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Abstract  28	

As three-dimensional (3-D) aquatic ecosystem models are used more frequently for 29	
operational water quality forecasts and ecological management decisions, it is important 30	
to understand the relative strengths and limitations of existing 3-D models of varying 31	
spatial resolution and biogeochemical complexity. To this end, two-year simulations of 32	
the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically 33	
compared to each other and to historical monitoring data. Results show that although 34	
models have difficulty resolving the variables typically thought to be the main drivers of 35	
dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models 36	
have significant skill in reproducing the mean and seasonal variability of dissolved 37	
oxygen. In addition, models with constant net respiration rates independent of nutrient 38	
supply and temperature reproduced observed dissolved oxygen concentrations about as 39	
well as much more complex, nutrient-dependent biogeochemical models. This finding 40	
has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, 41	
which may be possible with very simple oxygen parameterizations, in contrast to the 42	
more complex full biogeochemical models required for scenario-based forecasting. 43	
However, models have difficulty simulating correct density and oxygen mixed layer 44	
depths, which are important ecologically in terms of habitat compression. Observations 45	
indicate a much stronger correlation between the depths of the top of the pycnocline and 46	
oxycline than between their maximum vertical gradients, highlighting the importance of 47	
the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when 48	
low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus 49	
depend more on the ability of models to reproduce the correct mean and variability of the 50	
depth of the physically driven surface mixed layer than the precise magnitude of the 51	
vertical density gradient.  52	
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1 Introduction  64	

Since the middle of the last century, anthropogenic impacts have dramatically decreased 65	

water quality throughout the Chesapeake Bay (Boesch et al., 2001), one of the largest 66	

estuaries in North America. Land-use change along with the industrialization and 67	

urbanization of the Chesapeake Bay watershed have caused dramatic increases in nutrient 68	

inputs to the Bay (Kemp et al., 2005), spurring additional primary production and 69	

phytoplankton abundance (Harding and Perry, 1997). Because increased primary 70	

production leads to more organic matter throughout the water column that is eventually 71	

decomposed by bacteria, these increased nutrient inputs to the Bay have led to a 72	

corresponding decrease in dissolved oxygen (DO) concentrations (Hagy et al., 2004). 73	

Hypoxia, generally defined as the condition in which DO concentrations are below 74	

2mgL−1, usually initiates seasonally in the northern portion of the Bay and expands 75	

southward as summer develops (Kemp et al., 2009; Testa and Kemp, 2014). Although 76	

hypoxia in the Chesapeake Bay has likely existed since European colonization (Cooper 77	

and Brush, 1991, 1993), recent studies have highlighted an accelerated rise in the number 78	

and spatial extent of hypoxic, as well as anoxic (DO concentrations <0.2mgL−1), events 79	

in the Bay since the 1950’s, primarily attributed to increased anthropogenic nutrient input 80	

(Hagy et al., 2004; Kemp et al., 2005; Gilbert et al., 2010). These impacts are likely to be 81	

exacerbated by future climate change (Najjar et al., 2010; Meire et al., 2013; Harding et 82	

al., 2015). 83	

�Interest in the ecological impacts of reduced DO concentrations has been elevated due to 84	

the observed proliferation of hypoxic events in the world’s coastal oceans, creating vast 85	

dead zone areas that compress suitable habitat for many marine species (Diaz, 2001; Diaz 86	

and Rosenberg, 2008; Pierson et al., 2009). Low-DO waters can greatly impact the 87	

abundance and health of important ecological species, potentially resulting in suffocation 88	

and major kills of fish, crabs, and shellfish (Breitburg, 2002; Ekau et al., 2010; Levin et 89	

al., 2009). While the presence of DO concentrations < 2 mg L−1 have been shown to 90	

decrease the abundance of fish larvae (Keister et al., 2000), some species can incur 91	

negative health impacts and modify their behavior at significantly higher DO 92	



concentrations (Vaquer-Sunyer and Duarte, 2008). DO concentrations of ∼ 4 mg L−1 93	

have been found to compress demersal fish habitat as fish seek out more oxygenated 94	

waters (Buchheister et al., 2013). Zooplankton, a crucial food source for valuable species, 95	

have also been found to exhibit changes in distribution and predation when subject to 96	

large volumes of low-DO water, potentially leading to further impacts along the food 97	

chain (Breitburg et al., 1997; Pierson et al., 2009). Invertebrates have similarly been 98	

found to alter their behavior under low-DO conditions (Riedel et al., 2014). In the 99	

Chesapeake Bay, multiple regulated fish species, such as striped bass and American shad, 100	

require oxygen restoration targets as high as 5mgL−1 (USEPA, 2010). The greatest impact 101	

of low DO concentrations spatially will depend on the specific living resource; however, 102	

temporally, late spring to early fall is of most concern. As a result of the significant 103	

ecological importance of oxygen on living resources in the Bay, DO concentrations are 104	

used as a primary indicator in assessing water quality for Chesapeake Bay regulations 105	

(Keisman and Shenk, 2013).  106	

Improving the health of the Chesapeake Bay has become a priority for the Environmental 107	

Protection Agency (EPA) along with the six states and Washington, DC that make up the 108	

Bay watershed (Fig. 1), and together they have committed to utilizing a suite of 109	

regulatory models to inform their management decisions (USEPA, 2010). The 110	

Chesapeake Bay Program (CBP), a regional partnership that has led and directed the 111	

restoration of the Chesapeake Bay since 1983, has undertaken an extensive modeling 112	

effort of the Bay (Cerco and Cole, 1993; Cerco et al., 2002; Cerco and Noel, 2004, 2013). 113	

This modeling system is being used by the CBP to estimate the aggregate effect of 114	

changes in management practices, including land use, atmospheric deposition, animal 115	

populations, and fertilizer and manure application. Recently, the modeling system has 116	

been used to conduct scenario simulations to assess management actions needed to 117	

achieve desired Bay water quality standards (USEPA, 2010). Ultimately this model was 118	

used to establish a regulatory set of total maximum daily loads of nutrients and sediment 119	

delivered from the watershed, with the goal of significantly improving water quality 120	

throughout the Bay (USEPA, 2010).  121	



Many 3-D hydrodynamic-oxygen models of varying complexity stemming from the 122	

academic research community have also been used to simulate DO concentrations 123	

throughout the Chesapeake Bay (Scully, 2010, 2013; Hong and Shen, 2013; Feng et al., 124	

2015; Testa et al., 2014; Li et al., 2015). Bever et al. (2013) specifically demonstrated 125	

that multiple models of varying complexity are able to generate skillful estimates of 126	

hypoxic volume in the Bay. Some of these models are being used in the Bay to simulate 127	

short-term and/or seasonal forecasts of DO conditions. Furthermore, some models are 128	

also being used to generate scenario forecasts, or projections, that assess the impact of 129	

changes in management practices on estuarine DO concentrations, in some cases taking 130	

into account the impacts of future changes in climate. � 131	

As ecosystem and water quality models are increasingly used for operational forecasts as 132	

well as scenario-based management decisions by the regulatory and academic research 133	

communities, it is important to understand the relative strengths and limitations of 134	

existing models of varying complexity. The ability to discern which variables must be 135	

most accurately simulated in order to adequately reproduce the temporal and spatial 136	

variability of Bay oxygen concentrations is a necessary prerequisite for fully 137	

understanding how volumes of low-DO water are initiated and sustained within water 138	

quality models. The utilization of multiple models can also inform projections by 139	

providing independent confidence bounds for management decisions. To those ends, the 140	

overarching goals of this research are to compare the relative skill of various three- 141	

dimensional (3-D) Chesapeake Bay models characterized by different levels of 142	

biogeochemical complexity and spatial resolution, to better understand factors limiting 143	

their ability to reproduce observed DO distributions, and to suggest approaches for the 144	

continued improvement of these models.  145	

2 Methods  146	

2.1 Participating Chesapeake Bay models  147	

Eight 3-D models were evaluated in this study (Table 1), each of which includes 148	

hydrodynamic and DO components. Among the eight models, there are four different 149	

hydrodynamic base models. Models B, C, D, F, and G utilize the Regional Ocean 150	



Modeling System (ROMS; Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008) 151	

that employs a structured grid with sigma layers in the vertical dimension. Specifically, 152	

Models B, C, and F use a ROMS implementation developed for the Chesapeake Bay 153	

based on Xu et al. (2012; ChesROMS). Model D employs a ROMS implementation for 154	

the Chesapeake Bay based on Li et al. (2005), while Model G uses the ROMS-based 155	

Chesapeake Bay Operational Forecast System (CBOFS; Lanerolle et al., 2011). Models 156	

A, E, and H each use a different hydrodynamic base model: the Curvilinear 157	

Hydrodynamics in Three Dimensions model (CH3D; Cerco et al., 2010), the Finite-158	

Volume Community Ocean Model (FVCOM; Jiang and Xia, 2015), and the 159	

Hydrodynamic-Eutrophication Model – Fluid Dynamics Code (EFDC; Park et al., 1995; 160	

Hong and Shen, 2012; Du and Shen, 2015), respectively. The only model that employs a 161	

non-sigma vertical grid is Model A and the only model utilizing an unstructured 162	

horizontal grid is Model E. While Model E contains 10 sigma vertical layers, all of the 163	

other sigma grids use 20 layers. All of the grids vary in terms of their horizontal 164	

resolution, with Models A and G utilizing the highest resolution horizontal grids. � 165	

These four hydrodynamic models are coupled to five different models used to simulate 166	

DO (Table 1). Models A, B, C, D, and E utilize full biogeochemical models that include 167	

as state variables various combinations of oxygen, phytoplankton, zooplankton, and 168	

multiple inorganic and organic nutrients. Specifically, Models A and E employ a version 169	

of the Integrated Compartment Model (ICM; Cerco et al., 2010; Jiang et al., 2015), 170	

Model B uses the Estuarine Carbon Biogeochemistry model (ECB; Feng et al., 2015), 171	

Model C uses the Biogeochemistry model (BGC; Brown et al., 2013), and Model D uses 172	

the Row-Column AESOP model (RCA; Testa et al., 2014). In terms of food web 173	

complexity the models vary considerably: Models B and C employ a single 174	

phytoplankton group whereas Model D uses two phytoplankton groups, Model E uses 175	

three, and Model A, the most complex of the participating models, uses five.  176	

In contrast to the full biogeochemical models discussed above (Models A through E), 177	

