Biogeosciences Discuss., 12, 20323–20360, 2015 www.biogeosciences-discuss.net/12/20323/2015/ doi:10.5194/bgd-12-20323-2015 © Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Evidence for methane production by marine algae (*Emiliana huxleyi*) and its implication for the methane paradox in oxic waters

K. Lenhart^{1,2,3}, T. Klintzsch^{1,2,4}, G. Langer⁵, G. Nehrke⁶, M. Bunge⁴, S. Schnell⁴, and F. Keppler^{1,3}

¹Institute of Earth Sciences, University Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany

²Department of Plant Ecology (IFZ), Heinrich-Buff-Ring 26-32, 35320 Gießen, Germany

³Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany

⁴Department of Applied Microbiology (IFZ), Heinrich-Buff-Ring 26-32,

35320 Gießen, Germany

⁵Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK

⁶Alfred-Wegener-Institute (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany

Discussion Pa	BGD 12, 20323–20360, 2015					
aper [Evidence for methane production by marine algae					
Discussion	K. Lenhart et al.					
Paper	Title Page					
	Abstract					
_	Conclusions References					
)iscus:	Tables Figures					
sion	I4 M					
Pape	• • • • • • • • • • • • • • • • • • •					
<u> </u>	Back Close					
	Full Screen / Esc					
cussic	Printer-friendly Version					
ň P	Interactive Discussion					
aper						

Received: 7 December 2015 – Accepted: 10 December 2015 – Published: 21 December 2015 Correspondence to: K. Lenhart (katharina.lenhart@mpic.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Methane (CH₄), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH_4 to the atmosphere, although the biogeo-

⁵ chemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH₄ production in oxic marine and freshwaters but its source is still a topic of debate. Studies of CH₄ dynamics in surface waters of oceans and large lakes have concluded that pelagic CH₄ supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, frequently regional and temporal oversaturation of surface waters occurs. This comprises the observation of a CH₄ oversaturating state within the surface mixed layer, sometimes also termed

the "oceanic methane paradox".

In this study we considered marine algae as a possible direct source of CH₄. Therefore, the coccolithophore *Emiliania huxleyi* was grown under controlled laboratory con-

¹⁵ ditions and supplemented with two ¹³C-labelled carbon substrates, namely bicarbonate and a position-specific ¹³C-labelled methionine (R-S-¹³CH₃).

The CH₄ production was $0.7 \mu g \text{ POC } g^{-1} d^{-1}$, or $30 \text{ ng } g^{-1} \text{ POC } h^{-1}$. After supplementation of the cultures with the ¹³C labelled substrate, the isotope label was observed in headspace-CH₄.

²⁰ Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH₄ formation suggest that marine algae such as *Emiliania huxleyi* contribute to the observed spatial and temporal restricted CH₄ oversaturation in ocean surface waters.

1 Introduction

Methane (CH₄), the second important anthropogenic greenhouse gas after CO₂, is the most abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry (IPCC, 2013; Kirschke et al., 2013; Lelieveld et al., 1998). The mixing ratio of CH₄ in the atmosphere has been increasing from pre-industrial values of around 715 ppbv (parts per billion by volume) to about 1800 ppbv in 2010 (Kirschke et al., 2013). In total, annual CH₄ emissions from natural and anthropogenic sources amount to 500–600 Tg (10^{12} g) yr⁻¹. They derive from various terrestrial and aquatic sources and are balanced primarily by photochemical oxidation in the troposphere (≈ 80 %), diffusion into the stratosphere and microbial CH₄ oxidation in soils.

¹⁰ sphere (≈ 80 %), diffusion into the stratosphere and microbial CH₄ oxidation in soils. Natural sources of atmospheric CH₄ in the biosphere have until recently been attributed to originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, the intestines of termites and ruminants, human and agricultural waste, and from biomass burning, fossil fuel mining and geological sources includ-

- ¹⁵ ing mud volcanoes, vents and seeps. However, more recent studies have suggested that terrestrial vegetation, fungi and mammals may also produce CH₄ without an input from methanogens and under aerobic conditions (Bruhn et al., 2012; Ghyczy et al., 2008; Keppler et al., 2006; Lenhart et al., 2012; Z.-P.Wang et al., 2013; Liu et al., 2015). A fraction of these vegetation-derived emissions might be released directly by
- in-situ formation in plants (Bruhn et al., 2012; Keppler et al., 2009; B. Wang et al., 2013), and it is now apparent that several pathways exist by which CH₄ is generated under aerobic conditions (Bruhn et al., 2014; Messenger et al., 2009; Z.-P. Wang et al., 2013). Hence, the biogeochemical CH₄ cycle appears to be even more complex than previously thought.
- In order to reliably apportion the global CH_4 budget, it is essential to know all significant sources and sinks and the principal parameters that control emissions. In particular the biogeochemical cycle of CH_4 in the oceans is still far from being understood. The world's oceans are considered to be a source of CH_4 to the atmosphere although

the magnitude of total net emissions is highly uncertain. Concentrations of CH_4 in near-surface waters are often 5–75% supersaturated with respect to the atmosphere implying a net flux from the ocean to the atmosphere (Conrad, 2009; Reeburgh, 2007; Scranton and Brewer, 1977). Because the surface ocean is also saturated or slightly

- ⁵ supersaturated with oxygen, which does not favor methanogenesis, the observed CH₄ supersaturation has been termed the oceanic methane paradox (Kiene, 1991). Recently, Bastviken et al. (2011) suggested that inland waters (freshwaters), such as lakes, reservoirs, streams and rivers, emit at least 103 Tg CH₄ yr⁻¹. Although most is considered to derive from ebullition of CH₄ produced in the deeper anoxic sediments,
- ¹⁰ several studies have now reported that CH_4 formation also occurs in the upper oxic layers of fresh-water lakes (Grossart et al., 2011; McGinnis et al., 2015; Tang et al., 2014). Similar to the oceanic methane paradox, a CH_4 -enrichment in the surface water of well-oxygenated lakes was observed and linked to photosynthesis and/or nitrogen fixation. To explain the source of CH_4 in surface waters, it has been suggested that methano-
- ¹⁵ genesis takes place in anoxic microenvironments of organic aggregates (Grossart et al., 2011; Karl and Tilbrook, 1994; Bogard et al., 2014), and the guts of zooplankton or fish (de Angelis and Lee, 1994; Oremland, 1979). It has also been shown that opposite to the conventional view, some methanogens are remarkably tolerant to oxygen (Angel et al., 2011; Jarrell, 1985).
- A potential substrate in such aggregates is dimethylsulphoniopropionate (DMSP), an algal osmolyte that is abundant in marine phytoplankton and serves as a precursor for dimethylsulphide (DMS) and dimethylsulphoxide (DMSO) (Damm et al., 2008; Stefels et al., 2007; Yoch, 2002; Zindler et al., 2013; Damm et al., 2015). For example Zindler et al. (2013) measured concentrations of DMS, DMSP, DMSO, and CH₄, as well as
 various phytoplankton marker pigments in the surface ocean along a north-south transit from Japan to Australia. Positive correlations between DMSP (dissolved) and CH₄, and DMSO (particulate and total) and CH₄, were found along the transit. Based on their data they concluded that DMSP and DMSO and/or their degradation products serve as substrates for methanogenic bacteria in the western Pacific Ocean.

An alternative non-biological CH_4 formation pathway in seawater might occur via a photochemical pathway due to the formation of methyl radicals, however photochemical production of CH_4 in oceans is thought to be negligible under oxic conditions (Bange and Uher, 2005).

