
REVIEWER #1: 

 

General comments: 

In this paper, the authors analyze the spatial distribution of decorrelation ranges on the east coast 
of Australia using the semivariogram approach. The decorrelation scale analysis at east coast of 
Australia is relatively new. Over all, the quality of the work done and of the manuscript are 
adequate. However, more details are needed in order to make the content clearer and more 
understandable. Below are some comments that I hope can be used to improve the manuscript. 

We thank the reviewer for his/her positive comments. We have now enhanced the clarity of the 
manuscript and provided more details about the method and results. Please find the details below. 

 

Specific comments: 

1. More details of the equations are needed in order to let readers understand the method the 
authors use. For example: 1) Equation (1): what does “variance” rep resent in this equation? 
Variance of what? Please specify. 2) Equation (2): what the general physical meaning of this 
equation? Why is equation (2) more robust than equation (1)? What do the number 0.457 and 
0.494 represent? Why the 4th square in this equation? The details of this equation is especially 
important because this is the whole paper based on. 3) Equation (3): The author explain the 
meaning of sill, nugget and the range in this equation, but what is the meaning of this equation in 
general? Why do the authors separate it into 3 sections (h=0, 0<h<r. . .. . .)? What are the 3/2 and 
3rd square mean? What is the benefits and drawback of this equation? 

Equation 1: 

Variance of [Z(x)-Z(x+h)] is changed into 
�

�
	
�

�
	∑(�(�) − �(� + ℎ))� for more clarity.  

Equation 2: 

We thank the reviewer for pointing out the need for more details to explain equation 2, which are 
now included in the manuscript. 

“In this equation, the power ½ comes from a fourth-root of [Z(x)-Z(x+h)]2 that reduces the 
skewness in the distribution, thereby approaching a Gaussian process. The 4th square acts to 
correct the scale and returns the same units as equation 1, while the denominator adjusts the bias 
resulting from the whole transformation. This estimate is more robust statistically in the sense that 
the mean can be applied to the new distribution. Compared to equation 1, the semivariogram is 
only slightly modified for the highest lags when using equation 2, but the parameters (sill, range 
and nugget that are investigated in section 3 remain very similar.” 

Equation 3 is the definition of a classic spherical (or Matheron) model as opposed to other 
mathematical models such as a linear plateau, Gaussian or exponential models. They can all be 
fitted to semivariograms in order to extract the parameters of interest (see Biswas and Si, 2013, for 
a complete description of the different models). Two additional models were tested but were less 
adequate in terms of sum of squared error (sse) and adjusted R-square statistics for the fit (see 
last paragraph in section 2.2). 

 



2. Figure 3 lower left panel. Compared with across-shelf Temperature, Salinity, Fluorescence and 
DO, the across-shelf distance of CDOM extends more than 20 km, while all other variables are 
limited to less than 20 km (left panel a, b, c, and d). Why is that? I didn’t find the explanation in the 
manuscript. Please explain. 

We thank the reviewer for pointing this out. Cross-shelf semivariogram for CDOM was performed 
for distance lags for which there were more than 5 glider missions as opposed to other variables 
(10 glider missions) for which the good fit allowed to be more selective and add significance to the 
statistics. Again, this is because statistics on CDOM appeared to be more challenging than other 
variables due to the poor quality dataset. The minimum of 30 valid data pairs per lag that was 
defined by Journel and Huijbregts (1978) is however kept, as in Doney et al. (2003). This is now 
specified in the manuscript. The extended data (lower threshold on the number of glider missions) 
required to successfully fit the mathematical model to the across-shelf CDOM semivariogram 
explains the extended x-axis (to lags up to 25 km) in Fig. 3 lower left panel. 

REFERENCE: 

Journel, A. G., Huijbregts, C.J., 1978. Mining Geostatistics, Academic Press Inc, London, UK  

 

3. In figure 2, the authors separate the analysis into 12 months. Why not do the same for figure 3? 
Please explain. 

While SST observations are provided every day with a good spatial coverage (except for cloud 
cover), glider missions are sparse and not numerous enough to break them down into months. As 
specified in the discussion, we expect that spatial scales may vary seasonally, particularly in the 
biological parameters. This will be tested when we have sufficient data in each season. We still 
believe that the monthly information supplied in Fig. 2 on top of the annual mean provides valuable 
information on how seasons may affect the variance, but barely the range of the SST. 

 

4. Due to the method used here is highly empirical, the authors should discuss the advantages and 
limitations of the method. 

A paragraph discussing the advantages and limitations of the method is now included in the 
discussion. 

“As for all statistics, limitations arise from the amount of data used (especially along the shelf 
where the data density is smaller) and contamination of the dataset (for instance CDOM).  In 
geostatistics, uneven spatial distribution of the observations over the analyzed area can be a 
limitation as well but remains difficult to quantify. The major advantage of the semivariogram 
method used is that it can be applied to sparse dataset like glider observations, as opposed to 
spatial autocorrelations for instance. It allows to objectively compare interesting parameters (range, 
sill, nugget) for different variables, directions and depths. In this study, the results compare well 
when using different statistical fits, and are consistent with expected outcomes based on previous 
knowledge of local dynamics and related studies in other regions.” 

 

5. Decorrelation scale is the analysis variable of this manuscript, and it is also one of the most 
important parameters in setting up data assimilation procedures. The authors mentioned the 
observational errors and representation errors in the data assimilation section, but they didn’t 



mention decorrelation scale at all, which should be the center of this paper. I suggest the authors to 
add discussion of decorrelation scale in this section. The following paper is an example setting up 
data assimilation projection space according to decorrelation scales: Pan, C., Yaremchuk, M., 
Nechaev, D., 2011. Variational assimilation of glider data in the Monterey Bay. Journal of Marine 
Research 69 (2-3), 331-346. 

We thank the reviewer for the relevant reference. A paragraph has been added in the discussion 
(section 4.4). 

“There are a variety of data assimilation systems based upon two broad approaches, ensemble 
methods (e.g. Oke et al. 2008, Jones et al., 2012) and variational methods, that minimize a cost 
function (e.g. Moore et al;, 2011). Regardless of the approach used, assumptions are made about 
the spatial footprint of an observation, for which a key parameter is the decorrelation length scale. 
Within the ensemble (e.g. Oke 2008) and hybrid (Pan et al., 2011) data assimilation approaches, 
covariance localization (Sakov and Bertino 2011) is used to increase the rank of the background 
error covariance matrix. The anisotropic (along-shelf and cross-shelf) ranges presented in this 
study and method used to derive them, allows for the direct calibration of the decorrelation scales 
enforced within most data assimilation systems that are currently in use. Additionally, estimates of 
how these decorrelation scales vary in time is also available (e.g. Figure 2), suggesting that an 
optimally tuned data assimilation system should allow for temporal variation in the localization or 
provide an assessment of the temporal variability of the ensemble from an Ensemble Kalman Filter 
(EnKF) system.” 