Models F, G, and H represent oxygen dynamics as simply as possible and therefore do 178	

not utilize a full biogeochemical component. Rather, the models impose a biological 179	

oxygen consumption rate that is model-specific, but constant in both space and time. This 180	



component is referred to as a constant-respiration model (CRM). In this model, DO is 181	

introduced to the estuary via the river and ocean boundaries and is set to saturation at the 182	

estuarine surface. This constant-respiration oxygen parameterization (Scully, 2010) is 183	

simplistic, yet has been shown to adequately represent Chesapeake Bay oxygen dynamics 184	

(Scully, 2010, 2013; Bever et al., 2013). � 185	

The major difference in forcing between the eight model implementations is that Models 186	

A and B use riverine input derived from watershed models, whereas Models C–H used 187	

the measured flow from United States Geological Survey gauging stations, extrapolated 188	

using various techniques. Model A utilized the CBP’s regulatory watershed model 189	

(Shenk and Linker, 2013), while Model B utilized the Dynamic Land Ecosystem Model 190	

(Yang et al., 2014, 2015; Tian et al., 2015). At the open boundary with the Atlantic 191	

Ocean, Models B, C, D, F, G, and H utilize a sub-tidal elevation extrapolated from tidal 192	

stations on either side of the open boundary. Model E uses the TPXO tidal model, while 193	

Model A uses a mix of observational and model forcing (Cerco et al., 2010). While 194	

Model B utilizes wind forcing based on observations from the Thomas Point Light, 195	

Models C through H use wind estimates from the North American Regional Reanalysis 196	

(NARR). � 197	

The eight models used in this analysis have been developed for a variety of purposes. 198	

Model A is a governmental regulatory model developed by the CBP that has been 199	

extensively calibrated specifically to examine water quality issues in the Chesapeake Bay 200	

(Cerco and Cole, 1993; Cerco and Noel, 2004, 2013; Cerco et al., 2010) and has been 201	

used in the development of the 2010 Chesapeake Bay Total Maximum Daily Load 202	

(USEPA, 2010). The National Oceanic and Atmospheric Administration employs the 203	

hydrodynamic component of Model F for operational forecasts of a variety of physical 204	

estuarine parameters for the Chesapeake Bay 205	

(http://www.tidesandcurrents.noaa.gov/ofs/cbofs/cbofs.html). The other six models are 206	

academic models used in diverse research efforts focused on the Chesapeake Bay but not 207	

necessarily specifically on DO dynamics.  208	

Finally, a ninth model is calculated as the mean of the results from the eight models 209	



described above, and is referred to here as Model Mean, or Model M.  210	

2.2 Available Chesapeake Bay observations  211	

Model simulations were compared to cruise data from the CBP for 2004 and 2005 from 212	

13 stations along the main stem of the Bay (Table 2, Fig. 2). The years 2004 and 2005 213	

were selected to represent relatively wet and average years, respectively, and the 13 214	

stations were chosen as they have been found to offer optimal estimates of Bay-wide 215	

hypoxic volume (Bever et al., 2013). Stations were sampled on up to 34 cruises over the 216	

two years (Table 2), generally twice a month from April to August and once a month for 217	

the remainder of the year. Observational data can be downloaded from the CBP Water 218	

Quality Database (http://www.chesapeakebay.net/data/downloads/cbp_water_quality_ 219	

database_1984_present). Variables downloaded from the CBP website and used in this 220	

study were temperature, salinity, DO, nitrate + nitrite (hereafter abbreviated as “nitrate”), 221	

and chlorophyll a (hereafter abbreviated as “chlorophyll”). For most cruises, observations 222	

of temperature, salinity, and DO were made at roughly 1 m intervals throughout the water 223	

column, whereas observations of chlorophyll and nitrate were generally made only at the 224	

surface, bottom, and sometimes one or two mid-water column locations. For further 225	

information on available water quality observations, please see USEPA (2012). While 226	

these observations were publicly available for model assessment during calibration of all 227	

of the models, they represent a very small subset of the 30 years of EPA observations 228	

across over 100 Bay stations. The models compared here were calibrated based on access 229	

to the larger data set and for conditions in the Bay in general, not specifically for the 13 230	

stations and two years considered here. 231	

2.3 Calculation of stratification and mixed layer depth  232	

Stratification of the density and oxygen fields was examined to identify the maximum 233	

gradient of the pycnocline and oxycline as well as the depth of the top of the pycnocline 234	

and oxycline. In open ocean studies, the depth of the top of stratification is commonly 235	

referred to as the mixed layer depth (MLD), although this term is less frequently used in 236	

the estuarine literature. As the research presented here distinguishes between the depths 237	

of the top of the pycnocline and that of the oxycline, these will be referred to respectively 238	



as the density (ρ) mixed layer depth (MLDρ) and the oxygen mixed layer depth (MLDO). 239	

Density was calculated via a classical density formula that is also utilized by the CBP for 240	

use in the Chesapeake Bay (Fofonoff and Millard, 1983; USEPA, 2004) and is a function 241	

of temperature and salinity.  242	

The CBP defines the top and bottom of stratification in order to distinguish individual 243	

designated use areas for water quality management purposes (USEPA, 2004). They 244	

suggest that the top of the pycnocline be defined as the shallowest occurrence of a density 245	

gradient of 0.1 kg m−4 or greater as resolved by CBP profile observations, which are 246	

typically spaced at 0.5 to 2 m depth intervals. If density gradients throughout the water 247	

column are less than 0.1 kg m−4, they define the water to be unstratified. The 0.1 kg m−4 248	

threshold definition is designed to identify any initiation of stratification that may serve to 249	

cut off vertical mixing from a nearly perfectly well mixed layer.  250	

While the CBP definition described above delineates between designated use boundaries 251	

according to density, our research focuses on the relationship between the pycnocline and 252	

oxycline, requiring an alternate definition that can be applied to both the density and 253	

oxygen distributions. In addition, the CBP definition often generates estimates for the 254	

depth of the top of the pycnocline that are too shallow compared to the maximum depth 255	

of surface mixing (Fig. 3). As a result, a percentage threshold criterion was developed 256	

that identifies the bottom of the reasonably well-mixed layer, rather than perfectly mixed 257	

layer, and is used in this analysis. The percentage threshold method defines a density or 258	

DO profile as being stratified if a change of 10 % of the difference between the profile’s 259	

maximum and minimum values occurs within a single meter (Fig. 3). For example, if the 260	

maximum DO concentration throughout the water column on an individual sampling date 261	

is 10 mg L−1 and the minimum concentration is 1 mg L−1, stratification is defined to be 262	

present if a difference of 0.9 mg L−1 is present within one meter. As recommended by the 263	

CBP, the uppermost meter of the water column is not considered (USEPA, 2004). The 264	

mixed layer depth is therefore defined as the shallowest level (below 1 m depth) where 265	

stratification is identified. The minimum stratification criterion utilized in this analysis 266	

requiring a profile to pass the 10% threshold also ensures that observations where very 267	



little stratification exists do not bias the stratification results while also allowing for a 268	

single criterion to be used across multiple stratification variables.  269	

2.4 Model skill metrics  270	

Simulations of the Chesapeake Bay from the eight models described above were 271	

statistically compared to historical monitoring data using a variety of skill metrics 272	

including: root-mean squared difference (RMSD), bias, standard deviation, and 273	

correlation coefficient. These metrics are illustrated on Taylor and target diagrams 274	

(Taylor, 2001; Hofmann et al., 2008; Jolliff et al., 2009), which offer a compact way of 275	

assessing model skill by displaying a number of different skill metrics. Target diagrams 276	

illustrate the bias and total RMSD of model output, which Taylor diagrams do not. Taylor 277	

diagrams include quantitative information on the standard deviations and correlations 278	

between the model output and the observations, which target diagrams do not. Both 279	

diagrams, however, represent unbiased RMSD, sometimes called “centered-pattern 280	

RMSD”. On target diagrams, a model symbol above the horizontal axis overestimates the 281	

mean of the observations and a model symbol to the right of the vertical axis 282	

overestimates the variability of the observations. (See Hofmann et al. (2008) and Jolliff et 283	

al. (2009) for a more detailed description of these diagrams.) On Taylor diagrams, a 284	

model symbol lying on the horizontal axis exactly correlates to the observations and a 285	

model symbol further from the origin than the observation symbol overestimates the 286	

standard deviation of the observations. (See Taylor et al. (2001) for a more detailed 287	

description of these diagrams).  288	

Taylor and target diagrams presented here are normalized to the standard deviation of the 289	

observations, allowing multiple variables be represented on the same plot. This also 290	

conveniently allows the unit circle on a target diagram to represent the skill of a model 291	

defined as the mean of the observations. In effect, this means that if a model falls within 292	

the unit circle, it exhibits a skill that is greater than the skill obtained if one were to 293	

simply use the mean of the observations. The Taylor and target plots are either temporal 294	

(displaying model skill at a single station over the study period) or spatial (displaying 295	

model skill during a single month over the entire set of study stations). In addition, 296	



summary diagrams are presented which combine both temporal (examining the seasonal 297	

changes at each individual station) and spatial (examining differences across the Bay 298	

during an individual month) variability. � 299	

Model skill was assessed using the hourly model output (daily for CH3D-ICM 300	

chlorophyll and nitrate) that was nearest in time to that of the observation and from the 301	

grid cell that encompassed the observation location. For months with two observations, 302	

each observation was individually matched to the model output and the skill statistics 303	

from those comparisons were averaged for that month. The native horizontal resolution 304	

and bathymetry of the individual model grids was preserved in the comparison so as not 305	

to bias the analysis through varying interpolation methodologies. For stratification 306	

variables, the models and observations were interpolated to a 1m vertical grid that 307	

extended only as deep as the individual models’ bathymetry or deepest observation in 308	

order to preserve the differences in bathymetric grids while allowing for a direct 309	

comparison of the observations to the models. Model-data comparisons at the bottom of 310	

the water column were not necessarily based on the same depths, since in many cases the 311	

modeled bathymetry was shallower (or at times, deeper) than the deepest data point at a 312	

given station. In order to avoid issues with extrapolation and/or grid stretching, data at the 313	

bottom of the water column were always compared with model estimates from the 314	

deepest grid cell provided by each particular model. Model-data comparisons for 315	

stratification and mixed layer depths only included stations and times for which 316	

stratification was defined to exist in both the observed and simulated fields.  317	