- In addition, Karl et al. (2008) suggested that CH₄ is produced aerobically as a byproduct of methylphosphonate (MPn) decomposition when aerobic marine organisms use methylphosphonic acid as a source of phosphorus when inorganic sources of this element are limited. Furthermore, a mechanism has been identified that leads to the formation of CH₄ from MPn via enzyme-catalytic cleavage of the C-P bound (Kamat et
- al., 2013). The critical issue with this pathway is that MPn is not a known natural product, nor has it been detected in natural systems. However, it was recently shown that the marine archaeon *Nitrosopumilus maritimus* encodes a pathway for MPn biosynthesis and that it produces cell-associated MPn esters (Metcalf et al., 2012). They argued that these cells could provide sufficient amounts of MPn precursor to account for the
- observed CH₄ production in the oxic ocean via the C-P lyase dependent scenario suggested by Karl et al. (2008). However, it was not possible to explain the supersaturation state of CH₄ in oxic surface water by quantification of produced CH₄ from dissolved MPn under natural conditions (del Valle and Karl, 2014). Thus, the environmental importance of this newly identified source remains open to critical debate.

It remains equivocal if CH₄ formation from MPn (Karl et al., 2008) or metabolism of DMS by methanogens in anoxic microenvironments (Damm et al., 2008) is sufficient to provide a permanent increase in the concentration of CH₄ in oxygenated surface waters, or if other pathways are also required to fully explain the CH₄ oversaturation in oxic waters. In this context it is important to mention that almost 40 years ago researchers

²⁵ (Scranton and Brewer, 1977; Scranton and Farrington, 1977) already mentioned the possibility of in-situ formation of CH_4 by marine algae. These scientists measured CH_4 saturation states in open ocean surface waters of the west subtropical North-Atlantic. They observed 48–67% higher CH_4 concentrations in surface waters than estimated from atmospheric equilibrium concentration, with a narrow maximum of CH_4 concen-

tration in the uppermost part of pycnocline. Since the loss of CH₄ from surface to atmosphere was calculated to be much larger than diffusion from CH₄ maxima of the pycnocline into the mixed layer, an in situ biological CH₄ formation process within the mixed layer was hypothesized (Scranton and Farrington, 1977; Scranton and Brewer,

⁵ 1977). However, direct evidence of algae-derived CH_4 formation from laboratory experiments with (axenic) algae cultures is still missing, and the accumulation of CH_4 in the upper water layer has not yet been directly related to production by algae.

The aim of our study was to quantify in-situ CH_4 formation from marine algae such as coccolithophores and to identify precursor compounds of CH_4 via ¹³C labelling tech-

- ¹⁰ niques. Therefore, we used *Emiliania huxleyi*, a widely distributed, prolific alga. The coccolithophore blooms including *E. huxleyi* are the major regional source of DMS release to the atmosphere (Holligan et al., 1993). Specific goals in this study were (I) to measure CH₄ production of a biogeochemically important marine phytoplankton, (II) to screen for methanogenic archaea or bacteria and (III) to identify methyl sulfides, such as the amine acid methicalize that play a role in metabolic pethwaya of place.
- as the amino acid methionine, that play a role in metabolic pathways of algae as possible precursors for CH_4 .

2 Material and methods

2.1 Culture media and culture conditions

Monoclonal cultures of *E. huxleyi* [RCC1216; http://roscoff-culture-collection.org/] were ²⁰ grown in full batch mode (Langer et al., 2013) in sterile filtered (0.2 µm) seawater (Helgoland, North Sea) enriched with phosphate, nitrate, trace metals and vitamins according to F/2 (Guillard and Ryther, 1962). Main cultures were inoculated with 3500 cells mL⁻¹, sampled from a pre-culture grown in dilute batch mode (Langer et al., 2009). Final cell densities of the main cultures were approximately 1 × 10⁶ cells mL⁻¹.

To investigate algae-derived CH₄ formation a closed-chamber system was used. Hence 2I flasks (Schott, Germany) filled with 1800 mL sterile filtered sea water and with

480 mL headspace volume were used in our investigations. The flasks were sealed with lids (GL 45, PP, 2 port, Duran Group) equipped with two three-way-ports (Discofix[®]-3, B-Braun), where one port was used for water and the other port (fitted with a sterile filter, 0.2 μm; PTFE, Saturius) for gas sampling. The cells were grown on a day/night cycle of 16/8 h at 20 °C and a light intensity of ≈450 μE over a 10 day period. Initial dissolved inorganic carbon (DIC) of the culture medium was 2235 μmol L⁻¹ (for details on DIC measurements see Langer et al., 2009).

The different treatments and number of replicates are provided in Table 1. To increase the detectability of CH_4 -formation and to exclude a possible contamination

- ¹⁰ with CH₄ from the surrounding air, ¹³C-labelled bicarbonate (NaH¹³CO₃, 99 % purity, Sigma-Aldrich, Germany) was added to the cultures. Bicarbonate (Bic) was used as C-source for biomass production. To gain a ¹³C-enrichment of 1 % of the total inorganic C (CO₂, HCO₃⁻, and CO₃²⁻), 22.35 µmol L⁻¹ NaH¹³CO₃ was added, leading to a theoretical δ^{13} C value of 882 ‰.
- ¹⁵ We used two different control treatments: (1) Algae cultures without ¹³C-Bic and (2) sea water with ¹³C-Bic.

To test methionine (Met) as a precursor of algae-derived CH_4 , Met where only the sulfur-bound methyl-group was ¹³C-labelled (R-S-¹³CH₃, 99% enriched, 1 µmol L⁻¹) was added to the cultures. Met has previously been identified as a methyl-group donor for CH_4 biosynthesis in higher plants and fungi (Lenhart et al., 2012, 2015). Moreover,

marine algae use Met to produce DMSP, DMS and DMSO, substances that can be released into seawater and known to act as precursors for abiotic CH₄ production.

2.2 Sample collection and analysis

20

Samples were taken daily from day 4 until day 10 (see Table 1). Prior to day 4, algae biomass was too low to allow measurement of changes in CH₄ concentration.

For GC-FID/ECD and CF-IRMS analysis samples of headspace (30 mL) were taken from each flask. GC-samples were measured within 24h after sampling while GC-IRMS

samples were stored in 12 mL exetainers until $^{13}\mbox{C-CH}_4$ measurements were carried out.

After gas sampling, samples of medium (25 mL) from each flask were also taken for cell density determination. These samples were supplemented with 0.15 mL Lugol

- ⁵ solution (Utermöhl, 1958) and stored in 60 mL Falcon tubes at 4 °C. In order to maintain atmospheric pressure within the flask, surrounding air was allowed to enter via an orifice fitted with a sterile filter to avoid bacterial contamination. Variable amounts of water and headspace volume as well as inflow of surrounding air were all taken into consideration when CH₄ production rates were calculated.
- ¹⁰ Cell density was determined via a Hemocytometer (Thoma-Kammer with 256 fields, $0.0025 \text{ mm}^2 \times 0.1 \text{ mm}$; Laboroptik Ltd, UK).