REFERENCES: 

Jones, E.M., Oke, P.R., Rizwi, F. and Murray, L.M., 2012. Assimilation of glider and mooring data 
into a coastal ocean model. Ocean Modelling, 47, pp.1-13. 

Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T. and Zavala-Garay, J., 2011. 
The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation sys-
tems: Part I–System overview and formulation. Progress in Oceanography, 91(1), pp.34-49. 
 
Oke, P.R., Brassington, G.B., Griffin, D.A. and Schiller, A., 2008. The Bluelink ocean data 
assimilation system (BODAS). Ocean Modelling, 21(1), pp.46-70. 

Pan, C., Yaremchuk, M., Nechaev, D. and Ngodock, H., 2011. Variational assimilation of glider data 
in Monterey Bay. Journal of Marine Research,69(2-3), pp.331-346. 

Sakov, P. and Bertino, L., 2011. Relation between two common localisation methods for the 
EnKF. Computational Geosciences, 15(2), pp.225-237. 

 

6. According to figure 1, all glider observations are confined within 200 m isobath. This means the 
decorrelation scales are all confined within 200 m isobaths. So how does this affect cross-shelf 
decorrelation scales? 

As specified in the title, we only consider shelf dynamics and define the outer end of the 
continental shelf as the 200 m isobath, consistent with previous studies. The geometry of the shelf 
(‘relatively narrow, between 16 and 70 km (mean of 37 km)’ definitely influences the cross-shelf 
decorrelation scales, as specified in the manuscript. Still, the variability of cross-shelf scales found 
between different depths and different parameters and the isotropic patterns give new insights into 
the regional dynamics that are not only related to the geography of the area. 



 

Minor comment: 

Figure 1: “Across-shelf” does not seem to be a normal word. “cross-shelf” might be more 
appropriate. 

This has been modified throughout the manuscript. 

 

According to my observation, I believe this paper is well-organized. The method the author used is 
straightforward, and the figures support the results, although more details are needed to enrich the 
content. Therefore, I recommend minor revision. 

We believe that the new version of the manuscript is now more detailed and improved, and thank 
the reviewer for his/her contribution. 



REVIEWER #2: 

 

This manuscript uses an extensive set of observations on the southeast Australian continental 
shelf to estimate the scales of variability of various factors. As discussed in the manuscript, 
knowledge of such scales is critical to designing observational and modeling systems that resolve 
key processes. I find no major faults in the manuscript, but have a number of questions and 
comments that the authors should address to improve the manuscript. 

We thank the reviewer for his/her interest and relevant questions that helped us improving the 
manuscript. 

 

1. The description of gliders and the sampling (page 20104) is a bit too vague, and at times 
somewhat inaccurate. A citation to a general glider reference (e.g., Davis et al. 2003 or Rudnick, et 
al. 2004) would be helpful for the reader. The statement that gliders ’use seawater to change their 
buoyancy’ is not particularly accurate; each type of glider changes its volume (by either moving oil 
between internal and external bladders or displacing seawater), thereby changing its buoyancy to 
rise and fall. This vertical motion is translated into forward motion by wings and controlling the 
glider’s pitch, resulting in a sawtooth path through the water. [I’m sure the authors know this, but 
they should include it for the sake of unfamiliar readers.] Stating that the ’average horizontal 
displacement between two dives is around 200 m’ is probably true, but somewhat misleading; 
shallower dives have closer horizontal (and temporal spacing) and so there are more of them, 
biasing the ’average horizontal displacement’ small. Dives to 100 m should be separated by ∼500 
m in calm water; dives to 200 m by ∼1000 m; and so on. Over the deeper part of the shelf, 
resolution is much less than the 200 m average reported, so I suggest the authors clarify this point. 

The glider description has been improved and detailed: “Ocean gliders are autonomous 
underwater vehicles which change their buoyancy to dive up through the water column. Without 
propulsion, this vertical motion is transformed into horizontal momentum using the vehicle's wings, 
while its pitch controls the forward motion. During the resulting vertical sawtooth pattern through 
the water column, a wealth of scientific observations are recorded and analyzed here.”  

The reviewer is right, the distance travelled over ground between dives directly depends on the 
dive depth, which is now clarified in the manuscript: “The horizontal displacement between two 
dives increases with the depth of the dive, with median over ground distances from 130m (for dives 
in 25 - 50m of water) to 1100m (in 150 - 200m of water).”   

 

2. Are salinity measurements from pumped or unpumped CTDs? If unpumped, how significant is 
salinity spiking in areas of large temperature gradients? How does this affect the scale analysis? 

As the large dataset includes deployments from 2008, some of the vehicles were equipped with an 
unpumped CTD. However, a salinity spike correction is routinely performed in the quality control 
procedure. We therefore do not expect this common issue to affect the scale analysis presented. It 
is now specified: “including a salinity spike correction due to the use of unpumped CTDs in early 
deployments.” 

 

3. The definition of the structure function (Eq. 1) could be me clearly presented as 1/2 the mean 



square difference between values at a given separation. The empirical formulation for the structure 
function (Eq. 2) needs more description, particularly the empirical constants. 

More explicit descriptions on equation 2 was also requested by Referee 1. We thank the reviewer 
for the useful suggestion.  

For equation 1, variance of [Z(x)-Z(x+h)] has been changed into 
�

�
	
�

�
	∑(�(�) − �(� + ℎ))� and 

described as “half the mean square difference between values at a given separation h” following 
the reviewers’ suggestion. 

Equation 2 is now further described in the manuscript: 

 “In this equation, the power ½ comes from a fourth-root of [Z(x)-Z(x+h)]2 that reduces the 
skewness in the distribution, thereby approaching a Gaussian process. The 4th square acts to 
correct the scale and returns the same units as equation 1, while the denominator adjusts the bias 
resulting from the whole transformation. This estimate is more robust statistically in the sense that 
the mean can be applied to the new distribution. Compared to equation 1, the semivariogram is 
only slightly modified for the highest lags when using equation 2, but the parameters (sill, range 
and nugget that are investigated in section 3 remain very similar.” 

 

4. Page 20105, lines 4-5: Why pairs within 0.1 degrees? Perhaps give the distance in kilometers 
for clarity. 

In order to investigate anisotropy, data have to be constrained in the opposed direction (meridional 
/ along-shelf when analyzing zonal / cross-shelf semivariogram and inversely). We chose 0.1 
degrees, as it still allows a sufficient number of measurement pairs (a minimum of 30 valid data 
pairs per lag was suggested by Journel and Huijbregts, 1978). The manuscript now specifies “0.1o 
(~10 km)”. 

