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Dear Editor, 1 

 2 

Attached are our responses to the Reviewers (that have been uploaded as well on the 3 

discussion forum) and the revised manuscript (track-changed version). We highlighted 4 

changes related to comments from Reviewer#1 in light blue, Reviewer#2 in yellow and Dr. 5 

Rutishauser (comment on the discussion forum) in green. Slight phrasing corrections, 6 

unrelated to reviewers comments, have also been done (track-changed, no highlight).     7 

 8 

Sincerely, 9 

The Authors 10 

  11 
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RESPONSE TO REVIEWER#1 1 

 2 

Dear Dr. T. Baker, 3 

Thank you for the relevant comments and suggestions you made on our manuscript. We here 4 

address the different points you raised in your review.  5 

 6 

Reviewer comments (in italics): “1. Practical recommendations: I was surprised given the 7 

effort the develop models for canopy mass based on direct measurements of canopy size, and 8 

their improved performance compared to models based only on diameter and height (m3 9 

compared to m2 in Table 2), that the final recommendation is only to implement model m2 (ie 10 

just measure tree height to the base of the canopy). To me, making a few additional 11 

measurements of canopy diameter for the few largest trees in a stand would not be 12 

particularly onerous, would improve accuracy, and would be important for linking field 13 

measurements to any LiDAR studies. Why is this option rejected?” 14 

Our response (in plain text): We indeed put emphasis at the end of the manuscript on model 15 

m2 which only requires trunk height as additional measurement, as we believe it much simpler 16 

to implement in a standard forest inventory protocol that already includes tree height 17 

measurements than would adding a full set of crown metrics, even on a subset of trees. We 18 

however agree that information on crown diameter, or even crown architecture, for the largest 19 

trees in a stand is highly valuable, notably for remote-sensing studies. But except for scientific 20 

studies, we are not convinced that collecting such data will become a common practice in the 21 

coming years. Unlike trunk height, measuring crown diameter is increasingly difficult as tree 22 

ages and forest canopy becomes crowded. In tropical forest canopy, crown limits are often 23 

difficult to identify, all the more when one needs to have his sights set on two opposite crown 24 

limits from a single vantage spot, as required by most Laser measurement devices. It follows 25 

that even if one only targets the largest trees in a stand, this operation is time-consuming and 26 

probably inaccurate or even biased if too quickly performed. It is not unlikely that the 27 

development of mobile terrestrial Lidar scanning technology will make it possible to extract 28 

crown data more easily in a near future. The option to include more detailed crown 29 

measurements into biomass allometric equations is therefore not rejected, but from a practical 30 

point of view, the collection of only additional trunk height data appeared to us as the most 31 
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reasonable option for immediate large-scale application in operational contexts. We added a 1 

sentence at the end of the manuscript (section 4.3) to clarify our choice to the reader.  2 

“2. Height definition: I agree that the definition of the canopy base needs to be carefully 3 

considered in the manuscript as it is an important parameter in the models. For example, it 4 

might be useful to set a minimum diameter for the lowest living branch to define these 5 

measurements (e.g. 5 cm). The authors of the manuscript involved in data collection would 6 

doubtless have valuable experience to define this carefully for tropical trees.” 7 

We indeed proposed to change our definition of crown base from “the height of the first living 8 

branch” to “the height of the first main branch”. As pointed out by Dr. Rutishauser in his 9 

comment to the paper, the former definition would have included short-lived branch such as 10 

small unreiterated and/or epicormic branches, while the latter typically refers to long-lasting 11 

branches (e.g., forks). On large trees for which we advocate measuring trunk height (≥ 100 cm 12 

DBH), identifying the lowest main branch (elsewhere called “crown-forming branch”, Husch 13 

et al., 2002) is often straightforward and routinely performed by foresters. However, as 14 

subjectivity increases with decreasing tree size, we understand the appeal of setting a branch 15 

diameter threshold (e.g. 5 cm). Besides setting a threshold for branch diameter, it might also 16 

be necessary to set a threshold for the vertical position of the branch along the main axis. For 17 

instance, while one may consider accounting for a 5 cm branch located e.g. 1 m bellow a 18 

growing fork (i.e. future crown base), the same 5 cm branch may be left out if it is rather 19 

located 2, 3 or 4 m bellow this point. The form of these thresholds (i.e. in cm or in % of tree 20 

DBH) might also be discussed. We believe that our field experience cannot backup all those 21 

choices that should rather be addressed using a statistical approach. Again, terrestrial LiDAR 22 

scanning technology appears particularly promising in this regard.  23 

 24 

“3. Collinearity. The potential problems of collinearity in biomass models have been a 25 

contentious issue in the literature, and could be raised in the context of this study as well. 26 

Personally, I agree with previous work by a linked group of authors (Picard et al., 2015), that 27 

these problems (defined by considering variance inflation factors) are secondary to 28 

evaluating model performance against data, particularly now that the datasets are 29 

increasingly representative of the full range in structure of tropical trees. However, I think it 30 
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would be useful to refer briefly to this debate and the literature on this point (e.g. in section 1 

4.3), so these points are clear to readers.” 2 

We agree and have added a paragraph in section 4.3 to refer this issue. 3 

“4. Scaling up: I like the comments in the discussion about how the effect of these findings 4 

will depend on the size structure of the forest (section 4.2). I think it would be useful to 5 

expand this slightly to reflect on how inclusion of canopy mass will improve our 6 

understanding of broad-scale differences in biomass among forests. For example, we know 7 

that African forests tend to have more large trees than Amazonian forests (Lewis et al., 2013), 8 

and that canopy size varies with seasonality in Amazonia (Barbier et al., 2010). What 9 

implications does this work have for detecting differences in biomass among continents and 10 

along environmental gradients?” 11 

Thanks you for this suggestion, we expanded section 4.2 accordingly.  12 

 13 

Equation 2: H should be Ht, I think. 14 

Correct, it has been replaced. 15 

  16 
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RESPONSE TO REVIEWER#2 1 

 2 

Dear Reviewer #2, 3 

Thank you for your positive review and suggestions. We here address the different points you 4 

raised in your review.  5 

 6 

Reviewer comments (in italics): “In the manuscript the authors suggest that incorporation of 7 

the crown mass ratio into commonly used allometric equations could improve the accuracy of 8 

forest carbon estimates. So my suggestion is to incorporate this information into the analysis 9 

by comparing calculated estimates of aboveground biomass between the proposed models 10 

and to discuss different results regarding strategies of carbon allocation between stem and 11 

crown mass and its implications for tropical carbon storage. For instance, the authors could 12 

include a table stating respective forest carbon estimates for the investigated study sites and 13 

compare reported estimates to the results derived by their novel approach accounting for a 14 

crown mass proxy. This would allow for a more direct comparison between the biomass 15 

estimates derived from the respective models and could be used to discuss the importance of 16 

incorporating crown metrics in allometric models to account for potential alterations in 17 

carbon allocation in response to projected global changes.” 18 

Our response (in plain text): Applying the different models to plot data in order to compare 19 

the resulting aboveground biomass estimates is obviously a good idea. However, it requires 20 

having measured crown metrics, which was not systematically done for the field plots we 21 

used here. For instance, we do not have this information for the 50-ha plot at Korup NP, 22 

where the influence of forest structure on the pantropical model error is most evident. Among 23 

the 80 1-ha plots of the IRD network, we possess information on trees crown depth in 46 24 

plots. In each plot, crown depth measurements were made on a subset of trees (N=39.2 ± 25 

15.8) distributed over all tree diameter classes (but ≥ 10 cm of diameter at breast height, D). 26 

Although we do not have crown metric information for all large trees in those plots, we used 27 

this dataset to dig into your suggestion (Fig. 1). In Figure 1 of this response, the X axis 28 

represents plot aboveground biomass derived from m0, the pantropical model of Chave et al. 29 

(2014). On the Y axis, plot AGB was computed with the same biomass model for trees with 30 

no information on crown depth, or with our model m2 for trees with information on total 31 
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height and crown depth (Fig 1-A). We also restricted the subset of trees on which m2 was 1 

applied to trees with D ≥ 100 cm, as recommended in our manuscript (Fig. 1-B). For 2 

simplicity, plot AGB estimated from combined m0 and m2 predictions (as described above) 3 

are referred to as m2 predictions. In Fig. 1-A, subtracting m0 to m2 predictions leads to an 4 

average difference of about +2 Mg. In the manuscript, we indeed showed that the averaged 5 

bias at the level of the plot network is fairly close between m0 (+6.8%, p. 19724 L. 1) and m2 6 