2.3 Gas chromatography

Gas samples were analysed for CH₄ concentration within 24 h on a gas chromatograph (Shimadzu GC-14B, Kyoto, Japan) fitted with a flame ionization detector (CH₄) and an
electron capture detector (N₂O, CO₂) operated respectively at 230 and 320 °C with N₂ as carrier gas (25 mL min⁻¹) (Kammann et al., 2009). The GC column (PorapakQ, Fa. Millipore, Schwallbach, mesh 80/100) was 3.2 m long and 1/8 inch in diameter. The length of the precolumn was 0.8 m. The GC gas flow scheme and automated sampling was that of (Mosier and Mack, 1980) and (Loftfield, 1997), and peak area integration (s.d.) of the mean of six atmospheric air standard samples was below 1.0, 0.5, and 0.2 % for CO₂, N₂O, and CH₄, respectively.

2.4 Continuous flow isotope ratio mass spectrometry (CF-IRMS) for measurement of δ^{13} C values of CH₄

Headspace gas from exetainers was transferred to an evacuated sample loop (40 mL). Interfering compounds were separated by GC and CH₄ trapped on Hayesep D. The

sample was then transferred to the IRMS system (ThermoFinnigan Delta^{plus} XL, Thermo Finnigan, Bremen, Germany) via an open split. The working reference gas was carbon dioxide of high purity (carbon dioxide 4.5, Messer Griesheim, Frankfurt, Germany) with a known δ^{13} C value of -23.64% relative to Vienna Pee Dee Belem-⁵ nite (V-PDB). All δ^{13} C values of CH₄ were corrected using three CH₄ working standards (isometric instruments, Victoria, Canada) calibrated against IAEA and NIST reference substances. The calibrated δ^{13} C-CH₄ values of the three working standards were -23.9 ± 0.2 , -38.3 ± 0.2 and $-54.5 \pm 0.2\%$. Samples were routinely analysed three times (n = 3) and the average standard deviations of the CF-IRMS measurements were in the range of 0.1 to 0.3%.

All ¹³C / ¹²C -isotope ratios are expressed in the conventional δ notation in per mil (‰) vs. V-PDB, using the following equation (Eq. 1):

$$\delta^{13}C = (({}^{13}C/{}^{12}C)_{\text{sample}}/({}^{13}C/{}^{12}C)_{\text{standard}}) - 1.$$
(1)

To determine the δ^{13} C signature of the CH₄ source, the Keeling-plot method was applied (Keeling, 1958).

3 Microbial investigations

20

3.1 DNA extraction and real-time PCR

Samples for DNA extraction were taken from the stem culture (RCC 1216) during the stationary growth phase (2×10^6 cells mL⁻¹). After DNA extraction, realtime PCR was used to detect mcrA-genes, which are solely found in methanogenic archaea. As positive proof, aliquots of the samples were supplemented with a defined cell density of *Methanothermobacter marburgenesis* (either 10^3 or 10^4 cells mL⁻¹).

The DNA extraction was carried out according to (Bürgmann et al., 2001). 1 mL of the algae culture was transferred into a 2 mL vial containing 200 µL of Zirconia-silica beads

(Roth) and centrifuged for 20 minutes $(1.3 \times 10^4 \text{ U min}^{-1}; 20 \degree \text{C})$. Afterwards, 850 µL of the supernatant was replaced with extraction buffer (Bürgmann et al., 2001) and beaten for 50 s (Retsch, type MM2). After centrifugation the supernatant was transferred to another vial (2 mL, Eppendorf, Germany), mixed with 850 µL phenol/chloroform/iso-amyl-

- alcohol-solution (Roth) and again centrifuged for 5 minutes (1.3 × 10⁴ U min⁻¹; 20 °C). The water phase was supplemented with 800 μL phenol, mixed and centrifuged again. Afterwards, the water phase was transferred in a new vial, mixed with 800 μL precipitating buffer (PEG) and centrifuged for 60 min (1.3 × 10⁴ U min⁻¹; 20 °C). The pellet was washed with 800 μL ethanol (75 %; -20 °C, centrifuged for 10 min at 1.3 × 10⁴ U min⁻¹; 20 °C) and air-dried in the laboratory. For elution and storage of the pellet we used
- ¹⁰ 20 °C) and air-dried in the laboratory. For elution and storage of the pellet we used 20 μL nuclease-free water.

Real-time PCR was carried out according to Kampmann et al. (2012) with a Rotor-Gene 3000 (Fa. Corbett Research, Australia) by using ABsoluteTM QPCR SYBR[®] Green Mix (ABgene). For the detection of mcrA-Genes we used the primer (ML forward:5'GGTGGTGTMGGATTCACACARTAYGCWACAGC-3'; ML reverse: 5'AACTAYCCWAACTAYGCAATGAA-3'), which encodes the α -subunit of the methyl-CoM-reductase, that solely occurs in methanogenic archaea (Luton et al., 2002).

The real-time PCR reference standards were produced according to Kampmann et al. (2012). By using the standard solution $(5.5 \times 10^7 \text{ DNA copies } \mu\text{L}^{-1})$ dilution with nuclease-free water was accomplished down to 5.5×10^1 copies per μL^{-1} . All standards and regular samples taken from the flasks were analyzed with four repetitions.

Quality assurance of the real-time PCR-product was achieved by melt curve analysis and gelelectrophoresis using the fluorescent stain GelRedTM (Biotium).

25 3.2 Cultivation approach

15

In addition to real-time PCR, a cultivation/enrichment procedure (Kampmann et al., 2012) was conducted to screen for methanogenic archaea in algae cultures. The en-

richment medium (Widdel and Bak, 1992) was modified for marine conditions by adding 320 NaCl; 16 MgCl₂ and 1 mmol L⁻¹ NaHCO₃. At day 10 an aliquot (5 mL) of each cultivation flask was transferred into injection flasks (Ochs, Bovenden-Lenglern, Germany) with the enrichment-medium (50 mL) and acetate (10 mM), methanol (5 mM) ⁵ was added and in the gas phase H₂ and CO₂ (90 : 10) was provided as substrates. Incubation was carried out over a period of 6 weeks at 20 °C in the dark.

3.3 CH₄ mass

15

The mass of CH_4 (m_{CH_4}) per flask was calculated via the ideal gas law from the corrected CH_4 concentration (ppmv), where the changing volume of water and headspace and the inflow of surrounding air were all considered, according to Eq. (3):

$$m_{\rm CH_4} = \frac{\rho}{R \times T} \times c_{\rm CH_4} \times V \times M_{\rm CH_4}$$

Where p = pressure, T = temperature, R = ideal gas constant, V = volume, and $M_{\text{CH}_4} = \text{molweight CH}_4$. The solubility of CH₄ in the water phase was calculated according to Wiesenburg and Guinasso (Wiesenburg and Guinasso Jr., 1979) based on the headspace-CH₄ concentration, temperature and salinity of the water phase.

3.4 Calculation of CH₄ production

The low CH₄ concentrations produced by *E. huxleyi* during the exponential growth phase precluded the determination of CH₄ production during this period. Therefore we calculated production from day 7 to day 10, a period representing the transition from
 ²⁰ exponential to stationary phase. This growth phase features changing growth rates and cellular CH₄ quotas, rendering the dilute batch method of calculating production inapplicable (Langer et al., 2013). We followed the recommendation of Langer et al. (2013) and calculated incremental (daily) CH₄ production:

 $Pinc = qinc \times muinc$

(2)

(3)

with Pinc = incremental CH_4 production [ng CH_4 cell⁻¹ day⁻¹], qinc = incremental cellular CH_4 quota [ng CH_4 cell⁻¹], muinc = incremental growth rate [day⁻¹] Incremental growth rate was calculated according to:

muinc = $LN(t_1) - LN(t_0)$

s with t_1 = cell density on the day qinc was determined, t_0 = cell density on the previous day. We present average Pinc (STDEV).

