1	Evidence for methane production by the marine algae Emiliana huxleyi
2	Katharina Lenhart ^{1,2,3*} Thomas Klintzsch ^{2,4,5} , Gerald Langer ⁶ , Gernot Nehrke ⁷ , Michael
3	Bunge ⁵ , Sylvia Schnell ⁵ , and Frank Keppler ^{3,4*}
4	
5	¹ Center for Organismal Studies, University Heidelberg, Im Neuenheimer Feld 360, 69120
6	Heidelberg, Germany.
7	² Department of Plant Ecology (IFZ), Heinrich-Buff-Ring 26-32, 35320 Gießen, Germany
8	³ Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
9	⁴ Institute of Earth Sciences, University Heidelberg, Im Neuenheimer Feld 234-236, 69120
10	Heidelberg, Germany.
11	⁵ Department of Applied Microbiology (IFZ), Heinrich-Buff-Ring 26-32, 35320 Gießen, Germany
12	⁶ The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill,
13	Plymouth, Devon, PL1 2PB, UK
14	⁷ Alfred-Wegener-Institute (AWI), Am Handelshafen 12, D-27570 Bremerhaven, Germany
15	
16	* Authors for correspondence:
17	Katharina Lenhart, Tel: +49 641 99 35326, Email: <u>katharina.lenhart@mpic.de</u>
18	Frank Keppler, Tel: +49 6221 546009, Email: <u>frank.keppler@geow.uni-heidelberg.de</u>
19	

20 INTRODUCTION

Methane (CH₄), the second important anthropogenic greenhouse gas after CO₂, is the most 21 22 abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry (IPCC, 2013; Kirschke et al., 2013; Lelieveld et al., 1998). The mixing 23 24 ratio of CH₄ in the atmosphere has been increasing from pre-industrial values of around 715 25 ppbv (parts per billion by volume) to about 1800 ppbv in 2010 (Kirschke et al., 2013). In total, annual CH₄ emissions from natural and anthropogenic sources amount to 500-600 Tg (10¹² g) 26 yr⁻¹. They derive from various terrestrial and aquatic sources and are balanced primarily by 27 28 photochemical oxidation in the troposphere (≈ 80 %), diffusion into the stratosphere and 29 microbial CH₄ oxidation in soils.

Natural sources of atmospheric CH₄ in the biosphere have until recently been attributed to 30 originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, 31 the intestines of termites and ruminants, human and agricultural waste, and from biomass 32 33 burning, fossil fuel mining and geological sources including mud volcanoes, vents and seeps. However, more recent studies have suggested that terrestrial vegetation, fungi and mammals 34 may also produce CH₄ without an input from methanogens and under aerobic conditions 35 36 (Bruhn et al., 2012; Ghyczy et al., 2008; Keppler et al., 2006; Lenhart et al., 2012; Wang et al., 37 2013b; Liu et al., 2015). A fraction of these vegetation-derived emissions might be released 38 directly by in-situ formation in plants (Bruhn et al., 2012; Keppler et al., 2009; Wang et al., 2013a), and it is now apparent that several pathways exist by which CH₄ is generated under 39 aerobic conditions (Bruhn et al., 2014; Messenger et al., 2009; Wang et al., 2013b). Hence, the 40 biogeochemical CH₄ cycle appears to be even more complex than previously thought. 41

42 In particular the biogeochemical cycle of CH₄ in the oceans is still far from being understood. The world's oceans are considered to be a minor source of CH₄ to the atmosphere with 43 approximately 0.6-1.2 Tg CH₄ yr⁻¹ (Rhee et al., 2009). Concentrations of CH₄ in near-surface 44 waters are often 5–75 % supersaturated with respect to the atmosphere implying a net flux 45 46 from the ocean to the atmosphere (Conrad, 2009; Reeburgh, 2007; Scranton and Brewer, 47 1977). Because the surface ocean is also saturated or slightly supersaturated with oxygen, 48 which does not favor methanogenesis, the observed CH₄ supersaturation has been termed 49 the oceanic methane paradox (Kiene, 1991). To explain the source of CH₄ in surface waters, it has been suggested that methanogenesis takes place in anoxic microenvironments of organic 50 aggregates (Grossart et al., 2011; Karl and Tilbrook, 1994; Bogard et al., 2014), the guts of 51 zooplankton or fish (de Angelis and Lee, 1994; Oremland, 1979) and inside bacterial cells 52 53 (Damm et al., 2015). It has also been shown that opposite to the conventional view, some methanogens are remarkably tolerant to oxygen (Angel et al., 2011; Jarrell, 1985). 54

for methanogenesis 55 potential substrate in such anoxic microniches is А 56 dimethylsulphoniopropionate (DMSP) (Damm et al., 2008; Zindler et al., 2013, Damm et al., 57 2015), an algal osmolyte that is abundant in marine phytoplankton and serves as a precursor for dimethylsulphide (DMS) and dimethylsulphoxide (DMSO) (Stefels et al., 2007; Yoch, 2002) 58 59 For example Zindler et al. (2013) measured concentrations of DMS, DMSP, DMSO, and CH₄, as well as various phytoplankton marker pigments in the surface ocean along a north-south 60 transit from Japan to Australia. Positive correlations between DMSP (dissolved) and CH4, and 61 62 DMSO (particulate and total) and CH₄, were found along the transit. Based on their data they 63 concluded that DMSP and DMSO and/or their degradation products serve as substrates for methanogenic archaea in the western Pacific Ocean. 64

Damm et al. 2010 hypothesized that under N-limitation and a concomitant availability of phosphorus, marine bacteria use DMSP as a carbon source and thereby release CH₄ as a byproduct and its production could yield energy under aerobic conditions. Methanethiol, a further potential degradation product of DMSP, may act as a direct precurser of methane in aerobic environments. By reason of thermodynamic calculations the authors considered that microorganism can yield energy from the pathway of methanethiol formation operating in its reverse direction, whereby methane is formed.

An alternative non-biological CH_4 formation pathway in seawater might occur via a photochemical pathway due to the formation of methyl radicals, however photochemical production of CH_4 in oceans is thought to be negligible under oxic conditions (Bange and Uher, 2005).

76 In addition, Karl et al. (2008) suggested that CH₄ is produced aerobically as a by-product of 77 methylphosphonate (MPn) decomposition when aerobic marine organisms use 78 methylphosphonic acid as a source of phosphorus when inorganic sources of this element are limited. Furthermore, a mechanism has been identified that leads to the formation of CH4 79 from MPn via enzyme-catalytic cleavage of the C-P bound (Kamat et al., 2013). The critical 80 81 issue with this pathway is that MPn is not a known natural product, nor has it been detected 82 in natural systems. However, it was recently shown that the marine archaeon Nitrosopumilus 83 maritimus encodes a pathway for MPn biosynthesis and that it produces cell-associated MPn esters (Metcalf et al., 2012). They argued that these cells could provide sufficient amounts of 84 MPn precursor to account for the observed CH₄ production in the oxic ocean via the C-P lyase 85 dependent scenario suggested by Karl et al. (2008). However, it was not possible to explain 86

the supersaturation state of CH₄ in oxic surface water by quantification of produced CH₄ from
dissolved MPn under natural conditions (del Valle and Karl, 2014).