(+5%, p. 19724 L. 10). The spread of plot-level biases is also consistent with previous 7 

findings (see Fig. 5-B of the manuscript), with a tendency for m0 to result in higher AGB 8 

estimates than m2 (up to +20 Mg or +6% of m0 AGB estimate), with the exception of some 9 

high-biomass plots where large trees AGB is underestimated by m0 (up to -56 Mg, or -15.9% 10 

of m0 AGB estimate). Restricting the use of m2 to trees with D ≥ 100 cm leads to plots AGB 11 

estimates closer to those obtained with m0 (Fig. 1-B), notably because the overestimation of 12 

small trees AGB is not accounted for anymore. High-biomass plots still depart from the 1-1 13 

line. Despite the limited representativity of our data on crown metrics is (even for large trees), 14 

these preliminary results seem in good agreement with the trends presented in the manuscript. 15 

Yet, we do not think that those results would bring much to the manuscript and propose to 16 

keep them here, especially since this response will be associated to the article.  17 

Let us also note that your suggestion to discuss “the importance of incorporating crown 18 

metrics in allometric models to account for potential alterations in carbon allocation in 19 

response to projected global changes” echoes the comment number 4 from Reviewer#1 20 

(“scaling up”), which led to a slight expansion of this subject in paragraph 4.2 of our 21 

manuscript.     22 

 23 

“Page 19714; Line 4: Consider stating: “…,which play a major role in the global carbon 24 

balance (REFs).” 25 

Agreed. 26 

 27 

“Page 19714; Line 8: Consider changing the sentence to: “However, local forest biomass 28 

estimations commonly represent the foundation for the calibration and validation of remote 29 

sensing models.” 30 
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Agreed. 1 

 “Page 19724; Line 20: Consider stating: “This threshold was mirrored by a break point in 2 

the relationship between total tree mass and the compound predictor variable used in the 3 

reference allometric model of Chave et al. (2014).” 4 

Agreed. 5 

 6 

 7 

 8 

 9 

Figure 1. Above ground biomass estimation (in Mg) of 46 1-ha plots using the pantropical 10 

model m0 (X axis) and a combination of m0 (for trees without information on crown depth) 11 

and our model m2 (for trees with information on crown depth) (Y axis). In plot A, we used m2 12 

to predict the biomass of all trees with information on crown depth, while we only used m2 on 13 

trees with D ≥100 cm in plot B.   14 

 15 

  16 
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Closing a gap in tropical forest biomass estimation: Accounting for crown 1 

mass variation in pantropical allometries  2 

 3 

P. Ploton
1,2

, N. Barbier
1
, S.T. Momo

1,3
, M. Réjou-Méchain

1,4,5
, F. Boyemba Bosela

6
, G. 4 

Chuyong
7
, G. Dauby

8,9
, V. Droissart

1,10
, A. Fayolle

11
, R.C. Goodman

12
, M. Henry

13
, N.G. 5 

Kamdem
3
, J. Katembo Mukirania

6
, D. Kenfack

14
, M Libalah

3
, A. Ngomanda

15
, V. 6 

Rossi
4,16

, B. Sonké
3
, N. Texier

1,3
, D. Thomas

17
, D. Zebaze

3
, P. Couteron

1
, U. Berger

18
 and 7 

R. Pélissier
1
  8 

 9 

[1] Institut de Recherche pour le Développement, UMR-AMAP, Montpellier, France 10 

[2] Institut des sciences et industries du vivant et de l'environnement, Montpellier, France 11 

[3] Laboratoire de Botanique systématique et d'Ecologie, Département des Sciences 12 

Biologiques, Ecole Normale Supérieure, Université de Yaoundé I, Yaoundé, Cameroon 13 

[4] Centre de coopération internationale en recherche agronomique pour le développement, 14 

Montpellier, France 15 

[5] Geomatics and Applied Informatics Laboratory (LIAG), French Institute of Pondicherry, 16 

Puducherry, India 17 

[6] Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo 18 

[7] Department of Botany and Plant Physiology, University of Buea, Buea, Cameroon 19 

[8] Institut de Recherche pour le Développement, UMR-DIADE, Montpellier, France 20 

[9] Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, 21 

Brussels, Belgium 22 

[10] Herbarium et Bibliothèque de Botanique africaine, Université Libre de Bruxelles, 23 

Brussels, Belgium 24 

[11] Research axis on Forest Resource Management of the Biosystem engineering (BIOSE), 25 

Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium 26 

[12] Yale School of Forestry and Environmental Studies, New Haven, USA 27 

[13] Food and Agriculture Organization of the United Nations, UN-REDD Programme, 28 

Rome, Italy  29 



 9 

[14] Center for Tropical Forest Science, Harvard University, Cambridge, USA 1 

[15] Institut de Recherche en Ecologie Tropicale, Libreville, Gabon 2 

[16] Université de Yaoundé I, UMMISCO, Yaoundé, Cameroon 3 

[17] Department of Botany and Plant Pathology, Oregon State University, Corvallis, USA 4 

[18] Technische Universität Dresden, Faculty of Environmental Sciences, Institute of Forest 5 

Growth and Forest Computer Sciences, Tharandt, Germany  6 

Correspondence to: P. Ploton (pierre.ploton@ird.fr) 7 

 8 

Abstract 9 

Accurately monitoring tropical forest carbon stocks is an outstanding challenge. Allometric 10 

models that consider tree diameter, height and wood density as predictors are currently used 11 

in most tropical forest carbon studies. In particular, a pantropical biomass model has been 12 

widely used for approximately a decade, and its most recent version will certainly constitute 13 

a reference in the coming years. However, this reference model shows a systematic bias for 14 

the largest trees. Because large trees are key drivers of forest carbon stocks and dynamics, 15 

understanding the origin and the consequences of this bias is of utmost concern. In this 16 

study, we compiled a unique tree mass dataset on 673 trees destructively sampled in five 17 

tropical countries (101 trees > 100 cm in diameter) and an original dataset of 130 forest plots 18 

(1 ha) from central Africa to quantify the prediction error of biomass allometric models at 19 

the individual and plot levels when explicitly accounting or not accounting for crown mass 20 

variations. We first showed that the proportion of crown to total tree aboveground biomass 21 

is highly variable among trees, ranging from 3 to 88 %. This proportion was constant on 22 

average for trees < 10 Mg (mean of 34 %) but, above this threshold, increased sharply with 23 

tree mass and exceeded 50 % on average for trees ≥ 45 Mg. This increase coincided with a 24 

progressive deviation between the pantropical biomass model estimations and actual tree 25 

mass. Accounting for a crown mass proxy in a newly developed model consistently removed 26 

the bias observed for large trees (> 1 Mg) and reduced the range of plot-level error from -27 

23–16 % to 0–10 %. The disproportionally higher allocation of large trees to crown mass 28 

may thus explain the bias observed recently in the reference pantropical model. This bias 29 

leads to far-from-negligible, but often overlooked, systematic errors at the plot level and 30 

may be easily corrected by accounting for a crown mass proxy for the largest trees in a 31 



 10 

stand, thus suggesting that the accuracy of forest carbon estimates can be significantly 1 

improved at a minimal cost. 2 

 3 

1 Introduction 4 

Monitoring forest carbon variation in space and time is both a sociopolitical challenge for 5 

climate change mitigation and a scientific challenge, especially in tropical forests, which play 6 

a major role in the world global carbon balance (Hansen et al., 2013; Harris et al., 2012; 7 

Saatchi et al., 2011). Significant milestones have been reached in the last decade thanks to the 8 

development of broad-scale remote sensing approaches (Baccini et al., 2012; Malhi et al., 9 

2006; Mitchard et al., 2013; Saatchi et al., 2011). However, local forest biomass estimations 10 

commonly represent the foundation for the calibration and validation of remote sensing 11 

models.However, local forest biomass estimations are still the bedrock of most (if not all) of 12 

these approaches for the calibration and validation of remote sensing models. As a 13 

consequence, uncertainties and errors in local biomass estimations may propagate 14 

dramatically to broad-scale forest carbon stock assessment (Avitabile et al., 2011; Pelletier et 15 

al., 2011; Réjou-Méchain et al., 2014). Aboveground biomass (AGB) is the major pool of 16 

biomass in tropical forests (Eggleston et al., 2006). The AGB of a tree (or TAGB) is generally 17 

predicted by empirically derived allometric equations that use measurements of the size of an 18 

individual tree as predictors of its mass (Clark and Kellner, 2012). Among these predictors, 19 

diameter at breast height (D) and total tree height (H) are often used to capture volume 20 

variations between trees, whereas wood density (ρ) is used to convert volume to dry mass 21 

