
Response to Referee #1, P. MacCready: 
 
We greatly appreciate P. MacCready’s input on this manuscript and hope that we have 
fully addressed the comments/questions provided.  
 
General Comments: The authors systematically compare the skill of 8 3D models of 
Chesapeake Bay circulation and biogeochemistry. They focus on hypoxia, but consider 
other related properties such as mixed layer depth. They find that all models do a 
reasonable job at simulating hypoxia compared to two years of ~monthly observations at 
13 stations. Like temperature (with which the models also have high skill) oxygen has a 
large seasonal cycle, contributing to its predictability. All models had poor skill at 
predicting the depth of the start of the hypoxic layer (very important for the ecosystem 
and management). The authors show that this problem is related to lack of skill 
predicting the density mixed layer depth.  
 
This is an important piece of work. This level of model inter-comparison has rarely or 
never occurred for estuarine systems. The paper is well-written, and the figures well-
chosen. I have only a few smaller comments, and recommend that it be accepted with 
minor revisions.  
 
Response: Thank you for your support of this manuscript.  
 
Smaller Comments: 
 
1. Page 20371, lines 7-9. The “minimum stratification criterion” is mentioned here, and 
it seems like a good way to ignore casts with minimal gradients, but I could not find 
where this criterion is defined. Please clarify.  
 
1. Response: Thank you for identifying this unclear statement. The limitation imposed of 
only considering stratification to be present if there is at least a 10% change per meter in 
a given variable’s profile is the minimum stratification criterion.  
 
1. Manuscript Edit: The wording of the manuscript has been changed to: “The 
minimum stratification criterion utilized in this analysis requiring a profile to pass the 
10% threshold also ensures that observations where very little…” 
 
2. Page 20372, lines 5-6. The phrase about “the skill of a model defined as the mean of 
the observations” was unclear. In general the authors do a good job explaining the 
statistical tests, but in this case another sentence might help.  
 
2. Response: Thank you for identifying this unclear statement.  
 
2. Manuscript Edit: The following sentence was added directly after the referred to 
statement: “In effect, this means that if a model falls within the unit circle, it exhibits a 
skill that is greater than the skill obtained if one were to simply use the mean of the 
observations.” 



 
3. Page 20373, bottom. It might help to explain when and where it is of greatest value 
(e.g. to managers) to get the DO right, and why.  
 
3. Response: As this is the results section, we do not feel this is the appropriate place to 
address the impact of DO for management. We do, however, speak to this point in the 
discussion in section 4.3 where we indicate that “the summer months are when the 
mismatch has the greatest potential to impact the available habitat for oxygen-dependent 
species” and later in section 4.3, that “while not all of the main stem stations develop 
hypoxic water each year, most mesohaline stations experience a dramatic drawdown of 
oxygen to levels during the summer that effectively remove a large portion of the Bay 
from habitable space.”  
 
3. Manuscript Edit: To emphasize this point at the beginning of the manuscript, the 
following was added to the second paragraph in the introduction: “The greatest impact of 
low DO concentrations spatially will depend on the specific living resource; however, 
temporally, late spring to early fall is of most concern.”   
 
4. Page 20374, line 13. Why is it that all the models have the same biases in the 
stratification field? 
 
4. Response: A great question. There are likely quite a few reasons why this may be the 
case. The first that comes to mind is that the advection schemes implemented by these 
models are generally overly diffusive. This tends to smooth out sharp gradients in the 
vertical. As for the MLD occurring too high in the water column, this is potentially 
partially due to the model bathymetries being shallower than the true bathymetry at these 
stations (this issue is not the case for CH3D-ICM, which employs a z-grid that can more 
easily match the true bathymetry). In addition, this may also be a result of an 
underestimation of the wind field or the lack of diffuse freshwater input around the Bay.  
 
4. Manuscript Edit: To address these two points the following text was added to the 
second and third paragraphs of section 4.2, respectively: “The underestimation of the 
vertical gradient across all models is largely due to the numerical diffusion that 
characterizes all of these hydrodynamic models, but may also be partially due to an 
underestimation of the winds or the lack of diffuse freshwater input around the Bay.” 
“Furthermore, Model A employs a z grid that matches the bathymetry in trench areas 
better than the sigma grids used by the other models.”   
 
5. Page 20375, line 20. It is interesting that the mean of the models has these timing 
errors, but I’m not sure what it shows. Two years is too few to say anything statistical 
about timing. Probably OK to mention, though.  
 
5. Response: We agree that this time period does not allow us to say anything specific 
about timing.  
 



5. Manuscript Edit: To ensure an interannual comparison is not implied by the text, the 
sentence has been changed to: “While this study does not allow for a true interannual 
comparison, it is interesting that at station CB4.1C whereas the model ensemble closely 
matches the timing…” 
 
6. Page 20378, lines 24-25. This sentence is unclear. In what way are the biological 
drivers, “not… spatially explicit”? 
 
6. Response: This was meant to mean that the biological drivers do not necessarily need 
to be found at that exact location to have an impact on the DO at that exact location.  
 
6. Manuscript Edit: To increase clarity and brevity, the sentence has been edited as: 
“This is likely due to the ephemeral nature of the biological drivers of DO.”  
 
7. Fig. 1. Give the length scale in km.  
 
7. Response: Good point. This same issue was in Fig 2.  
 
7. Manuscript Edit: Correction has been made in both figures.  
 
8. Fig. 8b. The very poor correlation of Chl seems to make sense for this inherently 
patchy process. What is more perplexing is the large underestimate of the standard 
deviation. Any thoughts? 
 
8. Response: Great point. It is true that the patchiness causes the poor correlation to 
make sense. However, the poor correlation is not completely due to the fact that the 
models are patchy in the wrong locations, but rather that they are less patchy and thus 
generally have a more constant spatial distribution of Chl than is observed. The models 
do not exhibit the strong variability demonstrated by the observed Chl distributions since 
the Chl is not patchily distributed in the models, but rather, it is more (although, certainly 
not completely) uniformly distributed. This is why the standard deviation is substantially 
underestimated. 
 
8. Manuscript Edit: To address this, the following was added to the first paragraph of 
Section 4.2: “While the models generally simulate the total amount of chlorophyll 
adequately, it is more uniformly spatially distributed in the models rather than in patchy 
blooms as in nature, leading to the underestimation of chlorophyll variability across all 
models.”  
 
9. Fig. 9. Please make the x-axis ticks more regular so that the same time in different 
years is easier to compare visually.  
 
9. Response: Good point.  
 
9. Manuscript Edit: Figure has been edited so that every fourth month is indicated.   
	



Response to Referee #2, Anonymous: 
 
We greatly appreciate your input on this manuscript and hope that we have fully 
addressed the comments/questions provided.  
 
General Comments: Overall, this is a well-conceived modeling study that compares 
predictions of eight coupled hydrodynamic-biogeochemical models that were 
independently developed for the Chesapeake Bay against the data collected on biweekly 
to monthly monitoring cruises conducted during 2004-2005. In terms of the number of 
models involved, this is certainly one of the more comprehensive model comparisons 
conducted for coastal ecosystems. The members of the team are skillful modelers that 
have extensively published on the subject and the methods and conclusions are generally 
sound and scientifically defensible. The paper is well written and suitable for publication, 
subject to minor revision as suggested below.  
 
Response: Thank you for your support and comments on this manuscript.  
 
Comments: 
1. The conclusion that all models predict the seasonal dynamics of dissolved oxygen 
reasonably well, regardless of their structural complexity of spatial resolution, is not 
surprising. Extensive model comparisons conducted with climate models have taught us a 
very important modeling lesson – eight climate models that produce nearly identical 
hindcasts for the past 2,500 years, strongly disagree in their predictions for the next 85 
years for the same climate scenario. I guess there is a simple answer to that – 
calibration. Modelers have become very good in calibrating their models, and given 
sufficient time and data, even a model of dubious mechanistic value will end up 
displaying a remarkable skill. The only way to critically evaluate the model results would 
be if they are subjected to a rigorous validation using data to which the models were not 
exposed during calibration. Because of the different data requirements, this would be 
very difficult to accomplish with a large number of fairly complex models, and I am not 
suggesting that the authors embark on that journey. However, some discussion would be 
needed to clarify whether the 2004-2005 data set that was used for model comparison 
was also used for model calibration.  
 