It remains equivocal if CH₄ formation from MPn (Karl et al. 2008) or metabolism of DMSP by 89 methanogens in anoxic microenvironments (Damm et al., 2008; Zindler et al., 2013, Damm et 90 91 al., 2015) is sufficient to provide a permanent increase in the concentration of CH₄ in 92 oxygenated surface waters, or if other pathways are also required to fully explain the CH₄ oversaturation in oxic waters. In this context it is important to mention that almost 40 years 93 ago researchers (Scranton and Brewer, 1977; Scranton and Farrington, 1977) already 94 95 mentioned the possibility of in-situ formation of CH₄ by marine algae. These scientists 96 measured CH₄ saturation states in open ocean surface waters of the west subtropical North-Atlantic. They observed 48-67 % higher CH₄ concentrations in surface waters than estimated 97 from atmospheric equilibrium concentration, with a narrow maximum of CH₄ concentration 98 in the uppermost part of pycnocline. Since the loss of CH₄ from surface to atmosphere was 99 calculated to be much larger than diffusion from CH₄ maxima of the pycnocline into the mixed 100 101 layer, an *in situ* biological CH₄ formation process within the mixed layer was hypothesized 102 (Scranton and Farrington, 1977; Scranton and Brewer, 1977). However, direct evidence of 103 algae-derived CH₄ formation from laboratory experiments with (axenic) algae cultures is still 104 missing, and the accumulation of CH₄ in the upper water layer has not yet been directly related to production by algae. 105

The aim of our study was to quantify *in-situ* CH₄ formation from marine algae such as coccolithophores and to identify precursor compounds of CH₄ via ¹³C labelling techniques. Therefore, we used *Emiliania huxleyi*, a widely distributed, prolific alga. The coccolithophore

blooms including *E. huxleyi* are the major regional source of DMS release to the atmosphere
(Holligan et al., 1993). Specific goals in this study were (I) to measure CH₄ production of a
biogeochemically important marine phytoplankton, (II) to screen for methanogenic archaea
or bacteria and (III) to identify methyl sulfides, such as the amino acid methionine, that play a
role in metabolic pathways of algae - as possible precursors for CH₄.

114

115 MATERIAL & METHODS

116 Culture media and culture conditions

117 Monoclonal cultures of *E. huxleyi* [RCC1216; <u>http://roscoff-culture-collection.org/</u>] were 118 grown in full batch mode (Langer et al. 2013) in sterile filtered (0.2 μ m) seawater (Helgoland, 119 North Sea) enriched with phosphate, nitrate, trace metals and vitamins according to F/2 120 (Guillard and Ryther, 1962). Main cultures were inoculated with 3500 cells ml⁻¹, sampled from 121 a pre-culture grown in dilute batch mode (Langer et al. 2009). Final cell densities of the main 122 cultures were approximately 1 × 10⁶ cells ml⁻¹.

123

To investigate algae-derived CH₄ formation a closed-chamber system was used. Hence 2l flasks
(Schott, Germany) filled with 1800 ml sterile filtered sea water and with 480 ml headspace
volume were used in our investigations. The flasks were sealed with lids (GL 45, PP, 2 port,
Duran Group) equipped with two three-way-ports (Discofix®-3, B-Braun), where one port was
used for water and the other port (fitted with a sterile filter, 0.2 µm; PTFE, Saturius) for gas
sampling. The cells were grown on a day/night cycle of 16/8 h at 20°C and a light intensity of

≈450 µE over a 10 day period. Initial dissolved inorganic carbon (DIC) of the culture medium
 was 2235 µmol l⁻¹ (for details on DIC measurements see Langer et al. 2009).

132

The different treatments and number of replicates are provided in Table 1. To increase the detectability of CH₄-formation and to exclude a possible contamination with CH₄ from the surrounding air, ¹³C-labelled bicarbonate (NaH¹³CO₃, 99 % purity, Sigma-Aldrich, Germany) was added to the cultures. Bicarbonate (Bic) was used as C-source for biomass production. To gain a ¹³C-enrichment of 1 % of the total inorganic C (CO₂, HCO₃⁻, and CO₃²⁻), 22.35 µmol l⁻¹ NaH¹³CO₃ was added, leading to a theoretical δ^{13} C value of 882 ‰.

We used two different control treatments: 1) Algae cultures without ¹³C-Bic and 2) sea water
 with ¹³C-Bic.

To test methionine (Met) as a precursor of algae-derived CH₄, Met where only the sulfurbound methyl-group was ¹³C-labelled (R-S-¹³CH₃, 99 % enriched, 1 μ mol l⁻¹) was added to the cultures. Met has previously been identified as a methyl-group donor for CH₄ biosynthesis in higher plants and fungi (Lenhart et al. 2012, 2015). Moreover, marine algae use Met to produce DMSP, DMS and DMSO, substances that can be released into seawater and known to act as precursors for abiotic CH₄ production.

147

148 Sample collection and analysis

Samples were taken daily from day 4 until day 10 (see Table 1). Prior to day 4, algae biomass
was too low to allow measurement of changes in CH₄ mixing ratio.

For GC-FID/ECD and CF-IRMS analysis samples of headspace (30 ml) were taken from each flask. GC-samples were measured within 24h after sampling while GC-IRMS samples were stored in 12 ml exetainers until ¹³C-CH₄ measurements were carried out.

After gas sampling, samples of medium (25 ml) from each flask were also taken for cell density determination. These samples were supplemented with 0.15 ml Lugol solution (Utermöhl, 1958) and stored in 50 ml Falcon tubes at 4°C. In order to maintain atmospheric pressure within the flask, surrounding air was allowed to enter via an orifice fitted with a sterile filter to avoid bacterial contamination. Variable amounts of water and headspace volume as well as inflow of surrounding air were all taken into consideration when CH₄ production rates were calculated.

161 Cell density was determined via a Hemocytometer (Thoma-Kammer with 256 fields, 0.0025
 162 mm² × 0.1 mm; Laboroptik Ltd, UK).

163

164 Gas chromatography

Gas samples were analysed for CH₄ mixing ratio within 24 h on a gas chromatograph 165 (Shimadzu GC-14B, Kyoto, Japan) fitted with a flame ionization detector (FID) operating at 230 166 167 °C with N₂ as carrier gas (25 ml min⁻¹) (Kammann et al., 2009). The GC column (PorapakQ, Fa. Millipore, Schwallbach, mesh 80/100) was 3.2 m long and 1/8 inch in diameter. The length of 168 169 the precolumn was 0.8 m. The GC gas flow scheme and automated sampling was that of 170 Mosier and Mack (1980) and Loftfield (1997), and peak area integration was undertaken with the Software PeakSimple, version 2.66. The standard deviation (s.d.) of the mean of six 171 atmospheric air standard samples was below 0.2 % for CH₄. 172

173

174 Continuous flow isotope ratio mass spectrometry (CF-IRMS) for measurement of δ^{13} C values

175 of CH₄

Headspace gas from exetainers was transferred to an evacuated sample loop (40 mL). 176 Interfering compounds were separated by GC and CH₄ trapped on Hayesep D. The sample was 177 then transferred to the IRMS system (ThermoFinnigan Delta^{plus} XL, Thermo Finnigan, Bremen, 178 179 Germany) via an open split. The working reference gas was carbon dioxide of high purity (carbon dioxide 4.5, Messer Griesheim, Frankfurt, Germany) with a known δ^{13} C value of -180 23.64 ‰ relative to Vienna Pee Dee Belemnite (V-PDB). All δ^{13} C values of CH₄ were corrected 181 using three CH₄ working standards (isometric instruments, Victoria, Canada) calibrated against 182 IAEA and NIST reference substances. The calibrated δ^{13} C-CH₄ values of the three working 183 standards were -23.9±0.2 ‰, -38.3±0.2 ‰ and -54.5±0.2 ‰. Samples were routinely analysed 184 three times (n = 3) and the average standard deviations of the CF-IRMS measurements were 185 in the range of 0.1 to 0.3 ‰. 186

187 All ¹³C/¹²C -isotope ratios are expressed in the conventional δ notation in per mil [‰] versus 188 V-PDB, using the following equation (Eq. 1):

189
$$\delta^{13}C = (({}^{13}C/{}^{12}C)_{sample} / ({}^{13}C/{}^{12}C)_{standard}) - 1.$$
 (Eq. 1)

190 To determine the δ^{13} C signature of the CH₄ source, the Keeling-plot method was applied 191 (Keeling, 1958).

192

193 Microbial investigations

194 **DNA extraction and real-time PCR**

Samples for DNA extraction were taken from the stem culture (RCC 1216) during the stationary growth phase (2×10^6 cells ml⁻¹). After DNA extraction, realtime PCR was used to detect mcrA-genes, which are solely found in methanogenic archaea. As positive proof, aliquots of the samples were supplemented with a defined cell density of *Methanothermobacter marburgenesis* (either 10^4 or 10^7 cells ml⁻¹).