(Brown et al., 1989). The most currently frequently used allometric equations for tropical 22 

forests (Chave et al., 2005, 2014) have the following form: 𝑇𝐴𝐺𝐵 =  𝛼 ∗ (𝐷2 ∗ 𝐻 ∗ 𝜌)𝛽 , 23 

where diameter, height and wood density are combined into a single compound variable 24 

related to dry mass through a power law of parameters  and . This model form, referred to 25 

hereafter as our reference allometric model form, performs well when  = 1 or close to 1 26 

(Chave et al., 2005, 2014), meaning that trees can roughly be viewed as a standard geometric 27 

solid for which the parameter determines the shape (or form factor) of the geometric 28 

approximation. However, the uncertainty associated with this model is still very high, with an 29 

average error of 50 % at the tree level, illustrating the high natural variability of mass between 30 

trees with similar D, H and ρ values. More importantly, this reference allometric model shows 31 

a systematic underestimation of TAGB of approximately 20 % in average for the heaviest 32 

trees (> 30 Mg) (Fig. 2 in Chave et al. 2014), which may contribute strongly to uncertainty in 33 
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 11 

biomass estimates at the plot level. It is often argued that, by definition, the least-squares 1 

regression model implies that tree-level errors are globally centered on 0, thus limiting the 2 

plot-level prediction error to approximately 5-10 % for a standard 1-ha forest plot (Chave et 3 

al., 2014; Moundounga Mavouroulou et al., 2014). However, systematic errors associated 4 

with large trees are expected to disproportionally propagate to plot-level predictions because 5 

of their prominent contribution to plot AGB (Bastin et al., 2015; Clark and Clark, 1996; Sist et 6 

al., 2014; Slik et al., 2013; Stephenson et al., 2014). Thus, identifying the origin of systematic 7 

errors in such biomass allometric models is a prerequisite for improving local biomass 8 

estimations and thus limiting the risk of uncontrolled error propagation to broad-scale 9 

extrapolations. 10 

As foresters have known for decades, it is reasonable to approximate stem volume 11 

using a geometric shape. Such an approximation, however, is questionable for assessing the 12 

total tree volume, including the crown. Because  is generally close to 1 in the reference 13 

allometric model, the relative proportion of crown to total tree mass (or crown mass ratio) 14 

directly affects the adjustment of the tree form factor   (e.g., Cannell 1984). Moreover, the 15 

crown mass ratio is known to vary greatly between species, reflecting different strategies of 16 

carbon allocation. For instance, Cannell (1984) observed that coniferous species have a lower 17 

proportion of crown mass (10-20 %) than tropical broadleaved species (over 35 %), whereas 18 

temperate softwood species were found to have a lower and less variable crown mass ratio 19 

(20-30 %) than temperate hardwood species (20-70 %; Freedman et al., 1982; Jenkins et al., 20 

2003). In the tropics, distinct crown size allometries have been documented among species 21 

functional groups (Poorter et.al. 2003; Poorter, Bongers, et Bongers 2006; Van Gelder, 22 

Poorter, et Sterck 2006). For instance, at comparable stem diameters, pioneer species tend to 23 

be taller and to have shorter and narrower crowns than understory species (Poorter et al., 24 

2006). These differences reflect strategies of energy investment (tree height vs. crown 25 

development) that are likely to result in different crown mass ratios among trees with similar 26 

D², H and ρ values. Indeed, Goodman et al. (2014) obtained a substantially improved biomass 27 

allometric model when crown diameter was incorporated into the equation to account for 28 

individual variation in crown size. 29 

Destructive data on tropical trees featuring information on both crown mass and 30 

classical biometric measurements (D, H, ρ) are scarce and theoretical work on crown 31 

properties largely remains to be validated with field data. In most empirical studies published 32 

to date, crown mass models use trunk diameter as a single predictor (e.g., Nogueira et al. 33 
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2008; Chambers et al. 2001). Such models often provide good results (R² ≥ 0.9), which reflect 1 

the strong biophysical constraints exerted by the diameter of the first pipe (the trunk) on the 2 

volume of the branching network (Shinozaki et al., 1964). However, theoretical results 3 

suggest that several crown metrics would scale with crown mass. For instance, Mäkelä et 4 

Valentine (2006) modified the allometric scaling theory (Enquist, 2002; West et al., 1999) by 5 

incorporating self-pruning processes into the crown. The authors showed that crown mass is 6 

expected to be a power function of the total length of the branching network, which they 7 

approximated by crown depth (i.e., total tree height minus trunk height). The construction of 8 

the crown and its structural properties have also largely been studied in the light of the 9 

mechanical stresses faced by trees (such as gravity and wind; e.g., McMahon et Kronauer 10 

1976; Eloy 2011). Within this theoretical frame, crown mass can also be expressed as a power 11 

function of crown diameter (King and Loucks, 1978). 12 

In the present study, we used a unique tree mass dataset containing crown mass 13 

information on 673 trees from five tropical countries and a network of forest plots covering 14 

130 ha in central Africa to (i) quantify the variation in crown mass ratio in tropical trees; (ii) 15 

assess the contribution of crown mass variation to the reference pantropical model error, 16 

either at the tree level or when propagated at the plot level; and (iii) propose a new operational 17 

strategy to explicitly account for crown mass variation in biomass allometric equations. We 18 

hypothesize that the variation in crown mass ratio in tropical trees is a major source of error in 19 

current biomass allometric models and that accounting for this variation would significantly 20 

reduce uncertainty associated with plot-level biomass predictions.  21 

 22 

2 Materials and Methods 23 

2.1 Biomass data  24 

We compiled tree AGB data from published and unpublished sources providing information 25 

on crown mass for 673 tropical trees belonging to 132 genera (144 identified species), with a 26 

wide tree size range (i.e., diameter at breast height, D: 10-212 cm) and aboveground tree 27 

masses of up to 76 Mg. An unpublished dataset for 77 large trees (with D ≥ 67 cm) was 28 

obtained from the fieldwork of PP, NB and SM in semi-deciduous forests of Eastern 29 

Cameroon (site characteristics and field protocol in Supplement S1.1 and S1.2.1). The 30 

remaining datasets were gathered from relevant published studies: 29 trees from Ghana 31 

(Henry et al., 2010), 285 trees from Madagascar (Vieilledent et al., 2011), 51 trees from Peru 32 
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(Goodman et al., 2014, 2013), 132 trees from Cameroon (Fayolle et al., 2013) and 99 trees 1 

from Gabon (Ngomanda et al., 2014). The whole dataset is available from the Dryad Data 2 

Repository (http://dx.doi.org/10.5061/dryad.f2b52), with details about the protocol used to 3 

integrate data from published studies presented in the Supplementary Information (S1.2.2). 4 

For the purpose of some analyses, we extracted from this crown mass database (hereafter 5 

referred to as DataCM1) a subset of 541 trees for which total tree height was available 6 

(DataCM2; all but Fayolle et al. 2013) and another subset of 119 trees for which crown 7 

diameter was also available (DataCD; all but Vieilledent et.al. 2011, Fayolle et.al. 2013, 8 

Ngomanda et.al. 2014 and 38 trees from our unpublished dataset). Finally, we used as a 9 

reference the data from Chave et al. (2014) on the total mass (but not crown mass) of 4,004 10 

destructively sampled trees of many different species from all around the tropical world 11 

(DataREF). 12 

 13 

2.2 Forest inventory data  14 

We used a set of 81 large forest plots (> 1 ha), covering a total area of 130 ha, to propagate 15 

TAGB estimation errors to plot-level predictions. The forest inventory data contained the 16 

taxonomic identification of all trees with a diameter at breast height (D) ≥ 10 cm, as well as 17 

total tree height measurements (H) for a subset of trees, from which we established plot-level 18 

H vs. D relationships to predict the tree height of the remaining trees. Details about the 19 

inventory protocol along with statistical procedures used to compute plot AGB (or PAGB) 20 

from field measurements are provided in the Supplementary Information (S1.3). Among these 21 

plots, 80 were from a network of 1-ha plots established in humid evergreen to semi-deciduous 22 

forests belonging to 13 sites in Cameroon, Gabon and the Democratic Republic of Congo 23 

(unpublished data
1
). In addition, we included a 50-ha permanent plot from Korup National 24 

Park, in the evergreen Atlantic forest of western Cameroon (Chuyong et al., 2004), which we 25 

subdivided into 1-ha subplots. Overall, the inventory data encompassed a high diversity of 26 

stand structural profiles ranging from open-canopy Marantaceae forests to old-growth 27 

monodominant Gilbertiodendron dewevrei stands and including mixed terra firme forests 28 

with various levels of degradation. 29 

 30 

                                                        
1
metadata available at http://vmamapgn-test.mpl.ird.fr:8080/geonetwork/srv/eng/search#|7dd46c7d-db2f-