1. Response: This is a very important point. All models were calibrated independently by 
the individual researchers/research groups, but the calibration was not exclusively 
focused on these 13 stations (there are ~100 stations in the Bay with monthly/semi-
monthly data), these specific two years (data are available from 1985-2015) or these 
particular variables (many other variables, e.g. ammonium, total suspended solids, 
particulate organic nitrogen, etc…. are also available). Thus although the data included in 
this study may have been used in the overall evaluation/calibration analyses of the 
individual models, it is unlikely that it played a major role in this process as it represents 
only a small subset of data available for this purpose. In general, model 
evaluation/calibration was completed before we requested output from the individual 
modeling teams, and thus the teams were not trying to fit the specific data used in this 
study.  



 
1. Manuscript Edit: The following text has been added to Section 2.2: “While these 
observations were publicly available for model assessment during calibration of all of the 
models, they represent a very small subset of the 30 years of EPA observations across 
over 100 Bay stations. The models compared here were calibrated based on access to the 
larger data set and for conditions in the Bay in general, not specifically for the 13 stations 
and two years considered here.”  
 
2. My second point is that I would like to have seen a more detailed analysis of the 
model-data comparison. For example, Fig. 9 shows that models collectively predict a 
duration of hypoxia compared to the measurements, and that the predicted onset of 
hypoxia during 2005 lags substantially with respect to the measurements. As much as I 
appreciate Taylor and target diagrams, I think that simple scatter plots of predicted 
versus observed DO values for individual models would have been very useful in that 
regard.   
 
2. Response: A larger discussion on the timing issues evident in Fig. 9 was not included, 
since the short 2-year time frame of the comparison precluded a full analysis of 
interannual variability. To the referee’s point regarding the value of a set of model to 
observations scatter plots, unfortunately scatter plots will not provide information on 
timing or duration of hypoxia. In addition, these seem unnecessary since the information 
garnered from a scatter plot is manifested in the Taylor (correlation) and target (bias) 
diagrams. Figure R1 below illustrates the bottom and surface DO concentrations for all 
13 stations and all observation times for the model mean. From the diagram, one can see 
that the model mean is biased towards underestimating the observations at the surface 
and slightly biased towards overestimating the observations at the bottom, while the 
correlations for both are fairly high. This same information is demonstrated on Fig 9. If 
we included this type of figure for every variable (7) and every model (8), this would 
mean an additional 56 figures, even if we included multiple depths on each figure as in 
the example shown. To minimize the number of necessary figures, we believe the 
combination of using Taylor and target diagrams together is sufficient to demonstrate the 
skill of the models; however we do note that the scatter diagram provided below will of 
course be permanently available to readers online on the manuscript discussion page as 
part of this response to the reviews. 
 
2. Manuscript Edit: No edits were made.  
 
3. My third point concerns the selection of model data for monthly comparison. I am not 
sure what the word “monthly” refers to. Were the model results outputted to match the 
dates of the biweekly to monthly monitoring cruises, or were they averages for the entire 
month? 
 
3. Response: Thank you for pointing out this unclear and important aspect. Some of this 
information was presented in the third paragraph of section 2.4, but we have now 
clarified this section further.  
 



3. Manuscript Edit: The following text was added/edited in the third paragraph of 
section 2.4: “Model skill was assessed using the hourly model output (daily for CH3D-
ICM chlorophyll and nitrate) that was nearest in time to that of the observation and from 
the grid cell that encompassed the observation location. For months with two 
observations, each observation was individually matched to the model output and the 
skill statistics from those comparisons were averaged for that month.” 
 

 
Figure R1. Scatter diagram illustrating the relationship between observed DO and the 
Model Mean DO for all stations at the surface (yellow) and bottom (blue.) The 1:1 line is 
shown in red.   
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Abstract  

As three-dimensional (3-D) aquatic ecosystem models are used more frequently for 
operational water quality forecasts and ecological management decisions, it is important 
to understand the relative strengths and limitations of existing 3-D models of varying 
spatial resolution and biogeochemical complexity. To this end, two-year simulations of 
the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically 
compared to each other and to historical monitoring data. Results show that although 
models have difficulty resolving the variables typically thought to be the main drivers of 
dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models 
have significant skill in reproducing the mean and seasonal variability of dissolved 
oxygen. In addition, models with constant net respiration rates independent of nutrient 
supply and temperature reproduced observed dissolved oxygen concentrations about as 
well as much more complex, nutrient-dependent biogeochemical models. This finding 
has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, 
which may be possible with very simple oxygen parameterizations, in contrast to the 
more complex full biogeochemical models required for scenario-based forecasting. 
However, models have difficulty simulating correct density and oxygen mixed layer 
depths, which are important ecologically in terms of habitat compression. Observations 
indicate a much stronger correlation between the depths of the top of the pycnocline and 
oxycline than between their maximum vertical gradients, highlighting the importance of 
the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when 
low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus 
depend more on the ability of models to reproduce the correct mean and variability of the 
depth of the physically driven surface mixed layer than the precise magnitude of the 
vertical density gradient.  

 

 

 

 

 

 

 

 

 

 

 



1 Introduction  

Since the middle of the last century, anthropogenic impacts have dramatically decreased 

water quality throughout the Chesapeake Bay (Boesch et al., 2001), one of the largest 

estuaries in North America. Land-use change along with the industrialization and 

urbanization of the Chesapeake Bay watershed have caused dramatic increases in nutrient 

inputs to the Bay (Kemp et al., 2005), spurring additional primary production and 

phytoplankton abundance (Harding and Perry, 1997). Because increased primary 

production leads to more organic matter throughout the water column that is eventually 

decomposed by bacteria, these increased nutrient inputs to the Bay have led to a 

corresponding decrease in dissolved oxygen (DO) concentrations (Hagy et al., 2004). 

Hypoxia, generally defined as the condition in which DO concentrations are below 

2mgL−1, usually initiates seasonally in the northern portion of the Bay and expands 

southward as summer develops (Kemp et al., 2009; Testa and Kemp, 2014). Although 

hypoxia in the Chesapeake Bay has likely existed since European colonization (Cooper 

and Brush, 1991, 1993), recent studies have highlighted an accelerated rise in the number 

and spatial extent of hypoxic, as well as anoxic (DO concentrations <0.2mgL−1), events 

in the Bay since the 1950’s, primarily attributed to increased anthropogenic nutrient input 

(Hagy et al., 2004; Kemp et al., 2005; Gilbert et al., 2010). These impacts are likely to be 

exacerbated by future climate change (Najjar et al., 2010; Meire et al., 2013; Harding et 

al., 2015). 

�Interest in the ecological impacts of reduced DO concentrations has been elevated due to 

the observed proliferation of hypoxic events in the world’s coastal oceans, creating vast 

dead zone areas that compress suitable habitat for many marine species (Diaz, 2001; Diaz 

and Rosenberg, 2008; Pierson et al., 2009). Low-DO waters can greatly impact the 

abundance and health of important ecological species, potentially resulting in suffocation 

and major kills of fish, crabs, and shellfish (Breitburg, 2002; Ekau et al., 2010; Levin et 

al., 2009). While the presence of DO concentrations < 2 mg L−1 have been shown to 

decrease the abundance of fish larvae (Keister et al., 2000), some species can incur 

negative health impacts and modify their behavior at significantly higher DO 



concentrations (Vaquer-Sunyer and Duarte, 2008). DO concentrations of ∼ 4 mg L−1 

have been found to compress demersal fish habitat as fish seek out more oxygenated 

waters (Buchheister et al., 2013). Zooplankton, a crucial food source for valuable species, 

have also been found to exhibit changes in distribution and predation when subject to 

large volumes of low-DO water, potentially leading to further impacts along the food 

chain (Breitburg et al., 1997; Pierson et al., 2009). Invertebrates have similarly been 

found to alter their behavior under low-DO conditions (Riedel et al., 2014). In the 

Chesapeake Bay, multiple regulated fish species, such as striped bass and American shad, 

require oxygen restoration targets as high as 5mgL−1 (USEPA, 2010). The greatest 

impact of low DO concentrations spatially will depend on the specific living resource; 

however, temporally, late spring to early fall is of most concern. As a result of the 

significant ecological importance of oxygen on living resources in the Bay, DO 

concentrations are used as a primary indicator in assessing water quality for Chesapeake 

Bay regulations (Keisman and Shenk, 2013).  