3 Results  318	

An analysis of model skill of the combined temporal and spatial variability of DO at the 319	

surface and bottom of the water column, as well as at the observed MLDO, indicates that 320	

all models, regardless of biogeochemical complexity or spatial resolution, exhibit a high 321	

degree of skill in reproducing observed DO (Fig. 4). Specifically, all models produce DO 322	

concentrations at the surface and bottom that have a normalized total RMSD less than 323	

one. The same is true for nearly all models for DO at the observed MLDO. However, 324	

most models underestimate observed DO both at the surface and at the MLDO (Fig. 4a). 325	



The correlation between the observed and modeled DO is relatively constant with depth 326	

(Fig. 4b), though on average slightly higher at the bottom (0.85) than at the surface 327	

(0.80). Further, on average, the models simulate DO at the surface and bottom better than 328	

they do at the MLDO. No statistical difference exists between the skill of models that 329	

utilize a full biogeochemical component and those that utilize the simple constant-330	

respiration oxygen parameterization. Based on an analysis of variance (ANOVA) 331	

comparing the full biogeochemical models to the CRM models, the two model types do 332	

not perform differently in terms of their ability to reproduce the combined temporal and 333	

spatial variability of bottom DO as measured by total RMSD (p = 0.48). Overall, Model 334	

M (the mean of the 8 models) consistently performs better than any individual model 335	

across all depths examined (Fig. 4).  336	

The monthly temporal variability of bottom DO at each station over the two years studied 337	

is resolved similarly well by all of the models (Fig. 5a), but the models have difficulty 338	

simulating spatial DO variability during each month (Fig. 5b). Due to the stations chosen 339	

for this analysis (Fig. 2), the spatial variability being examined here is essentially the 340	

north to south variability. Most models exhibit a latitudinal gradient with respect to their 341	

skill in reproducing the temporal variability of bottom DO, with models overestimating 342	

DO at the more northern stations (Fig. 5a). Some models differ in their ability to 343	

reproduce summer (May to September) DO concentrations and winter (October to April) 344	

DO concentrations (Fig. 5b). Models B, F, and G all distinctively overestimate mean DO 345	

in the summer compared to the winter. In contrast, Models A and C perform similarly 346	

well in both seasons (Fig. 5b). In addition, all three constant respiration models as well as 347	

Models D and E substantially underestimate DO at several stations in the winter.  348	

All eight models generally resolve the pycnocline and oxycline with similar skill (Fig. 6). 349	

All models consistently underestimate the mean and standard deviation of the maximum 350	

strength of stratification within the pycnocline and oxycline, defined herein as the 351	

maximum vertical gradients of density and oxygen (Fig. 6a). All models, except for 352	

Model A (see Sect. 4.2), also underestimate the mixed layer depth, regardless of whether 353	

it is computed in terms of density or oxygen. (Note that these model symbols in Fig. 6a 354	

are located above the y axis despite this negative bias in MLD because the vertical 355	



coordinate system is oriented upwards.) Thus the models are producing stratification that 356	

is both weaker than observed and higher (shallower) in the water column. The correlation 357	

coefficient for these metrics is low, ranging between 0.1–0.6, and indicates that all 358	

models are missing the majority of variability associated with the magnitude and location 359	

of the pycnocline and oxycline (Fig. 6b). However, there is slightly more consistency and 360	

better correlation coefficients among the models for the strength of stratification than the 361	

depth of the mixed layers.  362	

All eight models are also characterized by similar skill in representing the temporal and 363	

spatial variability of density stratification and MLDρ (Fig. 7). There is a latitudinal 364	

difference in skill of the models in reproducing the magnitude of the pycnocline and 365	

MLDρ, with model skill generally lower at the northern stations (Fig. 7a). Contrary to the 366	

pattern shown for bottom DO (Fig. 5b), none of the models exhibit a significant seasonal 367	

pattern between summer and winter in reproducing spatial variability of dρ/dz or MLDρ 368	

(Fig. 7b). However, Model A differentiates itself from the rest of the models in its pattern 369	

of skill at reproducing the spatial and temporal variability of the MLDρ (see Sect. 4.2). 370	

Temporal and spatial patterns for oxycline stratification (dO/dz) and MLDO closely match 371	

those of dρ/dz and MLDρ (not shown). 372	

All eight models reproduce the variability of bottom DO better than the variables that are 373	

generally thought of as being the primary drivers of hypoxic conditions, including 374	

stratification (Fig. 6), salinity, chlorophyll and nitrate (Fig. 8, Table 3). However, all 375	

models reproduce patterns in temperature across the Bay and through time better than any 376	

of the other variables in this model comparison (Fig. 8). All eight models, as well as the 377	

Model Mean, are characterized by very low bias in modeled temperature, and correlation 378	

coefficients of approximately 0.99; this high skill results from the very strong and 379	

predictable seasonal temperature variability. Even though the five models with full 380	

biogeochemical components (Models A, B, C, D, and E) are characterized by large 381	

differences in their mechanistic approaches to modeling nitrate and chlorophyll, they 382	

produce similar total RMSDs for all of the variables examined at both the surface and at 383	

the bottom (Table 3).  384	



The mean of the eight models (Model M) has a higher model skill (lower RMSD) than 385	

any individual model across nearly every variable examined (Table 3). In addition, for 386	

nearly all observations at all stations, the 95 % confidence interval of all model hindcasts 387	

encapsulates the observed bottom DO concentration (Fig. 9), even though any individual 388	

model may overestimate or underestimate observed DO. Models generally fall into 389	

greater agreement during the summer, when DO is low, and into lesser agreement in the 390	

winter when DO is replete. While this study does not allow for a true interannual 391	

comparison, it is interesting that at station CB4.1C whereas the model ensemble closely 392	

matches the timing of the drawdown of DO in the spring of 2004 (Fig. 9), it produces a 393	

summer rather than spring initiation of hypoxic conditions in 2005. In addition, the model 394	

ensemble produces a premature relaxing of hypoxic conditions for both years at this 395	

observation station.  396	

�In order to better understand the impact of stratification on DO concentrations throughout 397	

the water column, the relationship between the observed pycnocline strength and MLDρ 398	

were compared to the observed oxycline strength and MLDO. Observations from 1998 to 399	

2006 demonstrate that while there is not a strong correlation between the strengths of the 400	

pycnocline and oxycline, there is a very strong correlation between MLDρ and MLDO 401	

(Fig. 10). Depending on the criteria used for defining the existence of stratification (see 402	

Sect. 2.3), the correlation of the pycnocline and oxycline strengths range between r2 = 403	

0.18 to 0.26 and the correlations of MLDρ and MLDO range between r2 = 0.51 to 0.82 404	

(Table 4). Furthermore, correlation of the relationship between the MLDρ and MLDO is 405	

stronger for more severe stratification (Table 4). The relationship between the two mixed 406	

layer depths is biased towards the MLDO being slightly located deeper in the water 407	

column than the MLDρ. As the cut-off criteria for the existence of stratification becomes 408	

more stringent, the relationship becomes closer to 1:1.  409	

4 Discussion  410	

4.1 How does the skill of various hydrodynamically-based DO models compare?  411	

– In examining the eight 3-D models in this study, there is not a statistical 412	



difference between the ability of simple and complex models to simulate the mean 413	

and monthly variability of bottom DO; in addition, models with higher spatial 414	

resolution do not necessarily produce better estimates of DO.  415	

Models currently simulating hypoxia throughout Chesapeake Bay compute oxygen 416	

concentrations in essentially two distinct ways: they either utilize a simple constant 417	

respiration model or a full biogeochemical model. In this study, the relative skill of both 418	

types of models is compared. Specifically, in examining results of the comparison 419	

between five biogeochemical models (A, B, C, D, and E) and three simplistic constant 420	

respiration models (F, G, and H), the two groups of models performed statistically similar 421	

in their skill of reproducing bottom DO concentrations (Fig. 3, Table 3). These results 422	

support those of Bever et al. (2013) who compared three constant respiration models with 423	

the CBP regulatory model (Model A) and similarly found that all four of the models were 424	

equally skillful in terms of reproducing the seasonal variability in bottom DO throughout 425	

the Bay in 2004 and 2005. Consistent with the results of Scully (2013), this result implies 426	

that the seasonal variability of DO in the Chesapeake Bay is primarily dependent on 427	

underlying hydrodynamic mechanisms which are nearly identical for all eight models, 428	

rather than on aspects related to the biogeochemical cycling which vary dramatically 429	

between models and in fact are constant in three of the eight models. It should be noted, 430	

however, that the two years studied here were relatively wet years and an analysis of dry 431	

years may offer different results.  432	

Many previous studies have examined the costs and benefits of adding complexity to 433	

biogeochemical models. For example, increasing biogeochemical complexity has been 434	

found to improve skill in some biogeochemical data assimilative parameter optimization 435	

studies (Friedrichs et al., 2006, 2007; Lehmann et al., 2009; Bagniewski et al., 2011; 436	

Ward et al., 2013; Xiao and Friedrichs, 2014). The additional parameters associated with 437	

increased complexity generally provide more parameters that are available for additional 438	

tuning and subsequent improved model-data agreement. This is in contrast to the results 439	

of this analysis demonstrating that increased biogeochemical complexity does not 440	

necessarily improve model-data agreement. In this case the increase in model complexity 441	

has likely outpaced the ability of the researchers to fully tune the model to the available 442	



observations. However, even past studies that have invoked formal parameter 443	

optimization methodologies such as genetic algorithms and variational adjoint methods 444	

(Friedrichs et al., 2007; Ward et al., 2010; Xiao and Friedrichs, 2014) have found that 445	

under certain conditions, adding too much complexity does not necessarily improve 446	

model skill and in fact can decrease model skill and portability, primarily due to artifacts 447	

resulting from overtuning. This mirrors findings from the larger ecosystem modeling 448	

community where the best-fit models are often those with intermediate complexity 449	