4bb0-920a-8afe4832f1b3 
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2.3 Allometric model fitting 1 

We fitted the pantropical allometric model of Chave et al. (2014) to log-transformed data 2 

using ordinary least-squares regression: 3 

ln(𝑇𝐴𝐺𝐵) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐻 ∗ 𝜌) + 𝜀      (1) 4 

with TAGB (in kg) representing the aboveground tree mass, D (in cm) the tree stem diameter, 5 

H (in m) the total tree height, ρ (in g.cm
-3

) the wood density and 𝜀 the error term, which is 6 

assumed to follow a normal distribution N ~ (0, RSE²), where RSE is the residual standard 7 

error of the model. This model, denoted m0, was considered as the reference model.  8 

 To assess the sensitivity of m0 to crown mass variations, we built a model (m1) that 9 

restricted the volume approximation to the trunk compartment and included actual crown 10 

mass as an additional covariate: 11 

𝑙𝑛(𝑇𝐴𝐺𝐵) =  𝛼 +  𝛽 ∗ ln(𝐷2 ∗ 𝐻𝑡 ∗ 𝜌) + γ ∗ ln(𝐶𝑚) + 𝜀    (2)  12 

with Cm representing the crown mass (in kg) and Ht the trunk height (i.e., height of the first 13 

living main branch, in m). Note that model m1 cannot be operationally implemented (which 14 

would require destructive measurements of crowns) but quantifies the maximal improvement 15 

that can be made through the inclusion of crown mass proxies in a biomass allometric model.  16 

 17 

2.4 Development of crown mass proxies  18 

We further developed crown mass proxies to be incorporated in place of the real crown mass 19 

(Cm) in the allometric model m1. From preliminary tests of various model forms (see 20 

Appendix A), we selected a crown mass sub-model based on a volume approximation similar 21 

to that made for the trunk component (sm1):  22 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐻𝑐 ∗ 𝜌) + 𝜀       (3) 23 

where D is the trunk diameter at breast height (in cm) and Hc the crown depth (that is H – Ht, 24 

in m), available in our dataset DataCM2 (n=541). 25 

In this sub-model, tree crowns of short stature but large width are assigned a small Hc, 26 

thus a small mass, whereas the volume they occupy is more horizontal than vertical. We thus 27 

tested in sub-model sm2 (eq. 4) whether using the mean crown size (eq. 5), which accounts for 28 

both Hc and Cd (the crown diameter in m available in our dataset DataCD (n=119)) reduces 29 

the error associated with sm1: 30 
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ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐶𝑠 ∗ 𝜌) + 𝜀      (4) 1 

𝐶𝑠 =  
(𝐻𝑐+𝐶𝑑)

2
          (5) 2 

Finally, Sillett et al. (2010) showed that for large, old trees, a temporal increment of D and H 3 

poorly reflects the high rate of mass accumulation within crowns. We thus hypothesized that 4 

the relationship between Cm and D²*Hc*ρ (or D²*Cs*ρ) depends on tree size and fitted a 5 

quadratic (second-order) polynomial model to account for this phenomenon (Niklas, 1995), if 6 

any: 7 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐻𝑐 ∗ 𝜌) + γ ∗ ln(𝐷2 ∗ 𝐻𝑐 ∗ 𝜌)2 + 𝜀    (6) 8 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝐷2 ∗ 𝐶𝑠 ∗ 𝜌) + γ ∗ ln(𝐷2 ∗ 𝐶𝑠 ∗ 𝜌)2 + 𝜀   (7) 9 

where eqs. 6 and 7 are referred to as sub-models 3 and 4, respectively.  10 

 11 

2.5 Model error evaluation  12 

2.5.1 Tree-level 13 

From biomass allometric equations, we estimated crown mass (denoted Cmest) or total tree 14 

aboveground mass (denoted 𝑇𝐴𝐺𝐵𝑒𝑠𝑡) including (Baskerville, 1972) bias correction during 15 

back-transformation from the logarithmic scale to the original mass unit (i.e., kg). In addition 16 

to classical criteria of model fit assessment (adjusted R², Residual Standard Error, Akaike 17 

Information Criterion), we quantified model uncertainty based on the distribution of 18 

individual relative residuals (in %), which is defined as follows: 19 

𝑠𝑖 = (
𝑌𝑒𝑠𝑡,𝑖  − 𝑌𝑜𝑏𝑠,𝑖

𝑌𝑜𝑏𝑠,𝑖
) ∗ 100        (8) 20 

where Yobs,i and Yest,i are the crown or tree biomass values in the calibration dataset (i.e., 21 

measured in the field) and those allometrically estimated for tree i, respectively. We reported 22 

the median of |si| values, hereafter referred to as “S”, as an indicator of model precision. For a 23 

tree biomass allometric model to be unbiased, we expect si to be locally centered on zero for 24 

any given small range of the tree mass gradient. We thus investigated the distribution of si 25 

values with respect to tree mass using local regression (loess method; Cleveland, Grosse & 26 

Shyu 1992). 27 

 28 

2.5.2 Plot level 29 
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Allometric models are mostly used to make plot-level AGB predictions from non-destructive 1 

forest inventory data. Such plot-level predictions are obtained by simply summing individual 2 

predictions over all trees in a plot (𝑃𝐴𝐺𝐵𝑝𝑟𝑒𝑑 = ∑ 𝑇𝐴𝐺𝐵𝑝𝑟𝑒𝑑𝑖 ). Prediction errors at the tree 3 

level are thus expected to yield an error at the plot level, which may depend on the actual tree 4 

mass distribution in the sample plot when the model is locally biased. To account for this 5 

effect, we developed a simulation procedure, implemented in two steps, that which 6 

propagated TAGBpred errors to PAGBpred. The first step consists in attributing to each tree i in 7 

a given plot a value of TAGBsim corresponding to the actual AGB of a similar felled tree 8 

selected in DataREF based on its nearest neighbor in the space of the centered-reduced 9 

variables D, H and ρ (here taken as species average from Dryad Global Wood Density 10 

Database, Chave et al., 2009; Zanne et al., 2009). In a second step, the simulation propagates 11 

individual errors of a given allometric model using the local distribution of si values as 12 

predicted by the loess regression: For each TAGBsim, we drew a ssim value from a local normal 13 

distribution fitted with the loess parameters (i.e., local mean and standard deviation) predicted 14 

for that particular TAGBsim. Thus, we generated for each 1-ha plot a realistic PAGBsim (i.e., 15 

based on observed felled trees) with repeated realizations of a plot-level prediction error (in 16 

%) computed for n trees as follows: 17 

 Splot =
∑ (ssim(i)*TAGBsim(i))n

i=1

∑ TAGBsim(i)n
i=1

.        (9) 18 

For each of the simulated plots, we provided the mean and standard deviation of 1000 19 

realizations of the plot-level prediction error. 20 

 All analyses were performed with R statistical software 2.15.2 (R Core Team, 2012), 21 

using packages lmodel2 (Legendre, 2011), segmented (Muggeo, 2003), FNN (Beygelzimer et 22 

al., 2013) and msir (Scrucca, 2011). 23 

 24 

3 Results 25 

3.1 Contribution of crown to tree mass  26 

Our crown mass database (DataCM1; 673 trees, including 128 trees > 10 Mg) revealed a huge 27 

variation in the contribution of crown to total tree mass, ranging from 2.5 to 87.5 % of total 28 

aboveground biomass, with a mean of 35.6 % (± 16.2 %). Despite this variation, a linear 29 

regression (model II) revealed a significant increase in the crown mass ratio with tree mass of 30 

approximately 3.7 % per 10 Mg (Fig. 1-A). A similar trend was observed at every site, except 31 
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for the Ghana dataset (Henry et al. 2010), for which the largest sampled tree (72 Mg) had a 1 

rather low crown mass ratio (46 %). Overall, this trend appeared to have been driven by the 2 

largest trees in the database (Fig. 1-B). Indeed, the crown mass ratio appeared to be nearly 3 

constant for trees ≤ 10 Mg with an average of 34.0 % (± 16.9 %), and then to increase 4 

progressively with tree mass, exceeding 50 % on average for trees ≥ 45 Mg.  5 

 6 

3.2 Crown mass sub-models  7 

All crown mass sub-models provided good fits to our data (R
2
 ≥ 0.9, see Table 1). However, 8 

when information on crown diameter was available (DataCD), models that included mean 9 

crown size in the compound variable (i.e., Cs, a combination of crown depth and diameter, in 10 

sm2 and sm4) gave lower AICs and errors (RSE and S) than models that included the simpler 11 

crown depth metric (i.e., Hc in sm1 and sm3). The quadratic model form provided a better fit 12 

than the linear model form (e.g., sm3 vs. sm1 fitted on DataCM2), which can be explained by 13 

the non-linear increase in crown mass with either of the two proxy variables (D²*Hc*ρ or 14 