Improving the health of the Chesapeake Bay has become a priority for the Environmental 

Protection Agency (EPA) along with the six states and Washington, DC that make up the 

Bay watershed (Fig. 1), and together they have committed to utilizing a suite of 

regulatory models to inform their management decisions (USEPA, 2010). The 

Chesapeake Bay Program (CBP), a regional partnership that has led and directed the 

restoration of the Chesapeake Bay since 1983, has undertaken an extensive modeling 

effort of the Bay (Cerco and Cole, 1993; Cerco et al., 2002; Cerco and Noel, 2004, 2013). 

This modeling system is being used by the CBP to estimate the aggregate effect of 

changes in management practices, including land use, atmospheric deposition, animal 

populations, and fertilizer and manure application. Recently, the modeling system has 

been used to conduct scenario simulations to assess management actions needed to 

achieve desired Bay water quality standards (USEPA, 2010). Ultimately this model was 

used to establish a regulatory set of total maximum daily loads of nutrients and sediment 

delivered from the watershed, with the goal of significantly improving water quality 

throughout the Bay (USEPA, 2010).  



Many 3-D hydrodynamic-oxygen models of varying complexity stemming from the 

academic research community have also been used to simulate DO concentrations 

throughout the Chesapeake Bay (Scully, 2010, 2013; Hong and Shen, 2013; Feng et al., 

2015; Testa et al., 2014; Li et al., 2015). Bever et al. (2013) specifically demonstrated 

that multiple models of varying complexity are able to generate skillful estimates of 

hypoxic volume in the Bay. Some of these models are being used in the Bay to simulate 

short-term and/or seasonal forecasts of DO conditions. Furthermore, some models are 

also being used to generate scenario forecasts, or projections, that assess the impact of 

changes in management practices on estuarine DO concentrations, in some cases taking 

into account the impacts of future changes in climate. � 

As ecosystem and water quality models are increasingly used for operational forecasts as 

well as scenario-based management decisions by the regulatory and academic research 

communities, it is important to understand the relative strengths and limitations of 

existing models of varying complexity. The ability to discern which variables must be 

most accurately simulated in order to adequately reproduce the temporal and spatial 

variability of Bay oxygen concentrations is a necessary prerequisite for fully 

understanding how volumes of low-DO water are initiated and sustained within water 

quality models. The utilization of multiple models can also inform projections by 

providing independent confidence bounds for management decisions. To those ends, the 

overarching goals of this research are to compare the relative skill of various three- 

dimensional (3-D) Chesapeake Bay models characterized by different levels of 

biogeochemical complexity and spatial resolution, to better understand factors limiting 

their ability to reproduce observed DO distributions, and to suggest approaches for the 

continued improvement of these models.  

2 Methods  

2.1 Participating Chesapeake Bay models  

Eight 3-D models were evaluated in this study (Table 1), each of which includes 

hydrodynamic and DO components. Among the eight models, there are four different 

hydrodynamic base models. Models B, C, D, F, and G utilize the Regional Ocean 



Modeling System (ROMS; Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008) 

that employs a structured grid with sigma layers in the vertical dimension. Specifically, 

Models B, C, and F use a ROMS implementation developed for the Chesapeake Bay 

based on Xu et al. (2012; ChesROMS). Model D employs a ROMS implementation for 

the Chesapeake Bay based on Li et al. (2005), while Model G uses the ROMS-based 

Chesapeake Bay Operational Forecast System (CBOFS; Lanerolle et al., 2011). Models 

A, E, and H each use a different hydrodynamic base model: the Curvilinear 

Hydrodynamics in Three Dimensions model (CH3D; Cerco et al., 2010), the Finite-

Volume Community Ocean Model (FVCOM; Jiang and Xia, 2015), and the 

Hydrodynamic-Eutrophication Model – Fluid Dynamics Code (EFDC; Park et al., 1995; 

Hong and Shen, 2012; Du and Shen, 2015), respectively. The only model that employs a 

non-sigma vertical grid is Model A and the only model utilizing an unstructured 

horizontal grid is Model E. While Model E contains 10 sigma vertical layers, all of the 

other sigma grids use 20 layers. All of the grids vary in terms of their horizontal 

resolution, with Models A and G utilizing the highest resolution horizontal grids. � 

These four hydrodynamic models are coupled to five different models used to simulate 

DO (Table 1). Models A, B, C, D, and E utilize full biogeochemical models that include 

as state variables various combinations of oxygen, phytoplankton, zooplankton, and 

multiple inorganic and organic nutrients. Specifically, Models A and E employ a version 

of the Integrated Compartment Model (ICM; Cerco et al., 2010; Jiang et al., 2015), 

Model B uses the Estuarine Carbon Biogeochemistry model (ECB; Feng et al., 2015), 

Model C uses the Biogeochemistry model (BGC; Brown et al., 2013), and Model D uses 

the Row-Column AESOP model (RCA; Testa et al., 2014). In terms of food web 

complexity the models vary considerably: Models B and C employ a single 

phytoplankton group whereas Model D uses two phytoplankton groups, Model E uses 

three, and Model A, the most complex of the participating models, uses five.  

In contrast to the full biogeochemical models discussed above (Models A through E), 

Models F, G, and H represent oxygen dynamics as simply as possible and therefore do 

not utilize a full biogeochemical component. Rather, the models impose a biological 

oxygen consumption rate that is model-specific, but constant in both space and time. This 



component is referred to as a constant-respiration model (CRM). In this model, DO is 

introduced to the estuary via the river and ocean boundaries and is set to saturation at the 

estuarine surface. This constant-respiration oxygen parameterization (Scully, 2010) is 

simplistic, yet has been shown to adequately represent Chesapeake Bay oxygen dynamics 

(Scully, 2010, 2013; Bever et al., 2013). � 

The major difference in forcing between the eight model implementations is that Models 

A and B use riverine input derived from watershed models, whereas Models C–H used 

the measured flow from United States Geological Survey gauging stations, extrapolated 

using various techniques. Model A utilized the CBP’s regulatory watershed model 

(Shenk and Linker, 2013), while Model B utilized the Dynamic Land Ecosystem Model 

(Yang et al., 2014, 2015; Tian et al., 2015). At the open boundary with the Atlantic 

Ocean, Models B, C, D, F, G, and H utilize a sub-tidal elevation extrapolated from tidal 

stations on either side of the open boundary. Model E uses the TPXO tidal model, while 

Model A uses a mix of observational and model forcing (Cerco et al., 2010). While 

Model B utilizes wind forcing based on observations from the Thomas Point Light, 

Models C through H use wind estimates from the North American Regional Reanalysis 

(NARR). � 

The eight models used in this analysis have been developed for a variety of purposes. 

Model A is a governmental regulatory model developed by the CBP that has been 

extensively calibrated specifically to examine water quality issues in the Chesapeake Bay 

(Cerco and Cole, 1993; Cerco and Noel, 2004, 2013; Cerco et al., 2010) and has been 

used in the development of the 2010 Chesapeake Bay Total Maximum Daily Load 

(USEPA, 2010). The National Oceanic and Atmospheric Administration employs the 

hydrodynamic component of Model F for operational forecasts of a variety of physical 

estuarine parameters for the Chesapeake Bay 

(http://www.tidesandcurrents.noaa.gov/ofs/cbofs/cbofs.html). The other six models are 

academic models used in diverse research efforts focused on the Chesapeake Bay but not 

necessarily specifically on DO dynamics.  

Finally, a ninth model is calculated as the mean of the results from the eight models 



described above, and is referred to here as Model Mean, or Model M.  