The DNA extraction was carried out according to (Bürgmann et al., 2001). 1 ml of the algae 200 201 culture was transferred into a 2 ml vial containing 200 µl of Zirconia-silica beads (Roth) and centrifuged for 20 minutes (1.3 ×10⁴ U min⁻¹; 20°C). Afterwards, 850 μl of the supernatant was 202 203 replaced with extraction buffer (Bürgmann et al., 2001) and beaten for 50 s (Retsch, type 204 MM2). After centrifugation the supernatant was transferred to another vial (2 ml, Eppendorf, Germany), mixed with 850 µl phenol/chloroform/iso-amyl-alcohol-solution (Roth) and again 205 centrifuged for 5 minutes $(1.3 \times 10^4 \text{ U min}^{-1}; 20^{\circ}\text{C})$. The water phase was supplemented with 206 207 800 µl phenol, mixed and centrifuged again. Afterwards, the water phase was transferred in a new vial, mixed with 800 μ l precipitating buffer (PEG) and centrifuged for 60 min (1.3 × 10⁴ U 208 209 min⁻¹; 20°C). The pellet was washed with 800 μl ethanol (75%; -20°C, centrifuged for 10 min 210 at 1.3×10^4 U min⁻¹; 20°C) and air-dried in the laboratory. For elution and storage of the pellet we used 20 µl nuclease-free water. 211

212 Real-time PCR was carried out according to Kampmann et al. (2012) with a Rotor-Gene 3000 213 (Fa. Corbett Research, Australia) by using ABsolute[™] QPCR SYBR[®] Green Mix (ABgene). For the 214 detection of mcrA-Genes we used the primer (ML forward:5'GGTGGTGTMGGATTCACACARTAYGCWACAGC-3'; 215 ML reverse:

216	5' AACTAYCCWAACTAYGCAATGAA-3'), which encodes the α -subunit of the methyl-CoM
217	reductase, that solely occurs in methanogenic archaea (Luton et al., 2002).

The real-time PCR reference standards were produced according to Kampmann et al. (2012). By using the standard solution (5.5×10^7 DNA copies μ l⁻¹) dilution with nuclease-free water was accomplished down to 5.5×10^1 copies per μ l⁻¹. All standards and regular samples taken from the flasks were analyzed with four repetitions.

222 Quality assurance of the real-time PCR-product was achieved by melt curve analysis and 223 gelelectrophoresis using the fluorescent stain GelRedTM (Biotium).

224

225 Cultivation approach

In addition to real-time PCR, a cultivation/enrichment procedure (Kampmann et al., 2012) was 226 conducted to screen for methanogenic archaea in algae cultures. The enrichment medium 227 228 (Widdel and Bak, 1992) was modified for marine conditions by adding 320 mmol I⁻¹ NaCl; 16 mmol I⁻¹ MgCl₂ and 1 mmol I⁻¹ NaHCO₃. At day 10 an aliquot (5 ml) of each cultivation flask was 229 230 transferred into injection flasks (Ochs, Bovenden-Lenglern, Germany) with the enrichmentmedium (50 ml) and acetate (10 mM), methanol (5 mM) was added and in the gas phase H₂ 231 and CO₂ (90:10) was provided as substrates. Incubation was carried out over a period of 6 232 233 weeks at 20°C in the dark.

234

235 CH₄ mass

The mass of CH_4 (m_{CH_4}) per flask was calculated via the ideal gas law from the corrected CH_4 mixing ratio (ppmv), where the changing volume of water and headspace and the inflow of surrounding air were all considered, according to Eqn. 3:

239

240
$$m_{CH_4} = \frac{p}{R \times T} \times c_{CH_4} \times V \times M_{CH_4}$$

241

Where p = pressure, T = temperature, R = ideal gas constant, V = volume, and M_{CH_4} = molweight CH₄. The solubility of CH₄ in the water phase was calculated according to Wiesenburg and Guinasso (Wiesenburg and Guinasso Jr, 1979) based on the headspace-CH₄ mixing ratio, temperature and salinity of the water phase.

246

247 Calculation of CH₄ production

The low CH₄ mixing ratios produced by *E. huxleyi* during the exponential growth phase precluded the determination of CH₄ production during this period. Therefore we calculated production from day 7 to day 10, a period representing the transition from exponential to stationary phase. This growth phase features changing growth rates and cellular CH₄ quotas, rendering the dilute batch method of calculating production inapplicable (Langer et al. 2013). We followed the recommendation of Langer et al. (2013) and calculated incremental (daily) CH₄ production:

255

$$Pinc = qinc \times muinc \tag{4}$$

(3)

with Pinc = incremental CH₄ production [ng CH₄ cell⁻¹ day⁻¹], qinc = incremental cellular CH₄

257 quota [ng CH₄ cell⁻¹], muinc = incremental growth rate [day⁻¹]

258 Incremental growth rate was calculated according to:

$$muinc = LN(t_1) - LN(t_0)$$
(5)

with t_1 = cell density on the day qinc was determined, t_0 = cell density on the previous day. We present average Pinc (STDEV).

262 In order to compare CH₄ production to literature data it was necessary to normalize to cellular particulate organic carbon (POC) quota, as opposed to cell. The POC normalized CH4 263 production is termed "methane emission rate" in the following. Since it was not possible to 264 265 measure cellular POC quota on a daily basis, we used a literature value determined for the same strain under similar culture conditions, i.e. 10.67 pg POC cell⁻¹ (Langer et al. 2009). We 266 267 are aware of the fact that cellular POC quota is likely to change alongside other element quotas when approaching stationary phase, but this change is well below an order of 268 magnitude (Langer et al. 2013). For our purpose this method is therefore sufficiently accurate 269 270 to determine POC normalized CH₄ production.

271

272 Statistics

To test for significant differences in cell density, CH₄ mixing ratio and CH₄ content between
the treatments, two-way ANOVA (considering repeated measurements) and a Post-Hoc-Test
(Fisher LSD-Test; alpha 5 %) was used.

