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Abstract. In contrast to physical processes, biogeochemical processes are inherently patchy in the

ocean, which affects both the observational sampling strategy and the representativeness of sparse

measurements in data assimilating models. In situ observations from multiple glider deployments are

analyzed to characterize spatial scales of variability in both physical and biogeochemical properties,

using an empirical statistical model. We find that decorrelation ranges are strongly dependent on5

the balance between local dynamics and mesoscale forcing. The shortest horizontal (5-10 km) and

vertical ( 45 m) decorrelation ranges are for chlorophyll-a fluorescence. Whereas those variables that

are a function of regional ocean and atmosphere dynamics (temperature and dissolved oxygen) result

in anisotropic patterns with longer ranges along (28-37 km) than across the shelf (8-19 km). Variables

affected by coastal processes (salinity and colored dissolved organic matter) have an isotropic range10

similar to the baroclinic Rossby radius (10-15 km).

1 Introduction

At the interface between oceanic and coastal processes, continental shelf regions are characterized by

complex dynamics resulting from the interaction between different water masses at smaller spatial

scales than the open ocean (Yoder et al., 1987). While wind, topography or density driven processes15

mostly influence the mixing and advection of the physical characteristics (temperature and salin-

ity) of the shelf water masses, locally acting ecological processes are also determinant for biogeo-

chemistry (Ballantyne et al., 2011). In particular, the numerous mechanisms driving phytoplankton

distributions have been studied for many years, and highlight the complexity of these interactions

(Martin, 2003). Biogeochemical (BGC) processes operate over a wide range of scales and thus need20

to be considered separately when investigating the dominant length scales of variability for the shelf

water’s properties (Pan et al., 2014).
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The continental shelf off southeastern Australia (between 29 and 34oS) is relatively narrow, be-

tween 16 and 70 km (mean of 37 km) from the coastline to the 200 m isobath. The dynamics on25

the shelf are influenced both by local coastal processes and the episodic intrusion of the large scale

East Australian Current (EAC) and its eddies (Fig. 1, Schaeffer et al. (2013, 2014a)). The EAC is the

western branch of the subtropical gyre in the South Pacific. It is a warm and dynamic poleward flow-

ing current, encroaching on the continental shelf of southeastern Australia between 18oS (Ridgeway

and Godfrey, 1994) and usually 30.7 - 32.4oS (Cetina-Heredia et al., 2014) where it bifurcates east-30

ward, forming the Tasman Front. Further south, eddies are shed (Everett et al., 2012), leading to high

variability in the velocity field and water masses on the shelf (Schaeffer et al., 2014b; Schaeffer and

Roughan, 2015).

Previous studies have highlighted the high spatial heterogeneity of physical (Oke et al., 2008;35

Schaeffer and Roughan, 2015) and biochemical (Hassler et al., 2011) variables on this narrow

shelf. De-correlation time scales were quantified from in situ mooring observations at 30o and 34o

(Roughan et al., 2013), being of the order of hours for cross-shelf velocity to days and weeks for

along-shelf flow and temperature, respectively. However, spatial scales of variability, which are es-

sential for data assimilating models, have not been quantified.40

Here we quantify for the first time the spatial scales of variability of both the physical and the BGC

characteristics of the shelf water masses in the highly dynamic EAC separation zone. We use hydro-

graphic measurements from 23 glider deployments along the coast (Section 2) to understand the

variability amongst physical and BGC properties, the spatial anisotropy and the unresolved variance45

in the rich dataset (Section 3). Finally the results are discussed in the context of their applicability to

modelling and data assimilation, where the perennial issue of relating point based measurements to

model solutions is discussed (Section 4).