2.2 Available Chesapeake Bay observations  

Model simulations were compared to cruise data from the CBP for 2004 and 2005 from 

13 stations along the main stem of the Bay (Table 2, Fig. 2). The years 2004 and 2005 

were selected to represent relatively wet and average years, respectively, and the 13 

stations were chosen as they have been found to offer optimal estimates of Bay-wide 

hypoxic volume (Bever et al., 2013). Stations were sampled on up to 34 cruises over the 

two years (Table 2), generally twice a month from April to August and once a month for 

the remainder of the year. Observational data can be downloaded from the CBP Water 

Quality Database (http://www.chesapeakebay.net/data/downloads/cbp_water_quality_ 

database_1984_present). Variables downloaded from the CBP website and used in this 

study were temperature, salinity, DO, nitrate + nitrite (hereafter abbreviated as “nitrate”), 

and chlorophyll a (hereafter abbreviated as “chlorophyll”). For most cruises, observations 

of temperature, salinity, and DO were made at roughly 1 m intervals throughout the water 

column, whereas observations of chlorophyll and nitrate were generally made only at the 

surface, bottom, and sometimes one or two mid-water column locations. For further 

information on available water quality observations, please see USEPA (2012). While 

these observations were publicly available for model assessment during calibration of all 

of the models, they represent a very small subset of the 30 years of EPA observations 

across over 100 Bay stations. The models compared here were calibrated based on access 

to the larger data set and for conditions in the Bay in general, not specifically for the 13 

stations and two years considered here. 

2.3 Calculation of stratification and mixed layer depth  

Stratification of the density and oxygen fields was examined to identify the maximum 

gradient of the pycnocline and oxycline as well as the depth of the top of the pycnocline 

and oxycline. In open ocean studies, the depth of the top of stratification is commonly 

referred to as the mixed layer depth (MLD), although this term is less frequently used in 

the estuarine literature. As the research presented here distinguishes between the depths 

of the top of the pycnocline and that of the oxycline, these will be referred to respectively 



as the density (ρ) mixed layer depth (MLDρ) and the oxygen mixed layer depth (MLDO). 

Density was calculated via a classical density formula that is also utilized by the CBP for 

use in the Chesapeake Bay (Fofonoff and Millard, 1983; USEPA, 2004) and is a function 

of temperature and salinity.  

The CBP defines the top and bottom of stratification in order to distinguish individual 

designated use areas for water quality management purposes (USEPA, 2004). They 

suggest that the top of the pycnocline be defined as the shallowest occurrence of a density 

gradient of 0.1 kg m−4 or greater as resolved by CBP profile observations, which are 

typically spaced at 0.5 to 2 m depth intervals. If density gradients throughout the water 

column are less than 0.1 kg m−4, they define the water to be unstratified. The 0.1 kg m−4 

threshold definition is designed to identify any initiation of stratification that may serve 

to cut off vertical mixing from a nearly perfectly well mixed layer.  

While the CBP definition described above delineates between designated use boundaries 

according to density, our research focuses on the relationship between the pycnocline and 

oxycline, requiring an alternate definition that can be applied to both the density and 

oxygen distributions. In addition, the CBP definition often generates estimates for the 

depth of the top of the pycnocline that are too shallow compared to the maximum depth 

of surface mixing (Fig. 3). As a result, a percentage threshold criterion was developed 

that identifies the bottom of the reasonably well-mixed layer, rather than perfectly mixed 

layer, and is used in this analysis. The percentage threshold method defines a density or 

DO profile as being stratified if a change of 10 % of the difference between the profile’s 

maximum and minimum values occurs within a single meter (Fig. 3). For example, if the 

maximum DO concentration throughout the water column on an individual sampling date 

is 10 mg L−1 and the minimum concentration is 1 mg L−1, stratification is defined to be 

present if a difference of 0.9 mg L−1 is present within one meter. As recommended by the 

CBP, the uppermost meter of the water column is not considered (USEPA, 2004). The 

mixed layer depth is therefore defined as the shallowest level (below 1 m depth) where 

stratification is identified. The minimum stratification criterion utilized in this analysis 

requiring a profile to pass the 10% threshold also ensures that observations where very 



little stratification exists do not bias the stratification results while also allowing for a 

single criterion to be used across multiple stratification variables.  

2.4 Model skill metrics  

Simulations of the Chesapeake Bay from the eight models described above were 

statistically compared to historical monitoring data using a variety of skill metrics 

including: root-mean squared difference (RMSD), bias, standard deviation, and 

correlation coefficient. These metrics are illustrated on Taylor and target diagrams 

(Taylor, 2001; Hofmann et al., 2008; Jolliff et al., 2009), which offer a compact way of 

assessing model skill by displaying a number of different skill metrics. Target diagrams 

illustrate the bias and total RMSD of model output, which Taylor diagrams do not. Taylor 

diagrams include quantitative information on the standard deviations and correlations 

between the model output and the observations, which target diagrams do not. Both 

diagrams, however, represent unbiased RMSD, sometimes called “centered-pattern 

RMSD”. On target diagrams, a model symbol above the horizontal axis overestimates the 

mean of the observations and a model symbol to the right of the vertical axis 

overestimates the variability of the observations. (See Hofmann et al. (2008) and Jolliff et 

al. (2009) for a more detailed description of these diagrams.) On Taylor diagrams, a 

model symbol lying on the horizontal axis exactly correlates to the observations and a 

model symbol further from the origin than the observation symbol overestimates the 

standard deviation of the observations. (See Taylor et al. (2001) for a more detailed 

description of these diagrams).  

Taylor and target diagrams presented here are normalized to the standard deviation of the 

observations, allowing multiple variables be represented on the same plot. This also 

conveniently allows the unit circle on a target diagram to represent the skill of a model 

defined as the mean of the observations. In effect, this means that if a model falls within 

the unit circle, it exhibits a skill that is greater than the skill obtained if one were to 

simply use the mean of the observations. The Taylor and target plots are either temporal 

(displaying model skill at a single station over the study period) or spatial (displaying 

model skill during a single month over the entire set of study stations). In addition, 



summary diagrams are presented which combine both temporal (examining the seasonal 

changes at each individual station) and spatial (examining differences across the Bay 

during an individual month) variability. � 

Model skill was assessed using the hourly model output (daily for CH3D-ICM 

chlorophyll and nitrate) that was nearest in time to that of the observation and from the 

grid cell that encompassed the observation location. For months with two observations, 

each observation was individually matched to the model output and the skill statistics 

from those comparisons were averaged for that month. The native horizontal resolution 

and bathymetry of the individual model grids was preserved in the comparison so as not 

to bias the analysis through varying interpolation methodologies. For stratification 

variables, the models and observations were interpolated to a 1m vertical grid that 

extended only as deep as the individual models’ bathymetry or deepest observation in 

order to preserve the differences in bathymetric grids while allowing for a direct 

comparison of the observations to the models. Model-data comparisons at the bottom of 

the water column were not necessarily based on the same depths, since in many cases the 

modeled bathymetry was shallower (or at times, deeper) than the deepest data point at a 

given station. In order to avoid issues with extrapolation and/or grid stretching, data at the 

bottom of the water column were always compared with model estimates from the 

deepest grid cell provided by each particular model. Model-data comparisons for 

stratification and mixed layer depths only included stations and times for which 

stratification was defined to exist in both the observed and simulated fields.  

3 Results  

An analysis of model skill of the combined temporal and spatial variability of DO at the 

surface and bottom of the water column, as well as at the observed MLDO, indicates that 

all models, regardless of biogeochemical complexity or spatial resolution, exhibit a high 

degree of skill in reproducing observed DO (Fig. 4). Specifically, all models produce DO 

concentrations at the surface and bottom that have a normalized total RMSD less than 

one. The same is true for nearly all models for DO at the observed MLDO. However, 

most models underestimate observed DO both at the surface and at the MLDO (Fig. 4a). 



The correlation between the observed and modeled DO is relatively constant with depth 

(Fig. 4b), though on average slightly higher at the bottom (0.85) than at the surface 

(0.80). Further, on average, the models simulate DO at the surface and bottom better than 

they do at the MLDO. No statistical difference exists between the skill of models that 

utilize a full biogeochemical component and those that utilize the simple constant-

respiration oxygen parameterization. Based on an analysis of variance (ANOVA) 

comparing the full biogeochemical models to the CRM models, the two model types do 

not perform differently in terms of their ability to reproduce the combined temporal and 

spatial variability of bottom DO as measured by total RMSD (p = 0.48). Overall, Model 

M (the mean of the 8 models) consistently performs better than any individual model 

across all depths examined (Fig. 4).  