REFERENCE: 

Journel, A. G., Huijbregts, C.J., 1978. Mining Geostatistics, Academic Press Inc, London, UK  

 

5. Regarding homogeneity of the statistics: Lumping observations together to calculate structure 
functions assumes homogeneity in the statistics. I would expect that there is a change in scales 
ffrom the inner to outer shelf that could perhaps be diagnosed from these observations. Lack of 
homogeneity in the vertical is more concerning; surely statistics in the mixed layer differ (vertical 
scale ∼ mixed layer depth?) from those in the thermocline (small vertical scale?) and from those 
below the thermocline (longer vertical scale?). 

Homogeneity in the statistics can indeed be issue, in particular in the water column which is 
characterized by multiple spatial scales. Semivariograms do not identify multiple scales but only 
the dominant scales, which is why we do not expect to resolve the smallest vertical scales through 
the thermocline. Considering the good vertical resolution of the dataset, this could probably be 
addressed using autocorrelation functions, but will require further investigation. 

 

6. There is a good bit of flipping back and forth between ’semivariogram’ and ’ structure function’; 
best to pick one and stick with it. 



This has been modified throughout the manuscript, keeping the term “semivariogram”. 

 

7. I find the terms ’sill’, ’range’, and ’nugget’ difficult to follow, though the authors make a good 
effort to clarify them. ’Range’ is particularly troublesome in usages like (page 20108, Line 
25) ’mean temperature ranges...’ since range typical means the difference between minimum and 
maximum value of a variable. Consider not using these particular terms. 

Unfortunately “sill”, “range”, and “nugget” are the standard terms used when describing 
semivariograms. We have clarified the term ‘range’ throughout the manuscript, by replacing it by 
“decorrelation range”, “semivariogram range” or “length scale“. 

 

8. Page 20113, lines 12-13: this is not a complete sentence. 

We thank the reviewer for pointing out this mistake. It now reads: “The length scales calculated 
here can be used to guide the design of ocean observing systems, in particular to answer 
questions related to the observation density needed to resolve along and across shore variability in 
both the physical and biological parameters.“ 

  



REVIEWER #3: 

The reference to Schaeffer et al. (2015; cited on p. 20105), which refers to details on the data 
processing, is missing from the list of references. If it has not been published yet, then it would be 
helpful to include these details in the present paper. 

There are two references providing details on the data processing, especially the way the glider 
profiles from all deployments were gridded and averaged to provide a mean state of the ocean 
variables (used here to compute the anomalies Z(x)). The first one is Schaeffer et al, 2015, 
available in Geophysical Research Letters: 

Schaeffer, A., and M. Roughan, 2015: Influence of a western boundary current on shelf 
dynamics and upwelling from repeat glider deployments. Geophysical Research Letters, 42, 
121 - 128, doi:10.1002/2014GL062260. 

Unfortunately the second one, Schaeffer et al., 2016, which is a data descriptor and provides more 
information on biogeochemical data and individual glider deployments, is still in review at this time: 

Schaeffer, A., M. Roughan, T. Austin, B. Hollings, E. King, A. Mantovanelli, S. Milburn, B. 
Pasquer, C. Pattiaratchi, R. Robertson, I. Suthers, D. White: Mean hydrography on the 
continental shelf from 25 repeat glider deployments along Southeastern Australia. Scientific 
Data, in review. 

We are hoping that it would be available before the final version of this manuscript. 
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Abstract. In contrast to physical processes, biogeochemical processes are inherently patchy in the

ocean, which affects both the observational sampling strategy and the representativeness of sparse

measurements in data assimilating models. In situ observations from multiple glider deployments are

analyzed to characterize spatial scales of variability in both physical and biogeochemical properties,

using an empirical statistical model. We find that decorrelation ranges are strongly dependent on5

the balance between local dynamics and mesoscale forcing. The shortest horizontal (5-10 km) and

vertical ( 45 m) decorrelation ranges are for chlorophyll-a fluorescence. Whereas those variables that

are a function of regional ocean and atmosphere dynamics (temperature and dissolved oxygen) result

in anisotropic patterns with longer ranges along (28-37 km) than across the shelf (8-19 km). Variables

affected by coastal processes (salinity and colored dissolved organic matter) have an isotropic range10

similar to the baroclinic Rossby radius (10-15 km).

1 Introduction

At the interface between oceanic and coastal processes, continental shelf regions are characterized by

complex dynamics resulting from the interaction between different water masses at smaller spatial

scales than the open ocean (Yoder et al., 1987). While wind, topography or density driven processes15

mostly influence the mixing and advection of the physical characteristics (temperature and salin-

ity) of the shelf water masses, locally acting ecological processes are also determinant for biogeo-

chemistry (Ballantyne et al., 2011). In particular, the numerous mechanisms driving phytoplankton

distributions have been studied for many years, and highlight the complexity of these interactions

(Martin, 2003). Biogeochemical (BGC) processes operate over a wide range of scales and thus need20

to be considered separately when investigating the dominant length scales of variability for the shelf

water’s properties (Pan et al., 2014).

1



The continental shelf off southeastern Australia (between 29 and 34oS) is relatively narrow, be-

tween 16 and 70 km (mean of 37 km) from the coastline to the 200 m isobath. The dynamics on25

the shelf are influenced both by local coastal processes and the episodic intrusion of the large scale

East Australian Current (EAC) and its eddies (Fig. 1, Schaeffer et al. (2013, 2014a)). The EAC is the

western branch of the subtropical gyre in the South Pacific. It is a warm and dynamic poleward flow-

ing current, encroaching on the continental shelf of southeastern Australia between 18oS (Ridgeway

and Godfrey, 1994) and usually 30.7 - 32.4oS (Cetina-Heredia et al., 2014) where it bifurcates east-30

ward, forming the Tasman Front. Further south, eddies are shed (Everett et al., 2012), leading to high

variability in the velocity field and water masses on the shelf (Schaeffer et al., 2014b; Schaeffer and

Roughan, 2015).

Previous studies have highlighted the high spatial heterogeneity of physical (Oke et al., 2008;35

Schaeffer and Roughan, 2015) and biochemical (Hassler et al., 2011) variables on this narrow

shelf. De-correlation time scales were quantified from in situ mooring observations at 30o and 34o

(Roughan et al., 2013), being of the order of hours for across-shelf
:::::::::
cross-shelf velocity to days

and weeks for along-shelf flow and temperature, respectively. However, spatial scales of variability,

which are essential for data assimilating models, have not been quantified.40

Here we quantify for the first time the spatial scales of variability of both the physical and the BGC

characteristics of the shelf water masses in the highly dynamic EAC separation zone. We use hydro-

graphic measurements from 23 glider deployments along the coast (Section 2) to understand the

variability amongst physical and BGC properties, the spatial anisotropy and the unresolved variance45

in the rich dataset (Section 3). Finally the results are discussed in the context of their applicability to

modelling and data assimilation, where the perennial issue of relating point based measurements to

model solutions is discussed (Section 4).