D²*Cs*ρ). The slope of the relationship between crown mass and, for example, D²*Hc*ρ 15 

presented a breaking point at approximately 7.5 Mg (Davies’ test P < 0.001) that was not 16 

captured by sub-model sm1 (Fig. 2-A, full line), leading to a substantial bias in back-17 

transformed crown mass estimations (approximately 50 % of observed crown mass for Cmobs 18 

≥ 10 Mg, Fig. 2-B). The quadratic sub-model sm3 provided fairly unbiased crown mass 19 

estimations (Fig. 2-C). Because the first-order term was never significant in the quadratic sub-20 

models, we retained only the second-order term as a crown mass proxy in the biomass 21 

allometric models (i.e., (𝐷2 ∗ 𝐻𝑐 ∗ 𝜌)2for model m2 and (𝐷2 ∗ 𝐶𝑠 ∗ 𝜌)2 for model m3). 22 

 23 

3.3 Accounting for crown mass in biomass allometric models   24 

The reference model (m0) proposed by Chave et al. (2014) presented, when fitted to 25 

DATAREF, a bias that was a function of tree mass, with a systematic AGB over-estimation for 26 

trees < approximately 10 Mg and an under-estimation for larger trees, reaching approximately 27 

25 % for trees greater than 30 Mg (Fig. 3-A). This bias pattern reflected a breaking point in 28 

the relationship between D²*H*ρ and TAGBobs (Davies’ test P < 0.001) located at 29 

approximately 10 Mg (Fig. 3-B). Accounting for actual crown mass (Cm) in the biomass 30 

allometric model (i.e., model m1) corrected for a similar bias pattern observed when m0 was 31 



 18 

fitted to DATACM2 (Fig. 4-A). This result shows that variation in crown mass among trees is a 1 

major source of bias in the reference biomass allometric model, m0. 2 

Using our simulation procedure, we propagated individual prediction errors of m0 and 3 

m1 to the 130 1-ha field plots from central Africa (Fig. 4-B). This process revealed that the 4 

reference pantropical model (m0) led to an average plot-level relative prediction error (Splot) 5 

ranging from -23 % to +16 % (mean = +6.8 %) on PAGBpred, which dropped to +1 to +4 % 6 

(mean = +2.6 %) when the model accounted for crown mass (m1).  7 

Because in practice crown mass cannot be routinely measured in the field, we tested 8 

the potential of crown mass proxies to improve biomass allometric models. Model m2, which 9 

used a compound variable integrating crown depth i.e., (𝐷2 ∗ 𝐻𝑐 ∗ 𝜌)² as a proxy of crown 10 

mass outperformed m0 (Table 2). Although the gain in precision (RSE and S) over m0 was 11 

rather low, the model provided the striking major advantage of being free of significant local 12 

bias on large trees (> 1 Mg; Fig. 5-A). At the plot level, this model provided a much higher 13 

precision (0 to 10 % on PAGBpred) and a lower bias (average error of 5 %) than the reference 14 

pantropical model m0 (Fig. 5-B). Using a compound variable integrating crown size i.e., 15 

(𝐷2 ∗ 𝐶𝑠 ∗ 𝜌)² as a crown mass proxy (model m3), thus requiring both crown depth and 16 

diameter measurements, significantly improved model precision (m3 vs. m2, Table 2) while 17 

preserving the relatively unbiased distribution of relative residuals (results not shown).  18 

 19 

4 Discussion 20 

Using a dataset of 673 individuals including most of the largest trees that have been 21 

destructively sampled to date, we discovered tremendous variation in the crown mass ratio 22 

among tropical trees, ranging from 3 to 88 %, with an average of 36 %. This variation was not 23 

independent of tree size, as indicated by a marked increase in the crown mass ratio with tree 24 

mass for trees ≥ 10 Mg. This threshold was mirrored byechoed a breaking point in the 25 

relationship between total tree mass and the compound predictor variable used in the 26 

reference allometric model of Chave et al. (2014). When the compound variable is limited to 27 

trunk mass prediction, and a crown mass predictor is added to the model, the bias towards 28 

large trees is significantly reduced. As a consequence, error propagation to plot-level AGB 29 

estimations is largely reduced. In the following section, we discuss the significance and 30 

implication of these results from both an ecological and a practical point of view with respect 31 
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to resource allocation to the tree compartments and to carbon storage in forest aboveground 1 

biomass. 2 

 3 

4.1 Crown mass ratio and the reference biomass model error 4 

We observed an overall systematic increase in the crown mass ratio with tree mass. This 5 

ontogenetic trend has already been reported for some tropical canopy species (O’Brien et al., 6 

1995) and likely reflects changes in the pattern of resource allocation underlying crown 7 

edification in most forest canopy trees (Barthélémy and Caraglio, 2007; Hasenauer and 8 

Monserud, 1996; Holdaway, 1986; Moorby and Wareing, 1963; Perry, 1985). The overall 9 

increase in the carbon accumulation rate with tree size is a well-established trend (Stephenson 10 

et al., 2014), but the relative contribution of the trunk and the crown to that pattern has rarely 11 

been investigated, particularly on large trees for which branch growth monitoring involves a 12 

tremendous amount of work. Sillett et al. (2010) collected a unique dataset in this regard, with 13 

detailed growth measurements on very old (up to 1850 years) and large (up to 648 cm D) 14 

individuals of Eucalyptus regnans and Sequoia sempervirens species. For these two species, 15 

the contribution of crown to AGB growth increased linearly with tree size and thus the crown 16 

mass ratio. We observed the same tendency in our data for trees ≥ 10 Mg (typically with D > 17 

100 cm). This result thus suggests that biomass allometric relationships may differ among 18 

small and large trees, thus explaining the systematic underestimation of AGB for large trees 19 

observed by Chave et al. (2014). The latter authors suggested that underestimations that 20 

induced by this their model underestimation was due to a potential “majestic tree” sampling 21 

bias, in which scientists would have more systematically sampled trees with well-formed 22 

boles and healthy crowns. We agree that such an effect cannot be completely ruled out, and it 23 

is probably all the more significant that trees ≥ 10 Mg represent only 3 % of the reference 24 

dataset of Chave et al. (2014). Collecting more field data on the largest tree size classes 25 

should therefore constitute a priority if we are to improve multi-specific, broad-scale 26 

allometric models, and the recent development of non-destructive AGB estimation methods 27 

based on terrestrial LiDAR data should help in this regard (e.g., Calders et al., 2015). 28 

However, regardless of whether the non-linear increase in crown mass ratio with tree mass 29 

held to a sampling artifact, we have shown that it was the source of systematic error in the 30 

reference model that used a unique geometric approximation with an average form factor for 31 

all trees. This finding agrees with the results of Goodman et al. (2014) in Peru, who found 32 

significant improvements in biomass estimates of large trees when biomass models included 33 
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tree crown radius, thus partially accounting for crown ratio variations. Identifying predictable 1 

patterns of crown mass ratio variation, as performed for crown size allometries specific to 2 

some functional groups (Poorter et.al. 2003; Poorter, Bongers, et Bongers 2006; Van Gelder, 3 

Poorter, et Sterck 2006), therefore appears to be a potential way to improve allometric models 4 

performance. 5 

 6 

4.2 Model error propagation depends on targeted plot structure 7 

The reference pantropical model provided by Chave et al. (2014) presents a bias pattern that 8 

is a function of tree size (i.e., average over-estimation of small tree AGB and average 9 

underestimation of large tree AGB). Propagation of individual errors to the plot level therefore 10 

depends on tree size distribution in the sample plot, with over- or under-estimations 11 

depending on the relative importance of small or large trees in the stand (e.g., young 12 

secondary forests vs. old-growth forests; see Appendix B for more information on the 13 

interaction between model error, plot structure and plot size). This effect is not consistent with 14 

the general assumption that individual errors should compensate at the plot level. Although 15 

the dependence of error propagation on tree size distribution has already been raised 16 

(Magnabosco Marra et al., 2015; Mascaro et al., 2011), it is generally omitted from error 17 

propagation procedures (e.g., Picard, Bosela, et Rossi 2014; Moundounga Mavouroulou et al. 18 