The monthly temporal variability of bottom DO at each station over the two years studied 

is resolved similarly well by all of the models (Fig. 5a), but the models have difficulty 

simulating spatial DO variability during each month (Fig. 5b). Due to the stations chosen 

for this analysis (Fig. 2), the spatial variability being examined here is essentially the 

north to south variability. Most models exhibit a latitudinal gradient with respect to their 

skill in reproducing the temporal variability of bottom DO, with models overestimating 

DO at the more northern stations (Fig. 5a). Some models differ in their ability to 

reproduce summer (May to September) DO concentrations and winter (October to April) 

DO concentrations (Fig. 5b). Models B, F, and G all distinctively overestimate mean DO 

in the summer compared to the winter. In contrast, Models A and C perform similarly 

well in both seasons (Fig. 5b). In addition, all three constant respiration models as well as 

Models D and E substantially underestimate DO at several stations in the winter.  

All eight models generally resolve the pycnocline and oxycline with similar skill (Fig. 6). 

All models consistently underestimate the mean and standard deviation of the maximum 

strength of stratification within the pycnocline and oxycline, defined herein as the 

maximum vertical gradients of density and oxygen (Fig. 6a). All models, except for 

Model A (see Sect. 4.2), also underestimate the mixed layer depth, regardless of whether 

it is computed in terms of density or oxygen. (Note that these model symbols in Fig. 6a 

are located above the y axis despite this negative bias in MLD because the vertical 



coordinate system is oriented upwards.) Thus the models are producing stratification that 

is both weaker than observed and higher (shallower) in the water column. The correlation 

coefficient for these metrics is low, ranging between 0.1–0.6, and indicates that all 

models are missing the majority of variability associated with the magnitude and location 

of the pycnocline and oxycline (Fig. 6b). However, there is slightly more consistency and 

better correlation coefficients among the models for the strength of stratification than the 

depth of the mixed layers.  

All eight models are also characterized by similar skill in representing the temporal and 

spatial variability of density stratification and MLDρ (Fig. 7). There is a latitudinal 

difference in skill of the models in reproducing the magnitude of the pycnocline and 

MLDρ, with model skill generally lower at the northern stations (Fig. 7a). Contrary to the 

pattern shown for bottom DO (Fig. 5b), none of the models exhibit a significant seasonal 

pattern between summer and winter in reproducing spatial variability of dρ/dz or MLDρ 

(Fig. 7b). However, Model A differentiates itself from the rest of the models in its pattern 

of skill at reproducing the spatial and temporal variability of the MLDρ (see Sect. 4.2). 

Temporal and spatial patterns for oxycline stratification (dO/dz) and MLDO closely match 

those of dρ/dz and MLDρ (not shown). 

All eight models reproduce the variability of bottom DO better than the variables that are 

generally thought of as being the primary drivers of hypoxic conditions, including 

stratification (Fig. 6), salinity, chlorophyll and nitrate (Fig. 8, Table 3). However, all 

models reproduce patterns in temperature across the Bay and through time better than any 

of the other variables in this model comparison (Fig. 8). All eight models, as well as the 

Model Mean, are characterized by very low bias in modeled temperature, and correlation 

coefficients of approximately 0.99; this high skill results from the very strong and 

predictable seasonal temperature variability. Even though the five models with full 

biogeochemical components (Models A, B, C, D, and E) are characterized by large 

differences in their mechanistic approaches to modeling nitrate and chlorophyll, they 

produce similar total RMSDs for all of the variables examined at both the surface and at 

the bottom (Table 3).  



The mean of the eight models (Model M) has a higher model skill (lower RMSD) than 

any individual model across nearly every variable examined (Table 3). In addition, for 

nearly all observations at all stations, the 95 % confidence interval of all model hindcasts 

encapsulates the observed bottom DO concentration (Fig. 9), even though any individual 

model may overestimate or underestimate observed DO. Models generally fall into 

greater agreement during the summer, when DO is low, and into lesser agreement in the 

winter when DO is replete. While this study does not allow for a true interannual 

comparison, it is interesting that at station CB4.1C whereas the model ensemble closely 

matches the timing of the drawdown of DO in the spring of 2004 (Fig. 9), it produces a 

summer rather than spring initiation of hypoxic conditions in 2005. In addition, the model 

ensemble produces a premature relaxing of hypoxic conditions for both years at this 

observation station.  

�In order to better understand the impact of stratification on DO concentrations throughout 

the water column, the relationship between the observed pycnocline strength and MLDρ 

were compared to the observed oxycline strength and MLDO. Observations from 1998 to 

2006 demonstrate that while there is not a strong correlation between the strengths of the 

pycnocline and oxycline, there is a very strong correlation between MLDρ and MLDO 

(Fig. 10). Depending on the criteria used for defining the existence of stratification (see 

Sect. 2.3), the correlation of the pycnocline and oxycline strengths range between r2 = 

0.18 to 0.26 and the correlations of MLDρ and MLDO range between r2 = 0.51 to 0.82 

(Table 4). Furthermore, correlation of the relationship between the MLDρ and MLDO is 

stronger for more severe stratification (Table 4). The relationship between the two mixed 

layer depths is biased towards the MLDO being slightly located deeper in the water 

column than the MLDρ. As the cut-off criteria for the existence of stratification becomes 

more stringent, the relationship becomes closer to 1:1.  

4 Discussion  

4.1 How does the skill of various hydrodynamically-based DO models compare?  

– In examining the eight 3-D models in this study, there is not a statistical 



difference between the ability of simple and complex models to simulate the mean 

and monthly variability of bottom DO; in addition, models with higher spatial 

resolution do not necessarily produce better estimates of DO.  

Models currently simulating hypoxia throughout Chesapeake Bay compute oxygen 

concentrations in essentially two distinct ways: they either utilize a simple constant 

respiration model or a full biogeochemical model. In this study, the relative skill of both 

types of models is compared. Specifically, in examining results of the comparison 

between five biogeochemical models (A, B, C, D, and E) and three simplistic constant 

respiration models (F, G, and H), the two groups of models performed statistically similar 

in their skill of reproducing bottom DO concentrations (Fig. 3, Table 3). These results 

support those of Bever et al. (2013) who compared three constant respiration models with 

the CBP regulatory model (Model A) and similarly found that all four of the models were 

equally skillful in terms of reproducing the seasonal variability in bottom DO throughout 

the Bay in 2004 and 2005. Consistent with the results of Scully (2013), this result implies 

that the seasonal variability of DO in the Chesapeake Bay is primarily dependent on 

underlying hydrodynamic mechanisms which are nearly identical for all eight models, 

rather than on aspects related to the biogeochemical cycling which vary dramatically 

between models and in fact are constant in three of the eight models. It should be noted, 

however, that the two years studied here were relatively wet years and an analysis of dry 

years may offer different results.  

Many previous studies have examined the costs and benefits of adding complexity to 

biogeochemical models. For example, increasing biogeochemical complexity has been 

found to improve skill in some biogeochemical data assimilative parameter optimization 

studies (Friedrichs et al., 2006, 2007; Lehmann et al., 2009; Bagniewski et al., 2011; 

Ward et al., 2013; Xiao and Friedrichs, 2014). The additional parameters associated with 

increased complexity generally provide more parameters that are available for additional 

tuning and subsequent improved model-data agreement. This is in contrast to the results 

of this analysis demonstrating that increased biogeochemical complexity does not 

necessarily improve model-data agreement. In this case the increase in model complexity 

has likely outpaced the ability of the researchers to fully tune the model to the available 



observations. However, even past studies that have invoked formal parameter 

optimization methodologies such as genetic algorithms and variational adjoint methods 

(Friedrichs et al., 2007; Ward et al., 2010; Xiao and Friedrichs, 2014) have found that 

under certain conditions, adding too much complexity does not necessarily improve 

model skill and in fact can decrease model skill and portability, primarily due to artifacts 

resulting from overtuning. This mirrors findings from the larger ecosystem modeling 

community where the best-fit models are often those with intermediate complexity 

(Fulton et al., 2003). �   

In this study, horizontal grid resolution differed significantly between model 

implementations, with the most highly resolved grid (Model G) including more than nine 

times more grid cells than the lower resolution grids (Table 1). A certain degree of 

resolution is clearly required to successfully simulate dynamic processes, and a model 

with 8–10 km resolution will not be able to correctly simulate the hydrodynamic 

processes within the Bay (Feng et al., 2015). However, an increase in horizontal grid 

resolution from ∼ 1.8 to ∼ 0.6 km, which results in a run-time change of a factor of nine, 

or possibly of 27 if the time step is accordingly decreased by a factor of three, does not 

necessarily result in a significant improvement in simulation skill of either stratification 

or bottom oxygen. Although not shown here, additional sensitivity experiments with 

Model G revealed that doubling the vertical resolution of this model had no significant 

effect on the model’s ability to resolve the depth of stratification or the maximum 

magnitude of stratification. Thus, when selecting the optimal model resolution for a 

simulation, it is critical to weigh the advantages of increased resolution with the increased 

time required for simulation. With a given level of computational resources, fewer 

sensitivity experiments can be conducted with a model using a more highly resolved grid.  