2 Methods

2.1 The Dataset50

Ocean gliders are autonomous underwater vehicles which use seawater to change their buoyancy

, diving
::
to

::::
dive

:::
up through the water columnwithout using propulsionwhile recording .

::::::::
Without

:::::::::
propulsion,

:::
this

:::::::
vertical

::::::
motion

::
is

::::::::::
transformed

::::
into

::::::::
horizontal

::::::::::
momentum

::::
using

:::
the

::::::::
vehicle’s

::::::
wings,

::::
while

:::
its

:::::
pitch

:::::::
controls

:::
the

:::::::
forward

::::::
motion.

:::::::
During

:::
the

:::::::
resulting

:::::::
vertical

::::::::
sawtooth

::::::
pattern

:::::::
through

::
the

:::::
water

::::::::
column, a wealth of scientific observations

:::
are

:::::::
recorded

::::
and

:::::::
analysed

::::
here. Physical and55

biogeochemical
::::
BGC

:
measurements from 23 ocean glider deployments along the southeastern coast

of Australia are used in this study. The glider missions span all seasons over 6 years, between 2008

- 2014, including results from both shallow-diving Slocum (<200m) and deep-diving Seaglider

2



(<1000m) vehicles. The gliders were typically deployed at 29.4oS although some were deployed

as far south as 33oS (Fig. 1 and Schaeffer and Roughan (2015)). Missions range from 2-3 weeks60

to three months depending on the vehicle. The average horizontal displacement between two dives

is around
:::::::
increases

::::
with

:::
the

::::::
depth

::
of

:::
the

::::
dive,

::::
with

:::::::
median

::::
over

::::::
ground

::::::::
distances

::::
from

::::
130

::
m

::::
(for

::::
dives

::
in

:::
25

:
-
:::
50

::
m

::
of

::::::
water)

::
to

::::
1100

::
m

:::
(in

::::
150

:
- 200 m, while the fast sampling frequency leads to

fine vertical resolution (
::
m

::
of

::::::
water).

::::
The

::::::
vertical

:::::::::
resolution

::
of

::::::::::
observations

::
is

:
<2 m )

:::
due

::
to

:::
the

::::
fast

:::::::
sampling

:::::::::
frequency.65

Scientific measurements include depth, temperature and salinity (from a Seabird-CTD), dissolved

oxygen (DO, from Aanderaa or Seabird Oxygen sensors), and optical parameters, chlorophyll-a flu-

orescence (excited / emitted wavelengths: 470 / 695 nm), colored dissolved organic matter (CDOM,

excited / emitted wavelengths: 370 / 460 nm) and backscatter coefficient at 650-700 nm (from a

WETLabs optical sensor).70

Quality control for physical parameters (temperature and salinity) and DO are conducted follow-

ing ARGO standards (Wong et al., 2014)
:
,
::::::::
including

:
a
:::::::

salinity
:::::
spike

:::::::::
correction

:::
due

:::
to

:::
the

:::
use

:::
of

::::::::
unpumped

::::::
CTDs

::
in

:::::
early

:::::::::::
deployments. For bio-optical parameters, quality control is more chal-

lenging due to the instrument bio-fouling and the high temporal and spatial variability of the mea-75

surements. Sensor driftis checked using pre- and post-deployment performance tests
::::::
Sensors

::::
are

::::::::
calibrated

::::::::::::
approximately

:::::
every

:
2
::::::
years.

::
To

::::::
check

::
for

::::::
sensor

:::::
drift,

::::::::::
performance

::::
tests

:::
are

::::::::::
undertaken

using purple and black solid standards and sensors are calibrated approximately every 2 years. The

same tests are conducted
::::
pre-,

::::::::::::::
post-deployment

:::
and

::::
also after cleaning the sensor from bio-foulingto

check for sensor drift. These tests enable the identification and flagging of suspect measurements. A80

global range test is also conducted with a valid fluorescence maximum set to 50 mg m−3, similar to

ARGO standards , (Claustre, 2011). A valid regional maximum for CDOM is defined, based on all

the shelf glider deployments, as the mean plus 10 times the standard deviation (= 8.02
::
8.0

:
ppb) to

removed
::::::
remove

:
high outliers (reaching 250 ppb).

85

2.2 Characterising spatial variability

The semivariogram approach was first introduced in geostatistics (Journel and Huijbregts, 1978)

to characterize the spatial variability of a sparsely distributed dataset. It describes the average dis-

similarity between measurements as a function of the distance separating them. This difference is

generally small for measurements within close proximity, increasing with distance, until it does not90

depend on a spatial lag (decorrelated values) (Legaard and Thomas, 2007; Tortell et al., 2011).

3



For a variable anomaly Z(x), the semivariogram or structure function, γ(h), is defined as :
:::
half

::
the

:::::
mean

::::::
square

:::::::::
difference

:::::::
between

:::::
values

::
at

::
a

::::
given

:::::::::
separation

::
h:

:

γ(h) =
1

2
variance[Z(x)−Z(x+h)]

1

N

∑
(

::::::

[Z(x)−Z(x+h)
::::::::::::::

]2)
:

(1)95

where h is the distance separating the two observations
:::
the

:::
sum

::
is
::::
over

:::
all

::
N

:::::
pairs

::
of

:::::::::::
observations

:::
that

:::
are

::::::::
separated

::
by

:::
the

:::::::
distance

::
h
:
in the x direction.

In order to take into account outliers in the distribution of the empirical anomalies Z, Cressie and

Hawkins (1980) proposed a robust
:::::::
modified

:
estimate of the structure function

:::::
which

::
is

::::
more

::::::
robust

::::
when

:::
the

::::::::
anomaly

::::
fields

:::::::
deviate

::::
from

:::::
being

::::::::
Gaussian:100

γ(h) =
1
2

(
1
N Σ[Z(x)−Z(x+h)]1/2

)4
0.457 + 0.494

N

1
2

(
1
N

∑
[Z(x)−Z(x+h)]1/2

)4
0.457 + 0.494

N
::::::::::::::::::::::::::

(2)

where the sum is over all N pairs of measurements that are separated by the distance h
::
In

::::
this

:::::::
equation,

:::
the

::::::
power

:::
1/2

::::::
comes

::::
from

:
a
::::::::::
fourth-root

::
of

::::::::::::::::
[Z(x)−Z(x+h)]2

::::
that

:::::::
reduces

:::
the

::::::::
skewness

::
in

:::
the

::::::::::
distribution,

::::::
thereby

:::::::::::
approaching

:
a
::::::::
Gaussian

:::::::
process.