2 Methods

2.1 The Dataset50

Ocean gliders are autonomous underwater vehicles which change their buoyancy to dive up through

the water column. Without propulsion, this vertical motion is transformed into horizontal momentum

using the vehicle’s wings, while its pitch controls the forward motion. During the resulting vertical

sawtooth pattern through the water column, a wealth of scientific observations are recorded and

analysed here. Physical and BGC measurements from 23 ocean glider deployments along the south-55

eastern coast of Australia are used in this study. The glider missions span all seasons over 6 years,

between 2008 - 2014, including results from both shallow-diving Slocum (<200m) and deep-diving

Seaglider (<1000m) vehicles. The gliders were typically deployed at 29.4oS although some were
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deployed as far south as 33oS (Fig. 1 and Schaeffer and Roughan (2015)). Missions range from 2-3

weeks to three months depending on the vehicle. The horizontal displacement between two dives60

increases with the depth of the dive, with median over ground distances from 130 m (for dives in 25

- 50 m of water) to 1100 m (in 150 - 200 m of water). The vertical resolution of observations is <2

m due to the fast sampling frequency.

Scientific measurements include depth, temperature and salinity (from a Seabird-CTD), dissolved

oxygen (DO, from Aanderaa or Seabird Oxygen sensors), and optical parameters, chlorophyll-a flu-65

orescence (excited / emitted wavelengths: 470 / 695 nm), colored dissolved organic matter (CDOM,

excited / emitted wavelengths: 370 / 460 nm) and backscatter coefficient at 650-700 nm (from a

WETLabs optical sensor).

Quality control for physical parameters (temperature and salinity) and DO are conducted follow-70

ing ARGO standards (Wong et al., 2014), including a salinity spike correction due to the use of un-

pumped CTDs in early deployments. For bio-optical parameters, quality control is more challenging

due to the instrument bio-fouling and the high temporal and spatial variability of the measurements.

Sensors are calibrated approximately every 2 years. To check for sensor drift, performance tests are

undertaken using purple and black solid standards pre-, post-deployment and also after cleaning the75

sensor from bio-fouling. These tests enable the identification and flagging of suspect measurements.

A global range test is also conducted with a valid fluorescence maximum set to 50 mg m−3, similar

to ARGO standards (Claustre, 2011). A valid regional maximum for CDOM is defined, based on all

the shelf glider deployments, as the mean plus 10 times the standard deviation (= 8.0 ppb) to remove

high outliers (reaching 250 ppb).80

2.2 Characterising spatial variability

The semivariogram approach was first introduced in geostatistics (Journel and Huijbregts, 1978)

to characterize the spatial variability of a sparsely distributed dataset. It describes the average dis-

similarity between measurements as a function of the distance separating them. This difference is85

generally small for measurements within close proximity, increasing with distance, until it does not

depend on a spatial lag (decorrelated values) (Legaard and Thomas, 2007; Tortell et al., 2011).

For a variable anomaly Z(x), the semivariogram or structure function, γ(h), is defined as half the

mean square difference between values at a given separation h:90

γ(h) =
1

2

1

N

∑
([Z(x)−Z(x+h)]2) (1)

where the sum is over all N pairs of observations that are separated by the distance h in the x

direction.
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In order to take into account outliers in the distribution of the empirical anomalies Z, Cressie and

Hawkins (1980) proposed a modified estimate of the structure function which is more robust when95

the anomaly fields deviate from being Gaussian:

γ(h) =
1
2

(
1
N

∑
[Z(x)−Z(x+h)]1/2

)4
0.457 + 0.494

N

(2)

In this equation, the power 1/2 comes from a fourth-root of [Z(x)−Z(x+h)]2 that reduces the

skewness in the distribution, thereby approaching a Gaussian process. The 4th square acts to correct100

the scale and returns the same units as equation 1, while the denominator adjusts the bias resulting

from the whole transformation. This estimate is more robust statistically in the sense that the mean

can be applied to the new distribution. Compared to equation 1, the semivariogram is only slightly

modified for the highest lags when using the robust equation 2, but the parameters (sill, range and

nugget that are investigated in section 3) remain very similar .105

The variables’ anomalies are obtained by removing large scale patterns, resulting from the average

of all glider measurements over predefined bins determined by latitude and depth as in Schaeffer and