In order to compare CH_4 production to literature data it was necessary to normalize to cellular particulate organic carbon (POC) quota, as opposed to cell. The POC normalized CH_4 production is termed "methane emission rate" in the following. Since

it was not possible to measure cellular POC quota on a daily basis, we used a literature value determined for the same strain under similar culture conditions, i.e. 10.67 pg POC cell⁻¹ (Langer et al., 2009). We are aware of the fact that cellular POC quota is likely to change alongside other element quotas when approaching stationary phase, but this change is well below an order of magnitude (Langer et al., 2013). For our pur pose this method is therefore sufficiently accurate to determine POC normalized CH₄ production.

3.5 Statistics

20

To test for significant differences in cell density, CH_4 concentration and CH_4 content between the treatments, two-way ANOVA (considering repeated measurements) and a Post-Hoc-Test (Fisher LSD-Test; alpha 5 %) was used.

(4)

4 Results

4.1 Algae growth

Cell density and growth of the cultures are presented in Fig. 2a, b over the whole incubation period for all treatments. The initial cell density at time 0 (t_0) was 3.5×10^3 cells mL⁻¹ in all flasks. At day 10 cell density reached its maximum value with 1.37×10^6 (algae), 0.82×10^6 (algae +¹³C-Bic) and 1.24×10^6 cells mL⁻¹ (algae +¹³C-Met). The exponential growth rates (μ) were 0.85 ± 0.2 d⁻¹ for "algae +¹³C-Met", 0.98 ± 0.1 d⁻¹ for "algae +¹³C-Bic", and $1.06 \pm d^{-1}$ for the control "algae" (n.s., p = 0.286). Significant differences in cell density between the treatments only occurred at days 9 and 10, where the cell density of the control "algae" was higher than in the treatments where ¹³C-Bic or ¹³C-Met was added.

4.2 Methane concentration

Initial headspace- CH_4 concentrations measured at day 4 were in the range of 1899 to 1913 ppbv for all treatments including the controls without algae. From day 4 to day

¹⁵ 7 headspace-CH₄ concentrations slightly increased in all flasks. Therefore, no significant differences in the CH₄-concentrations occurred between the treatments. After day 8 CH₄ concentrations in the flasks containing algae were significantly higher compared to the controls without algae (Fig. 2c, d). The highest CH₄ concentrations at day 10 corresponded to 2102 ± 62 (algae +¹³C-Met), 2138 ± 42 (algae +¹³C-Bic) and ²⁰ 2119 ± 25 ppbv (algae).

Hence, from day 4 to day 10 the CH_4 concentrations increased by about 192 ppbv (algae + ¹³C-Met), 49 ppbv (sea water + ¹³C-Met), 235 ppbv (algae + ¹³C-Bic) and 67 ppbv (sea water + ¹³C-Bic), respectively.

4.3 Stable carbon isotope values of methane

20

The δ^{13} C signature of headspace-CH₄ (δ^{13} CH₄ value) is presented in Figure 2e, f. Addition of ¹³C-Bic did not affect CH₄ production of algae, but the δ^{13} CH₄ value was clearly different from that of the control "algae". The initial value of -47.9 ± 0.2 ⁵ increased to 44 ± 13 % whereas in the controls "seawater + ¹³C-Bic" and "algae" no change in the δ^{13} CH₄ value was observed.

Addition of ¹³C-Met did not affect algal CH₄ formation, but it increased the δ^{13} CH₄ signature from -46.35 +0.84 to 59.1 ± 25.3‰(day 8). In the treatment "¹³C-Met", where only isotopically labelled Met was added to sterile filtered sea water, a small increase from -48.0 ± 0.3 to -38.1 ± 2.3‰(at day 10) was observed.

Based on the initial amount of ¹³C-Bic and the total amount of ¹³CH₄ at the end of the incubation period, 88.3 \pm 17.2 pmol of 22.4 µmol ¹³C-Bic were converted to ¹³CH₄. For Met, this was 78.5 \pm 18.6 pmol of the initial 1.8 µmol ¹³C-Met.

The Keeling-plots to determine the 13 C values of the CH₄ source are presented in

¹⁵ (Fig. 3). For the bicarbonate treatment ("Algae + ¹³C-Bic"), the mean δ^{13} CH₄ value of the CH₄ source was 811.9 ± 89.9‰, which is close to the calculated δ^{13} C value of 881.5‰ after the addition of NaH¹³CO₃.

For the treatment "Algae +¹³C-Met" we applied the Keeling-plot method only for the period from day 5 to day 7, as the increase in the δ^{13} C values were not linear after day 7. For this treatment, the δ^{13} C values of the CH₄ source range between 967 and 2979‰.

The correlation between the growth of the algae cultures and the total amount of CH_4 in the flasks (headspace + water phase) is presented in Fig. 4. For the treatment "algae + ¹³C-Bic" (Fig. 4a) there is an exponential correlation between cell density and

²⁵ CH₄-content ($r^2 = 0.994$). Whereas for the treatment "algae + ¹³C-Met" (Fig. 4b) a linear correlation was observed ($r^2 = 0.995$).

The daily CH₄ content in the flasks for days 8, 9 and 10 is shown in Fig. 5. For all flasks the CH₄ content exceeded the CH₄ content of the respective control, with a continuous increase of the CH₄ content in the flasks containing algae. At day 10, the difference between "algae + ¹³C-Bic" and "sea water + ¹³C-Bic" and between "algae + ¹³C-Met" was 65 ± 16 and 54 ± 22 ng, respectively.

The CH_4 production of algae presented in Table 2 shows no major differences between the treatments. Furthermore for all treatments, the daily CH_4 production rates did not change over time (Fig. 6).

4.4 Microbial investigations

¹⁰ Via real-time PCR no mcrA-genes could be detected in the flasks containing the CH₄producing algae cultures. Whereas the positive control in which the algae culture was supplemented with 10⁴ and 10⁷ cells mL⁻¹ of the methanogenic archaea *Methanothermobacter marburgenesis*, 9.4 10⁴ and 4.6 10⁶ mcrA-gene copies mL⁻¹ have been detected, respectively.

15

5

With the cultivation approach, where an aliquot of each flask was taken at day 10 and transferred in the media for enrichment of methanogenic archaea, no CH_4 production was observed after the 6 week incubation period. In case of a successful enrichment of methanogenic archaea, the CH_4 -concentration in the headspace would increase over time.

20 5 Discussion

Our results of the CH_4 concentration and stable isotope measurements provide unambiguous evidence that *E. huxleyi* produces CH_4 . In the following we will discuss the relationship between CH_4 production and growth of the algae, stable isotope measurements, potential precursor compounds, and the exclusion of methanogenic archaea.

Discussion **BGD** 12, 20323-20360, 2015 Paper **Evidence for** methane production by marine algae **Discussion** Paper K. Lenhart et al. **Title Page**

Discussion Paper

Discussion Paper

Finally, we will discuss the implications of our results for the methane paradox in oxic waters.