2014; Chen, Vaglio Laurin, et Valentini 2015). When propagating local bias to our 130 1-ha 19 

plots in central Africa, the reference pantropical model led to plot-level errors ranging from -20 

15% to +8%. The presence of large trees, in particular their relative contribution to stand total 21 

AGB, explained most of between-plots error variation (Appendix B). We can therefore 22 

hypothesize that in the Neotropics where large trees are less common in forests than in the 23 

Paleotropics (Lewis et al., 2013; Slik et al., 2013), the model would more systematically over-24 

estimate plots AGB. Interestingly, most of the plots undergoing a systematic AGB under-25 

estimation (i.e. high number of large trees) were located in the Atlantic forests of Western 26 

Cameroon (Korup NP), where large individuals of Lecomtedoxa klaineana (Pierre ex Engl) – 27 

a so-called “biomass hyperdominant” species (sensu Bastin et al. 2015) – are particularly 28 

abundant. Interactions between model error and forest structure may thus also hinder the 29 

detection of spatial variations in forests AGB between forest types as well as at local scales 30 

e.g., between patches dominated or not by Lecomtedoxa klaineana trees. At the landscape or 31 

regional scale, plot-level errors may average out if the study area is a mosaic of forests with 32 

varying tree size distributions. However, if plot estimations are used to calibrate remote 33 
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sensing products, individual plot errors may propagate as a systematic bias in the final 1 

extrapolation (Réjou-Méchain et al. 2014).  2 

 3 

4.3 Accounting for crown mass variation in allometric models 4 

We propose a modeling strategy that decomposes total tree mass into trunk and crown 5 

masses. A direct benefit of addressing these two components separately is that it should 6 

reduce the error in trunk mass estimation because the trunk form factor is less variable across 7 

species than the whole-tree form factor (Cannell, 1984). We modeled tree crown using a 8 

geometric solid whose basal diameter and height were the trunk diameter and crown depth, 9 

respectively. Crown volume was thus considered as the volume occupied by branches if they 10 

were squeezed onto the main stem (“as if a ring were passed up the stem”; Cannell 1984). 11 

Using a simple linear model to relate crown mass to the geometric approximation (sm1, sm2) 12 

led to an under-estimation bias that gradually increased with crown mass (Fig. 2-B). A similar 13 

pattern was observed on all crown mass models based on trunk diameter (Appendix A) and 14 

reflected a significant change in the relationship between the two variables with crown size. 15 

Consistently, a second-order polynomial model better captured such a non-linear increase in 16 

crown mass with trunk diameter-based proxies and thus provided unbiased crown mass 17 

estimates (Fig. 2-C). Our results agree with those of Sillett et al. (2010), who showed that 18 

ground-based measurements such as trunk diameter do not properly render the high rate of 19 

mass accumulation in large trees, notably in tree crowns, and may also explain why the 20 

dynamics of forest biomass are inferred differently from top-down (e.g., airborne LiDAR) or 21 

bottom-up views (e.g., field measurement; Réjou-Méchain et al., 2015).  22 

Changes in trunk and crown mass along tree ontogeny are not independent and indeed, both 23 

variables appeared tightly correlated in our dataset. Including crown mass (or a proxy for this 24 

variable) as an additive covariate to the trunk mass proxy may thus raise the debate on 25 

collinearity between predictors in biomass allometry models (see Picard et al., 2015; Sileshi, 26 

2014). For instance, models m1 and m2 calibrated on DataCM2 led to a variance inflation factor 27 

(VIF) of 5.4 and 8.8, respectively, which is higher than the range of values commonly 28 

considered as critical (2-5, Sileshi, 2014). Yet, we have shown than the inclusion of a separate 29 

crown component to the models reduced model residuals (greater precision) and improved 30 

their distribution over the AGB gradient (greater accuracy), because it allowed us to capture a 31 

general trend in our dataset of a relative increase of crown mass proportion with tree mass. 32 

Assuming that this phenomenon holds in new sets of tropical trees and that we adequately 33 
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sampled the correlation structure between crown and trunk masses, then the issue of 1 

predictors collinearity should therefore not dramatically inflate models prediction errors 2 

(Picard et al., 2015).  3 

From a practical point of view, our tree biomass model m2, which requires only extra 4 

information on trunk height (if total height is already measured) provides a better fit than the 5 

reference pantropical model and removes estimation bias on large trees. In scientific forest 6 

inventories, total tree height is often measured on a sub-sample of trees, including most of the 7 

largest trees in each plot, to calibrate local allometries between H and D. We believe that 8 

measuring trunk height on those trees does not represent a cumbersome amount of additional 9 

effort because trunk height is much more easily measured than total tree height. We thus 10 

recommend using model m2 —at least for the largest trees, i.e., those with D ≥ 100 cm — and 11 

encourage future studies to assess its performance from independent datasets. Including more 12 

detailed crown measurements into biomass allometric equations could also become a 13 

reasonable option in a near future, provided the development of new technologies, like 14 

(mobile) terrestrial Lidar scanning, will make it possible to easily extract crown data and 15 

gather large-scale datasets. 16 

 17 

Appendix A: Crown mass sub-models 18 

A.1 Method 19 

Several tree metrics are expected to scale with crown mass, particularly crown height (Mäkelä 20 

and Valentine, 2006), crown diameter (King and Loucks, 1978) or trunk diameter (e.g., 21 

Nogueira et al. 2008; Chambers et al. 2001). In this study, we tested whether any of these 22 

variables (i.e., trunk diameter, crown height and crown diameter) prevailed over the others in 23 

explaining crown mass variations. Power functions were fitted in log-transformed form using 24 

ordinary least-squares regression techniques (models sm1-X):  25 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝑋) + 𝜀       (A1) 26 

where Cm is the crown mass (in kg); X is the structural variable of interest, namely D for 27 

trunk diameter at breast height (in cm), Hc for crown depth (in m), or Cd for crown diameter 28 

(in m); 𝛼 and 𝛽 are the model coefficients and is 𝜀 the error term assumed to follow a normal 29 

distribution.  30 
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We also assessed the predictive power of the three structural variables on crown mass while 1 

controlling for variations in wood density (ρ, in g.cm
-3

), leading to models sm2-X: 2 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝑋) + γ ∗ ln(𝜌) +  𝜀      (A2) 3 

where γ is the model coefficient of ρ. 4 

Similarly to the cylindrical approximation of a tree trunk, we further established a compound 5 

variable for tree crown based on D and Hc, leading to model sm3: 6 

ln(𝐶𝑚) = 𝛼 + 𝛽 ∗ ln(𝐷² ∗ 𝐻𝑐 ∗ 𝜌) +  𝜀      (A3) 7 

where crown height is a proxy for the length of the branching network. Results obtained using 8 

sm3 are presented in the manuscript as well as in this appendix for comparison with those 9 

obtained using sm1-x and sm2-x.  10 

 11 

A.2 Results & Discussion 12 

Among the three structural variables tested as proxies for crown mass, trunk diameter 13 

provided the best results. Model 1-D presented a high R² (0.88), but its precision was low, 14 

with an S (i.e., the median of unsigned si values) of 43 % (Table A1). Moreover, model error 15 

increased appreciably with crown mass (Fig. A1, caption A). For instance, model estimations 16 

for an observed crown mass of approximately 20 Mg ranged between 5 and 55 Mg. 17 

Nevertheless, sm1-D outperformed sm1-Hc (DataCM2, AIC of 1182 vs. 1603, respectively) and 18 

was slightly better than sm1-Cd (DataCD, AIC of 257 vs. 263, respectively), suggesting that the 19 

width of the first branching network pipe is a stronger constraint on branches' mass than the 20 

external dimensions of the network (i.e., Hc, Cd).  21 

The model based on crown depth (sm1-Hc) was subjected to a large error (S of c. 80 %; 22 

Table A1) and clearly saturated for a crown mass ≥ 10 Mg (Fig. A1, caption B). Because 23 

crown depth does not account for branch angle, it does not properly render the length of the 24 

branching network. The saturation threshold observed on large crowns supports the 25 

observations of Sillett et al. (2010): Tree height, from which crown depth directly derives, 26 

levels off in large/adult trees, but mass accumulation—notably within the crowns—continues 27 

far beyond this point. It follows that crown depth alone does not allow for the detection of the 28 

highest mass levels in large/old tree crowns. 29 

The model based on crown diameter presented a weaker fit than sm1-D, with a higher 30 

AIC (DataCD, 263 vs. 257) and an individual relative error approximately 10 % higher (S of 31 
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approximately 50 % and 40 %, respectively; Table A1). However, crown diameter appeared 1 

more informative regarding the mass of the largest crowns than trunk diameter (Fig. A2, 2 

captions A and B). In fact, the individual relative error of sm1-Cd on crowns ≥ 10 Mg was only 3 