(Fulton et al., 2003). �   450	

In this study, horizontal grid resolution differed significantly between model 451	

implementations, with the most highly resolved grid (Model G) including more than nine 452	

times more grid cells than the lower resolution grids (Table 1). A certain degree of 453	

resolution is clearly required to successfully simulate dynamic processes, and a model 454	

with 8–10 km resolution will not be able to correctly simulate the hydrodynamic 455	

processes within the Bay (Feng et al., 2015). However, an increase in horizontal grid 456	

resolution from ∼ 1.8 to ∼ 0.6 km, which results in a run-time change of a factor of nine, 457	

or possibly of 27 if the time step is accordingly decreased by a factor of three, does not 458	

necessarily result in a significant improvement in simulation skill of either stratification 459	

or bottom oxygen. Although not shown here, additional sensitivity experiments with 460	

Model G revealed that doubling the vertical resolution of this model had no significant 461	

effect on the model’s ability to resolve the depth of stratification or the maximum 462	

magnitude of stratification. Thus, when selecting the optimal model resolution for a 463	

simulation, it is critical to weigh the advantages of increased resolution with the increased 464	

time required for simulation. With a given level of computational resources, fewer 465	

sensitivity experiments can be conducted with a model using a more highly resolved grid.  466	

Accurately simulating the observed spatial variability of DO (Fig. 4b) was a greater 467	

challenge than simulating the temporal variability of DO (Fig. 4a) for all eight models 468	

participating in this intercomparison. This is especially true in the winter months when 469	

the vast majority of the Bay is oxygen replete and the models have difficulty representing 470	

the observed variability from station to station. The majority of the models tend to 471	

slightly overestimate mean bottom DO in the summer whereas multiple models (e.g., 472	



Models D, E, F, and G) exhibit a strong negative bias during January and/or February of 473	

2005, primarily at stations in the middle to southern portion of the Bay’s deep channel. 474	

Interestingly, increased biological complexity and higher grid resolution do not 475	

completely resolve this issue, as this is true for models utilizing full biogeochemical 476	

models (Models D, E) as well as those using highly resolved model grids (Model G). This 477	

is likely due to the ephemeral nature of the biological divers of DO.  478	

The strong performance of the constant respiration models implies that these models may 479	

be excellent candidates for providing short-term bottom oxygen forecasts. The high DO 480	

skill of the CRM models primarily results from the fact that seasonal variations in 481	

physical processes (primarily wind mixing and temperature) play a dominant role in 482	

controlling the seasonal cycle of oxygen (Scully, 2013). Because the underlying 483	

hydrodynamic models all use similar physical forcing, the constant respiration models are 484	

able to simulate the seasonal cycle of DO with similar skill as the more complex 485	

biogeochemical models. As a result, these simple models that are easier to tune and 486	

require less in the way of computational resources than full biogeochemical models, may 487	

be efficiently used to produce short-term (on the order of days) DO forecasts. On the 488	

contrary, the more complex full biogeochemical models will be necessary for scenario-489	

based and long-term (on the order of months to years) forecasting which requires that 490	

models respond to prescribed changes in the biogeochemical environment, such as 491	

increased rates of nutrient loading due to changes in land use, land cover, and/or climate.  492	

4.2 How does model skill of DO compare to that of the primary drivers of DO 493	

variability?  494	

– Overall, model DO skill is greater than that of the variables generally considered 495	

to drive DO variability, such as stratification, salinity, mixed layer depth, 496	

chlorophyll, and nitrate; only modeled temperature has higher skill than modeled 497	

DO.  498	

Since dissolved oxygen concentrations in the Chesapeake Bay are controlled by physical 499	

processes (e.g., advection, wind mixing, heating/cooling, and stratification), as well as 500	

biological processes (e.g., photosynthesis and respiration), it is critical to understand the 501	



skill of the models in terms of how well they reproduce the many factors influencing 502	

oxygen concentrations. As expected, the five models containing a specific 503	

biogeochemical model component had more difficulty simulating the observed 504	

chlorophyll and nitrate concentrations than the physical variables (temperature and 505	

salinity), both at the surface (Table 3) and the bottom (Fig. 8). Replicating the correct 506	

location, magnitude, and timing of phytoplankton blooms and nutrient cycling is a 507	

complex issue, and as a result, these features are generally not well simulated in the 508	

models. While the models generally simulate the total amount of chlorophyll adequately, 509	

it is more uniformly spatially distributed in the models rather than in patchy blooms as in 510	

nature, leading to the underestimation of chlorophyll variability across all models. 511	

Although all models produced a relatively high correlation between observed and 512	

modeled temperature and salinity (Fig. 8), the correlation coefficients for chlorophyll and 513	

nitrate were much lower. The correlations for observed vs. modeled DO was more similar 514	

to that of the physical variables (temperature, salinity) than the biological variables 515	

(chlorophyll and nitrate), highlighting that the seasonal variability in bottom DO is 516	

regulated more by physical than biological factors. This also explains the success of the 517	

constant respiration models, which by definition contain no biological variability yet 518	

reproduce DO variability nearly as well as the most complex biogeochemical models.  519	

In this study, model skill was also considerably higher for bottom oxygen than it was for 520	

the vertical gradient of stratification and mixed layer depths (Figs. 6 and 8). The 521	

underestimation of the vertical gradient across all models is largely due to the numerical 522	

diffusion that characterizes all of these hydrodynamic models, but may also be partially 523	

due to an underestimation of the winds or a lack of diffuse freshwater input around the 524	

Bay. Even though the models all underestimated the strength of stratification (Figs. 4 and 525	

6), modeled stratification in summer was strong enough to prevent mixing with the 526	

relatively well-oxygenated surface waters. This result suggests, somewhat surprisingly, 527	

that simulating the correct vertical gradient of stratification is not absolutely necessary for 528	

skillful bottom DO simulations. Models need only simulate enough stratification to 529	

effectively cut off vertical mixing in order to develop an isolated bottom layer that can 530	

then experience a draw down in oxygen via respiration. In addition, the models must also 531	



correctly simulate the horizontal advection of oxygen (Scully, 2013; Li et al., 2015). The 532	

fact that bottom DO is simulated so well by the eight models analyzed here suggests that 533	

not only is the advection of oxygen well represented in the models, but also the strength 534	

of stratification, i.e., the maximum vertical gradients of density and oxygen, produced by 535	

these models is sufficient. Thus, although novel and somewhat unexpected, these results 536	

are not contradictory to previous studies demonstrating the importance stratification plays 537	

in initiating summer hypoxia in the Chesapeake Bay (Murphy et al., 2011).  538	

Model skill in terms of reproducing observed mixed layer depths was likewise much 539	

lower than model skill of reproducing observed oxygen concentrations. All models, 540	

except Model A, produced mixed layer depths (MLDO and MLDρ) that were generally 541	

too shallow in the water column (Fig. 6a). Note that Model A is a regulatory model that 542	

has been used for many years by the Chesapeake Bay Program, and has thus undergone 543	

more extensive calibration aimed at matching the mean salinity and oxygen 544	

characteristics of the Bay (Cerco and Cole, 1993). Furthermore, Model A employs a z 545	

grid that matches the bathymetry in trench areas better than the sigma grids used by the 546	

other models.  Although Model A produced mixed layer depths that were generally in the 547	

correct location within the water column (Fig. 6a), they were too variable (Fig. 6b). This 548	

variability may partly be a result of the 1.5m z grid employed by Model A causing large 549	

jumps between vertical grid cells and hence resulting in overestimates of MLD 550	

variability. All other models use sigma grids typically with more highly resolved vertical 551	

resolution at the depth of maximum stratification.  552	

The two variables for which the models have greatest skill are DO and temperature (Fig. 553	

8). This is because oxygen variability is driven primarily by seasonal variability in 554	

physical processes such as solubility and wind mixing and to a lesser degree by 555	

variability in oxygen consumption (Scully, 2013). As a result, the models using a 556	

constant mean respiration rate produce as realistic hypoxia simulations as the 557	

biogeochemically complex models. Observations clearly show this strong seasonal 558	

variability in bottom DO (Fig. 11a) and, to a slightly lesser extent, clear seasonal 559	

variability in DO at the bottom of the bottom of the oxygen mixed layer (MLDO; Fig. 560	



11b). But a seasonal cycle is not manifested in the MLDO itself (Fig. 11c). The lack of 561	

such a strong seasonal cycle in the observed mixed layer depths makes this a more 562	

difficult variable for the models to simulate. As a result, the models can relatively 563	

skillfully simulate the combined spatial and temporal variability of DO while 564	

simultaneously missing the MLDO.  565	

4.3 Why is it important for DO models to simulate the MLDO correctly?  566	

– Most of the aerobic habitat in the Bay during the summer is located above the 567	

MLDO, thus it is critical for living resource managers to use models that accurately 568	

simulate this variable.  569	

On average, the models miss the observed depth of the MLDO by 3.4m, which equates to 570	

roughly a 60 % error in the modeled mixed layer depths. While the models have 571	

difficulty simulating the MLDO throughout the entire year (Figs. 6 and 7b), the summer 572	

months are when the mismatch has the greatest potential to impact the available habitat 573	

for oxygen-dependent species. Each year during this time period low-oxygen waters 574	

occupy nearly the entire water column below the mixed layer. At Station CB4.1C, a 575	

representative mesohaline deep trough station, the contours of low-oxygen (5mgL−1) and 576	

hypoxic (2mgL−1) waters are located just below the MLDO from late spring until late fall 577	

(Fig. 12). The severe depletion of oxygen below the mixed layer compresses the habitable 578	

space at this station to roughly 10 m (from a maximum of 32 m) during the annual low-579	

oxygen event.  580	

The impact of habitat compression can be substantial, as many Bay species require DO 581	

concentrations well above the traditional hypoxic threshold (USEPA, 2010). While not all 582	

of the main stem stations develop hypoxic water each year, most mesohaline stations 583	

experience a dramatic drawdown of oxygen to levels during the summer that effectively 584	

remove a large portion of the Bay from habitable space (Murphy et al., 2011; Schlenger 585	

et al., 2013). Studies have shown that some species modify their behavior based on the 586	

oxycline depth, which acts to constrict the habitable space in the water column (Prince 587	

and Goodyear, 2006; Pierson et al., 2009; Elliot et al., 2013). Since species can be 588	



negatively impacted by low-DO concentrations as high as 5mgL−1 (Breitburg, 2002; 589	