Roughan (2015); Schaeffer et al. (2016). This three-dimensional mean state is then smoothed using

a spline method before being removed from each observation.110

Both cross- and along-shelf semivariograms are calculated to investigate anisotropy, where h= ∆x

is the zonal distance, or h= ∆y is the meridional distance, respectively. The cross-shelf semivari-

ance is calculated following equation 2 from measurement pairs located within 0.1o (∼ 10 km) of

latitude. Similarly, the along-shelf structure γ(h) is computed using observations within 0.1o of lon-

gitude (∼ 10 km) from each other. In both cases the distance vector is discretized with intervals of115

500 m and the time lag between pairs is limited to 1 day. The semivariograms are calculated in the

horizontal plane at three depths: surface (0 - 5 m), mixed layer depth (MLD, 5 - 30 m, defined from

the average profiles), or below the MLD at 50 m. Finally, glider profiles are also used to analyse

vertical scales by computing γ(h) with h= ∆z (intervals of 1 m).

120

The semivariance γ(h) is computed from the trimmed mean (20 % outliers excluded) of measure-

ments over all glider deployments, provided there are at least 10 (5 for CDOM across the shelf, see

section 3.4) different missions and more than 30 pairs for each spatial lag, to avoid seasonal bias or

insignificant values.We then fit a mathematical spherical model (Doney et al., 2003) to the empirical

semivariogram in order to extract the physical characteristics of the function, following:125 σ
2
0 + (σ2 −σ2

0)
(

3
2
h
r − 1

2

(
h
r

)3)
0< h≤ r

σ2 h > r
(3)
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where h is the distance between measurements, σ2 is the sill, σ2
0 is the nugget and r the range. (These

variables are described physically in the example below.) Exponential and Gaussian models (Biswas

and Si, 2013) were also tested but were less adequate in terms of sum of squared error (sse) and

adjusted R-square statistics for the fit of the empirical semivariogram.130

3 Results

3.1 Satellite derived SST semivariogram

By way of both example and validation we calculate the cross-shelf semivariogram obtained from

daily satellite remote sensed sea surface temperature (SST) anomalies (Fig. 2). The spherical model135

(Eq. 3) is fitted to the empirical semivariance values calculated for cross-shelf lags over daily maps

of SST in 2014. Only days with spatial coverage greater than 30 % of the domain are considered.

The physical characteristics extracted from the model are indicated in Fig 2. The sill σ2 reflects the

constant background variability of the variable. It is reached at a specific distance, here r = 24 km,

which is referred to as the (decorrelation) range or the dominant length scale. For lags greater than140

this range, the two observations are considered randomly correlated spatially. The nugget, σ2
0 , is

the semivariance obtained from the model at the origin. If different from 0, it implies variability at

shorter spatial scales than those resolved by the observations. This variability is either a) real but un-

resolved, or b) resulting from measurement errors. The semivariogram for SST (Fig. 2) shows very

little nugget effect, showing the accuracy of the measurements and an adequate spatial resolution.145

As expected, the semivariance of the SST anomaly (the annual mean was subtracted) differs with

seasonality, as shown by the monthly empirical semivariograms (Fig. 2). Austral Summer and Au-

tumn months are characterized by a sharper increase in the SST variance with greater variability in

sills, due to more pronounced spatial temperature gradients. However, the semivariogram range is

similar, with dominant cross-shelf scales between 18 km and 32 km (not shown). The semivariogram150

reaches a plateau for all months with the exception of January, suggesting a trend of longer scales

(Yoder et al., 1987) and a limitation of the method.

3.2 Sill: In situ spatial variance

Semivariance values from glider measurements are analysed based on the values of the sill in each155

of the semivariograms shown in Fig. 3. Temperature, dissolved oxygen (DO), and to a lesser extent

colored dissolved organic matter (CDOM) and salinity, are characterised by a greater variance in

the vertical than in the horizontal (see the different y-axis). In contrast, chlorophyll-a fluorescence

shows comparable variability in all directions.