Accurately simulating the observed spatial variability of DO (Fig. 4b) was a greater 

challenge than simulating the temporal variability of DO (Fig. 4a) for all eight models 

participating in this intercomparison. This is especially true in the winter months when 

the vast majority of the Bay is oxygen replete and the models have difficulty representing 

the observed variability from station to station. The majority of the models tend to 

slightly overestimate mean bottom DO in the summer whereas multiple models (e.g., 



Models D, E, F, and G) exhibit a strong negative bias during January and/or February of 

2005, primarily at stations in the middle to southern portion of the Bay’s deep channel. 

Interestingly, increased biological complexity and higher grid resolution do not 

completely resolve this issue, as this is true for models utilizing full biogeochemical 

models (Models D, E) as well as those using highly resolved model grids (Model G). 

This is likely due to the ephemeral nature of the biological divers of DO.  

The strong performance of the constant respiration models implies that these models may 

be excellent candidates for providing short-term bottom oxygen forecasts. The high DO 

skill of the CRM models primarily results from the fact that seasonal variations in 

physical processes (primarily wind mixing and temperature) play a dominant role in 

controlling the seasonal cycle of oxygen (Scully, 2013). Because the underlying 

hydrodynamic models all use similar physical forcing, the constant respiration models are 

able to simulate the seasonal cycle of DO with similar skill as the more complex 

biogeochemical models. As a result, these simple models that are easier to tune and 

require less in the way of computational resources than full biogeochemical models, may 

be efficiently used to produce short-term (on the order of days) DO forecasts. On the 

contrary, the more complex full biogeochemical models will be necessary for scenario-

based and long-term (on the order of months to years) forecasting which requires that 

models respond to prescribed changes in the biogeochemical environment, such as 

increased rates of nutrient loading due to changes in land use, land cover, and/or climate.  

4.2 How does model skill of DO compare to that of the primary drivers of DO 

variability?  

– Overall, model DO skill is greater than that of the variables generally considered 

to drive DO variability, such as stratification, salinity, mixed layer depth, 

chlorophyll, and nitrate; only modeled temperature has higher skill than modeled 

DO.  

Since dissolved oxygen concentrations in the Chesapeake Bay are controlled by physical 

processes (e.g., advection, wind mixing, heating/cooling, and stratification), as well as 

biological processes (e.g., photosynthesis and respiration), it is critical to understand the 



skill of the models in terms of how well they reproduce the many factors influencing 

oxygen concentrations. As expected, the five models containing a specific 

biogeochemical model component had more difficulty simulating the observed 

chlorophyll and nitrate concentrations than the physical variables (temperature and 

salinity), both at the surface (Table 3) and the bottom (Fig. 8). Replicating the correct 

location, magnitude, and timing of phytoplankton blooms and nutrient cycling is a 

complex issue, and as a result, these features are generally not well simulated in the 

models. While the models generally simulate the total amount of chlorophyll adequately, 

it is more uniformly spatially distributed in the models rather than in patchy blooms as in 

nature, leading to the underestimation of chlorophyll variability across all models. 

Although all models produced a relatively high correlation between observed and 

modeled temperature and salinity (Fig. 8), the correlation coefficients for chlorophyll and 

nitrate were much lower. The correlations for observed vs. modeled DO was more similar 

to that of the physical variables (temperature, salinity) than the biological variables 

(chlorophyll and nitrate), highlighting that the seasonal variability in bottom DO is 

regulated more by physical than biological factors. This also explains the success of the 

constant respiration models, which by definition contain no biological variability yet 

reproduce DO variability nearly as well as the most complex biogeochemical models.  

In this study, model skill was also considerably higher for bottom oxygen than it was for 

the vertical gradient of stratification and mixed layer depths (Figs. 6 and 8). The 

underestimation of the vertical gradient across all models is largely due to the numerical 

diffusion that characterizes all of these hydrodynamic models, but may also be partially 

due to an underestimation of the winds or a lack of diffuse freshwater input around the 

Bay. Even though the models all underestimated the strength of stratification (Figs. 4 and 

6), modeled stratification in summer was strong enough to prevent mixing with the 

relatively well-oxygenated surface waters. This result suggests, somewhat surprisingly, 

that simulating the correct vertical gradient of stratification is not absolutely necessary for 

skillful bottom DO simulations. Models need only simulate enough stratification to 

effectively cut off vertical mixing in order to develop an isolated bottom layer that can 

then experience a draw down in oxygen via respiration. In addition, the models must also 



correctly simulate the horizontal advection of oxygen (Scully, 2013; Li et al., 2015). The 

fact that bottom DO is simulated so well by the eight models analyzed here suggests that 

not only is the advection of oxygen well represented in the models, but also the strength 

of stratification, i.e., the maximum vertical gradients of density and oxygen, produced by 

these models is sufficient. Thus, although novel and somewhat unexpected, these results 

are not contradictory to previous studies demonstrating the importance stratification plays 

in initiating summer hypoxia in the Chesapeake Bay (Murphy et al., 2011).  

Model skill in terms of reproducing observed mixed layer depths was likewise much 

lower than model skill of reproducing observed oxygen concentrations. All models, 

except Model A, produced mixed layer depths (MLDO and MLDρ) that were generally 

too shallow in the water column (Fig. 6a). Note that Model A is a regulatory model that 

has been used for many years by the Chesapeake Bay Program, and has thus undergone 

more extensive calibration aimed at matching the mean salinity and oxygen 

characteristics of the Bay (Cerco and Cole, 1993). Furthermore, Model A employs a z 

grid that matches the bathymetry in trench areas better than the sigma grids used by the 

other models.  Although Model A produced mixed layer depths that were generally in the 

correct location within the water column (Fig. 6a), they were too variable (Fig. 6b). This 

variability may partly be a result of the 1.5m z grid employed by Model A causing large 

jumps between vertical grid cells and hence resulting in overestimates of MLD 

variability. All other models use sigma grids typically with more highly resolved vertical 

resolution at the depth of maximum stratification.  

The two variables for which the models have greatest skill are DO and temperature (Fig. 

8). This is because oxygen variability is driven primarily by seasonal variability in 

physical processes such as solubility and wind mixing and to a lesser degree by 

variability in oxygen consumption (Scully, 2013). As a result, the models using a 

constant mean respiration rate produce as realistic hypoxia simulations as the 

biogeochemically complex models. Observations clearly show this strong seasonal 

variability in bottom DO (Fig. 11a) and, to a slightly lesser extent, clear seasonal 

variability in DO at the bottom of the bottom of the oxygen mixed layer (MLDO; Fig. 



11b). But a seasonal cycle is not manifested in the MLDO itself (Fig. 11c). The lack of 

such a strong seasonal cycle in the observed mixed layer depths makes this a more 

difficult variable for the models to simulate. As a result, the models can relatively 

skillfully simulate the combined spatial and temporal variability of DO while 

simultaneously missing the MLDO.  

4.3 Why is it important for DO models to simulate the MLDO correctly?  

– Most of the aerobic habitat in the Bay during the summer is located above the 

MLDO, thus it is critical for living resource managers to use models that accurately 

simulate this variable.  

On average, the models miss the observed depth of the MLDO by 3.4m, which equates to 

roughly a 60 % error in the modeled mixed layer depths. While the models have 

difficulty simulating the MLDO throughout the entire year (Figs. 6 and 7b), the summer 

months are when the mismatch has the greatest potential to impact the available habitat 

for oxygen-dependent species. Each year during this time period low-oxygen waters 

occupy nearly the entire water column below the mixed layer. At Station CB4.1C, a 

representative mesohaline deep trough station, the contours of low-oxygen (5mgL−1) and 

hypoxic (2mgL−1) waters are located just below the MLDO from late spring until late fall 

(Fig. 12). The severe depletion of oxygen below the mixed layer compresses the 

habitable space at this station to roughly 10 m (from a maximum of 32 m) during the 

annual low-oxygen event.  