::::
The

:::
4th

:::::
square

::::
acts

::
to

::::::
correct

:::
the

:::::
scale105

:::
and

::::::
returns

:::
the

:::::
same

::::
units

::
as

::::::::
equation

::
1,

:::::
while

:::
the

:::::::::::
denominator

::::::
adjusts

:::
the

::::
bias

:::::::
resulting

:::::
from

:::
the

:::::
whole

:::::::::::::
transformation.

::::
This

:::::::
estimate

::
is
:::::

more
::::::
robust

::::::::::
statistically

::
in

:::
the

:::::
sense

::::
that

:::
the

:::::
mean

:::
can

:::
be

::::::
applied

::
to

:::
the

:::
new

:::::::::::
distribution.

::::::::
Compared

::
to
::::::::
equation

::
1,

:::
the

::::::::::::
semivariogram

::
is

::::
only

::::::
slightly

::::::::
modified

::
for

:::
the

:::::::
highest

:::
lags

:::::
when

:::::
using

:::
the

:::::
robust

::::::::
equation

::
2,

:::
but

:::
the

:::::::::
parameters

::::
(sill,

:::::
range

:::
and

::::::
nugget

::::
that

::
are

::::::::::
investigated

:::
in

::::::
section

::
3)

::::::
remain

::::
very

::::::
similar

:
.110

The variablesanomaly
:
’
:::::::::
anomalies are obtained by removing large scale patterns, resulting from

the average of all glider measurements over predefined bins determined by latitude and depth as in

Schaeffer and Roughan (2015)
::::::::::::::::::::::::::::::::::::::::::::
Schaeffer and Roughan (2015); Schaeffer et al. (2016) . This three-dimensional

mean state is then smoothed using a spline method before being removed from each observation.115

Both across-
:::::
cross- and along-shelf semivariograms are calculated to investigate anisotropy, where

h= ∆x is the zonal distance, or h= ∆y is the meridional distance, respectively. The cross-shelf

structure function
::::::::::
semivariance

:
is calculated following equation 2 from measurement pairs located

within 0.1o
::::
(∼ 10

::::
km)

:
of latitude. Similarly, the along-shelf structure γ(h) is computed using ob-

servations within 0.1o of longitude
::::
(∼ 10

::::
km)

:
from each other. In both cases the distance vector is120

discretized with intervals of 500 m and the time lag between pairs is limited to 1 day. The semi-

variograms are calculated in the horizontal plane at three depths: surface (0-5
:
0

:
-
:
5
:
m), mixed layer

depth (MLD, 5 - 30 m, defined from the average profiles), or below the MLD at 50 m. Finally, glider

profiles are also used to analyse vertical scales by computing γ(h) with h= ∆z (intervals of 1 m).

125

The semivariance γ(h) is computed from the trimmed mean (20 % outliers excluded) of measure-

ments over all glider deployments, provided there are at least 10
::
(5

:::
for

::::::
CDOM

::::::
across

:::
the

:::::
shelf,

:::
see

4



::::::
section

:::
3.4)

:
different missions and more than 30 pairs for each spatial lag, to avoid seasonal bias or

insignificant values.We then fit a
:::::::::::
mathematical

:
spherical model (Doney et al., 2003) to the empirical

semivariogram in order to extract the physical characteristics of the function, following:130 0h= 0σ2
0 + (σ2 −σ2

0)
(

3
2
h
r − 1

2

(
h
r

)3)
0< h≤ r

σ2 h > r
(3)

where h is the distance between measurements, σ2 is the sill, σ2
0 is the nugget and r the range. (These

variables are described physically in the example below.) Exponential and Gaussian models (Biswas

and Si, 2013) were also tested but were less adequate in terms of sum of squared error (sse) and

adjusted R-square statistics for the fit
::
of

:::
the

::::::::
empirical

::::::::::::
semivariogram.135

3 Results

3.1 Satellite derived SST semivariogram

By way of both example and validation we calculate the across-shelf
:::::::::
cross-shelf

:
semivariogram ob-

tained from daily satellite remote sensed SST
:::
sea

:::::::
surface

::::::::::
temperature

:::::
(SST)

:
anomalies (Fig. 2).140

The spherical model (Eq. 3) is fitted to the empirical semivariance values calculated for across-shelf

:::::::::
cross-shelf lags over daily maps of SST in 2014. Only days with spatial coverage greater than 30 %

of the domain are considered. The physical characteristics extracted from the model are indicated

in Fig 2. The sill σ2 reflects the constant background variability of the variable. It is reached at a

specific distance, here r = 24 km, which is referred to as the
::::::::::::
(decorrelation)

:
range or the dominant145

length scale. For lags greater than this range, the two observations are considered randomly corre-

lated spatially. The nugget, σ2
0 , is the semivariance obtained from the model at the origin. If different

from 0, it implies variability at shorter spatial scales than those resolved by the observations. This

variability is either a) real but unresolved, or b) resulting from measurement errors. The semivari-

ogram for SST (Fig. 2) shows very little nugget effect, showing the accuracy of the measurements150

and an adequate spatial resolution.

As expected, the semivariance of the SST anomaly (the annual mean was subtracted) differs with

seasonality, as shown by the monthly empirical semivariograms (Fig. 2). Austral Summer and Au-

tumn months are characterized by a sharper increase in the SST variance with greater variability in

sills, due to more pronounced spatial temperature gradients. However, the
::::::::::::
semivariogram range is155

similar, with dominant across-shelf
:::::::::
cross-shelf scales between 18 km and 32 km (not shown). The

structure function reached
::::::::::::
semivariogram

:::::::
reaches a plateau for all months with the exception of Jan-

uary, suggesting a trend of longer scales (Yoder et al., 1987) and a limitation of the method.
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3.2 Sill: In situ spatial variance160

Semivariance values from glider measurements are analysed based on the values of the sill in each

of the semivariograms shown in Fig. 3. Temperature, dissolved oxygen (DO), and to a lesser extent

colored dissolved organic matter (CDOM) and salinity, are characterised by a greater variance in

the vertical than in the horizontal (see the different y-axis). In contrast, chlorophyll-a fluorescence

shows comparable variability in all directions.165

Focusing on horizontal sills (Fig. 3 middle and left), the highest variance for salinity and CDOM

occurs at the surface in agreement with the influence of riverine input. The
:::::::::
cross-shelf sill for DO is

greater at 50 m than at the surface, suggesting more spatial variability due to bio-physical processes

(remineralisation, respiration or bottom water uplift) than resulting from gas exchange with the at-

mosphere. Chlorophyll-a fluorescence shows little variance at 50 m depth due to light limitation170

preventing biological activity. The highest horizontal sill for temperature appears below the MLD

along the shelf, in agreement with the large latitudinal gradients in bottom temperature evidenced

by Schaeffer and Roughan (2015). The surface temperature sill is smaller when measured by the

gliders (Fig. 3) than by satellite (Fig. 2), possibly due to different measurement depth (in situ 0-5 m

versus skin SST), or seasonality, as glider deployments are more numerous in winter. Nevertheless,175

the across-shelf
:::::::::
cross-shelf dominant length scales are in good agreement in the two datasets, with

ranges of 25 and 19 km, respectively.