26 %, versus 47 % for sm1-D. 4 

Accounting for variations in wood density improved the model based on trunk 5 

diameter. As shown in Fig. A1, using a color code for wood density highlighted a predictable 6 

error pattern in model estimations: Trunk diameter tends to over- or under-estimate the crown 7 

mass of trees with high or low wood density, respectively. This pattern is corrected for in sm2-8 

D, which presents a lower AIC than sm1-D (i.e., 1079) and an individual relative error 9 

approximately 15 % lower (i.e., 37 %; Table A1). Interestingly, whereas sm2-D appeared to be 10 

more accurate than sm1-D in its estimations of large crown mass (Fig. A1, caption C), it also 11 

presented an under-estimation bias that gradually increased with crown mass. Including ρ in 12 

the model based on Cd improved the model fit (AIC of 251 vs. 262 for sm2-Cd and sm1-Cd, 13 

respectively) and decreased the individual relative error by approximately 15 %. Similarly to 14 

sm1-Cd, sm2-Cd was outperformed by its counterpart based on D (AIC of 185). Moreover, the 15 

gain in precision in sm2-Cd was localized on small crowns, whereas estimations on large 16 

crowns were fairly equivalent (Fig. A2, caption C-D). Model 2-D was more precise on 17 

crowns ≥ 10 Mg, with an individual relative error of 23 % versus 32 % for sm2-Cd. 18 

The strongest crown mass predictor, D, was used as the basis of a geometric solid 19 

approximating crown volume (D²*Hc) and, in turn, mass (D²*Hc*ρ) in model sm3. With one 20 

less parameter than sm2-D, sm3 presented a lower AIC than the former model (i.e., 1012), but 21 

the two models provided a fairly similar fit to the observations (RSE of 0.65 vs. 0.61 and S of 22 

37 % vs. 36 % for sm2-D and sm3, respectively). This result indicates that when D and ρ are 23 

known, information on crown depth is of minor importance for predicting crown mass. 24 

However, this conclusion applies to our dataset only because Hc might be more informative 25 

regarding crown mass variations when considering sites/species with more highly contrasting 26 

D-H or D-Hc relationships.  27 

Similarly to sm2-D, sm3 presented an under-estimation bias that increased gradually 28 

with crown mass (illustrated in Fig. A1 caption D).  29 

 30 

 31 

 32 
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Appendix B: Plot-level error propagation 1 

We used the error propagation procedure described in the Methods section of the manuscript 2 

to estimate the mean plot-level AGB prediction error that could be expected from m0 3 

calibrated on DATAREF (i.e., the pantropical model proposed in Chave et al. 2014). Model 4 

error was propagated on 130 1-ha sample plots of tropical forest in central Africa, a network 5 

of 80 1-ha plots (field inventory protocol in Supplement Information S1.3) to which we added 6 

50 1-ha plots from Korup 50-ha permanent plot (Chuyong et al., 2004). We further sub-7 

sampled Korup 50-ha permanent plot in sub-plots of varying sizes (from 25 ha to 0.1 ha) to 8 

evaluate the effect of plot size on plot-level AGB prediction error.    9 

From the simulated PAGBsim for the 130 1-ha plots, we estimated that the reference 10 

pantropical model, m0, propagated to PAGBpred a mean prediction error (over 1000 11 

realizations of Splot) that ranged between -15 % and +7.7 % (Fig. B1-A), mostly caused by 12 

trees with mass ≥ 20 Mg (Fig. B1-B). This trend was particularly evident in the undisturbed 13 

evergreen stands of Korup (triangles in Fig. B1-A-B), where patches of Lecomtedoxa 14 

klaineana (Pierre ex Engl) individuals largely drove the PAGB predictions (R²= 0.87, model 15 

II OLS method). This species generates high-statured individuals of high wood density, which 16 

frequently exceed 20 Mg and result in underestimates of plot-level biomass. Interestingly, 17 

some high-biomass plots could still be over-estimated when PAGBpred was concentrated in 18 

trees weighting less than 20 Mg. 19 

 As a consequence of m0 bias concentration in large trees, plot-level prediction errors 20 

for the 50 ha in Korup tended to stabilize near 0 for subplots ≥ 5 ha only. Below this threshold 21 

(i.e., for subplots ≤ 1 ha), the median error is positive but negative outliers are more frequent 22 

(Fig. B2). Indeed, on the one hand, small plots are less likely to encompass large trees and 23 

have a positive prediction error of up to approximately +7.5 %. On the other hand, a single 24 

large tree can strongly affect PAGBpred, occasionally leading to a large underestimation of 25 

small plots AGB that can exceed -15 % for a 0.25-ha and -20 % for a 0.1-ha subplot.  26 
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Table 1. Crown mass sub-models. Model variables are Cm (crown mass, kg), D (diameter at breast height, cm), Hc (crown depth, m), Cs 

(average of Hc and crown diameter, m) and ρ (wood density, g.cm
-3

). The general form of the models is ln(Y) = a+ b* ln(X) + c*ln(X)². Model 

coefficient estimates are provided along with the associated standard error denoted SEi, with i as the coefficient. Coefficients’ probability value 

(pv) is coded as follows: pv ≤ 10
-4

 : '***', pv ≤ 10
-3

 : '**', pv ≤ 10
-2

 : '*', pv ≤ 0.05 : '.' and pv ≥ 0.05 : 'ns'. Models’ performance parameters are R² 

(adjusted R square), RSE (residual standard error), S (median of unsigned relative individual errors, in %), AIC (Akaike Information Criterion), 

dF (degree of freedom).    

 

model Dataset 
Model input Model parameters Model performance 

 Y X X² a b c SEa SEb SEc R² RSE S AIC dF 

sm1 
DataCM2 

(n=541) 
Cm  

D²*Hc*ρ -  -2.6345*** 0.9368*** 
 

0.1145 0.0125 
 

0.91 0.615 36.0 1012.6 539 

sm3 D²*Hc*ρ (D²*Hc*ρ)² 0.9017. 0.1143ns
 
 0.0452*** 0.5049 0.1153 0.0063 0.92 0.588 35.2 965.2 538 

- (D²*Hc*ρ)² 1.3990*** 
 

0.0514*** 0.0605 
 

0.0007 0.92 0.588 35.5 964.2 539 

sm1 

DataCD 

(n=119) 
Cm  

D²*Hc*ρ -  -2.9115*** 0.9843*** 
 

0.3139 0.0289 
 

0.91 0.516 31.8 184.1 117 

sm2 D²*Cs*ρ - -3.0716*** 0.9958*** 

 

0.2514 0.0231 

 

0.94 0.414 21.8 131.9 117 

sm3 D²*Hc*ρ (D²*Hc*ρ)² -0.2682ns
 
 0.4272 ns

 
 0.0283. 1.4077 0.2908 0.0147 0.91 0.510 29.7 182.3 116 

- (D²*Hc*ρ)² 1.7830*** 
 

0.0498*** 0.1774 
 

0.0015 0.91 0.512 32.2 182.5 117 

sm4 D²*Cs*ρ (D²*Cs*ρ)² -0.5265ns 0.4617. 0.0270* 1.1443 0.2356 0.0119 0.94 0.407 128.7 25.9 116 

- (D²*Cs*ρ)² 1.6994*** 
 

0.0502*** 0.1421 
 

0.0012 0.94 0.412 130.5 25.8 117 
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Table 2. Models used to estimate tree AGB. Model parameters are D (diameter at breast height, cm), H (total height, m), Ht (trunk height, m), Hc 

(crown depth, m), Cm (crown mass, kg), Cs (average of Hc and crown diameter, m) and ρ (wood density, g.cm
-3

). The general form of the 

models is ln(Y) = a+ b* ln(X1) + c*ln(X2). Model coefficient estimates are provided along with the associated standard error denoted SE i, with i 

as the coefficient. Coefficients’ probability value (pv) is coded as follows: pv ≤ 10
-4

 : '***', pv ≤ 10
-3

 : '**', pv ≤ 10
-2

 : '*', pv ≤ 0.05 : '.' and pv ≥ 

0.05 : 'ns'. Models’ performance parameters are R² (adjusted R square), RSE (residual standard error), S (median of unsigned relative individual 

errors, in %), AIC (Akaike Information Criterion), dF (degree of freedom).  