Vaquer-Sunyer and Duarte, 2008; USEPA, 2010), the location of the oxycline is not only 590	

important for habitat compression in the summer months, but can also be important in the 591	

winter months when an occasional lack of vertical mixing can substantially decrease 592	

bottom DO concentrations. Furthermore, in order to accurately estimate hypoxic volume, 593	

models must correctly simulate the depth of the mixed layer, since the MLDO closely 594	

follows the depth of the 2 mg L−1 contour.  595	

4.4 How can DO simulations in the Bay be improved for management of water 596	

quality and living resources?  597	

– To better simulate DO conditions and summer habitat compression due to low-598	

DO water, simulations of the depth of the top of the pycnocline (MLDρ) must be 599	

improved.  600	

Although the suite of models examined reproduce DO concentrations relatively well 601	

overall (Fig. 4), the models typically overestimate summer habitat compression by 602	

producing low DO concentrations too high in the water column (Fig. 6). Observations 603	

from the Chesapeake Bay Program show a strong correlation between the depths of the 604	

oxygen and density-defined mixed layers (Fig. 10b). The models analyzed here also 605	

clearly exhibit a close relationship between their skill in simulating the depths of the 606	

oxygen and density-defined mixed layers (Fig. 6). These strong relationships between the 607	

depths of the oxygen and density-defined mixed layers result from the fact that the 608	

pycnocline represents the physical barrier that leads to the development of the oxycline. 609	

Therefore, the inability of the models to accurately simulate habitat compression is an 610	

artifact of their lack of skill in simulating the depth of the density-defined mixed layer. In 611	

contrast, the strength of density stratification is not well correlated to the strength of 612	

oxygen stratification. This is because a relative wide range of intensities of density 613	

stratification is still sufficient to cut off vertical mixing, leading to the observed draw-614	

down in bottom DO. Thus, even though all models underestimate the strength of the 615	

pycnocline, they still produce enough stratification to greatly reduce mixing. The results 616	

from this paper thus indicate that to further improve DO simulations and better estimate 617	



summertime habitat compression, it is even more critical for models to accurately 618	

simulate the depth of the top of the pycnocline than to accurately simulate the absolute 619	

strength of the pycnocline. � 620	

4.5 What is the utility of the multi-model ensemble and Model Mean?  621	

– The multi-model ensemble approach allows for the development of a Model 622	

Mean, which taken as its own model, is the most skilled model when examining the 623	

combined suite of variables analyzed in this study.  624	

The model skill assessment presented here demonstrates that the average of all eight 625	

models, or five models in the case of chlorophyll and nitrate, does better than any 626	

individual model if looking across the suite of variables analyzed. This finding is similar 627	

to that of other studies that examined the value of the model mean from a multi-model 628	

ensemble (e.g., Gneiting and Raftery, 2005; Hagedorn et al., 2005). While the concept of 629	

using a multi-model ensemble has been most extensively employed by atmospheric, 630	

climatic, and global circulation modelers, such as the Intergovernmental Panel on Climate 631	

Change (e.g., Collins et al., 2013), the tool’s utility for aquatic ecosystem modeling is 632	

gaining traction (Meier et al., 2012; Trolle et al., 2014; Janssen et al., 2015). As models 633	

are increasingly used in regulatory decisions regarding aquatic ecosystems, a cohort of 634	

similarly skilled models can be used to help inform a set of confidence bounds around an 635	

environmental forecast. Due to the restrictions placed on models used in regulatory 636	

actions, utilization of a multi-model ensemble may not be realistic for all environmental 637	

and resource managers; however, multiple models can be integrated into the decision-638	

making process even when the ultimate decision must be based on a single model. For 639	

example, a confidence interval plot could help identify where regulatory model output 640	

might be acting out of sync with other skilled water quality models of the same system, 641	

thereby informing managers of the potential shortfalls associated with the regulatory 642	

model. Furthermore, if the models tend to be predicting similar DO concentrations, a 643	

cohort of models could enhance the confidence in regulatory decisions based on a single 644	

regulatory model (Friedrichs et al., 2012; Weller et al., 2013). Comparing multiple 645	

models can also help inform how to better improve models in the future, as this study has 646	



aimed to do.  647	

5 Conclusions  648	

All models analyzed here exhibited a high degree of skill in simulating dissolved oxygen 649	

concentrations within the main stem of the Chesapeake Bay in two years corresponding 650	

to relatively wet and average years. Their high skill results from the fact that physical 651	

processes (e.g., solubility, wind-mixing, and advection) exert a first order influence on 652	

the seasonal cycle of oxygen. As a result, the models’ ability to reproduce dissolved 653	

oxygen concentrations is independent of the complexity of the biogeochemical 654	

parameterizations: the simplest constant respiration models were found to reproduce 655	

observed oxygen concentrations as well as the most biologically complex models. 656	

Essentially, all models are equally capable of respiring most of the available oxygen in 657	

the lower water column during summer.  658	

This study also suggests that for use as management tools for water quality and living 659	

resources, it is more critical for these models to adequately resolve the depth of the mixed 660	

layer than the absolute strength of stratification (as long as modeled stratification is 661	

strong enough to limit vertical mixing). This is critical because observations show that 662	

during warmer months, oxygen-depleted water fills the water column to where 663	

stratification limits further mixing, which effectively cuts off waters below the mixed 664	

layer for use by the majority of the Chesapeake Bay’s most recognized and valued living 665	

resources. These results furthermore suggest that modelers should focus their efforts on 666	

improving the hydrodynamics of their models in an effort to improve simulations of 667	

mixed layer depth dynamics and variability.  668	

These findings have significant ramifications for short-term bottom DO forecasts, which 669	

may be successful with very simple oxygen parameterizations embedded in 670	

hydrodynamic models. In contrast, scenario-based water quality forecasts are likely to 671	

benefit from more complex models, which must adequately reproduce the longer-term 672	

response of the oxygen field to changes in nutrient and organic matter loads. This study 673	

also helps to demonstrate how multiple community models from governmental agencies 674	

and academic institutions may be used together to provide a model mean and a set of 675	



confidence bounds for regulatory model results that could be used to inform management 676	

decisions.  677	

 678	

 679	

Acknowledgements. This work was supported by the NOAA IOOS program as part of the 680	
Coastal Ocean Modeling Testbed. We thank Yun Li and Younjoo Lee for help with the ROMS- 681	
RCA simulations used in this analysis and Ray Najjar for his insights and comments. This is 682	
VIMS contribution 3520 and UMCES contribution 5130.  683	

 684	

 685	

 686	

 687	

 688	

 689	

 690	

 691	

 692	

 693	

 694	

 695	

  696	



References  697	

Bagniewski, W., Fennel, K., Perry, M. J., and D’Asaro, E. A.: Optimizing models of the North 698	
Atlantic spring bloom using physical, chemical and bio-optical observations from a Lagrangian 699	
float, Biogeosciences, 8, 1291–1307, doi:10.5194/bg-8-1291-2011, 2011.  700	

Bever, A. J., Friedrichs, M. A. M., Friedrichs, C. T., Scully, M. E., and Lanerolle, L. W.: 701	
Combining observations and numerical model results to improve estimates of hypoxic volume 702	
within the Chesapeake Bay, USA, J. Geophys. Res-Oceans, 118, 4924–4944, 703	
doi:10.1002/jgrc.20331, 2013.  704	

Boesch, D. F., Brinsfield, R. B., and Magnien, R. E.: Chesapeake Bay Eutrophication: scientific 705	
understanding, ecosystem restoration, and challenges for agriculture, J. Environ. Qual., 30, 303–706	
320, 2001.  707	

Breitburg, D.: Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal 708	
fishes and fisheries, Estuaries, 25, 767–781, 2002.  709	

Breitburg, D. L., Loher, T., Pacey, C. A., and Gerstein, A.: Varying effects of low dissolved 710	
oxygen on trophic interactions in an estuarine food web, Ecol. Monogr., 67, 489–507, 1997.  711	

Brown, C. W., Hood, R. R., Long, W., Jacobs, J., Ramers, D. L., Wazniak, C., Wiggert, J. D., 712	
Wood, R., and Xu, J.: Ecological forecasting in Chesapeake Bay: using a mechanistic-empirical 713	
modeling approach, J. Marine Syst., 125, 113–125, doi:10.1016/j.jmarsys.2012.12.007, 2013.  714	

Buchheister, A., Bonzek, C. F., Gartland, J., and Latour, R. J.: Patterns and drivers of the 715	
demersal fish community of Chesapeake Bay, Mar. Ecol.-Prog. Ser., 481, 161–180, 716	
doi:10.3354/meps10253, 2013.  717	

Cerco, C., Johnson, B., and Wang, H.: Tributary Refinements to the Chesapeake Bay Model, 718	
ERDC TR-02-4, US Army Engineer Research and Development Center, Vicksburg, MS, 2002.  719	

Cerco, C., Kim, S.-C., and Noel, M.: The 2010 Chesapeake Bay Eutrophication Model – a Report 720	
to the US Environmental Protection Agency Chesapeake Bay Program and to The US Army 721	
Engineer Baltimore District, US Army Engineer Research and Development Center, Vicksburg, 722	
MS, 2010.  723	

Cerco, C. F. and Cole, T.: Three-dimensional eutrophication model of Chesapeake Bay, J. 724	
Environ. Eng.-ASCE, 119, 1006–10025, 1993.  725	

Cerco, C. F. and Noel, M. R.: The 2002 Chesapeake Bay Eutrophication Model, EPA 903-R-04- 726	
004, US Army Corps of Engineers, Waterways Experiment Stations, Vicksburg, MS, 2004.  727	

Cerco, C. F. and Noel, M. R.: Twenty-one-year simulation of Chesapeake Bay water quality 728	
using the CE-QUAL-ICM eutrophication model, J. Am. Water Resour. As., 49, 1119–1133, 729	
doi:10.1111/jawr.12107, 2013. � 730	

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., 731	
Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, 732	
M.: Long-term climate change: projections, commitments and irreversibility, in: Climate Change 733	



2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 734	
Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 735	
Cambridge, United Kingdom and New York, NY, USA, 1029–1136, 2013.  736	

Cooper, S. R. and Brush, G. S.: Long-term history of Chesapeake Bay anoxia, Science, 254, 992–737	
996, 1991.  738	

Cooper, S. R. and Brush, G. S.: A 2,500-year history of anoxia and eutrophication in Chesapeake 739	
Bay, Estuaries, 16, 617–626, 1993.  740	

Diaz, R. J.: Overview of hypoxia around the world, J. Environ. Qual., 30, 275–281, 2001.  741	

�Diaz. R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, 742	
Science, 321, 926–929, doi:10.1126/science.1156401, 2008. � 743	