3.3 Range: In situ scales of variability

Across-shelf
:::::::::
Cross-shelf, along-shelf and vertical ranges

::::
from

:::
the

:::::::::::::
semivariograms

:
are presented in180

Fig. 3 and summarized in Table 1. Spatial scales highlight different directional patterns between

the parameters. Horizontal scales for salinity and CDOM are 9-15 km, 5-10 km for chlorophyll-a,

similar across and along the shelf. Mean temperature ranges
:::::
scales across the shelf are 18-19 km

at the surface and in the MLD, only 14 km at 50 m. Scales found along the shelf are greater, be-

ing 28-29 km and 37 km, respectively. This directional anisotropy for temperature is in agreement185

with the geometry of the shelf and the influence of the EAC at the shelf break (Fig. 1). Schaef-

fer and Roughan (2015) and Oke et al. (2008) both evidenced greater temperature gradients across

than along the shelf, based on satellite, model and glider datasets. This directional anisotropy is also

evident in density (not shown), which has been shown to be mostly temperature driven (Schaeffer

et al., 2014b), and even more intensified for DO. While DO is characterized by dominant across190

shelf
:::::::::
cross-shelf

:
scales similar to salinity and CDOM (8 - 15 km), the along-shelf spatial variability

seems to be linked to the shallow EAC watermass, resulting in ranges
::::::::::
decorrelation

:::::
scales

:
of 27 - 35

km (surface and MLD) similar to temperature.

Chlorophyll-a fluorescence has the smallest characteristic range
:::::
length

::::::
scales both across and along
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the shelf, but also in the vertical. Measurements of fluorescence are decorrelated for depth lags195

greater than 46 m, in agreement with shallow (near surface) chlorophyll blooms. Vertical length

scales for DO and CDOM (57 - 58 m), are less than those for temperature and salinity (62 m and 66

m, respectively).

The second peak in semivariance (at 80 - 100 m for temperature, salinity and DO, Fig. 3, right)

indicates an anti-correlation for these lags (Legaard and Thomas, 2007). Negative correlation coef-200

ficients reaching -0.6 were previously observed from moored autumnal temperature observations in

100 m water depth at -30
::
30oS (Roughan et al., 2013) and attributed to simultaneous heating source

in the surface layers and cooling at depth due to EAC encroachments and slope water uplift. Our

results suggest that these current-driven uplifts are associated with a fresher and lower DO signature.

205

3.4 Nugget: In situ unresolved variance

The fraction of resolved and unresolved variance is estimated from the semivariogram parameters,

the sill and nugget, respectively. A nugget occurs when the difference between the two closest mea-

surements is greater than 0, and can be seen at the origin of the semivariogram.

Overall, the high density glider observations capture most of the spatial ocean variability. The ad-210

vantage of this sampling strategy is that nearly all the vertical variance is resolved for most of the

parameters (ratio σ2
0/σ

2 ∼ 0−3 %, Table 1) due to the high sampling frequency of the gliders com-

pared to their vertical displacement velocity. The only exception is for CDOM with the nugget being

24% of the total variance (Fig. 3 and Table 1).

Horizontal variability is well resolved for temperature and salinity with ratios σ2
0/σ

2 ≤10 % across215

the shelf, mostly ≤14 % along the shelf. Nuggets for BGC parameters are higher, especially for

chlorophyll-a fluorescence and CDOM measurements. While high nuggets for fluorescence can be

attributed to horizontal sub-scale unresolved biological activity, CDOM datasets might suffer from

measurement errors and quality control issues
:
, as suggested by the high nugget effect in the verti-

caland ,
:
the large outliers

:::
and

:::
the

:::::
larger

:::::::
amount

::
of

:::::::::
cross-shelf

::::
lags

::::::::
necessary

:::
for

:::
the

::::::::
successful

:::
fit

::
of220

:
a
:::::::::::
mathematical

::::::
model

:::
(see

:::::::
section

::
2).

4 Discussion

This study combines in situ measurements from multiple glider deployments between 2008 - 2014

on the southeastern Australian continental shelf, to provide insight into the surface and sub-surface225

structure of the water-mass dynamics, including the influence of the EAC, upwelling and freshwa-

ter inputs. Analysis of length-scale
:::::
length

:::::
scale

:
dependent variability demonstrates that much of

the spatial variance in physical and BGC parameters typically occurs at scales ranging 5 km for

7



chlorophyll-a fluorescence to ∼35 km for along-shelf temperature.

In this study the length scales were averaged from data obtained over 2 degrees of latitude, how-230

ever we expect more regional variability resulting from the different latitudinal regimes evidenced

by Schaeffer and Roughan (2015), driven by the meso-scale circulation. In addition, we expect that

spatial scales may vary seasonally, particularly in the biological parameters. This will be tested when

we have sufficient data in each season.

Uncertainties can235

::
As

:::
for

::
all

::::::::
statistics,

:::::::::
limitations arise from the semivariogram method,

::::::
amount

::
of

::::
data

::::
used

:
(especially

along the shelf where the data density is smaller. However
:
)
:::
and

::::::::::::
contamination

:::
of

:::
the

::::::
dataset

::::
(for

:::::::
instance

:::::::
CDOM).

:::
In

::::::::::
geostatistics,

:::::::
uneven

:::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::::::
observations

::::
over

:::
the

::::::::
analyzed

:::
area

:::
can

:::
be

:
a
::::::::
limitation

::
as

::::
well

:::
but

:::::::
remains

::::::
difficult

::
to

::::::::
quantify.

:::
The

:::::
major

:::::::::
advantage

::
of

:::
the

::::::::::::
semivariogram

::::::
method

::::
used

::
is

::::
that

:
it
:::
can

:::
be

::::::
applied

::
to

::::::
sparse

::::::
dataset

:::
like

:::::
glider

::::::::::::
observations,

::
as

:::::::
opposed

::
to

::::::
spatial240

:::::::::::::
autocorrelations

:::
for

::::::::
instance.