277 **RESULTS**

278 Algae growth

279 Cell density and growth of the cultures are presented in Figure 2a, b over the whole incubation period for all treatments. The initial cell density at time 0 (t₀) was 3.5×10^3 cells ml⁻¹ in all 280 flasks. At day 10 cell density reached its maximum value with 1.37 × 10⁶ cells ml⁻¹ (algae), 0.82 281 \times 10⁶ cells ml⁻¹ (algae + ¹³C-Bic) and 1.24 \times 10⁶ cells ml⁻¹ (algae + ¹³C-Met). The exponential 282 growth rates (μ) were 0.85 ± 0.2 d⁻¹ for "algae + ¹³C-Met", 0.98 ± 0.1 d⁻¹ for "algae + ¹³C-Bic", 283 and 1.06 \pm d⁻¹ for the control "algae" (n.s., p = 0.286). Significant differences in cell density 284 between the treatments only occurred at days 9 and 10, where the cell density of the control 285 "algae" was higher than in the treatments where ¹³C-Bic or ¹³C-Met was added. 286

287 Methane mixing ratio

Initial headspace-CH₄ mixing ratios measured at day 4 were in the range of 1899 to 1913 ppbv for all treatments including the controls without algae. From day 4 to day 7 headspace-CH₄ mixing ratios slightly increased in all flasks. Therefore, no significant differences in the CH₄mixing ratios occurred between the treatments. After day 8 CH₄ mixing ratios in the flasks containing algae were significantly higher compared to the controls without algae (Fig. 2c, d). The highest CH₄ mixing ratios at day 10 corresponded to 2102 ± 62 ppbv (algae +¹³C-Met), 2138 ± 42 ppbv (algae + ¹³C-Bic) and 2119 ± 25 ppbv (algae).

Hence, from day 4 to day 10 the CH₄ mixing ratios increased by about 192 ppbv (algae + ¹³CMet), 49 ppbv (sea water + ¹³C-Met), 235 ppbv (algae + ¹³C-Bic) and 67 ppbv (sea water + ¹³CBic), respectively.

298 Stable carbon isotope values of methane

¹³C-Bic did not affect CH₄ production of algae, but the δ^{13} CH₄ value was clearly different from that of the control "algae". The initial value of -47.9 ± 0.2 ‰ increased to 44 ± 13 ‰ whereas in the controls "seawater + ¹³C-Bic" and "algae" no change in the δ^{13} CH₄ value was observed. Addition of ¹³C-Met did not affect algal CH₄ formation, but it increased the δ^{13} CH₄ signature from –46.35 +0.84 ‰ to 59.1 ± 25.3 ‰ (day 8). In the treatment "¹³C-Met", where only isotopically labelled Met was added to sterile filtered sea water, a small increase from -48.0 ±

The δ^{13} C signature of headspace-CH₄ (δ^{13} CH₄ value) is presented in Figure 2e, f. Addition of

306 0.3 to -38.1 ± 2.3 ‰ (at day 10) was observed.

Based on the initial amount of ¹³C-Bic and the total amount of ¹³CH₄ at the end of the incubation period, 88.3 ± 17.2 pmol of 22.4 μ mol ¹³C-Bic were converted to ¹³CH₄. For Met, this was 78.5 ± 18.6 pmol of the initial 1.8 μ mol ¹³C-Met.

The Keeling-plots to determine the ¹³C values of the CH₄ source are presented in (Fig. 3). For the bicarbonate treatment ("Algae + ¹³C-Bic"), the mean δ^{13} CH₄ value of the CH₄ source was 811.9 ± 89.9 ‰, which is close to the calculated δ^{13} C value of 881.5 ‰ after the addition of NaH¹³CO₃.

For the treatment "Algae + ¹³C-Met" we applied the Keeling-plot method only for the period from day 5 to day 7, as the increase in the δ^{13} C values were not linear after day 7. For this treatment, the δ^{13} C values of the CH₄ source range between 967 and 2979 ‰.

317

299

300

301

302

303

304

The correlation between the growth of the algae cultures and the total amount of CH₄ in the flasks (headspace + water phase) is presented in Figure 4. For the treatment "algae + ¹³C-Bic" (Fig. 4a) there is an exponential correlation between cell density and CH₄-content ($r^2 = 0.994$). Whereas for the treatment "algae + ¹³C-Met" (Fig. 4b) a linear correlation was observed ($r^2 = 0.995$).

323

The daily CH₄ content in the flasks for days 8, 9 and 10 is shown in Figure 5. For all flasks the CH₄ content exceeded the CH₄ content of the respective control, with a continuous increase of the CH₄ content in the flasks containing algae. At day 10, the difference between "algae + ¹³C-Bic" and "sea water + ¹³C-Bic" and between "algae + ¹³C-Met" and "sea water + ¹³C-Met" was 65 ±16 and 54 ±22 ng, respectively.

329

The CH₄ production of algae presented in Table 2 shows no major differences between the treatments. Furthermore for all treatments, the daily CH₄ production rates did not change over time (Fig. 6).

333

334 Microbial investigations

Via real-time PCR no mcrA-genes could be detected in the flasks containing the CH₄-producing algae cultures. Whereas the positive control in which the algae culture was supplemented with 10^4 and 10^7 cells ml⁻¹ of the methanogenic archaea *Methanothermobacter marburgenesis*, 9.4 10^4 and 4.6 10^6 mcrA-gene copies ml⁻¹ have been detected, respectively.

With the cultivation approach, where an aliquot of each flask was taken at day 10 and transferred in the media for enrichment of methanogenic archaea, no CH₄ production was observed after the 6 week incubation period. In case of a successful enrichment of methanogenic archaea, the CH₄-mixing ratio in the headspace would increase over time.

343

344 **DISCUSSION**

Our results of the CH₄ mixing ratio and stable isotope measurements provide unambiguous evidence that *E. huxleyi* produces CH₄. In the following we will discuss the relationship between CH₄ production and growth of the algae, stable isotope measurements, potential precursor compounds, and the exclusion of methanogenic archaea. Finally, we will discuss the implications of our results for the methane paradox in oxic waters.

350 Growth and CH₄ production

351 Over the course of the exponential growth phase headspace CH₄ mixing ratios in treatments 352 containing E. huxleyi were not measurably different from the control treatments. Therefore it 353 was not possible to determine CH₄ production in the exponential growth phase. However, we 354 conclude that E. huxleyi produces CH₄ throughout all growth phases as will be detailed in the 355 following. In the transitionary growth phase leading up to stationary phase we calculated incremental CH₄ production (daily). The transitionary phase features declining growth rate and 356 357 often increasing cellular carbon quotas (Langer et al. 2013). Also cellular CH₄ quotas did increase (data not shown). On the other hand, CH₄ production remained constant within the 358 359 measurements of error, displaying a slight downward trend when approaching stationary 360 phase (Fig. 6). Therefore we conclude that CH₄ production is not a feature of senescent cells only, but probably is operational in all growth phases. This is interesting in the context of the 361 362 ecology and biogeochemistry of E. huxleyi. Contrary to the traditional assumption that E. huxleyi production in the field is dominated by late summer bloom events, it was recently 363 shown that non-bloom production in spring contributes significantly to yearly average 364 365 production and therefore bloom events are not exceptionally important in biogeochemical terms (Schiebel et al. 2011). Since senescent cells in field samples are mainly a feature of late 366 367 bloom stages, the exclusive production of CH₄ by such cells would confine any contribution of E. huxleyi to the oceanic CH₄ budget to a relatively short, and biogeochemically less important, 368 period. However from results found in this study we would propose that E. huxleyi produces 369 370 CH₄ during all growth phases as part of its normal metabolism. If our findings are confirmed 371 and supported by other research groups this has considerable implications as it would render this species a prolific aerobic producer of CH₄ on a par with, for example, terrestrial plants 372 (Bruhn et al., 2012). 373

374 Methane emission rates

To calculate CH₄ emission rates of *E. huxleyi*, we normalized CH₄ production to cellular particulate organic carbon (POC) content (see Material and Methods). The CH₄ emissions were $0.7 \mu g POC g^{-1} d^{-1}$, or 30 ng g⁻¹ POC h⁻¹ (mean for all treatments, n = 8).