Focusing on horizontal sills (Fig. 3 middle and left), the highest variance for salinity and CDOM160
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occurs at the surface in agreement with the influence of riverine input. The cross-shelf sill for DO is

greater at 50 m than at the surface, suggesting more spatial variability due to bio-physical processes

(remineralisation, respiration or bottom water uplift) than resulting from gas exchange with the at-

mosphere. Chlorophyll-a fluorescence shows little variance at 50 m depth due to light limitation

preventing biological activity. The highest horizontal sill for temperature appears below the MLD165

along the shelf, in agreement with the large latitudinal gradients in bottom temperature evidenced

by Schaeffer and Roughan (2015). The surface temperature sill is smaller when measured by the

gliders (Fig. 3) than by satellite (Fig. 2), possibly due to different measurement depth (in situ 0-5 m

versus skin SST), or seasonality, as glider deployments are more numerous in winter. Nevertheless,

the cross-shelf dominant length scales are in good agreement in the two datasets, with ranges of 25170

and 19 km, respectively.

3.3 Range: In situ scales of variability

Cross-shelf, along-shelf and vertical ranges from the semivariograms are presented in Fig. 3 and

summarized in Table 1. Spatial scales highlight different directional patterns between the parame-175

ters. Horizontal scales for salinity and CDOM are 9-15 km, 5-10 km for chlorophyll-a, similar across

and along the shelf. Mean temperature scales across the shelf are 18-19 km at the surface and in the

MLD, only 14 km at 50 m. Scales found along the shelf are greater, being 28-29 km and 37 km, re-

spectively. This directional anisotropy for temperature is in agreement with the geometry of the shelf

and the influence of the EAC at the shelf break (Fig. 1). Schaeffer and Roughan (2015) and Oke et al.180

(2008) both evidenced greater temperature gradients across than along the shelf, based on satellite,

model and glider datasets. This directional anisotropy is also evident in density (not shown), which

has been shown to be mostly temperature driven (Schaeffer et al., 2014b), and even more intensified

for DO. While DO is characterized by dominant cross-shelf scales similar to salinity and CDOM

(8 - 15 km), the along-shelf spatial variability seems to be linked to the shallow EAC watermass,185

resulting in decorrelation scales of 27 - 35 km (surface and MLD) similar to temperature.

Chlorophyll-a fluorescence has the smallest characteristic length scales both across and along the

shelf, but also in the vertical. Measurements of fluorescence are decorrelated for depth lags greater

than 46 m, in agreement with shallow (near surface) chlorophyll blooms. Vertical length scales for

DO and CDOM (57 - 58 m), are less than those for temperature and salinity (62 m and 66 m, respec-190

tively).

The second peak in semivariance (at 80 - 100 m for temperature, salinity and DO, Fig. 3, right)

indicates an anti-correlation for these lags (Legaard and Thomas, 2007). Negative correlation coef-

ficients reaching -0.6 were previously observed from moored autumnal temperature observations in

100 m water depth at 30oS (Roughan et al., 2013) and attributed to simultaneous heating source in195

the surface layers and cooling at depth due to EAC encroachments and slope water uplift. Our results
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suggest that these current-driven uplifts are associated with a fresher and lower DO signature.

3.4 Nugget: In situ unresolved variance

The fraction of resolved and unresolved variance is estimated from the semivariogram parameters,200

the sill and nugget, respectively. A nugget occurs when the difference between the two closest mea-

surements is greater than 0, and can be seen at the origin of the semivariogram.

Overall, the high density glider observations capture most of the spatial ocean variability. The ad-

vantage of this sampling strategy is that nearly all the vertical variance is resolved for most of the

parameters (ratio σ2
0/σ

2 ∼ 0−3 %, Table 1) due to the high sampling frequency of the gliders com-205

pared to their vertical displacement velocity. The only exception is for CDOM with the nugget being

24% of the total variance (Fig. 3 and Table 1).

Horizontal variability is well resolved for temperature and salinity with ratios σ2
0/σ

2 ≤10 % across

the shelf, mostly ≤14 % along the shelf. Nuggets for BGC parameters are higher, especially for

chlorophyll-a fluorescence and CDOM measurements. While high nuggets for fluorescence can be210

attributed to horizontal sub-scale unresolved biological activity, CDOM datasets might suffer from

measurement errors and quality control issues, as suggested by the high nugget effect in the vertical,

the large outliers and the larger amount of cross-shelf lags necessary for the successful fit of a math-

ematical model (see section 2).