:
It
::::::

allows
::::::::
objective

::::::::::
comparison

::
of

:::::::::
interesting

::::::::::
parameters

::::::
(range,

::::
sill,

::::::
nugget)

:::
for

:::::::
different

::::::::
variables,

::::::::
directions

::::
and

::::::
depths.

::
In

:::
this

:::::
study, the results compare well when us-

ing different statistical fits, and are consistent with expected outcomes based on
::::::
previous

::::::::::
knowledge

::
of

::::
local

::::::::
dynamics

::::
and related studies in other regions.

4.1 Related studies245

From a global analysis of satellite derived surface data, Doney et al. (2003) found comparable small-

scale variability for biology and physics. However, they were not able to characterize scales <15 km

based on the satellite products used. Here we find that BGC distribution occurs predominantly at

submesoscales (5 - 15 km for chlorophyll-a, CDOM), while scales for temperature are larger (18 -

37 km). These short scales of variability for BGC are in agreement with the effect of nutrient cycling,250

reproductive rate and community interaction (e.g. grazing pressure from zooplankton) that can lead

to patches of 5-10 km (Ballantyne et al., 2011; Denman et al., 1977; Goebel et al., 2014).

According to Mahadevan and Campbell (2002), the fine scale patchy distribution of phytoplankton

is linked to the short characteristic time in response to disturbance in their concentration, as opposed

to the longer time for temperature to adjust to external forcing. We find temperature horizontal scales255

(18 - 37 km) that are of the same order of magnitude as over the Malvinas current region, derived

from SST (20 - 47 km, Tandeo et al. (2014)) or over the Middle Atlantic Bight from in situ glider

observations (10 - 35 km, Todd et al. (2013)). The anisotropic shape of the temperature variance is

consistent with a highly dynamic circulation (Tandeo et al., 2014), here driven by the EAC, charac-

terized by a greater signature in temperature than in salinity.260

Spatial variability in salinity is predominantly isotropic and similar to CDOM with ranges
::::::::::
decorrelation

:::::
length

:::::
scales

:
of 9 - 15 km, corresponding to the first Rossby baroclinic radius of deformation (12

- 15 km based on local moored observation, Schaeffer et al. (2014b)), and high surface variance,
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suggesting a predominant influence of coastal processes and river input.

265

4.2 Drivers of variability in a modelling perspective

Assuming that there is no first order feedback from the biology to the physics, we can think of the

physics variables X = T,S (temperature and salinity) being a function of internal dynamics (I , e.g.

mixing), atmospheric forcing (A), coastal buoyancy forcing arising from river discharge (R), friction

due to shallow bathymetry (F ) and open ocean forcing (e.g. tidal, geostrophy) and water masses (O).270

Therefore the state of the model at some spatial location "s" at time t is given by:

X(s, t) = f(I,A,R,F,O) (4)

where f(I,A,R,F,O) for the physical variables can be solved numerically in various hydrodynamic

models.

For the state variable of temperature, we assume that there is little effect from river input in this275

region (e.g. water coming in is about the same temperature as the surface layer), while the effect

from coastal processes is large for salinity. Therefore eq
:::
Eq. 4 simplifies to:

T (s, t) = f(I,A,F,O) (5)

S(s, t) = f(I,A,R,F,O) (6)280

Given that both T and S are subjected to the same advection and diffusion equations, but differ only

in the source/sink and boundary terms of f(A), f(R) and f(O), this is the major driver
:::::
those

:::
are

:::
the

:::::
major

::::::
drivers for the difference in the along shelf sills and differences in the nugget. Salinity varies

over shorter length scales due to river input and the markedly different freshwater inputs from vari-

ous catchment sizes along the coast. Whereas temperature is largely controlled by the regional scale285

EAC forcing and the relatively smooth atmospheric forcing applied which varies over spatial scales

of 50 km or more.

A similar approach can be applied to the BGC variables, but f(I) is more complicated as it includes

the turnover of biomass/nutrients between different plankton functional types or nutrient pools. But

ultimately, one would expect f(I) to introduce variability at scales equal to or less than those seen290

in salinity. This hypothesis is supported by the ranges reported in the chlorophyll-a fluorescence

and CDOM variables, which are biologically derived. However, as CDOM can also be introduced

into the coastal ocean via river plumes and has a similar sill to salinity, we suggest that the CDOM

measured by the glider is largely due to river discharge. The DO distribution in the surface layer

is largely a function of air-sea exchange and will have similar variability to temperature due to the295

forcing mechanism. However, below the mixed layer, DO is function of the remineralisation rate and
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also vertical mixing/exchange with surface water, explaining the shorter
::::::::::
decorrelation

:
range in DO

found below the mixed layer.

4.3 Observing system design300

The length scales calculated here can be used to guide the design of ocean observing systems. To

:
,
::
in

::::::::
particular

::
to

:
answer questions related to the observation density needed to resolve along and

across shore
:::::::::
cross-shore

:
variability in both the physical and biological parameters. The temperature

anisotropy in our results, consistent with findings of Oke and Sakov (2012) and Jones et al. (2015),

shows that the required observation density will vary along and across the shelf. Thus high reso-305

lution across-shelf
::::::::
cross-shelf

:
mooring or glider lines every Y km are more useful than simply a

glider endurance line or equally spaced moorings. The distance Y can be initially derived from satel-

lite observations, or determined after a number of glider missions. In contrast, the understanding of

BGC variability, characterized by short isotropic length scales, will require high spatial resolution

observations (e.g. gliders) to determine the representativeness of the measurements.310

4.4 Data assimilation

:::::
There

::
are

::
a
::::::
variety

::
of

:::
data

::::::::::
assimilation

:::::::
systems

:::::
based

::::
upon

::::
two

:::::
broad

::::::::::
approaches,

::::::::
ensemble

:::::::
methods

::::
(e.g.

:::::::::::::::
Oke et al. (2008) ,

::::::::::::::::
Jones et al. (2012) )

::::
and

:::::::::
variational

:::::::
methods,

::::
that

::::::::
minimize

::
a

:::
cost

::::::::
function

::::
(e.g.

:::::::::::::
Moore (2011) ).

::::::::::
Regardless

::
of

::::
the

::::::::
approach

:::::
used,

:::::::::::
assumptions

:::
are

:::::
made

:::::
about

::::
the

::::::
spatial315

:::::::
footprint

::
of

:::
an

:::::::::::
observation,

:::
for

::::::
which

:
a
::::
key

:::::::::
parameter

::
is

:::
the

:::::::::::
decorrelation

::::::
length

:::::
scale.