In this study the main aim was (as a proof of principle) to unambiguously provide evidence that *E. huxleyi* are able to produce methane under aerobic conditions and without the help of microorganisms. However, we suggest that CH₄ emission rates of *E. huxleyi* algae are different under changing
environmental conditions, e.g. temperature, light intensity or nutrient supply. The effect of
changing environmental parameters should be the focus of future investigations.

For comparison CH₄ emission rates presented so far for terrestrial plants range from 0.3 to 370 ng g⁻¹ DW (dry weight) h⁻¹ (Keppler et al., 2006; Wishkerman et al., 2011; Lenhart et al., 2015; Brüggemann et al., 2009).

387

388 Inorganic and organic precursors of CH₄

Based on the addition of bicarbonate (¹³C-Bic, 1 % enrichment), which is the principal carbon source for growth of algae, and the measurements of δ^{13} CH₄ values it was possible to clearly identify bicarbonate as the principal carbon precursor of CH₄ in *E. huxleyi*.

In the flasks where algae were supplemented with ¹³C-Bic, a significant increase in $\delta^{13}CH_4$ 392 values occurred over the incubation period, which shows that algae use bicarbonate as 393 precursor carbon (C) for CH₄ production. As expected, in the controls flasks "algae" where no 394 395 ¹³C-Bic was added and the control "sea water + ¹³C-Bic" without algae, no change in $\delta^{13}CH_4$ values was observed. The initial δ^{13} C value of the bicarbonate in the treatment "algae + 13 C-396 bic" (+882 ‰) is within the range of the source δ^{13} CH₄ values obtained via the Keeling-plot 397 398 method (+812 ±90 ‰). Even though there might be kinetic isotope fractionations involved in 399 each of the several steps during organic matter formation these data clearly indicate that bicarbonate is the principle inorganic carbon precursor of CH₄ produced in algae. 400

401 Bicarbonate is taken up by the algae via autotrophic C fixation (Burns and Beardall, 1987) and 402 might therefore - during several steps of metabolism i.e. formation of organic compounds lead to the formation of CH₄. Probably, it will be used as an unspecific C source in many 403 different metabolic pathways, e.g. the synthesis of lignin, pectin, and cellulose (Kanehisa et 404 al., 2014) – components already known as CH₄ precursors from terrestrial plants, where via 405 406 methyl group cleavage CH₄ can be produced (Keppler et al., 2008; Bruhn et al., 2009; Vigano 407 et al., 2009). However, lignin and pectin are not commonly found in marine algae such as E. 408 huxleyi. For these organisms sulphur bonded methyl groups such as thioethers, sulfoxides and sulfonium salts (methionine, S-adenosylmethionine SAM, dimethylsulfoniopropionate DMSP, 409 dimethyl sulfoxide DMSO, dimethyl sulfide DMS) are of much more interest. For our 410 experiments, we used ¹³C positionally labelled Met where only the sulfur-bond methyl group 411 $(-S-CH_3)$ was 99 % enriched in ¹³C. Our choice of this compound was partly due to its 412 commercial availability but more importantly because it is known to be involved in a number 413 of metabolic pathways and transmethylation reactions (Stefels, 2000, Bruhn et al. 2012). 414

In contrast to the ubiquitous C-source bicarbonate –which can also be used to build Met in
algae (Stefels, 2000) – Met is incorporated in specific metabolic pathways. Algae use part of
the Met for protein synthesis, in *E. huxleyi* it is also involved in the synthesis of DMSP, a main
precursor of DMS and DMSO.

The clear increase in δ^{13} CH₄ values of headspace-CH₄ in the treatment "algae +¹³C-Met" (Fig. 2e, f) shows that the methyl thiol group of Met is a direct CH₄ precursor. The Keeling-plot results (Fig. 3) show higher variability for Met than for Bic. However, Met is almost certainly not the only precursor of CH₄, as the headspace-CH₄ mixing ratios increased (Fig. 2d), while

423 the ¹³C values of headspace-CH₄ showed a saturation curve (Fig. 2f). This indicates either a shift from Met to other CH₄ precursors, or to the use of newly synthesized, non-labelled Met. 424 Based on the initial amount and the total amount of ¹³CH₄ formed at the end of the incubation, 425 only a small fraction (79 pmol, i.e. 4.0 ‰) of the initial added ¹³C-Met (1.8 μmol) was converted 426 to ¹³CH₄. The formation of CH₄ from ¹³C-Met explains roughly about 3 % of the total amount 427 428 of CH₄ formed throughout the incubation period. Possibly, the formation of potential precursors of CH₄ may change under various climatic conditions, leading to varying CH₄ 429 430 production rates in different pathways.

This observation is in line with the findings of Lenhart and colleagues who demonstrated the sulphur-bound methyl group of Met as a precursor for CH₄ in plants (Lenhart et al., 2015) and fungi (Lenhart et al., 2012). The linear increase in headspace-CH₄ mixing ratio (Fig. 2d) together with the non-linear increase in δ^{13} CH₄ signature (Fig. 1f) indicates that the pool of ¹³C-Met was either exhausted or was diluted by newly synthesized, non ¹³C enriched Met.

436 In addition, we also found an indication for a chemical CH₄ formation pathway in the sea water with Met as methyl-group donor as a small increase in ¹³CH₄ values in the control treatment 437 "sea water + ¹³C-Met" was observed (Fig. 2f). This CH₄ formation pathway is approximately 438 439 10-fold lower when compared to the treatment "algae + ¹³C-Met" and is only observed in the 440 isotopic experiment, but not when only CH₄ mixing ratio is considered (Fig. 2d). However, this 441 observation is in line with some previous findings (Althoff et al., 2010; Althoff et al., 2014), who showed that abiotic formation of CH₄ due to the degradation of methionine or ascorbic 442 acid by light or oxidants such as iron minerals is possible. In the case of methionine it was 443

shown that the sulphur-bound methyl group of Met was the carbon precursor for CH₄ (Althoff
et al. 2014).

446 **Potential implications for the occurrence of CH₄ in oxic marine waters**

Several hypotheses with regard to the occurrence of the seasonal and spatial CH₄ oversaturation in oxic surface waters (Bange et al., 1994; Forster et al., 2009; Owens et al., 1991) have been postulated. They include CH₄ formation from methanogenic archaea in anoxic microsites (Karl and Tilbrook, 1994), or CH₄ formation via the C-P-lyase pathway from methylphosphonate (Karl et al., 2008).

In the ocean, both CH₄ production by methanogens and consumption via methanotrophic 452 bacteria occur simultaneously. Therefore, CH₄ production can exceed estimated CH₄ 453 454 production rates when based solely on CH₄ mixing ratio measurements (Reeburgh, 2007). To 455 provide a noteworthy contribution to oceanic CH₄ production, precursors must either be available in high abundance or be continually synthesized. Algae-derived methylated sulphur 456 457 compounds such as Met, DMSP, DMS, and DMSO are ubiquitous in the ocean but show a high spatial and temporal variability with high mixing ratios in algal blooms. Therefore, they are 458 potential compounds that might be involved in CH₄ formation in the oceans (Keppler et al., 459 460 2009; Althoff et al., 2014). The involvement of methyl moieties from methylated sulfur compounds in CH₄ biosynthesis might therefore play an important role in pelagic CH₄ 461 production. Mixing ratios of DMS and DMSP in sea water during algal blooms were reported 462 in the range of 0.82 to 8.3 nmol I⁻¹ and 1.25 to 368 nmol⁻¹, respectively (Matrai and Keller, 463 1993). 464

The CH₄ emission rates of *E. huxleyi* may also occur by a second formation pathway, where
DMSP is first converted to DMS and subsequently oxidized to DMSO (Bentley and Chasteen,
2004).