5.1 Growth and CH₄ production

Over the course of the exponential growth phase headspace CH₄ concentrations in treatments containing E. huxleyi were not measurably different from the control treatments. Therefore it was not possible to determine CH₄ production in the exponential growth phase. However, we conclude that *E. huxleyi* produces CH_4 throughout all growth phases as will be detailed in the following. In the transitionary growth phase leading up to stationary phase we calculated incremental CH_{4} production (daily). The transitionary phase features declining growth rate and often increasing cellular carbon quotas (Langer et al., 2013). Also cellular CH_4 quotas did increase (data not shown). On the other hand, CH_4 production remained constant within the measurements of error, displaying a slight downward trend when approaching stationary phase (Fig. 6). Therefore we conclude that CH_4 production is not a feature of senescent cells only, but probably is operational in all growth phases. This is interesting in the context of 15

- the ecology and biogeochemistry of E. huxleyi. Contrary to the traditional assumption that E. huxleyi production in the field is dominated by late summer bloom events, it was recently shown that non-bloom production in spring contributes significantly to yearly average production and therefore bloom events are not exceptionally important in bio-
- geochemical terms (Schiebel et al., 2011). Since senescent cells in field samples are mainly a feature of late bloom stages, the exclusive production of CH₄ by such cells would confine any contribution of *E. huxleyi* to the oceanic CH_4 budget to a relatively short, and biogeochemically less important, period. However from results found in this study we would propose that E. huxleyi produces CH₄ during all growth phases as
- part of its normal metabolism. If our findings are confirmed and supported by other 25 research groups this has considerable implications as it would render this species a prolific aerobic producer of CH_4 on a par with, for example, terrestrial plants (Bruhn et al., 2012).

Full Screen / Esc

Introduction

References

Figures

Close

Abstract

Conclusions

Tables

14

Back

5.2 Methane emission rates

To calculate CH_4 emission rates of *E. huxleyi*, we normalized CH_4 production to cellular particulate organic carbon (POC) content (see Material and Methods). The CH_4 emissions were $0.7 \mu g$ POC $g^{-1} d^{-1}$, or $30 ng g^{-1}$ POC h^{-1} (mean for all treatments, n = 8). The CH_4 emission rates presented so far for terrestrial plants range from 0.3 to $370 ng g^{-1}$ DW (dry weight) h^{-1} (Keppler et al., 2006; Wishkerman et al., 2011; Lenhart et al., 2015; Brüggemann et al., 2009). However, as the majority of these studies reported emission rates in the range of 1 to $10 ng g^{-1}$ DW, CH_4 emission rates of *E. huxleyi* (ca. $15 ng g^{-1}$ DW h^{-1}) can be considered as slightly above the average for aerobic eukaryotes.

5.3 Inorganic and organic precursors of CH₄

Based on the addition of bicarbonate (¹³C-Bic, 1 % enrichment), which is the principal carbon source for growth of algae, and the measurements of δ^{13} CH₄ values it was possible to clearly identify bicarbonate as the principal carbon precursor of CH₄ in *E. huxleyi*.

In the flasks where algae were supplemented with ¹³C-Bic, a significant increase in δ^{13} CH₄ values occurred over the incubation period, which shows that algae use bicarbonate as precursor carbon (C) for CH₄ production. As expected, in the controls flasks "algae" where no ¹³C-Bic was added and the control "sea water + ¹³C-Bic" without algae, no change in δ^{13} CH₄ values was observed. The initial δ^{13} C value of the bicarbonate in the treatment "algae + ¹³C-bic" (+882‰) is within the range of the source δ^{13} CH₄ values obtained via the Keeling-plot method (+812 ± 90‰). Even though there might be kinetic isotope fractionations involved in each of the several steps during organic matter formation these data clearly indicate that bicarbonate is the principle inorganic carbon precursor of CH₄ produced in algae.

Bicarbonate is taken up by the algae via autotrophic C fixation (Burns and Beardall, 1987) and might therefore - during several steps of metabolism i.e. formation of organic compounds - lead to the formation of CH₄. Probably, it will be used as an unspecific C source in many different metabolic pathways, e.g. the synthesis of lignin, pectin, and cellulose (Kanehisa et al., 2014) – components already known as CH₄ precursors

- from terrestrial plants, where via methyl group cleavage CH_4 can be produced (Keppler et al., 2008; Bruhn et al., 2009; Vigano et al., 2009). However, lignin and pectin are not commonly found in marine algae such as *E. huxleyi*. For these organisms sulphur bonded methyl groups such as thioethers, sulfoxides and sulfonium salts (methion-
- ¹⁰ ine, S-adenosylmethionine SAM, dimethylsulfoniopropionate DMSP, dimethyl sulfoxide DMSO, dimethyl sulfide DMS) are of much more interest. For our experiments, we used ¹³C positionally labelled Met where only the sulfur-bond methyl group (S-CH₃) was 99 % enriched in ¹³C. Our choice of this compound was partly due to its commercial availability but more importantly because it is known to be involved in a number of
- ¹⁵ metabolic pathways and transmethylation reactions (Stefels, 2000; Bruhn et al., 2012). In contrast to the ubiquitous C-source bicarbonate –which can also be used to build Met in algae (Stefels, 2000) – Met is incorporated in specific metabolic pathways. Algae use part of the Met for protein synthesis, in *E. huxleyi* it is also involved in the synthesis of DMSP, a main precursor of DMS and DMSO.
- ²⁰ The clear increase in δ^{13} CH₄ values of headspace-CH₄ in the treatment "algae + ¹³C-Met" (Fig. 2e, f) shows that the methyl thiol group of Met is a direct CH₄ precursor. The Keeling-plot results (Fig. 3) show higher variability for Met than for Bic. However, Met is almost certainly not the only precursor of CH₄, as the headspace-CH₄ concentrations increased (Fig. 2d), while the ¹³C values of headspace-CH₄ showed a ²⁵ saturation curve (Fig. 2f). This indicates either a shift from Met to other CH₄ precursors, or to the use of newly synthesized, non-labelled Met. Based on the initial amount and the total amount of ¹³CH₄ formed at the end of the incubation, only a small fraction (79 pmol, i.e. 4.0‰) of the initial added ¹³C-Met (1.8 µmol) was converted to ¹³CH₄. The

formation of CH_4 from ¹³C-Met explains roughly about 3% of the total amount of CH_4 formed throughout the incubation period.

This observation is in line with the findings of Lenhart and colleagues who demonstrated the sulphur-bound methyl group of Met as a precursor for CH_4 in plants (Lenhart et al., 2015) and fungi (Lenhart et al., 2012). The linear increase in headspace- CH_4 concentration (Fig. 2d) together with the non-linear increase in $\delta^{13}CH_4$ signature (Fig. 1f) indicates that the pool of ¹³C-Met was either exhausted or was diluted by

newly synthesized, non ¹³C enriched Met.

In addition, we also found an indication for a chemical CH₄ formation pathway in the sea water with Met as methyl-group donor as a small increase in ¹³CH₄ values in the control treatment "sea water + ¹³C-Met" was observed (Fig. 2f). This CH₄ formation pathway is approximately 10-fold lower when compared to the treatment "algae + ¹³C-Met" and is only observed in the isotopic experiment, but not when only CH₄ concentration is considered (Fig. 2d). However, this observation is in line with some previous findings (Althoff et al., 2010, 2014; Bange and Uher, 2005), who showed that abiotic formation of CH₄ due to the degradation of methionine, acetone or ascorbic acid by light or oxidants such as iron minerals is possible. In the case of methionine it was shown that the sulphur-bound methyl group of Met was the carbon precursor for CH₄

(Althoff et al., 2014).