Du, J. and Shen, J.: Decoupling the influence of biological and physical processes on the 744	
dissolved oxygen in the Chesapeake Bay, J. Geophys. Res.-Oceans, 120, 78–93, 745	
doi:10.1002/2014JC010422, 2015. � 746	

Ekau, W., Auel, H., Pörtner, H.-O., and Gilbert, D.: Impacts of hypoxia on the structure and 747	
processes in pelagic communities (zooplankton, macro-invertebrates and fish), Biogeosciences, 7, 748	
1669–1699, doi:10.5194/bg-7-1669-2010, 2010. 749	

�Elliott, D. T., Pierson, J. J., Roman, M. R.: Predicting the effects of coastal hypoxia on vital rates 750	
of the planktonic copepod Acartia tonsa dana, PLoS ONE, 8, e63987, 751	
doi:10.1371/journal.pone.0063987, 2013. � 752	

Feng, Y., Friedrichs, M. A. M., Wilkin, J., Tian, H., Yang, Q., Hofmann, E. E., Wiggert, J. D., 753	
and Hood, R. R.: Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean 754	
biogeochemical modeling system: model description, evaluation, and nitrogen budgets, J. 755	
Geophys. Res.-Biogeo., 120, 1666–1695, doi:10.1002/2015JG002931, 2015.  756	

Fofonoff, N. P. and Millard, R. C.: Algorithms for Computations of Fundamental Properties of 757	
Seawater, UNESCO Technical Papers in Marine Science, 44, Paris, France, 53 pp., 1983.  758	

Friedrichs, M., Sellner, K. G., and Johnston, M. A.: Using Multiple Models for Management in 759	
the Chesapeake Bay: a Shallow Water Pilot Project, Chesapeake Bay Program Scientific and 760	
Technical Advisory Committee Report, No. 12-003, Edgewater, MD, 2012.  761	

Friedrichs, M. A. M., Hood, R., and Wiggert, J.: Ecosystem model complexity versus physical 762	
forcing: quantification of their relative impact with assimilated Arabian Sea data, Deep-Sea Res. 763	
Pt. II, 53, 576–600, 2006.  764	

Friedrichs, M. A. M., Dusenberry, J., Anderson, L., Armstrong, R., Chai, F., Christian, J., Doney, 765	
S. C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D., Moore, K., Schartau, M., Sptiz, Y. H., 766	
and Wiggert, J.: Assessment of skill and portability in regional marine biogeochemical models: 767	
role of multiple phytoplankton groups, J. Geophys. Res., 112, C08001, 768	
doi:10.1029/2006JC003852, 2007.  769	

Fulton, E. A., Smith, A. D. M., and Johnson, C. R.: Effect of complexity on marine ecosystem 770	



models, Mar. Ecol.-Prog. Ser., 253, 1–16, 2003.  771	

Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J.: Evidence for greater oxygen decline rates 772	
in the coastal ocean than in the open ocean, Biogeosciences, 7, 2283–2296, doi:10.5194/bg-7-773	
2283-2010, 2010.  774	

Gneiting, T. and Raftery, A. E.: Weather forecasting with ensemble methods, Science, 310, 248–775	
249, doi:10.1126/science.1115255, 2005.  776	

Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T. N.: The rationale behind the success of multi-777	
model ensembles in seasonal forecasting – I. Basic concept, Tellus A, 57, 219–233, 778	
doi:10.1111/j.1600-0870.2005.00103.x, 2005.  779	

Hagy, J. D., Boyton, W. R., Keefe, C. W., and Wood, K. V.: Hypoxia in Chesapeake Bay, 1950– 780	
2001: long-term change in relation to nutrient loading and river flow, Estuaries, 27, 634–658, 781	
2004.  782	

Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., 783	
Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. 784	
J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. 785	
C., and Wilkin, J.: Ocean forecasting in terrain-following coordinates: formulation and skill 786	
assessment of the Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624, 787	
doi:10.1016/j.jcp.2007.06.016, 2008.  788	

Harding Jr., L. W. and Perry, E. S.: Long-term increase of phytoplankton biomass in Chesapeake 789	
Bay, 1950–1994, Mar. Ecol.-Prog. Ser., 157, 39–52, 1997.  790	

Harding Jr., L. W., Gallegos, C. L., Perry, E. S., Miller, W. D., Adolf, J. E., Mallonee, M. E., and 791	
Paerl, H. W.: Long-term trends of nutrients and phytoplankton in Chesapeake Bay, Estuaries 792	
Coasts, doi:10.1007/s12237-015-0023-7, 2015.  793	

Hofmann, E. E., Druon, J., Fennel, K., Friedrichs, M., Haidvogel, D., Lee, C., Mannino, A., 794	
McClain, C., Najjar, R., O’Reilly, J., Pollard, D., Previdi, M., Seitzinger, S., Siewert, J., 795	
Signorini, S., and Wilkin, J.: Eastern US continental shelf carbon budget: integrating models, data 796	
assimilation, and analysis, Oceanography, 21, 86–104, doi:10.5670/oceanog.2008.70, 2008.  797	

Hong, B. and Shen, J.: Responses of estuarine salinity and transport processes to potential future 798	
sea-level rise in the Chesapeake Bay, Estuar. Coast. Shelf S., 104–105, 33–45, 799	
doi:10.1016/j.ecss.2012.03.014, 2012.  800	

Hong, B. and Shen, J.: Linking dynamics of transport timescale and variations of hypoxia in the 801	
Chesapeake Bay, J. Geophys. Res.-Oceans, 118, 6017–6029, doi:10.1002/2013JC008859, 2013.  802	

Janssen, A. B. G., Arhonditsis, G. B., Beusen, A., Bolding, K., Bruce, L., Bruggeman, J., 803	
Couture, R.-M., Downing, A. S., Elliott, J. A., Frassl, M. A., Gal, G., Gerla, D. J., Hipsey, M. R., 804	
Hu, F., Ives, S. C., Janse, J. J., Jeppsen, E., Johnk, K. D., Kneis, D., Kong, X., Kuiper, J. J., 805	
Lehmann, M. K., Lemmen, C., Ozkundakci, D., Petzoldt, T., Rinke, K., Robson, B. J., Sachse, R., 806	
Schep, S. A., Schmid, M., Scholten, H., Teurlincx, S., Trolle, D., Troost, T. A., Van Dam, A. A., 807	
Van Gerven, L. P. A., Weijerman, M., Wells, S. A., and Mooij, W. M.: Exploring, exploiting and 808	
evolving diversity of aquatic ecosystem models: a community perspective, Aquat. Ecol., 49, 513–809	



548, doi:10.1007/s10452-015-9544-1, 2015.  810	

Jiang, L. and Xia, M.: Dynamics of the Chesapeake Bay outflow plume: Realistic plume 811	
simulations and its seasonal and interannual variability, J. Geophys. Res.-Oceans, 121, 812	
doi:10.1002/2015JC011191, 2016.  813	

Jiang, L., Xia, M., Ludsin, S. A., Rutherford, E. S., Mason, D. M., Jarrin, J. M., and Pangle, K. 814	
L.: Biophysical modeling assessment of the drivers for plankton dynamics in dressenid-colonized 815	
western Lake Erie, Ecol. Model., 308, 18–33, 2015.  816	

Jolliff, J. K., Kindle, J. C., Schulman, I., Penta, B., Friedrichs, M. A. M., Helber, R., and Arnone, 817	
R. A.: Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. 818	
Marine Syst., 76, 64–82, doi:10.1016/j.jmarsys.2008.05.014, 2009.  819	

Keisman, J. and Shenk, G.: Total maximum daily load criteria assessment using monitoring and 820	
modeling data, J. Am. Water Resour. As., 49, 1134–1149, doi:10.1111/jawr.12111, 2013.  821	

Keister, J. E., Houde, E. D., and Breitburg, D. L.: Effects of bottom-layer hypoxia on abundances 822	
and depth distributions of organisms in Patuxent River, Chesapeake Bay, Mar. Ecol.-Prog. Ser., 823	
205, 43–59, 2000.  824	

Kemp, W. M., Boyton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., Cornwell, 825	
J. C., Fisher, T. R., Gilbert, P. M., Hagy, J. D., Harding, L. W., Houde, E. D., Kimmel, D. G., 826	
Miller, W. D., Newell, R. I. E., Roman, M. R., Smith, E. M., and Stevenson, J. C.: Eutrophication 827	
of Chesapeake Bay: historical trends and ecological interactions, Mar. Ecol.-Prog. Ser., 303, 1–828	
29, 2005.  829	

Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., and Hagy, J. D.: Temporal responses of 830	
coastal hypoxia to nutrient loading and physical controls, Biogeosciences, 6, 2985–3008, 831	
doi:10.5194/bg-6-2985-2009, 2009.  832	

Lanerolle, L. W., Patchen, R. C., and Aikman, F.: The Second Generation Chesapeake Bay 833	
Operational Forecast System (CBOFS2): Model Development and Skill Assessment, TR- NOS-834	
CS-29, US Department of Commerce, National Oceanic and Atmospheric Administration, 835	
National Ocean Service, Office of Coast Survey, Coast Survey Development Laboratory, Silver 836	
Spring, MD, 2011.  837	

Lehmann, M. K., Fennel, K., and He, R.: Statistical validation of a 3-D bio-physical model of the 838	
western North Atlantic, Biogeosciences, 6, 1961–1974, doi:10.5194/bg-6-1961-2009, 2009.  839	

Levin, L. A., Ekau, W., Gooday, A. J., Jorissen, F., Middelburg, J. J., Naqvi, S. W. A., Neira, C., 840	
Rabalais, N. N., and Zhang, J.: Effects of natural and human-induced hypoxia on coastal benthos, 841	
Biogeosciences, 6, 2063–2098, doi:10.5194/bg-6-2063-2009, 2009.  842	

Li, M., Zhong, L., and Boicourt, W. C.: Simulations of Chesapeake Bay estuary: sensitivity to 843	
turbulence mixing parameterizations and comparison with observations, J. Geophys. Res., 110, 844	
C12004, doi:10.1029/2004JC002585, 2005.  845	

Li, Y., Li, M., and Kemp, W. M.: A budget analysis of bottom-water dissolved oxygen in 846	
Chesapeake Bay, Estuar. Coast., 38, 2132–2148, doi:10.1007/s12237-014-9928-9, 2015.  847	