However, several studies have afforded evidence for a CH₄ formation pathway via methyl 468 radicals (Althoff et al., 2014; Eberhardt and Colina, 1988; Herscu-Kluska et al., 2008), leading 469 to the hypothesis that algae-derived DMSO can also act as a precursor of CH₄ in oxic seawater 470 471 (Althoff et al., 2014). A correlation between Met and DMSP synthesis was provided by Gröne 472 and Kirst (1992) who showed that supplementation of Tetraselmis subcordiformis with 100 µg 473 I⁻¹ Met yielded a 2.6-fold increase in DMSP. For *E. huxleyi*, DMSO mixing ratios in the stationary 474 growth phase can reach 0.1 pg per cell (Simo et al., 1998). Assuming that a similar DMSO mixing ratio were to be found in our study, this would mean that in every 4×10^3 DMSO 475 476 molecules per day must be transferred to CH₄ to explain the observed increase in CH₄. Moreover, a positive correlation was observed between Chlorophyll a and CH₄, as well as 477 between DMSP or DMSO and CH₄ (Zindler et al., 2013). 478

479

480 Conclusions and Outlook

Our study provides the first isotope evidence that marine algae such as *E. huxleyi* produce CH₄ with bicarbonate and the sulfur-bound methyl group of Met as C precursors. Our results based on real-time PCR and enrichment of methanogenic Archaea make it highly unlikely that there is a contribution of Archaea to the observed CH₄ production. It is of interest to note that it is almost 40 years since algae were suggested as a possible direct source of CH₄ in the ocean (Scranton and Brewer, 1977; Scranton and Farrington, 1977). Thus despite the scientific 487 endeavors of numerous research groups over a considerable period of time the explanation for the frequently monitored CH₄ oversaturation of oxic surface waters in oceans and fresh 488 water lakes is still a topic of debate (Zindler et al., 2013; Tang et al., 2014; Damm et al., 2008). 489 Since our results unambiguously show that the common coccolithophore E. huxleyi is able to 490 produce CH₄ per se under oxic conditions we thus suggest that algae living in marine 491 492 environments might contribute to the regional and temporal oversaturation of surface waters. However, our results of the laboratory experiments should be confirmed by field 493 494 measurements in the ocean.

We would encourage further studies in this research area to make use of stable isotope techniques together with field measurements as we consider such an approach well suited for the elucidation of the pathways involved in CH₄ formation in oceanic waters.

498

499 Acknowledgements

We are grateful to John Hamilton for his thoughtful comments on an early version of this manuscript. We thank Markus Greule, and Tina Brenneis for assistance and Bellinda Schneider for help with the molecular work. This work was funded by the Justus-Liebig University of Gießen who supported K. Lenhart with a Margarethe-Bieber-Post-Doc Fellowship, the ESF (EURYI Award to F.K.) and DFG (KE 884/2-1, KE 884/8-1, KE 884/9-1 and KE 884/12-1). This work was funded in part by The European Research Council (ERC) (grant 2010-NEWLOG ADG-267931 HE) and the Natural Environment Research Council (NE/N011708/1).

Fig. 1: Experimental. The potential precursors of CH₄, ¹³C- labelled bicarbonate (¹³C-Bic) or a
 position-specific ¹³C-labelled methionine (¹³C-Met) were added to the flasks containing either
 a culture of *E. huxleyi* or sea water only.

Fig. 2: Culture cell density when algae grown in seawater (n = 2) supplemented with (a) Bic or (b) Met (n = 3) and headspace CH₄ mixing ratio for cultures supplemented with (c) Bic or (d) Met. δ^{13} CH₄ values after addition of (e) ¹³C-Bic and (f) ¹³C-Met (n = 3; error bars mark the

standard deviation). Stars mark the significance between "algae + ¹³C-Bic" and "sea water + ¹³C-Bic" or between "algae +¹³C-Met" and "sea water + ¹³C-Met", respectively, with *p \leq 0.05; **p \leq 0.01; ***p \leq 0.001.

520

521

Fig. 3: Keeling-plots for the treatment (a) "algae + ¹³C-Bic" and (b) "algae + ¹³C-Met", where $f_{(0)}$ refers to the ¹³C value of the CH₄-source.

Fig. 4: Correlation between cell density per flask and CH₄ content (sum of headspace and water phase) for the coccolithophore *E. huxleyi* (a) in seawater only (n = 2), supplemented with (a) ¹³C-labelled bicarbonate (Bic) or (b) methionine (Met) (n = 3); error bars mark the standard deviation; d = day of incubation.

Fig. 5: Mean CH_4 content (sum of headspace and water phase) in the flasks of *E. huxleyi* supplemented with either bicarbonate of methionine (n = 3) and the respective control without algae (n = 2) measured at days 8, 9 and 10; error bars show the standard deviation.

Fig. 6: Daily CH₄ production of *E. huxleyi* for days 7 to 10 (a, c, e) on a per cell basis and (b, d, f) relative to particulate organic carbon (POC) separately for the treatments (a, b) *E. huxleyi* + 13 C-Bic (n = 3), *E. huxleyi* + 13 C-Met (n = 3), and *E. huxleyi* (n = 2). Values are presented as means with the standard deviation.

541 Tables:

Tab. 1: Overview of sample collection during the incubation of *E. huxleyi*.

	Day	0	1	2	3	4	5	6	7	8	9	10
Headspace	CH ₄					х	х	х	х	х	х	х
	$\delta^{13}CH_4$					х	х	х	х	х	х	х
Water	cell density	x			х	х	х	х	х	х	х	х

- **Tab. 2:** Mean daily CH₄ production rates of *E. huxleyi* (*n = 2; **n = 3) determined between
- 545 days 7 and 10, ag = attogramm = 10^{-18} .

Treatment	CH ₄ [ag cell ⁻¹ d ⁻¹]	CH ₄ [µg g ⁻¹ POC d ⁻¹]
<i>E. huxleyi</i> + ¹³ C-Bic**	6.8 ± 4.1	0.63 ± 0.39
<i>E. huxleyi</i> + ¹³ C-Met**	9.3 ± 2.6	0.88 ± 0.24
E. huxleyi*	6.1 ± 3.7	0.57 ± 0.35