25

20 5.4 Methane paradox in oxic waters reconsidered

Several hypotheses with regard to the occurrence of the seasonal and spatial CH_4 oversaturation in oxic surface waters (Bange et al., 1994; Forster et al., 2009; Owens et al., 1991) have been postulated. They include CH_4 formation from methanogenic archaea in anoxic microsites (Karl and Tilbrook, 1994), CH_4 formation via the C-P-lyase pathway from methylphosphonate (Karl et al., 2008), or chemical formation of CH_4 (Bange and Uher, 2005).

In the ocean, both CH_4 production and consumption via methanotrophic bacteria occur simultaneously. Therefore, CH_4 production can exceed estimated CH_4 production rates when based solely on CH_4 concentration measurements (Reeburgh, 2007). To provide a noteworthy contribution to oceanic CH_4 production, precursors must either

- ⁵ be available in high abundance or be continually synthesized. Algae-derived methylated sulphur compounds such as Met, DMSP, DMS, and DMSO are ubiquitous in the ocean but show a high spatial and temporal variability with high concentrations in algal blooms. Therefore, they are potential compounds that might be involved in CH₄ formation in the oceans (Keppler et al., 2009; Althoff et al., 2014). The involvement of methyl meiotics from methylated sulfur compounds in CH₄ biosynthesis might therefore play.
- ¹⁰ moieties from methylated sulfur compounds in CH_4 biosynthesis might therefore play an important role in pelagic CH_4 production. Concentrations of DMS and DMSP in sea water during algal blooms were reported in the range of 0.82 to 8.3 nmol L⁻¹ and 1.25 to 368 nmol L⁻¹, respectively (Matrai and Keller, 1993).
- The CH₄ emission rates of *E. huxleyi* may also occur by a second formation pathway,
 ¹⁵ where DMSP is first converted to DMS and subsequently oxidized to DMSO (Bentley and Chasteen, 2004). Damm et al. (2010) hypothesized that under N-limitation and a concomitant availability of phosphorus, marine bacteria use DMSP as a C source and thereby release CH₄ as a by-product. In a mesocosm experiment they observed increased CH₄ production from arctic sea water when DMSP was added, but evidence
 ²⁰ for bacterial metabolism of DMSP with CH₄ formation was not provided.

However, several studies have afforded evidence for a CH_4 formation pathway via methyl radicals (Althoff et al., 2014; Eberhardt and Colina, 1988; Herscu-Kluska et al., 2008), leading to the hypothesis that algae-derived DMSO can also act as a precursor of CH_4 in oxic seawater (Althoff et al., 2014). A correlation between Met and DMSP synthesis was provided by Gröne and Kirst (1992) who showed that supplementation of *Tetraselmis subcordiformis* with 100 µg L⁻¹ Met yielded a 2.6-fold increase in DMSP. For *E. huxleyi*, DMSO concentrations in the stationary growth phase can reach 0.1 pg per cell (Simo et al., 1998). Assuming that a similar DMSO concentration were to be found in our study, this would mean that in every 4×10^3 DMSO molecules per day must

be transferred to CH_4 to explain the observed increase in CH_4 . Moreover, a positive correlation was observed between Chlorophyll a and CH_4 , as well as between DMSP or DMSO and CH_4 (Zindler et al., 2013).

6 Conclusions and outlook

- Our study provides the first isotope evidence that marine algae such as *E. huxleyi* pro-5 duce CH_4 with bicarbonate and the sulfur-bound methyl group of Met as C precursors. Our results based on real-time PCR and enrichment of methanogenic Archaea make it highly unlikely that there is a contribution of Archaea to the observed CH_4 production. It is of interest to note that it is almost 40 years since algae were suggested as a possible direct source of CH₄ in the ocean (Scranton and Brewer, 1977; Scranton and 10 Farrington, 1977). Furthermore only recently several studies have reported that CH_4 formation also occurs in the upper oxic layers of fresh-water lakes (Tang et al., 2014; Grossart et al., 2011; McGinnis et al., 2015). Thus despite the scientific endeavors of numerous research groups over a considerable period of time the explanation for the frequently monitored CH₄ oversaturation of oxic surface waters in oceans and fresh 15 water lakes is still a topic of debate (Zindler et al., 2013; Tang et al., 2014; Damm et al., 2008). Since our results unambiguously show that algae are able to produce CH_{4} per se under oxic conditions we thus suggest that algae living in marine and freshwater environments might contribute to the regional and temporal oversaturation of surface waters. We would encourage further studies in this research area make use of stable 20
- isotope techniques together with field measurements as we consider such an approach well suited for the elucidation of the pathways involved in CH₄ formation in oceanic and fresh waters.

Acknowledgements. We are grateful to John Hamilton for his thoughtful comments on an early
 version of this manuscript. We thank Markus Greule, and Tina Brenneis for assistance and
 Bellinda Schneider for help with the molecular work. This work was funded by the Justus-Liebig
 University of Gießen who supported K. Lenhart with a Margarethe-Bieber-Post-Doc Fellowship,

Discussion Pa	BC 12, 20323–2	GD 20360, 2015						
aper Discussion	Evider methane p by marir K. Lenha	Evidence for methane production by marine algae K. Lenhart et al.						
Pap	Title Page							
ēŗ	Abstract	Introduction						
	Conclusions	References						
Discus	Tables	Figures						
sion	14	►I						
Pap	•	•						
e,	Back	Close						
	Full Scre	een / Esc						
cussi	Printer-friendly Version							
on P	Interactive	Discussion						
aper	œ	B Y						

the ESF (EURYI Award to F.K.) and DFG (KE 884/2-1, KE 884/8-1 and KE 884/9-1). This work was funded in part by The European Research Council (ERC) (grant 2010-NEWLOG ADG-267931 HE).

⁵ The article processing charges for this open-access publication were covered by the Max Planck Society.

References

15

20

30

- Althoff, F., Jugold, A., and Keppler, F.: Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide, Chemosphere, 80, 286–292, 2010.
- Althoff, F., Benzing, K., Comba, P., McRoberts, C., Boyd, D. R., Greiner, S., and Keppler, F.: Abiotic methanogenesis from organosulphur compounds under ambient conditions, Nat. Commun., 5, 4205, doi:10.1038/ncomms5205, 2014.
 - Angel, R., Matthies, D., and Conrad, R.: Activation of Methanogenesis in Arid Biological Soil Crusts Despite the Presence of Oxygen, PLoS ONE, 6, e20453, doi:10.1371/journal.pone.0020453, 2011.
 - Bange, H. W. and Uher, G.: Photochemical production of methane in natural waters: implications for its present and past oceanic source, Chemosphere, 58, 177–183, 2005.

Bange, H. W., Bartell, U., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cy., 8, 465–480, 1994.

- Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.: Freshwater methane emissions offset the continental carbon sink, Science, 331, 50–50, 2011.
 - Bentley, R., and Chasteen, T. G.: Environmental VOSCs—-formation and degradation of dimethyl sulfide, methanethiol and related materials, Chemosphere, 55, 291–317, 2004.
- ²⁵ Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., and Derry, A. M.: Oxic water column methanogenesis as a major component of aquatic CH₄ fluxes, Nat. Commun., 5, 5350, doi:10.1038/ncomms6350, 2014.

Brüggemann, N., Meier, R., Steigner, D., Zimmer, I., Louis, S., and Schnitzler, J. P.: Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions, New Phytol., 182, 912–918, 2009.

Bruhn, D., Mikkelsen, T. N., Øbro, J., Willats, W. G. T., and Ambus, P.: Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material, Plant Biol., 11, 43–48, 2009.