:::::::
Within

::
the

:::::::::
ensemble

::::
(e.g.

::::::::::::::::
Oke et al. (2008) )

:::
and

::::::
hybrid

:::::::::::::::::::
(Pan et al., 2011) data

::::::::::
assimilation

:::::::::::
approaches,

:::::::::
covariance

::::::::::
localization

:::::::::::::::::::::::
(Sakov and Bertino, 2011) is

:::::
used

::
to

:::::::
increase

::::
the

::::
rank

::
of

:::
the

:::::::::::
background

::::
error

:::::::::
covariance

::::::
matrix.

::::
The

:::::::::
anisotropic

::::::::::
(along-shelf

::::
and

::::::::::
cross-shelf)

:::::
ranges

::::::::
presented

::
in
::::
this

:::::
study

:::
and

::::::
method

:::::
used

::
to

:::::
derive

:::::
them,

:::::
allow

:::
for

:::
the

:::::
direct

:::::::::
calibration

::
of

:::
the

:::::::::::
decorrelation

:::::
scales

::::::::
enforced320

:::::
within

:::::
most

::::
data

:::::::::::
assimilation

:::::::
systems

::::
that

:::
are

::::::::
currently

::
in

::::
use.

::::::::::::
Additionally,

::::::::
estimates

::
of

:::::
how

::::
these

:::::::::::
decorrelation

:::::
scales

:::::
vary

::
in

::::
time

::
is

:::
also

::::::::
available

::::
(e.g.

::::::
Figure

::
2),

::::::::::
suggesting

:::
that

::
an

:::::::::
optimally

::::
tuned

::::
data

:::::::::::
assimilation

::::::
system

:::::
should

:::::
allow

:::
for

::::::::
temporal

:::::::
variation

:::
in

:::
the

:::::::::
localization

:::
or

::::::
provide

:::
an

:::::::::
assessment

::
of

:::
the

::::::::
temporal

::::::::
variability

:::
of

:::
the

::::::::
ensemble

::::
from

::
an

:::
an

::::::::
Ensemble

:::::::
Kalman

:::::
Filter

:::::::
(EnKF)

::::::
system.

:
325

The results from this study also allow us to partly answer the question of how to relate a point

based observation with the output from a numerical model, which assumes the average concentration

of a variable within a model cell Xmod. If we take a Bayesian view stating that we observe some

true state variable with error (e.g. Parslow et al. (2013)), this can be written as:330

Xobs =Xtrue + εm + εv (7)
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whereXobs is the observed variable,Xtrue is the true unknown value of the variable, εm is the instru-

ment error and εv is the sampling error due to unresolvable small scale variability. The observation

is then related to the modelled variable by:

Xmod =Xobs + εr (8)335

where εr is typically referred to as the representation error (Oke and Sakov, 2008) associated with

difference in kind (e.g. measuring fluorescence, but modelling biomass), or averaging across a model

grid cell that contains a point measurement.

Assuming εm is known from calibration studies, results of studies like that presented here allow us

to explore the characteristics of εv and εr. For a particular variable, we can assume that the nugget340

is approximately equal to εv and given a-priori information about a model grid, the spherical model

applied to the semi-variogram can then
:::::::::::
semivariogram

::::
can

::::
then

:::
also

:
be used to provide an empirical

estimate not only for εr, but if observations are ingested into a data assimilation system, the estimates

of the anisotropic range can be used to then tune the localization function (e.g. Oke et al. (2007) )

applied to each observationl.345

To this end, the results of this study allow us to characterise the length scales of the physical

and BGC properties on the shelf and relate variability to the dynamical drivers, but additionally, the

methodology developed here can be directly used to improve observing system design, and to tune

key data assimilation parameters that are presently poorly understood.350
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Figure 1. Monthly mean Sea Surface Temperature (GHRSST
::::::
AVHRR L3S product) over southeastern Australia

for March
:::::
October

:
2014. The coastline, 200 and 2000 m isobaths are shown. Glider tracks over the shelf (depth

<200 m) are indicated by colored lines. A schematic of the typical circulation is show
::::
shown

:
with the poleward

flowing East Australian Current
:::::
(EAC)

:
bifurcating to the East around 32oS, its weaker extension, anticyclonic

and cyclonic eddies.
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Figure 2. Across-shelf
::::::::
Cross-shelf

:
empirical semivariogram estimated from daily SST over the southeastern

Australian shelf (depth <200 m, 29 - 34oS, GHRSST
::::::
AVHRR L3S product) for 2014 (black bold dots) and for

each month in 2014 (colored dots). The spherical model (R-square
::
red

::::
line,

::::::::
R-squared of 0.97 for the fit) and

::::::
resulting

:
parameters (range, sill, nugget) are shown in red for 2014 semivariance.

Temperature Salinity Fluorescence DO CDOM

C
ro

ss
-s

he
lf

range 19 km 13 km 5 km 10 km 10 km∗

Surface ratio σ2
0/σ

2 6 % 6 % 17% 27 % 19%
R-squared fit 0.96 0.94 0.89 0.85 0.49

range 18 km 10 km 8 km∗ 8 km 13 km
MLD ratio σ2

0/σ
2 4 % 0% 13% 18% 2%

R-squared fit 0.92 0.83 0.58 0.89 0.96

range 15 km 5 km 15 km 11 km
50m ratio σ2

0/σ
2 10% 15% 4% 17%

R-squared fit 0.97 0.73 0.98 0.88

A
lo

ng
-s

he
lf

range 30 km 15 km∗ 8 km 35 km 11 km∗

Surface ratio σ2
0/σ

2 14% 14 % 20% 2% 21%
R-squared fit 0.93 0.52 0.83 0.9

:::
0.90

:
0.56

range 28 km 10 km 10 km∗ 28 km 9 km∗

MLD ratio σ2
0/σ

2 8% 23% 21% 18 % 10%
R-squared fit 0.99 0.93 0.53 0.96 0.27

range 37 km 5 km 4 km∗

50m ratioσ2
0/σ

2 1% 8% 5%
R-squared fit 0.97 0.87 0.33

Ve
rt

ic
al range 62 m 66 m 46 m 58 m 57 m

ratio σ2
0/σ

2 0% 3 % 1% 0% 24%
R-squared fit 0.97 0.98 0.99 0.98 0.99

Table 1. Spatial scales of variability for spherical fit to robust structure functions
:::::::::::
semivariograms

:
for different

parameters and depths across, along the shelf and along the vertical. The
:::::
range, percentage ratio of the nugget

to the sill (σ2
0/σ

2) and R-squared for the model fit to experimental values are also indicated (ranges with ∗

correspond to R-squared <0.7). Blanks indicate unsuccessful fit to the spherical model.
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