, *Geoderma*, 166, 74-83, 2011.

405 Odgers, N. P., Libohova, Z., and Thompson, J. A.: Equal-area spline functions applied to a
406 legacy soil database to create weighed-means maps of soil organic carbon at a continental
407 scale, *Geoderma* 189-190, 153-163, 2012.

408 Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., and
409 Gensior, A.: Temporal dynamics of soil organic carbon after land-use change in the
410 temperate zone – carbon response functions as a model approach, *Glob. Change Biol.*, 17,
411 2415-2427, 2011.

412 R Core Team. R: A language and environment for statistical computing, R Foundation for
413 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org>, 2015.

414 Rowe, R. L., Keith, A. M., Elias, D., Dondini, M., Smith, P., Oxley, J., and McNamara, N.
415 P.: Initial soil C and land use history determine, *Glob. Change Biol. Bioenergy* Early View
416 Online, DOI: 10.1111/gcbb.12311, 2016.

417 Wendt, J. W., and Hauser, S.: An equivalent soil mass procedure for monitoring soil organic
418 carbon in multiple soil layers, *Eur. J. Soil Sci.*, 64, 58-65, 2013.

419 Wood, S. N.: Thin-plate regression splines. *J. Roy. Stat. Soc. Ser. B*, 65, 95-114, 2003.

Figure captions

Figure 1. Depth profiles of (A) Soil C concentration as a function of sampling depth and (B) Cumulative soil C stock as a function of soil mass. Depth represents values of samples from 10 cm increments. Grey and black symbols represent SRC willow and arable data-points, respectively. Dashed lines represent upper and lower bounds of 95% confidence intervals from bootstrapped ($n = 1000$) Loess regressions of combined arable and SRC willow data; solid lines represents Loess regression of percent C and cumulative soil C in SRC willow only, if this line sits outside the confidence interval it can be inferred that arable and SRC willow are significantly different.