Bruhn, D., Møller, I. M., Mikkelsen, T. N., and Ambus, P.: Terrestrial plant methane production and emission, Physiol. Plant., 144, 201–209, 2012.

5

10

20

25

Bruhn, D., Mikkelsen, T. N., Rolsted, M., Egsgaard, H., and Ambus, P.: Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen, Plant Biol., 16, 512–516, 2014.

Bürgmann, H., Pesaro, M., Widmer, F., and Zeyer, J.: A strategy for optimizing quality and quantity of DNA extracted from soil, J. Microbiol. Methods, 45, 7–20, 2001.

Burns, B. D. and Beardall, J.: Utilization of inorganic carbon by marine microalgae, J. Exp. Mar. Biol. Ecol., 107, 75–86, 1987.

Conrad, R.: The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol. Rep., 1, 285–292, 2009.

- Damm, E., Kiene, R., Schwarz, J., Falck, E., and Dieckmann, G.: Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP, Mar. Chem., 109, 45–59, 2008.
 - Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., and Kiene, R. P.: Methane production in aerobic oligotrophic surface water in the central Arctic Ocean, Biogeosciences, 7, 1099–1108, doi:10.5194/bg-7-1099-2010, 2010.
 - Damm, E., Thoms, S., Beszczynska-Möller, A., Nöthig, E., and Kattner, G.: Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox, Polar Sci., 9, 327–334, 2015.

de Angelis, M. A. and Lee, C.: Methane production during zooplankton grazing on marine phytoplankton, Limnol. Oceanogr., 39, 1298–1308, 1994.

del Valle, D. A. and Karl, D. M.: Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre, Aquat. Microb. Ecol., 73, 93–105, 2014.

Eberhardt, M. K. and Colina, R.: The reaction of OH radicals with dimethyl sulfoxide, A compar-

³⁰ ative study of Fenton's reagent and the radiolysis of aqueous dimethyl sulfoxide solutions, J. Org. Chem., 53, 1071–1074, 1988.

Forster, G., Upstill-Goddard, R. C., Gist, N., Robinson, C., Uher, G., and Woodward, E. M. S.: Nitrous oxide and methane in the Atlantic Ocean between 50 N and 52 S: Latitudinal distribution and sea-to-air flux, Depp-Sea Res. Pt. II, 56, 964–976, 2009.

 Ghyczy, M., Torday, C., Kaszaki, J., Szabó, A., Czóbel, M., and Boros, M.: Hypoxia-Induced
 Generation of Methane in Mitochondria and Eukaryotic Cells – An Alternative Approach to Methanogenesis, Cell. Physiol. Biochem., 21, 251–258, 2008.

Gröne, T. and Kirst, G.: The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein), Mar. Biol., 112, 497–503, 1992.

¹⁰ Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial methane production in oxygenated water column of an oligotrophic lake, PNAS, 108, 19657–19661, 2011.

Guillard, R. R. and Ryther, J. H.: Studies of marine planktonic diatoms: I. *Cyclotella nana hustedt*, and *Detonula confervacea* (Cleve) gran, Can. J. Microbiol., 8, 229–239, 1962.

Herscu-Kluska, R., Masarwa, A., Saphier, M., Cohen, H., and Meyerstein, D.: Mechanism of the reaction of radicals with peroxides and dimethyl sulfoxide in aqueous solution, Chem-Eur. J.,

14, 5880–5889, 2008.
Holligan, P. M., Fernández, E., Aiken, J., Balch, W. M., Boyd, P., Burkill, P. H., Finch, M., Groom, S. B., Malin, G., Muller, K., Purdie, D. A., Robinson, C., Trees, C. C., Turner, S. M., and van der Wal, P.: A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic, Global Biogeochem. Cy., 7, 879–900, 1993.

15

20

25

30

IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, 1535, 2013.

Jarrell, K. F.: Extreme Oxygen Sensitivity in Methanogenic Archaebacteria, BioScience, 35, 298–302, 1985.

Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M., and Raushel, F. M.: The catalytic mechanism for aerobic formation of methane by bacteria, Nature, 497, 132–136, 2013.

Kammann, C., Hepp, S., Lenhart, K., and Müller, C.: Stimulation of methane consumption by endogenous CH₄ production in aerobic grassland soil, Soil Biol. Biochem., 41, 622–629, 2009.

Kampmann, K., Ratering, S., Kramer, I., Schmidt, M., Zerr, W., and Schnell, S.: Unexpected stability of *Bacteroidetes* and *Firmicutes* communities in laboratory biogas reactors fed with different defined substrates, Appl. Environ. Microbiol., 78, 2106–2119, 2012.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.: Data, information, knowledge and principle: back to metabolism in KEGG, Nucleic Acids Res., 42, D199–D205, 2014.

Karl, D. M. and Tilbrook, B. D.: Production and transport of methane in oceanic particulate organic matter, 368, 732–734, 1994.

Karl, D. M., Beversdorf, L., Bjorkman, K. M., Church, M. J., Martinez, A., and Delong, E. F.: Aerobic production of methane in the sea, Nature Geosci, 1, 473–478, 2008.

5

- Keppler, F., Hamilton, J. T. G., Braß, M., and Röckmann, T.: Methane emissions from terrestrial plants under aerobic conditions, Nature, 439, 187–191, 2006.
- Keppler, F., Hamilton, J. T. G., McRoberts, W. C., Vigano, I., Braß, M., and Röckmann, T.: Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence fom deuterium labelling studies, New Phytol., 02411, doi:10.1111/j.1469-8137.2008.02411.x, 2008.
 Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., and Schnitzler, J.: Methane formation in aerobic environments, Environ. Chem., 6, 459–465, 2009.
 - Kiene, R. P.: Production and consumption of methane in aquatic systems, Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes, American Society for Microbiology, 111–146, 1991.

Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergam-

- aschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo,
- K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nature Geosci., 6, 813–823, 2013.
 - Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus B, 50, 128–150, 1998.
- ³⁰ Lenhart, K., Bunge, M., Ratering, S., Neu, T. R., Schüttmann, I., Greule, M., Kammann, C., Schnell, S., Müller, C., Zorn, H., and Keppler, F.: Evidence for methane production by saprotrophic fungi, Nat. Commun., 3, 1046, doi:10.1038/ncomms2049, 2012.

Lenhart, K., Althoff, F., Greule, M., and Keppler, F.: Technical Note: Methionine, a precursor of methane in living plants, Biogeosciences, 12, 1907–1914, doi:10.5194/bg-12-1907-2015, 2015.

Liu, J., Chen, H., Zhu, Q., Shen, Y., Wang, X., Wang, M., and Peng, C.: A novel pathway of

 direct methane production and emission by eukaryotes including plants, animals and fungi: An overview, Atmos. Environ., 115, 26–35, 2015.

Loftfield, N.: Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methan, carbon dioxide, and nitrous oxide, J. Environ. Qual., 26, 560–564, 1997.

Luton, P. E., Wayne, J. M., Sharp, R. J., and Riley, P. W.: The mcrA gene as an alternative to

- ¹⁰ 16S rRNA in the phylogenetic analysis of methanogen populations in landfill, Microbiology, 148, 3521–3530, 2002.
 - Matrai, P. A. and Keller, M. D.: Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine, Cont. Shelf Res., 13, 831–843, 1993.
 - McGinnis, D. F., Kirillin, G., Tang, K. W., Flury, S., Bodmer, P., Engelhardt, C., Casper, P., and
- Grossart, H.-P.: Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis, Environ. Sci. Technol., 49, 873–880, 2015.
 - Messenger, D. J., McLeod, A. R., and Fry, S. C.: The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin, Plant Cell Environ., 32, 1–9, 2009.
- Metcalf, W. W., Griffin, B. M., Cicchillo, R. M., Gao, J., Janga, S. C., Cooke, H. A., Circello, B. T., Evans, B. S., Martens-Habbena, W., and Stahl, D. A.: Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean, Science, 337, 1104–1107, 2012.