547 References

- 548 Althoff, F., Jugold, A., and Keppler, F.: Methane formation by oxidation of ascorbic acid using iron 549 minerals and hydrogen peroxide, Chemosphere, 80, 286-292, 2010.
- Althoff, F., Benzing, K., Comba, P., McRoberts, C., Boyd, D. R., Greiner, S., and Keppler, F.: Abiotic methanogenesis from organosulphur compounds under ambient conditions, Nat. Commun., 5, 10.1038/ncomms5205, 2014.
- Angel, R., Matthies, D., and Conrad, R.: Activation of Methanogenesis in Arid Biological Soil Crusts
 Despite the Presence of Oxygen, PLoS ONE, 6, e20453, 10.1371/journal.pone.0020453, 2011.
- 555 Bange, H. W., Bartell, U., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas 556 and a reassessment of the marine emissions of methane, Glob. Biogeochem. Cycles, 8, 465-480, 1994.
- 557 Bange, H. W., and Uher, G.: Photochemical production of methane in natural waters: implications for 558 its present and past oceanic source, Chemosphere, 58, 177-183, 2005.
- 559 Bentley, R., and Chasteen, T. G.: Environmental VOSCs—formation and degradation of dimethyl 560 sulfide, methanethiol and related materials, Chemosphere, 55, 291-317, 2004.
- Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., and Derry, A.
 M.: Oxic water column methanogenesis as a major component of aquatic CH₄ fluxes, Nat. Commun.,
 5, 10.1038/ncomms6350, 2014.
- Brüggemann, N., Meier, R., Steigner, D., Zimmer, I., Louis, S., and Schnitzler, J. P.: Nonmicrobial aerobic
 methane emission from poplar shoot cultures under low-light conditions, New Phytol., 182, 912-918,
 10.1111/j.1469-8137.2009.02797.x, 2009.
- 567 Bruhn, D., Mikkelsen, T. N., Øbro, J., Willats, W. G. T., and Ambus, P.: Effects of temperature, ultraviolet 568 radiation and pectin methyl esterase on aerobic methane release from plant material, Plant Biol., 11, 569 43-48, 10.1111/j.1438-8677.2009.00202.x, 2009.
- 570 Bruhn, D., Møller, I. M., Mikkelsen, T. N., and Ambus, P.: Terrestrial plant methane production and 571 emission, Physiol. Plant., 144, 201-209, 10.1111/j.1399-3054.2011.01551.x, 2012.
- 572 Bruhn, D., Mikkelsen, T. N., Rolsted, M., Egsgaard, H., and Ambus, P.: Leaf surface wax is a source of 573 plant methane formation under UV radiation and in the presence of oxygen, Plant Biol., 16, 512-516, 574 2014.
- 575 Bürgmann, H., Pesaro, M., Widmer, F., and Zeyer, J.: A strategy for optimizing quality and quantity of 576 DNA extracted from soil, J. Microbiol. Methods, 45, 7-20, 2001.
- 577 Burns, B. D., and Beardall, J.: Utilization of inorganic carbon by marine microalgae, J. Exp. Mar. Biol. 578 Ecol., 107, 75-86, 1987.
- 579 Conrad, R.: The global methane cycle: recent advances in understanding the microbial processes 580 involved, Environ. Microbiol. Rep., 1, 285-292, 2009.
- 581 Damm, E., Kiene, R., Schwarz, J., Falck, E., and Dieckmann, G.: Methane cycling in Arctic shelf water 582 and its relationship with phytoplankton biomass and DMSP, Mar. Chem., 109, 45-59, 2008.

- Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., and Kiene, R.: Methane production
 in aerobic oligotrophic surface water in the central Arctic Ocean, Biogeosciences, 7, 1099-1108, 2010.
- 585 Damm, E., Thoms, S., Beszczynska-Möller, A., Nöthig, E., and Kattner, G.: Methane excess production 586 in oxygen-rich polar water and a model of cellular conditions for this paradox, Polar Sci., 2015.
- 587 de Angelis, M. A., and Lee, C.: Methane production during zooplankton grazing on marine 588 phytoplankton, Limnol. Oceanogr., 39, 1298-1308, 1994.
- del Valle, D. A., and Karl, D. M.: Aerobic production of methane from dissolved water-column
 methylphosphonate and sinking particles in the North Pacific Subtropical Gyre, Aquat. Microb. Ecol.,
 73, 93-105, 2014.
- Eberhardt, M. K., and Colina, R.: The reaction of OH radicals with dimethyl sulfoxide. A comparative
 study of Fenton's reagent and the radiolysis of aqueous dimethyl sulfoxide solutions, J. Org. Chem., 53,
 1071-1074, 1988.
- Forster, G., Upstill-Goddard, R. C., Gist, N., Robinson, C., Uher, G., and Woodward, E. M. S.: Nitrous
 oxide and methane in the Atlantic Ocean between 50 N and 52 S: Latitudinal distribution and sea-toair flux, Depp-Sea Res. PT II, 56, 964-976, 2009.
- Ghyczy, M., Torday, C., Kaszaki, J., Szabó, A., Czóbel, M., and Boros, M.: Hypoxia-Induced Generation
 of Methane in Mitochondria and Eukaryotic Cells An Alternative Approach to Methanogenesis, Cell.
 Physiol. and Biochem., 21, 251-258, 2008.
- Gröne, T., and Kirst, G.: The effect of nitrogen deficiency, methionine and inhibitors of methionine
 metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein), Mar. Biol., 112, 497-503,
 1992.
- 604 Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial methane production in 605 oxygenated water column of an oligotrophic lake, PNAS, 108, 19657-19661, 2011.
- 606 Guillard, R. R., and Ryther, J. H.: Studies of marine planktonic diatoms: I. *Cyclotella nana hustedt*, and 607 *Detonula confervacea* (Cleve) gran, Can. J. Microbiol., 8, 229-239, 1962.
- Herscu Kluska, R., Masarwa, A., Saphier, M., Cohen, H., and Meyerstein, D.: Mechanism of the
 reaction of radicals with peroxides and dimethyl sulfoxide in aqueous solution, Chem-Eur. J., 14, 58805889, 2008.
- Holligan, P. M., Fernández, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B.,
 Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C. C., Turner, S. M., and van der Wal, P.: A
 biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic, Global
 Biogeochem. Cy., 7, 879-900, 1993.
- 615 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
 616 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom
 617 and New York, NY, USA, 1535, 2013.
- Jarrell, K. F.: Extreme Oxygen Sensitivity in Methanogenic Archaebacteria, BioScience, 35, 298-302,
 10.2307/1309929, 1985.
- Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M., and Raushel, F. M.: The catalytic mechanism
 for aerobic formation of methane by bacteria, Nature, 497, 132-136, 10.1038/nature12061,

- http://www.nature.com/nature/journal/v497/n7447/abs/nature12061.html#supplementary information, 2013.
- 624 Kammann, C., Hepp, S., Lenhart, K., and Müller, C.: Stimulation of methane consumption by 625 endogenous CH₄ production in aerobic grassland soil, Soil Biol. Biochem., 41, 622-629, 2009.
- Kampmann, K., Ratering, S., Kramer, I., Schmidt, M., Zerr, W., and Schnell, S.: Unexpected stability of
 Bacteroidetes and *Firmicutes* communities in laboratory biogas reactors fed with different defined
 substrates, Appl. Environ. Microbiol., 78, 2106-2119, 2012.
- Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.: Data, information,
 knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res., 42, D199-D205, 2014.
- Karl, D. M., and Tilbrook, B. D.: Production and transport of methane in oceanic particulate organicmatter, 1994.
- Karl, D. M., Beversdorf, L., Bjorkman, K. M., Church, M. J., Martinez, A., and Delong, E. F.: Aerobic
 production of methane in the sea, Nature Geosci, 1, 473-478, 2008.
- 635 Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural
- areas, Geochimica et Cosmochimica Acta, 13, 322-334, 1958.
- Keppler, F., Hamilton, J. T. G., Braß, M., and Röckmann, T.: Methane emissions from terrestrial plants
 under aerobic conditions, Nature, 439, 187-191, 2006.
- Keppler, F., Hamilton, J. T. G., McRoberts, W. C., Vigano, I., Braß, M., and Röckmann, T.: Methoxyl
 groups of plant pectin as a precursor of atmospheric methane: evidence fom deuterium labelling
 studies, New Phytol., 02411, 2008.
- Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., and
 Schnitzler, J.: Methane formation in aerobic environments, Environ. Chem., 6, 459-465, 2009.
- Kiene, R. P.: Production and consumption of methane in aquatic systems, Microbial production and
 consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. American Society for
 Microbiology, 111-146, 1991.
- 647 Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., 648 Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, 649 A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., 650 Langenfelds, R. L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., 651 652 Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, 653 R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nature Geosci, 654 6, 813-823, 10.1038/ngeo1955
- Langer, G., G. Nehrke, I. Probert, J. Ly, and P. Ziveri. (2009) Strain-specific responses of Emiliania huxleyi
 to changing seawater carbonate chemistry. Biogeosciences. 6: 2637–2646. doi:10.5194/bg-6-26372009
- Langer, G., Oetjen, K., Brenneis, T. (2013) Coccolithophores do not increase particulate carbon
 production under nutrient limitation: a case study using Emiliania huxleyi (PML B92/11). J. Exp. Mar.
 Biol. Ecol., 443, 155–161

- Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus B, 50, 128-150, 1998.
- Lenhart, K., Bunge, M., Ratering, S., Neu, T. R., Schüttmann, I., Greule, M., Kammann, C., Schnell, S.,
 Müller, C., Zorn, H., and Keppler, F.: Evidence for methane production by saprotrophic fungi, Nat
 Commun, 3, 1046, http://www.nature.com/ncomms/journal/v3/n9/suppinfo/ncomms2049_S1.html,
 2012.
- Lenhart, K., Althoff, F., Greule, M., and Keppler, F.: Technical Note: Methionine, a precursor of methanein living plants, Biogeosciences, 12, 1907-1914, 2015.
- Liu, J., Chen, H., Zhu, Q., Shen, Y., Wang, X., Wang, M., and Peng, C.: A novel pathway of direct methane
 production and emission by eukaryotes including plants, animals and fungi: An overview, Atmos.
 Environ., 115, 26-35, 2015.
- Loftfield, N.: Automated gas chromatographic system for rapid analysis of the atmospheric trace gases
 methan, carbon dioxide, and nitrous oxide, J. Environ. Qual., 26, 560-564, 1997.
- Luton, P. E., Wayne, J. M., Sharp, R. J., and Riley, P. W.: The mcrA gene as an alternative to 16S rRNA
 in the phylogenetic analysis of methanogen populations in landfill, Microbiology, 148, 3521-3530,
 2002.
- Matrai, P. A., and Keller, M. D.: Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf ofMaine, Cont. Shelf Res., 13, 831-843, 1993.
- Messenger, D. J., McLeod, A. R., and Fry, S. C.: The role of ultraviolet radiation, photosensitizers,
 reactive oxygen species and ester groups in mechanisms of methane formation from pectin, Plant Cell
 Environ., 32, 1-9, 10.1111/j.1365-3040.2008.01892.x, 2009.
- Metcalf, W. W., Griffin, B. M., Cicchillo, R. M., Gao, J., Janga, S. C., Cooke, H. A., Circello, B. T., Evans, B.
 S., Martens-Habbena, W., and Stahl, D. A.: Synthesis of methylphosphonic acid by marine microbes: a
 source for methane in the aerobic ocean, Science, 337, 1104-1107, 2012.
- Mosier, A. R., and Mack, L.: Gas-chromatographic system for precise, rapid analysis of nitrous oxide,
 Soil Sci. Soc. Am. J., 44, 1121-1123, 1980.
- Oremland, R. S.: Methanogenic activity in plankton samples and fish intestines A mechanism for in situ
 methanogenesis in oceanic surface waters, Limnol. Oceanogr., 24, 1136-1141, 1979.
- Owens, N., Law, C., Mantoura, R., Burkill, P., and Llewellyn, C.: Methane flux to the atmosphere from
 the Arabian Sea, Nature 354, 293 296, 1991.
- 691 Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107, 486-513, 2007.
- 692 Rhee, T., Kettle, A., and Andreae, M.: Methane and nitrous oxide emissions from the ocean: A 693 reassessment using basin-wide observations in the Atlantic, Journal of Geophysical Research:
- 694 Atmospheres, 114, D12304, doi: 10.1029/2008JD011662, 2009.
- 595 Schiebel, R., Brupbacher, U., Schmidtko, S., Nausch, G., Waniek, J. J., & Thierstein, H. R.: Spring 596 coccolithophore production and dispersion in the temperate eastern North Atlantic Ocean. Journal of 507 Coophysical Research: Oceans, 116(C8), 2011
- 697 Geophysical Research: Oceans, 116(C8), 2011.

- Scranton, M. I., and Brewer, P. G.: Occurrence of methane in the near-surface waters of the western
 subtropical North-Atlantic, Deep Sea Res., 24, 127-138, 1977.
- Scranton, M. I., and Farrington, J. W.: Methane production in the waters off Walvis Bay, J. Geophys.
 Res., 82, 4947-4953, 1977.
- Simo, R., Hatton, A. D., Malin, G., and Liss, P. S.: Particulate dimethyl sulphoxide in seawater:
 production by microplankton, Mar. Ecol. Prog., 167, 291-296, 1998.
- Stefels, J.: Physiological aspects of the production and conversion of DMSP in marine algae and higher
 plants, J. Sea Res., 43, 183-197, 2000.
- 506 Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, in: Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements, Springer, 245-275, 2007.
- Tang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., and Grossart, H.-P.: Paradox reconsidered:
 Methane oversaturation in well oxygenated lake waters, Limnol. Oceanogr., 59, 275-284, 2014.
- Utermöhl, H.: Zur Vervollkommnung der quantitativen Phytoplankton-methodik, Mitt. int. Ver. theor.
 angew. Limnol., 9, 1-38, 1958.
- Vigano, I., Röckmann, T., Holzinger, R., van Dijk, A., Keppler, F., Greule, M., Brand, W. A., Geilmann, H.,
 and van Weelden, H.: The stable isotope signature of methane emitted from plant material under UV
 irradiation, Atmospheric Environ., 43, 5637-5646, 2009.
- Wang, B., Hou, L., Liu, W., and Wang, Z.: Non-microbial methane emissions from soils, Atmospheric
 Environ., 80, 290-298, http://dx.doi.org/10.1016/j.atmosenv.2013.08.010, 2013a.
- Wang, Z.-P., Chang, S. X., Chen, H., and Han, X.-G.: Widespread non-microbial methane production by
 organic compounds and the impact of environmental stresses, Earth-Sci. Rev., 127, 193-202,
 http://dx.doi.org/10.1016/j.earscirev.2013.10.001, 2013b.
- Widdel, F., and Bak, F.: Gram-negative mesophilic sulfate-reducing bacteria, in: The prokaryotes,
 Springer, 3352-3378, 1992.
- Wiesenburg, D. A., and Guinasso Jr, N. L.: Equilibrium solubilities of methane, carbon monoxide, and
 hydrogen in water and sea water, Journal Chem. Eng. Data., 24, 356-360, 1979.
- Wishkerman, A., Greiner, S., Ghyczy, M., Boros, M., Rausch, T., Lenhart, K., and Keppler, F.: Enhanced
 formation of methane in plant cell cultures by inhibition of cytochrome c oxidase, Plant, Cell Environ.,
 34, 457-464, 2011.
- Yoch, D. C.: Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological
 Degradation to Dimethylsulfide, Appl. Environ. Microbiol., 68, 5804-5815, 10.1128/aem.68.12.58045815.2002, 2002.
- Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur
 compounds, methane, and phytoplankton: interactions along a north-south transit in the western
- 734 Pacific Ocean, Biogeosciences, 9, 15011-15049, 2013.