Meier, H. E. M., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko, B., Donnelly, C., 848	
Eilola, K., Gustafsson, B. G., Hansson, A., Havenhand, J., Hoglund, A., Kuznetsov, I., 849	
MacKenzie, B. R., Muller-Karulis, B., Neumann, T., Niiranen, S., Piwowarczyk, J., Raudsepp, 850	
U., Reckermann, M., Ruoho-Airola, T., Savchuk, O. P., Schenk, F., Schimanke, A., Vali, G., 851	
Weslawski, J.-M., and Zorita, E.: Comparing reconstructed past variations and future projections 852	
of the Baltic Sea ecosystem – first results from multi-model ensemble simulations, Environ. Res. 853	
Lett., 7, 034005, doi:10.1088/1748-9326/7/3/034005, 2012.  854	

Meire, L., Soetaert, K. E. R., and Meysman, F. J. R.: Impact of global change on coastal oxygen 855	
dynamics and risk of hypoxia, Biogeosciences, 10, 2633–2653, doi:10.5194/bg-10-2633- 2013, 856	
2013.  857	

Murphy, R. R., Kemp, W. M., Ball, W. P.: Long-term trends in Chesapeake Bay seasonal 858	
hypoxia, stratification, and nutrient loading, Estuar. Coast., 34, 1293–1309, doi:10.1007/s12237-859	
011- 9413-7, 2011.  860	

Najjar, R. G., Pyke, C. R., Adams, M. B., Breitburg, D., Hershner, C., Kemp, M., Howarth, R., 861	
Mulholland, M. R., Paolisso, M., Secor, D., Sellner, K., Wardrop, D., and Wood, R.: Potential 862	
climate-change impacts on the Chesapeake Bay, Estuar. Coast. Shelf S., 86, 1–20, 863	
doi:10.1016/j.ecss.2009.09.026, 2010.  864	

Park, K., Kuo, A. Y., Shen, J., and Hamrick, J. M.: A three-dimensional Hydrodynamic 865	
Eutrophication Model (HEM-3D): description of water quality and sediment process submodels, 866	
in: Applied Marine Science and Ocean Engineering, Special Report, Virginia Institute of Marine 867	
Science, Gloucester Point, VA, 327, 1995.  868	

Pierson, J. J., Roman, M. R., Kimmel, D. G., Boicourt, W. C., and Zhang, X. S.: Quantifying 869	
changes in the vertical distribution of mesozooplankton in response to hypoxic bottom waters, J. 870	
Exp. Mar. Biol. Ecol., 381, 74–79, 2009.  871	

Prince, E. D. and Goodyear, C. P.: Hypoxia-based habitat compression of tropical pelagic fishes, 872	
Fish. Oceanogr., 15, 451–464, doi:10.1111/j.1365-2419.2005.00393.x, 2006.  873	

Riedel, B., Pados, T., Pretterebner, K., Schiemer, L., Steckbauer, A., Haselmair, A., Zuschin, M., 874	
and Stachowitsch, M.: Effect of hypoxia and anoxia on invertebrate behaviour: ecological 875	
perspectives from species to community level, Biogeosciences, 11, 1491–1518, doi:10.5194/bg-876	
11-1491-2014, 2014.  877	

Schlenger, A. J., North, E. W., Schlag, Z., Li, Y., Secor, D. H., Smith, K. A., and Niklitschek, E. 878	
J.: Modeling the influence of hypoxia on the potential habitat of Atlantic sturgeon Acipenser 879	
oxyrinchus: a comparison of two methods, Mar. Ecol.-Prog. Ser., 483, 257–272, 880	
doi:10.3354/meps10248, 2013.  881	

Scully, M. E.: The importance of climate variability to wind-driven modulation of hypoxia in 882	
Chesapeake Bay, J. Phys. Oceanogr., 40, 1435–1440, doi:10.1175/2010JPO4321.1, 2010.  883	

Scully, M. E.: Physical controls on hypoxia in Chesapeake Bay: a numerical modeling study, J. 884	
Geophys. Res.-Oceans, 118, 1239–1256, doi:10.1002/jgrc.20138, 2013.  885	

Shenk, G. W. and Linker, L. C.: Development and application of the 2010 Chesapeake Bay 886	



watershed total maximum daily load model, J. Am. Water Resour. As., 49, 1–15, 887	
doi:10.1111/jawr.12109, 2013.  888	

Shchepetkin, A. F. and McWilliams, J. C.: The Regional Ocean Modeling System (ROMS): a 889	
split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Model., 9, 890	
347–404, doi:10.1016/j.ocemod.2004.08.002, 2005.  891	

Taylor, K. E.: Summarizing multiple aspects of models performance in a single diagram, J. 892	
Geophys. Res., 106, 7183–7192, 2001.  893	

Testa, J. M. and Kemp, W. M.: Spatial and temporal patterns of winter–spring oxygen depletion 894	
in Chesapeake Bay bottom water, Estuar. Coast., 37, 1432–1448, doi:10.1007/s12237-014- 9775-895	
8, 2014.  896	

Testa, J. M., Li, Y., Lee, Y. J., Li, M., Brady, D. C., Di Toro, D. M., Kemp, W. M., and 897	
Fitzpatrick, J. J.: Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia 898	
in Chesapeake Bay using a coupled hydrodynamic-biogeochemical model, J. Marine Syst., 139, 899	
139–158, doi:10.1016/j.jmarsys.2014.05.018, 2014.  900	

Tian, H., Yang, Q., Najjar, R., Ren, W., Friedrichs, M. A. M., Hopkinson, C. S., and Pan, S.: 901	
Anthropogenic and climatic influences on carbon fluxes from eastern North America to the 902	
Atlantic Ocean: a process-based modeling study, J. Geophys. Res.-Biogeo., 120, 752–772, 903	
doi:10.1002/2014JG002760, 2015.  904	

Trolle, D., Elliott, J. A., Mooij, W. M., Janse, J. H., Bolding, K., Hamilton, D. P., and Jeppsen, 905	
E.: Advancing projections of phytoplankton responses to climate change through ensemble 906	
modeling, Environ. Modell. Softw., 61, 371–379, doi:10.1016/j.envsoft.2014.01.032, 2014.  907	

USEPA: Ambient Water Quality Criteria for Dissolved Oxygen, Water Clarity, and Chlorophyll a 908	
for the Chesapeake Bay and its Tidal Tributaries – 2004 Addendum, EPA 903-R-03-002, US 909	
Environmental Protection Agency, USEPA Region III Chesapeake Bay Program Office, 910	
Annapolis, MD, 2004.  911	

USEPA: Chesapeake Bay Total Maximum Daily Load for Nitrogen, Phosphorus, and Sediment, 912	
US Environmental Protection Agency, US Environmental Protection Agency Chesapeake Bay 913	
Program Office, Annapolis, MD, 2010.  914	

USEPA: Guide to Using Chesapeake Bay Program Water Quality Monitoring Data, EPA 903-R- 915	
12-001, US Environmental Protection Agency, US Environmental Protection Agency Chesapeake 916	
Bay Program, Annapolis, MD, 2012.  917	

Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, P. Natl. 918	
Acad. Sci. USA, 105, 15452–15457, doi:10.1073/pnas.0803833195, 2008.  919	

Ward, B. A., Friedrichs, M. A. M., Anderson, T. R., and Oschlies, A.: Parameter optimization 920	
techniques and the problem of underdetermination in marine biogeochemical models, J. Marine 921	
Syst., 81, 34–43, doi:10.1016/j.jmarsys.2009.12.005, 2010.  922	

Ward, B. A., Schartau, M., Oschlies, A., Martin, A. P., Follows, M. J., and Anderson, T. R.: 923	
When is a biogeochemical model too complex? Objective model reduction and selection for 924	



North Atlantic time-series sites, Prog. Oceanogr., 116, 49–65, doi:10.1016/j.pocean.2013.06.002, 925	
2013.  926	

Weller, D., Benham, B., Friedrichs, M., Gardner, N., Hood, R., Najjar, R., Paolisso, M., Pasquale, 927	
P., Sellner, K., and Shenk, G.: Multiple Models for Management in the Chesapeake Bay, 928	
Chesapeake Bay Program Scientific and Technical Advisory Committee Workshop Report, No. 929	
14-004, 25–26 February 2013.  930	

Xiao, Y. and Friedrichs, M. A. M.: Using biogeochemical data assimilation to assess the relative 931	
skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity 932	
of the planktonic food web, Biogeosciences, 11, 3015–3030, doi:10.5194/bg-11- 3015-2014, 933	
2014.  934	

Xu, J., Long, W., Wiggert, J. D., Lanerolle, L. W. J., Brown, C. W., Murtugudde, R., and Hood, 935	
R. R.: Climate forcing and salinity variability in Chesapeake Bay, USA, Estuar. Coast. Shelf S., 936	
35, 237–261, doi:10.1007/s12237-011-9423-5, 2012.  937	

Yang, A., Tian, H., Friedrichs, M. A. M., Hopkinson, C. S, Lu, C., and Najjar, R. G.: Increased 938	
nitrogen export from eastern North America to the Atlantic Ocean due to climatic and 939	
anthropogenic changes during 1901–2008, J. Geophys. Res.-Biogeo., 120, 1046-1068, 940	
doi:10.1002/2014JG002763, 2015.  941	

Yang, Q., Tian, H., Friedrichs, M. A. M., Liu, M., Li, X., and Yang, J.: Hydrological responses to 942	
climate and land-use changes along the North American east coast: a 110-year historical 943	
reconstruction, J. Am. Water Resour. As., 51, 47–67, doi:10.1111/jawr.12232, 2015.  944	

	945	
	946	
	947	
	948	
	949	
	950	
	951	
	952	
	953	
	954	
	955	
	956	
	957	
	958	
	959	
	960	
	961	
	962	
	963	
	964	
	965	
	966	