25

30

Mosier, A. R. and Mack, L.: Gas-chromatographic system for precise, rapid analysis of nitrous oxide, Soil Sci. Soc. Am. J., 44, 1121–1123, 1980.

Oremland, R. S.: Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters, Limnol. Oceanogr., 24, 1136–1141, 1979.

Owens, N., Law, C., Mantoura, R., Burkill, P., and Llewellyn, C.: Methane flux to the atmosphere from the Arabian Sea, Nature, 354, 293–296, 1991.

Reeburgh, W. S.: Oceanic methane biogeochemistry, Chem. Rev., 107, 486–513, 2007.
Scranton, M. I. and Brewer, P. G.: Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic, Deep Sea Res., 24, 127–138, 1977.

Discussion Paper BGD 12, 20323-20360, 2015 **Evidence for** methane production by marine algae **Discussion** Paper K. Lenhart et al. **Title Page** Abstract Introduction Conclusions References **Discussion** Paper **Tables Figures** 14 Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

- Scranton, M. I. and Farrington, J. W.: Methane production in the waters off Walvis Bay, J. Geophys. Res., 82, 4947–4953, 1977.
- Simo, R., Hatton, A. D., Malin, G., and Liss, P. S.: Particulate dimethyl sulphoxide in seawater: production by microplankton, Mar. Ecol. Prog., 167, 291–296, 1998.
- ⁵ Stefels, J.: Physiological aspects of the production and conversion of DMSP in marine algae and higher plants, J. Sea Res., 43, 183–197, 2000.
 - Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, in: Phaeocystis, major link in the biogeochemical cycling of climate-relevant elements, Springer, 245–275, 2007.
 - Tang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., and Grossart, H.-P.: Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters, Limnol. Oceanogr., 59, 275– 284, 2014.

Utermöhl, H.: Zur Vervollkommnung der quantitativen Phytoplankton-methodik, Mitt. int. Ver. theor. angew. Limnol., 9, 1–38, 1958.

Vigano, I., Röckmann, T., Holzinger, R., van Dijk, A., Keppler, F., Greule, M., Brand, W. A., Geilmann, H., and van Weelden, H.: The stable isotope signature of methane emitted from plant material under UV irradiation, Atmos. Environ., 43, 5637–5646, 2009.

Wang, B., Hou, L., Liu, W., and Wang, Z.: Non-microbial methane emissions from soils, Atmos. Environ., 80, 290–298, 2013.

Wang, Z.-P., Chang, S. X., Chen, H., and Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Sci. Rev., 127, 193–202, 2013.

Widdel, F. and Bak, F.: Gram-negative mesophilic sulfate-reducing bacteria, in: The prokaryotes, Springer, 3352–3378, 1992.

- Wiesenburg, D. A. and Guinasso Jr, N. L.: Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, J. Chem. Eng. Data., 24, 356–360, 1979.
- Wishkerman, A., Greiner, S., Ghyczy, M., Boros, M., Rausch, T., Lenhart, K., and Keppler, F.: Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase,
- ³⁰ Plant, Cell Environ., 34, 457–464, 2011.

10

15

20

25

Yoch, D. C.: Dimethylsulfoniopropionate: Its Sources, Role in the Marine Food Web, and Biological Degradation to Dimethylsulfide, Appl. Environ. Microbiol., 68, 5804–5815, 2002. Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean, Biogeosciences, 10, 3297–3311, doi:10.5194/bg-10-3297-2013, 2013.

	Day	0	1	2	3	4	5	6	7	8	9	10
Headspace	$ ext{CH}_4 \ \delta^{13} ext{CH}_4$					X X						
Water	cell density	Х			Х	Х	Х	Х	Х	Х	Х	Х

Table 1. Overview of sample collection during the incubation of *E. huxleyi*.

Discussion Pa	BG 12, 20323–20	D 0360, 2015					
aper Discussion	Evidence methane pr by marine K. Lenhar	ce for oduction e algae rt et al.					
ר Paper	Title Pa	age					
	Conclusions	References					
Discu	Tables	Figures					
sion	[▲	▶1					
) Pap	•	•					
ēŗ	Back	Close					
– Die	Full Scree	Full Screen / Esc					
Scuss	Printer-friend	Printer-friendly Version					
sion I	Interactive D	Interactive Discussion					
Paper) N					

Table 2. Mean daily CH₄ production rates of *E. huxleyi* (* n = 2; ** n = 3) determined between days 7 and 10, ag = attogramm = 10^{-18} .

Treatment	CH_4 (ag cell ⁻¹ d ⁻¹)	$CH_4 \ (\mu g g^{-1} \ POC d^{-1})$				
<i>E. huxleyi</i> + ¹³ C-Bic ^{**}	6.8 ± 4.1	0.63 ± 0.39				
<i>E. huxleyi</i> + ¹³ C-Met**	9.3 ± 2.6	0.88 ± 0.24				
E. huxleyi*	6.1 ± 3.7	0.57 ± 0.35				

Figure 1. Experimental. The potential precursors of CH_4 , ¹³C-labelled bicarbonate (¹³C-Bic) or a position-specific ¹³C-labelled methionine (¹³C-Met) were added to the flasks containing either a culture of *E. huxleyi* or sea water only.

Figure 2. Culture cell density when algae grown in seawater (n = 2) supplemented with (**a**) Bic or (**b**) Met (n = 3) and headspace CH₄ concentration for cultures supplemented with (**c**) Bic or (**d**) Met. δ^{13} CH₄ values after addition of (**e**) ¹³C-Bic and (**f**) ¹³C-Met (n = 3; error bars mark the standard deviation). Stars mark the significance between "algae + ¹³C-Bic" and "sea water + ¹³C-Bic" or between "algae + ¹³C-Met" and "sea water + ¹³C-Met", respectively, with * $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$.

Figure 3. Keeling-plots for the treatment (a) "algae + ¹³C-Bic" and (b) "algae + ¹³C-Met", where $f_{(0)}$ refers to the ¹³C value of the CH₄-source.

Figure 4. Correlation between cell density per flask and CH_4 content (sum of headspace and water phase) for the coccolithophore *E. huxleyi* (a) in seawater only (n = 2), supplemented with (a) ¹³C-labelled bicarbonate (Bic) or (b) methionine (Met) (n = 3); error bars mark the standard deviation; d = day of incubation.

Figure 5. Mean CH_4 content (sum of headspace and water phase) in the flasks of *E. huxleyi* supplemented with either bicarbonate of methionine (n = 3) and the respective control without algae (n = 2) measured at days 8, 9 and 10; error bars show the standard deviation.

Figure 6. Daily CH₄ production of *E. huxleyi* for days 7 to 10 (**a**, **c**, **e**) on a per cell basis and (**b**, **d**, **f**) relative to particulate organic carbon (POC) separately for the treatments (**a**, **b**) *E. huxleyi* + 13 C-Bic (*n* = 3), *E. huxleyi* + 13 C-Met (*n* = 3), and *E. huxleyi* (*n* = 2). Values are presented as means with the standard deviation.