215

4 Discussion

This study combines in situ measurements from multiple glider deployments between 2008 - 2014

on the southeastern Australian continental shelf, to provide insight into the surface and sub-surface

structure of the water-mass dynamics, including the influence of the EAC, upwelling and freshwater

inputs. Analysis of length scale dependent variability demonstrates that much of the spatial variance220

in physical and BGC parameters typically occurs at scales ranging 5 km for chlorophyll-a fluores-

cence to ∼35 km for along-shelf temperature.

In this study the length scales were averaged from data obtained over 2 degrees of latitude, how-

ever we expect more regional variability resulting from the different latitudinal regimes evidenced

by Schaeffer and Roughan (2015), driven by the meso-scale circulation. In addition, we expect that225

spatial scales may vary seasonally, particularly in the biological parameters. This will be tested when

we have sufficient data in each season.

As for all statistics, limitations arise from the amount of data used (especially along the shelf

where the data density is smaller) and contamination of the dataset (for instance CDOM). In geo-230
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statistics, uneven spatial distribution of the observations over the analyzed area can be a limitation as

well but remains difficult to quantify. The major advantage of the semivariogram method used is that

it can be applied to sparse dataset like glider observations, as opposed to spatial autocorrelations for

instance. It allows objective comparison of interesting parameters (range, sill, nugget) for different

variables, directions and depths. In this study, the results compare well when using different statisti-235

cal fits, and are consistent with expected outcomes based on previous knowledge of local dynamics

and related studies in other regions.

4.1 Related studies

From a global analysis of satellite derived surface data, Doney et al. (2003) found comparable small-

scale variability for biology and physics. However, they were not able to characterize scales <15 km240

based on the satellite products used. Here we find that BGC distribution occurs predominantly at

submesoscales (5 - 15 km for chlorophyll-a, CDOM), while scales for temperature are larger (18 -

37 km). These short scales of variability for BGC are in agreement with the effect of nutrient cycling,

reproductive rate and community interaction (e.g. grazing pressure from zooplankton) that can lead

to patches of 5-10 km (Ballantyne et al., 2011; Denman et al., 1977; Goebel et al., 2014).245

According to Mahadevan and Campbell (2002), the fine scale patchy distribution of phytoplankton

is linked to the short characteristic time in response to disturbance in their concentration, as opposed

to the longer time for temperature to adjust to external forcing. We find temperature horizontal scales

(18 - 37 km) that are of the same order of magnitude as over the Malvinas current region, derived

from SST (20 - 47 km, Tandeo et al. (2014)) or over the Middle Atlantic Bight from in situ glider250

observations (10 - 35 km, Todd et al. (2013)). The anisotropic shape of the temperature variance is

consistent with a highly dynamic circulation (Tandeo et al., 2014), here driven by the EAC, charac-

terized by a greater signature in temperature than in salinity.

Spatial variability in salinity is predominantly isotropic and similar to CDOM with decorrelation

length scales of 9 - 15 km, corresponding to the first Rossby baroclinic radius of deformation (12255

- 15 km based on local moored observation, Schaeffer et al. (2014b)), and high surface variance,

suggesting a predominant influence of coastal processes and river input.

4.2 Drivers of variability in a modelling perspective

Assuming that there is no first order feedback from the biology to the physics, we can think of the260

physics variables X = T,S (temperature and salinity) being a function of internal dynamics (I , e.g.

mixing), atmospheric forcing (A), coastal buoyancy forcing arising from river discharge (R), friction

due to shallow bathymetry (F ) and open ocean forcing (e.g. tidal, geostrophy) and water masses (O).

Therefore the state of the model at some spatial location "s" at time t is given by:

X(s, t) = f(I,A,R,F,O) (4)265
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where f(I,A,R,F,O) for the physical variables can be solved numerically in various hydrodynamic

models.