The impact of habitat compression can be substantial, as many Bay species require DO 

concentrations well above the traditional hypoxic threshold (USEPA, 2010). While not 

all of the main stem stations develop hypoxic water each year, most mesohaline stations 

experience a dramatic drawdown of oxygen to levels during the summer that effectively 

remove a large portion of the Bay from habitable space (Murphy et al., 2011; Schlenger 

et al., 2013). Studies have shown that some species modify their behavior based on the 

oxycline depth, which acts to constrict the habitable space in the water column (Prince 

and Goodyear, 2006; Pierson et al., 2009; Elliot et al., 2013). Since species can be 



negatively impacted by low-DO concentrations as high as 5mgL−1 (Breitburg, 2002; 

Vaquer-Sunyer and Duarte, 2008; USEPA, 2010), the location of the oxycline is not only 

important for habitat compression in the summer months, but can also be important in the 

winter months when an occasional lack of vertical mixing can substantially decrease 

bottom DO concentrations. Furthermore, in order to accurately estimate hypoxic volume, 

models must correctly simulate the depth of the mixed layer, since the MLDO closely 

follows the depth of the 2 mg L−1 contour.  

4.4 How can DO simulations in the Bay be improved for management of water 

quality and living resources?  

– To better simulate DO conditions and summer habitat compression due to low-

DO water, simulations of the depth of the top of the pycnocline (MLDρ) must be 

improved.  

Although the suite of models examined reproduce DO concentrations relatively well 

overall (Fig. 4), the models typically overestimate summer habitat compression by 

producing low DO concentrations too high in the water column (Fig. 6). Observations 

from the Chesapeake Bay Program show a strong correlation between the depths of the 

oxygen and density-defined mixed layers (Fig. 10b). The models analyzed here also 

clearly exhibit a close relationship between their skill in simulating the depths of the 

oxygen and density-defined mixed layers (Fig. 6). These strong relationships between the 

depths of the oxygen and density-defined mixed layers result from the fact that the 

pycnocline represents the physical barrier that leads to the development of the oxycline. 

Therefore, the inability of the models to accurately simulate habitat compression is an 

artifact of their lack of skill in simulating the depth of the density-defined mixed layer. In 

contrast, the strength of density stratification is not well correlated to the strength of 

oxygen stratification. This is because a relative wide range of intensities of density 

stratification is still sufficient to cut off vertical mixing, leading to the observed draw-

down in bottom DO. Thus, even though all models underestimate the strength of the 

pycnocline, they still produce enough stratification to greatly reduce mixing. The results 

from this paper thus indicate that to further improve DO simulations and better estimate 



summertime habitat compression, it is even more critical for models to accurately 

simulate the depth of the top of the pycnocline than to accurately simulate the absolute 

strength of the pycnocline. � 

4.5 What is the utility of the multi-model ensemble and Model Mean?  

– The multi-model ensemble approach allows for the development of a Model 

Mean, which taken as its own model, is the most skilled model when examining the 

combined suite of variables analyzed in this study.  

The model skill assessment presented here demonstrates that the average of all eight 

models, or five models in the case of chlorophyll and nitrate, does better than any 

individual model if looking across the suite of variables analyzed. This finding is similar 

to that of other studies that examined the value of the model mean from a multi-model 

ensemble (e.g., Gneiting and Raftery, 2005; Hagedorn et al., 2005). While the concept of 

using a multi-model ensemble has been most extensively employed by atmospheric, 

climatic, and global circulation modelers, such as the Intergovernmental Panel on 

Climate Change (e.g., Collins et al., 2013), the tool’s utility for aquatic ecosystem 

modeling is gaining traction (Meier et al., 2012; Trolle et al., 2014; Janssen et al., 2015). 

As models are increasingly used in regulatory decisions regarding aquatic ecosystems, a 

cohort of similarly skilled models can be used to help inform a set of confidence bounds 

around an environmental forecast. Due to the restrictions placed on models used in 

regulatory actions, utilization of a multi-model ensemble may not be realistic for all 

environmental and resource managers; however, multiple models can be integrated into 

the decision-making process even when the ultimate decision must be based on a single 

model. For example, a confidence interval plot could help identify where regulatory 

model output might be acting out of sync with other skilled water quality models of the 

same system, thereby informing managers of the potential shortfalls associated with the 

regulatory model. Furthermore, if the models tend to be predicting similar DO 

concentrations, a cohort of models could enhance the confidence in regulatory decisions 

based on a single regulatory model (Friedrichs et al., 2012; Weller et al., 2013). 

Comparing multiple models can also help inform how to better improve models in the 



future, as this study has aimed to do.  

5 Conclusions  

All models analyzed here exhibited a high degree of skill in simulating dissolved oxygen 

concentrations within the main stem of the Chesapeake Bay in two years corresponding 

to relatively wet and average years. Their high skill results from the fact that physical 

processes (e.g., solubility, wind-mixing, and advection) exert a first order influence on 

the seasonal cycle of oxygen. As a result, the models’ ability to reproduce dissolved 

oxygen concentrations is independent of the complexity of the biogeochemical 

parameterizations: the simplest constant respiration models were found to reproduce 

observed oxygen concentrations as well as the most biologically complex models. 

Essentially, all models are equally capable of respiring most of the available oxygen in 

the lower water column during summer.  

This study also suggests that for use as management tools for water quality and living 

resources, it is more critical for these models to adequately resolve the depth of the mixed 

layer than the absolute strength of stratification (as long as modeled stratification is 

strong enough to limit vertical mixing). This is critical because observations show that 

during warmer months, oxygen-depleted water fills the water column to where 

stratification limits further mixing, which effectively cuts off waters below the mixed 

layer for use by the majority of the Chesapeake Bay’s most recognized and valued living 

resources. These results furthermore suggest that modelers should focus their efforts on 

improving the hydrodynamics of their models in an effort to improve simulations of 

mixed layer depth dynamics and variability.  

These findings have significant ramifications for short-term bottom DO forecasts, which 

may be successful with very simple oxygen parameterizations embedded in 

hydrodynamic models. In contrast, scenario-based water quality forecasts are likely to 

benefit from more complex models, which must adequately reproduce the longer-term 

response of the oxygen field to changes in nutrient and organic matter loads. This study 

also helps to demonstrate how multiple community models from governmental agencies 

and academic institutions may be used together to provide a model mean and a set of 



confidence bounds for regulatory model results that could be used to inform management 

decisions.  
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Table 1. Model characteristics. 

 

 

 

 

 

 

 

 

 

 

Model A B C D E F G H 

Hydrodynamic 
model- 
DO model 

CH3D- 
ICM 

ChesROMS- 
ECB 

ChesROMS- 
BGC 

ROMS- 
RCA 

FVCOM- 
ICM 

ChesROMS- 
CRM 

CBOFS- 
CRM 

EFDC- 
CRM 

 
Grid structure 

 
Structured 

 
Structured 

 
Structured 

 
Structured 

 
Unstructured 

 
Structured 

 
Structured 

 
Structured 

Average  
wet-cell 
resolution  

 
1 km 

 
1.8 km 

 
1.8 km 

 
1.89 km 

 
1.26 km 

 
1.8 km 

 
0.565 km 

 
1.2 km 

 
Vertical grid 

 
1.52 m  

 
20 sigma 

 
20 sigma 

 
20 sigma 

 
10 sigma 

 
20 sigma 

 
20 sigma 

 
20 sigma 

River forcing CBP  
Watershed  
Model 

DLEM  
Watershed  
Model 

USGS Data USGS Data USGS Data USGS Data USGS Data USGS Data 

Sub-tidal 
elevation at 
open boundary 

Multiple 
efforts 

Lewes, DE 
to Duck, NC 

Lewes, DE 
to Duck, NC 

Wachapreague, 
VA to  
Duck, NC 

TPXO Tidal 
Model 

Lewes, DE 
to Duck, NC 

Ocean City, 
MD to 
Duck, NC 

Lewes, DE 
to Duck, 
NC 

 
Wind forcing 

Multiple 
efforts 

Thomas 
Point 
Light 

 
NARR 

 
NARR 

 
NARR 

 
NARR 

NARR & 
NDBC 
buoys 

 
NARR 

Other 
atmospheric  
forcing 

Multiple 
efforts 

NARR NARR NARR NARR NARR NARR Norfolk & 
Baltimore 
Airports 

Biogeochemical  
complexity 

High; 5 
phytoplk. 
groups 

High; 1 
phytoplk. 
group 

High; 1 
phytoplk. 
group 

High; 2 
phytoplk. 
groups 

High; 3 
phytoplk. 
groups 

Low;  
constant 
respiration 

Low;  
constant  
respiration 

Low;  
constant  
respiration 

 
Model citation 

 
Cerco et 
al., 2010 

 
Feng et al., 
2015 

 
Brown et al., 
2013 

 
Testa et al., 
2014 

 
Jiang and 
Xia, 2015 

 
Scully, 2013 

 
Lanerolle et 
al., 2011 

 
Du and 
Shen, 2015 
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Table 2. Characteristics of observation stations (from USEPA, 2012).  