 967	
Table 1. Model characteristics. 968	

 969	

 970	

 971	

 972	

 973	

 974	

 975	

 976	

 977	

 978	

Model A B C D E F G H 

Hydrodynamic 
model- 
DO model 

CH3D- 
ICM 

ChesROMS- 
ECB 

ChesROMS- 
BGC 

ROMS- 
RCA 

FVCOM- 
ICM 

ChesROMS- 
CRM 

CBOFS- 
CRM 

EFDC- 
CRM 

 
Grid structure 

 
Structured 

 
Structured 

 
Structured 

 
Structured 

 
Unstructured 

 
Structured 

 
Structured 

 
Structured 

Average  
wet-cell 
resolution  

 
1 km 

 
1.8 km 

 
1.8 km 

 
1.89 km 

 
1.26 km 

 
1.8 km 

 
0.565 km 

 
1.2 km 

 
Vertical grid 

 
1.52 m  

 
20 sigma 

 
20 sigma 

 
20 sigma 

 
10 sigma 

 
20 sigma 

 
20 sigma 

 
20 sigma 

River forcing CBP  
Watershed  
Model 

DLEM  
Watershed  
Model 

USGS Data USGS Data USGS Data USGS Data USGS Data USGS Data 

Sub-tidal 
elevation at 
open boundary 

Multiple 
efforts 

Lewes, DE 
to Duck, NC 

Lewes, DE 
to Duck, NC 

Wachapreague, 
VA to  
Duck, NC 

TPXO Tidal 
Model 

Lewes, DE 
to Duck, NC 

Ocean City, 
MD to 
Duck, NC 

Lewes, DE 
to Duck, 
NC 

 
Wind forcing 

Multiple 
efforts 

Thomas 
Point 
Light 

 
NARR 

 
NARR 

 
NARR 

 
NARR 

NARR & 
NDBC 
buoys 

 
NARR 

Other 
atmospheric  
forcing 

Multiple 
efforts 

NARR NARR NARR NARR NARR NARR Norfolk & 
Baltimore 
Airports 

Biogeochemical  
complexity 

High; 5 
phytoplk. 
groups 

High; 1 
phytoplk. 
group 

High; 1 
phytoplk. 
group 

High; 2 
phytoplk. 
groups 

High; 3 
phytoplk. 
groups 

Low;  
constant 
respiration 

Low;  
constant  
respiration 

Low;  
constant  
respiration 

 
Model citation 

 
Cerco et 
al., 2010 

 
Feng et al., 
2015 

 
Brown et al., 
2013 

 
Testa et al., 
2014 

 
Jiang and 
Xia, 2015 

 
Scully, 2013 

 
Lanerolle et 
al., 2011 

 
Du and 
Shen, 2015 



 979	

Table 2. Characteristics of observation stations (from USEPA, 2012).  980	

Station Latitude Longitude Station Depth # of Cruises 

CB3.2 39.1634 N 76.3063 W 12.1 m 34 
CB3.3C 38.9951 N 76.3597 W 24.3 m 34 

CB4.1C 38.8251 N 76.3997 W 32.3 m 34 

CB4.2C 38.6448 N 76.4177 W 27.2 m 34 

CB4.3C 38.5565 N 76.4347 W 26.9 m 34 

CB4.4 38.4132 N 76.3430 W 30.3 m 34 

CB5.1 38.3185 N 76.2930 W 34.1 m 34 

CB5.2 38.13678N 76.2280 W 30.6 m 34 

CB5.4 37.8001 N 76.1747 W 31.1 m 26 

CB6.2 37.4868 N 76.1563 W 10.5 m 30 

CB6.4 37.2365 N 76.2080 W 10.2 m 29 

CB7.1 37.6835 N 75.9897 W 20.9 m 27 

LE2.3 38.0215 N 76.3477 W 20.1 m 34 
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Table 3. Mean and standard deviation (STD) of observations and total normalized RMSD 993	

for each model.  994	

 995	

 996	

 997	

  998	

 Mean ± 
STD of 

Obs 

Normalized RMSD 
A B C D E F G H M 

Surface Temp. (ºC) 17.44±8.82 0.13 0.13 0.12 0.09 0.13 0.13 0.16 0.19 0.10 
Bottom Temp. (ºC ) 15.75±8.02 0.24 0.35 0.35 0.23 0.22 0.35 0.17 0.19 0.23 
Surface Salinity (PSU) 10.92±4.32 0.37 0.62 0.53 0.36 0.46 0.61 0.57 0.41 0.35 
Bottom Salinity (PSU) 18.17±3.14 0.72 0.85 0.73 1.55 1.28 0.78 1.03 0.97 0.75 
Max. dρ /dz (kg m-4) ~1.64±1.15 1.03 1.09 1.07 1.09 1.25 1.01 1.23 1.02 N/A 
MLDρ  (m) ~5.32±3.99 1.01 1.13 1.11 1.41 1.39 1.12 1.38 1.13 N/A 
Surface DO (mg L-1) 9.74±2.15 0.67 0.58 0.89 0.80 1.00 0.63 0.64 0.69 0.57 
DO at MLDO (mg L-1) ~8.44±2.53 0.54 0.57 0.74 0.93 0.83 0.81 0.95 1.09 0.62 
Bottom DO (mg L-1) 4.42±3.61 0.51 0.59 0.81 0.61 0.54 0.46 0.61 0.60 0.46 
Max. dDO/dz (mg L-1 m-1) ~1.81±1.12 1.19 1.21 1.34 1.09 1.35 1.12 1.23 1.19 N/A 
MLDo (m) ~6.62±4.01 1.24 1.01 1.10 1.33 1.33 1.05 1.30 1.29 N/A 
Surface Chl a (mg m-3) 11.19±9.04 0.92 1.22 1.60 1.23 0.89 N/A N/A N/A 1.16 
Bottom Chl a (mg m-3) 9.02±11.52 0.87 1.10 1.07 1.05 1.01 N/A N/A N/A 0.90 
Surface Nitrate (mmolN  m-3) 0.32±0.33 0.61 0.79 1.03 0.61 0.52 N/A N/A N/A 0.79 
Bottom Nitrate (mmolN  m-3) 0.12±0.13 1.08 1.38 1.38 0.92 1.46 N/A N/A N/A 0.85 



Table 4. Pycnocline and oxycline correlation statistics (all correlations have p-values << 999	

0.01). 1000	

Stratification 
Threshold 
Percentage 

Max dρ/dz  
vs. 

Max dO/dz 

MLDρ  
vs.  

MLDO 

Profiles  
with 

Stratification 
10% 0.18 0.51 1613 
15% 0.22 0.59 1303 
20% 0.22 0.70 916 
25% 0.26 0.82 575 
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Figure 1. Map of the Chesapeake Bay and its watershed. 1021	
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Figure 2. Location of the CBP Water Quality Monitoring stations used in this study. 1034	
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 1043	

 1044	

 1045	

Figure 3. Density and dissolved oxygen profiles for a mid-Bay station (CB4.1C) on (a) 1046	

January 13, 2004 and (b) June 14, 2005, comparing the 0.1 kg m-4 stratification definition 1047	

used by the CBP (MLDCBP) with the 10% threshold definitions used here for density 1048	

(MLDρ) and oxygen (MLDO).  1049	
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Figure 4. Normalized summary (a) target and (b) Taylor diagrams illustrating model skill 1059	

of dissolved oxygen at the surface, MLDO, and bottom for 13 Chesapeake Bay stations in 1060	

2004-2005. The “x” represents the skill of a model that perfectly reproduces the 1061	

observations. The dotted, dashed-dot, and dashed lines on the Taylor diagram represent 1062	

lines of constant standard deviation, correlation coefficient, and unbiased RMSD, 1063	

respectively. 1064	
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Figure 5. Normalized target diagrams for Models A-H demonstrating the (a) temporal and 1068	

(b) spatial skill in resolving the variability of bottom dissolved oxygen concentrations. In 1069	

(a) the individual dots represent the 13 stations along the main stem of the Chesapeake 1070	

Bay. In (b) the dots represent the 24 months of 2004-2005 and are delineated by color: 1071	

red = summer (May-September) and blue = winter (October-April).     1072	
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Figure 6. Normalized summary (a) target and (b) Taylor diagram illustrating model skill 1078	

of MLDρ and MLDO, max dρ/dz, and max dO/dz at 13 Chesapeake Bay stations for 1079	

2004-2005. The “x” represents the skill of a model that perfectly reproduces the 1080	

observations.  Since RMSD of stratification is only computed at stations where both the 1081	

observations and model exhibit stratification, the Model Mean is not calculable for these 1082	

variables. 1083	
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Figure 7. Normalized target diagrams for Models A-H demonstrating the (a) temporal and 1087	

(b) spatial skill in resolving the variability of the strength of density stratification (circles) 1088	

and the depth of pycnocline initiation (diamonds). In (a) the individual dots represent the 1089	

13 stations along the main stem of the Chesapeake Bay. In (b) the dots represent the 24 1090	

months of 2004-2005 and are delineated by color: red = summer (May-September) and 1091	

blue = winter (October-April).   1092	
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Figure 8. Normalized summary (a) target and (b) Taylor diagram illustrating model skill 1097	

of bottom temperature, salinity, chlorophyll, nitrate, and dissolved oxygen at 13 1098	

Chesapeake Bay stations for 2004-2005. The “x” represents the skill of a model that 1099	

perfectly reproduces the observations.  1100	
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Figure 9. Time series of bottom dissolved concentrations for station CB4.1C. Red dots 1107	

represent the 34 observations made during 2004-2005. Grey lines are the individual 1108	

model simulations. The dark blue line represents the model mean while the cyan line 1109	

represents the 95% confidence interval of the model simulations.  1110	
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Figure 10. Scatter plots comparing observations of (a) the strengths of stratification of the 1121	

pycnocline and oxycline and (b) the oxygen- and density-defined mixed layer depths. 1122	

Size of the circles is proportional to the number of observations. Observations are from 1123	

1998-2006 at the 13 Chesapeake Bay stations shown in Figure 2.  1124	
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Figure 11. Time series of observations at Station CB4.1C from 2003 – 2006 for (a) 1133	

bottom dissolved oxygen, (b) dissolved oxygen at the MLDO, and (c) MLDO.  1134	
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Figure 12. Time series of observations of dissolved oxygen and MLDO contours at 1147	

Station CB4.1C for 2004 and 2005.  1148	

 1149	

 1150	

	1151	

Station	CB4.1C	

D
ep
th
	(m

)	

0	

-5	

-10	

-15	

-20	

-25	

Jan	‘04	 April	‘04	 July	‘04	 Oct	‘04	

-30	

Jan	‘05	 April	‘05	 July	‘05	 Oct	‘05	 Jan	‘06	
Observation	Date	

MLDO	 5	mg	L-1	Contour	 2	mg	L-1	Contour	