For the state variable of temperature, we assume that there is little effect from river input in this

region (e.g. water coming in is about the same temperature as the surface layer), while the effect

from coastal processes is large for salinity. Therefore Eq. 4 simplifies to:270

T (s, t) = f(I,A,F,O) (5)

S(s, t) = f(I,A,R,F,O) (6)

Given that both T and S are subjected to the same advection and diffusion equations, but differ only

in the source/sink and boundary terms of f(A), f(R) and f(O), those are the major drivers for the275

difference in the along shelf sills and differences in the nugget. Salinity varies over shorter length

scales due to river input and the markedly different freshwater inputs from various catchment sizes

along the coast. Whereas temperature is largely controlled by the regional scale EAC forcing and the

relatively smooth atmospheric forcing applied which varies over spatial scales of 50 km or more.

A similar approach can be applied to the BGC variables, but f(I) is more complicated as it includes280

the turnover of biomass/nutrients between different plankton functional types or nutrient pools. But

ultimately, one would expect f(I) to introduce variability at scales equal to or less than those seen

in salinity. This hypothesis is supported by the ranges reported in the chlorophyll-a fluorescence

and CDOM variables, which are biologically derived. However, as CDOM can also be introduced

into the coastal ocean via river plumes and has a similar sill to salinity, we suggest that the CDOM285

measured by the glider is largely due to river discharge. The DO distribution in the surface layer

is largely a function of air-sea exchange and will have similar variability to temperature due to the

forcing mechanism. However, below the mixed layer, DO is function of the remineralisation rate and

also vertical mixing/exchange with surface water, explaining the shorter decorrelation range in DO

found below the mixed layer.290

4.3 Observing system design

The length scales calculated here can be used to guide the design of ocean observing systems, in par-

ticular to answer questions related to the observation density needed to resolve along and cross-shore

variability in both the physical and biological parameters. The temperature anisotropy in our results,295

consistent with findings of Oke and Sakov (2012) and Jones et al. (2015), shows that the required

observation density will vary along and across the shelf. Thus high resolution cross-shelf mooring

or glider lines every Y km are more useful than simply a glider endurance line or equally spaced

moorings. The distance Y can be initially derived from satellite observations, or determined after a
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number of glider missions. In contrast, the understanding of BGC variability, characterized by short300

isotropic length scales, will require high spatial resolution observations (e.g. gliders) to determine

the representativeness of the measurements.

4.4 Data assimilation

There are a variety of data assimilation systems based upon two broad approaches, ensemble meth-305

ods (e.g. Oke et al. (2008), Jones et al. (2012)) and variational methods, that minimize a cost func-

tion (e.g. Moore (2011)). Regardless of the approach used, assumptions are made about the spatial

footprint of an observation, for which a key parameter is the decorrelation length scale. Within the

ensemble (e.g. Oke et al. (2008)) and hybrid (Pan et al., 2011) data assimilation approaches, covari-

ance localization (Sakov and Bertino, 2011) is used to increase the rank of the background error310

covariance matrix. The anisotropic (along-shelf and cross-shelf) ranges presented in this study and

method used to derive them, allow for the direct calibration of the decorrelation scales enforced

within most data assimilation systems that are currently in use. Additionally, estimates of how these

decorrelation scales vary in time is also available (e.g. Figure 2), suggesting that an optimally tuned

data assimilation system should allow for temporal variation in the localization or provide an assess-315

ment of the temporal variability of the ensemble from an an Ensemble Kalman Filter (EnKF) system.

The results from this study also allow us to partly answer the question of how to relate a point

based observation with the output from a numerical model, which assumes the average concentration

of a variable within a model cell Xmod. If we take a Bayesian view stating that we observe some320

true state variable with error (e.g. Parslow et al. (2013)), this can be written as:

Xobs =Xtrue + εm + εv (7)

whereXobs is the observed variable,Xtrue is the true unknown value of the variable, εm is the instru-

ment error and εv is the sampling error due to unresolvable small scale variability. The observation

is then related to the modelled variable by:325

Xmod =Xobs + εr (8)

where εr is typically referred to as the representation error (Oke and Sakov, 2008) associated with

difference in kind (e.g. measuring fluorescence, but modelling biomass), or averaging across a model

grid cell that contains a point measurement.