 

 

model Dataset 
Model input Model parameters Model performance 

 Y X1 X2 a b c SEa SEb SEc R² RSE S AIC dF 

m0 
DataREF 
(n=4004) 

AGB  D²*H*ρ 
 

-2.7628*** 0.9759*** 
 0.0211 0.0026 

 

0.97 0.358 22.1 3130.7 4002 

m0 
DataCM2 

(n=541) 
AGB  

D²*H*ρ   -2.5860*** 0.9603*** 
 0.0659 0.0066 

 

0.98 0.314 18.9 284.8 539 

m1 D²*Ht*ρ Cm -0.5619*** 0.5049*** 0.4816*** 0.0469 0.0098 0.0096 0.99 0.199 9.8 -205.7 538 

m2 D²*Ht*ρ (D²*Hc*ρ)² 0.3757*** 0.4451*** 0.0281*** 0.0974 0.0186 0.0010 0.98 0.298 17.8 231.5 538 

m0 

DataCD 
(n=119) 

AGB  

D²*H*ρ 
 

-3.1105*** 1.0119*** 
 0.1866 0.0160 

 

0.97 0.268 15.0 28.1 117 

m1 D²*Ht*ρ Cm -0.5851*** 0.4784*** 0.5172*** 0.1117 0.0203 0.0185 0.99 0.142 7.0 -121.2 116 

m2 D²*Ht*ρ (D²*Hc*ρ)² -0.2853ns 0.5804*** 0.0216*** 0.2499 0.0397 0.0019 0.97 0.272 14.5 32.5 116 

m3 D²*Ht*ρ (D²*Cs*ρ)² 0.5800* 0.4263*** 0.0283*** 0.2662 0.0444 0.0021 0.98 0.246 12.3 9.3 116 
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Table A1. Preliminary crown mass sub-models. Model parameters are D (diameter at breast height, cm), Hc (crown depth, m), Cm (crown mass, 

kg), Cd (crown diameter, in m), Cs (average of Hc and Cd, m) and ρ (wood density, g.cm
-3

). The general form of the models is ln(Y) = a + 

b*ln(X1) + c*ln(X2). Model coefficients’ estimates are provided along with the associated standard error denoted SEi, with i as the coefficient. 

Coefficients’ probability value (pv) is coded as follows: pv ≤ 10
-4

 : '***', pv ≤ 10
-3

 : '**', pv ≤ 10
-2

 : '*', pv ≤ 0.05 : '.' and pv ≥ 0.05 : 'ns'. Models’ 

performance parameters are R² (adjusted R square), RSE (residual standard error), S (median of unsigned relative individual errors, in %), AIC 

(Akaike Information Criterion), dF (degree of freedom).   

 

model Dataset 
Model input Model parameters Model performance 

Y  X1 X2 a b C SEa SEb SEc R² RSE S AIC dF 

1-D 

DataCM2 

(n=541) 
Cm  

D   -3.6163*** 2,5786***   0.1514 0.0409   0.88 0.719 42.8 1181.6 539 

1-Hc Hc 

 

-0.1711ns 2.6387*** 

 

0.1574 0.0673   0.74 1.060 82.2 1602.8 539 

2-D D ρ -3.0876*** 2.6048*** 1.1202*** 0.1462 0.0372 0.1048 0.90 0.653 36.7 1079.4 538 

2-Hc Hc ρ -0.3952* 2.6574*** -0.3274. 0.1959 0.0679 0.1712 0.74 1.058 80.6 1601.1 538 

3 D²*Hc*ρ 

 

-2.6345*** 0.9368***   0.1145 0.0125   0.91 0.615 36.0 1012.6 539 

1-D 

DataCD 
(n=119) 

Cm  

D   -3.4603*** 2.5684*** 
 

0.4692 0.1075   0.83 0.702 39.8 257.4 117 

1-Hc Hc 

 

1.3923* 2.2907*** 

 

0.5392 0.1938 

 

0.54 1.149 77.4 374.7 117 

1-Cd Cd 

 

-0.1181ns 2.8298*** 

 

0.3403 0.1218 

 

0.82 0.718 52.7 262.8 117 

2-D D ρ -2.7296*** 2.6293*** 1.5243*** 0.3528 0.0793 0.1523 0.91 0.516 30.5 185.3 116 

2-Hc Hc ρ 1.1181ns 2.3356*** -0.2326ns 0.6869 0.2063 0.3596 0.54 1.152 82.9 376.3 116 

2-Cd Cd ρ 0.4677ns 2.7954*** 0.7538*** 0.3585 0.1158 0.2009 0.84 0.681 44.5 251.2 116 
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 1 

Figure 1. (A) Distribution of crown mass ratio (in %) along the range of tree mass (TAGBobs, 2 

in Mg) for 673 trees. Dashed lines represent the fit of robust regressions (model II linear 3 

regression fitted using ordinary least square) performed on the full crown mass dataset (thick 4 

line; one-tailed permutation test on slope: p-value < 0.001) and on each separate source (thin 5 

lines), with symbols indicating the source: empty circles from Vieilledent et al. (2011; 6 

regression line not represented since the largest tree is 3.7 Mg only); solid circles from 7 

Fayolle et al. (2013); squares from Goodman et al. (2013, 2014); diamonds from Henry et al. 8 

(2010); head-up triangles from Ngomanda et al. (2014); and head-down triangles from the un-9 

published data set from Cameroon. (B) Boxplot representing the variation in crown mass ratio 10 

(in %) across tree mass bins of equal width (2.5 Mg). The last bin contains all trees ≥ 20 Mg. 11 

The number of individuals per bin and the results of non-parametric pairwise comparisons are 12 

represented below and above the median lines, respectively.  13 

  14 
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 1 

Figure 2. (A) Observed crown mass versus the compound variable D²*Hc*ρ (in log scale), 2 

displaying a slightly concave relationship. The crown mass sub-model 1 does not capture this 3 

effect (model fit represented with a full line in caption A), resulting in biased model 4 

predictions (caption B), whereas sub-model 3 does not present this error pattern (model fit 5 

represented as a dashed line in caption A, observed crown mass against model predictions in 6 

caption C). Models were fitted on DataCM2. 7 

  8 
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 1 

Figure 3. (A) Relative individual residuals (si in %) of the reference pantropical model of 2 

Chave et.al. (2014) against the tree AGB gradient. The thick dashed line represents the fit of a 3 

local regression (loess function, span = 0.5) bounded by standard errors. (B) Observed tree 4 

AGB (TAGBobs) versus the compound variable D²*H*ρ with D and H being the tree stem 5 

diameter and height, respectively, and ρ the wood density. A segmented regression revealed a 6 

significant break point (thin vertical dashed line) at approximately 10 Mg of TAGBobs (Davies 7 

test p-value < 2.2e-16). 8 

  9 
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 1 

Figure 4. (A) Relative residuals (si, in %) of the reference pantropical model m0 (grey 2 

background) and our model m1 including crown mass (white background). Thick dashed lines 3 

represent fits of local regressions (loess function, span = 1) bounded by standard errors. (B) 4 

Propagation of individual estimation errors of m0 (solid grey circles) and m1 (empty circles) to 5 

the plot level. 6 

  7 
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 1 

Figure 5. (A) Relative individual residuals (si, in %) obtained with the reference pantropical 2 

model m0 (grey background) and with our model including a crown mass proxy, m2 (white 3 

background). Thick dashed lines represent fits of local regressions (loess function, span = 1) 4 

bounded by standard errors. (B) Propagation of individual residual errors of m0 (solid grey 5 

circles) and m2 (empty circles) to the plot level. 6 

  7 
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 13 

Figure A1. Observed against estimated crown mass (in Mg) for models 1-D (caption A), 1-Hc 14 

(caption B), 2-D (caption C), 3 (caption D). Models were calibrated on DataCM2. Tree wood 15 

density was standardized to range between 0 and 1 and represented as a grayscale (with black 16 

the lowest values and white the highest values). 17 

  18 
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 14 

Figure A2. Observed versus estimated crown mass (in Mg) for models 1-D (caption A), 1-Cd 15 

(caption B), 2-D (caption C), 2-Cd (caption D). Models were calibrated on DataCD. Tree wood 16 

density was standardized to range between 0 and 1 and is represented as a grayscale (with 17 

black the lowest values and white the highest values). 18 

  19 
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 1 

Figure B1. Plot-level propagation of individual-level model error. (A) Mean relative error 2 

(Splot, in %) and standard deviation of 1000 random error sampling against simulated plot 3 

AGB and (B) against the fraction (%) of simulated plot AGB accounted for by trees > 20 4 

Mg. Plots from Korup permanent plot are represented by triangles. 5 

  6 
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 10 

Figure B2. Plot-level relative error (Splot, in %) as a function of plot size (in ha) in Korup 11 

permanent plot. Individual plot values are represented by grey dots.  12 

 13 

 14 