Assuming εm is known from calibration studies, results of studies like that presented here allow us330

to explore the characteristics of εv and εr. For a particular variable, we can assume that the nugget

is approximately equal to εv and given a-priori information about a model grid, the spherical model

applied to the semivariogram can then also be used to provide an empirical estimate for εrl.
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To this end, the results of this study allow us to characterise the length scales of the physical335

and BGC properties on the shelf and relate variability to the dynamical drivers, but additionally, the

methodology developed here can be directly used to improve observing system design, and to tune

key data assimilation parameters that are presently poorly understood.
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Figure 1. Monthly mean Sea Surface Temperature (AVHRR L3S product) over southeastern Australia for Oc-

tober 2014. The coastline, 200 and 2000 m isobaths are shown. Glider tracks over the shelf (depth <200 m)

are indicated by colored lines. A schematic of the typical circulation is shown with the poleward flowing East

Australian Current (EAC) bifurcating to the East around 32oS, its weaker extension, anticyclonic and cyclonic

eddies.

15



Distance across-shelf (km)
0 5 10 15 20 25 30 35 40 45 50

S
S

T
 s

e
m

iv
a
ri

a
n
ce

 (
o C

)2

0.5

1

1.5

2
R2: 0.97 Jan

Feb
Mar
Apr
May
Jan
Jul
Aug
Sep
Oct
Nov
Dec

Range: 24 km

Nugget:
0.01

Sill: 0.51

oC2

oC2

Figure 2. Cross-shelf empirical semivariogram estimated from daily SST over the southeastern Australian

shelf (depth <200 m, 29 - 34oS, AVHRR L3S product) for 2014 (black bold dots) and for each month in 2014

(colored dots). The spherical model (red line, R-squared of 0.97 for the fit) and resulting parameters (range, sill,

nugget) are shown for 2014 semivariance.

Temperature Salinity Fluorescence DO CDOM

C
ro

ss
-s

he
lf

range 19 km 13 km 5 km 10 km 10 km∗

Surface ratio σ2
0/σ

2 6 % 6 % 17% 27 % 19%
R-squared fit 0.96 0.94 0.89 0.85 0.49

range 18 km 10 km 8 km∗ 8 km 13 km
MLD ratio σ2

0/σ
2 4 % 0% 13% 18% 2%

R-squared fit 0.92 0.83 0.58 0.89 0.96

range 15 km 5 km 15 km 11 km
50m ratio σ2

0/σ
2 10% 15% 4% 17%

R-squared fit 0.97 0.73 0.98 0.88

A
lo

ng
-s

he
lf

range 30 km 15 km∗ 8 km 35 km 11 km∗

Surface ratio σ2
0/σ

2 14% 14 % 20% 2% 21%
R-squared fit 0.93 0.52 0.83 0.90 0.56

range 28 km 10 km 10 km∗ 28 km 9 km∗

MLD ratio σ2
0/σ

2 8% 23% 21% 18 % 10%
R-squared fit 0.99 0.93 0.53 0.96 0.27

range 37 km 5 km 4 km∗

50m ratioσ2
0/σ

2 1% 8% 5%
R-squared fit 0.97 0.87 0.33

Ve
rt

ic
al range 62 m 66 m 46 m 58 m 57 m

ratio σ2
0/σ

2 0% 3 % 1% 0% 24%
R-squared fit 0.97 0.98 0.99 0.98 0.99

Table 1. Spatial scales of variability for spherical fit to semivariograms for different parameters and depths

across, along the shelf and along the vertical. The range, percentage ratio of the nugget to the sill (σ2
0/σ

2) and

R-squared for the model fit to experimental values are indicated (ranges with ∗ correspond to R-squared <0.7).

Blanks indicate unsuccessful fit to the spherical model.
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