Station Latitude Longitude Station Depth # of Cruises 

CB3.2 39.1634 N 76.3063 W 12.1 m 34 
CB3.3C 38.9951 N 76.3597 W 24.3 m 34 

CB4.1C 38.8251 N 76.3997 W 32.3 m 34 

CB4.2C 38.6448 N 76.4177 W 27.2 m 34 

CB4.3C 38.5565 N 76.4347 W 26.9 m 34 

CB4.4 38.4132 N 76.3430 W 30.3 m 34 

CB5.1 38.3185 N 76.2930 W 34.1 m 34 

CB5.2 38.13678N 76.2280 W 30.6 m 34 

CB5.4 37.8001 N 76.1747 W 31.1 m 26 

CB6.2 37.4868 N 76.1563 W 10.5 m 30 

CB6.4 37.2365 N 76.2080 W 10.2 m 29 

CB7.1 37.6835 N 75.9897 W 20.9 m 27 

LE2.3 38.0215 N 76.3477 W 20.1 m 34 
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Table 3. Mean and standard deviation (STD) of observations and total normalized RMSD 

for each model.  

 

 

 

  

 Mean ± 
STD of 

Obs 

Normalized RMSD 
A B C D E F G H M 

Surface Temp. (ºC) 17.44±8.82 0.13 0.13 0.12 0.09 0.13 0.13 0.16 0.19 0.10 
Bottom Temp. (ºC ) 15.75±8.02 0.24 0.35 0.35 0.23 0.22 0.35 0.17 0.19 0.23 
Surface Salinity (PSU) 10.92±4.32 0.37 0.62 0.53 0.36 0.46 0.61 0.57 0.41 0.35 
Bottom Salinity (PSU) 18.17±3.14 0.72 0.85 0.73 1.55 1.28 0.78 1.03 0.97 0.75 
Max. dρ /dz (kg m-4) ~1.64±1.15 1.03 1.09 1.07 1.09 1.25 1.01 1.23 1.02 N/A 
MLDρ  (m) ~5.32±3.99 1.01 1.13 1.11 1.41 1.39 1.12 1.38 1.13 N/A 
Surface DO (mg L-1) 9.74±2.15 0.67 0.58 0.89 0.80 1.00 0.63 0.64 0.69 0.57 
DO at MLDO (mg L-1) ~8.44±2.53 0.54 0.57 0.74 0.93 0.83 0.81 0.95 1.09 0.62 
Bottom DO (mg L-1) 4.42±3.61 0.51 0.59 0.81 0.61 0.54 0.46 0.61 0.60 0.46 
Max. dDO/dz (mg L-1 m-1) ~1.81±1.12 1.19 1.21 1.34 1.09 1.35 1.12 1.23 1.19 N/A 
MLDo (m) ~6.62±4.01 1.24 1.01 1.10 1.33 1.33 1.05 1.30 1.29 N/A 
Surface Chl a (mg m-3) 11.19±9.04 0.92 1.22 1.60 1.23 0.89 N/A N/A N/A 1.16 
Bottom Chl a (mg m-3) 9.02±11.52 0.87 1.10 1.07 1.05 1.01 N/A N/A N/A 0.90 
Surface Nitrate (mmolN  m-3) 0.32±0.33 0.61 0.79 1.03 0.61 0.52 N/A N/A N/A 0.79 
Bottom Nitrate (mmolN  m-3) 0.12±0.13 1.08 1.38 1.38 0.92 1.46 N/A N/A N/A 0.85 
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Table 4. Pycnocline and oxycline correlation statistics (all correlations have p-values << 

0.01). 

Stratification 
Threshold 
Percentage 

Max dρ/dz  
vs. 

Max dO/dz 

MLDρ  
vs.  

MLDO 

Profiles  
with 

Stratification 
10% 0.18 0.51 1613 
15% 0.22 0.59 1303 
20% 0.22 0.70 916 
25% 0.26 0.82 575 
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Figure 1. Map of the Chesapeake Bay and its watershed. 

 

 

 

 

 

 

 

 

 

75°0'0"W

75°0'0"W

80°0'0"W

80°0'0"W

40°0'0"N 40°0'0"N

±
0 60 120 180 24030

Kilometers

At
la

nt
ic 

O
ce

an
 

Chesapeake  
Bay 

Chesapeake  
Bay 

watershed 



	

	 6 

 

 

 

Figure 2. Location of the CBP Water Quality Monitoring stations used in this study. 
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Figure 3. Density and dissolved oxygen profiles for a mid-Bay station (CB4.1C) on (a) 

January 13, 2004 and (b) June 14, 2005, comparing the 0.1 kg m-4 stratification definition 

used by the CBP (MLDCBP) with the 10% threshold definitions used here for density 

(MLDρ) and oxygen (MLDO).  
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Figure 4. Normalized summary (a) target and (b) Taylor diagrams illustrating model skill 

of dissolved oxygen at the surface, MLDO, and bottom for 13 Chesapeake Bay stations in 

2004-2005. The “x” represents the skill of a model that perfectly reproduces the 

observations. The dotted, dashed-dot, and dashed lines on the Taylor diagram represent 

lines of constant standard deviation, correlation coefficient, and unbiased RMSD, 

respectively. 
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Figure 5. Normalized target diagrams for Models A-H demonstrating the (a) temporal and 

(b) spatial skill in resolving the variability of bottom dissolved oxygen concentrations. In 

(a) the individual dots represent the 13 stations along the main stem of the Chesapeake 

Bay. In (b) the dots represent the 24 months of 2004-2005 and are delineated by color: 

red = summer (May-September) and blue = winter (October-April).     
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Figure 6. Normalized summary (a) target and (b) Taylor diagram illustrating model skill 

of MLDρ and MLDO, max dρ/dz, and max dO/dz at 13 Chesapeake Bay stations for 

2004-2005. The “x” represents the skill of a model that perfectly reproduces the 

observations.  Since RMSD of stratification is only computed at stations where both the 

observations and model exhibit stratification, the Model Mean is not calculable for these 

variables. 

A	
B	
C	
D	
E	

F	
G	
H	
Obs	
 

MLDρ	
Max	dρ/dz	
MLDo	
Max	dO/dz	
 

(a) 

(b) 

Model:	 Variable:	



	

	 11 

 

 

 

Figure 7. Normalized target diagrams for Models A-H demonstrating the (a) temporal and 

(b) spatial skill in resolving the variability of the strength of density stratification (circles) 

and the depth of pycnocline initiation (diamonds). In (a) the individual dots represent the 

13 stations along the main stem of the Chesapeake Bay. In (b) the dots represent the 24 

months of 2004-2005 and are delineated by color: red = summer (May-September) and 

blue = winter (October-April).   
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Figure 8. Normalized summary (a) target and (b) Taylor diagram illustrating model skill 

of bottom temperature, salinity, chlorophyll, nitrate, and dissolved oxygen at 13 

Chesapeake Bay stations for 2004-2005. The “x” represents the skill of a model that 

perfectly reproduces the observations.  
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Figure 9. Time series of bottom dissolved concentrations for station CB4.1C. Red dots 

represent the 34 observations made during 2004-2005. Grey lines are the individual 

model simulations. The dark blue line represents the model mean while the cyan line 

represents the 95% confidence interval of the model simulations.  
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Figure 10. Scatter plots comparing observations of (a) the strengths of stratification of the 

pycnocline and oxycline and (b) the oxygen- and density-defined mixed layer depths. 

Size of the circles is proportional to the number of observations. Observations are from 

1998-2006 at the 13 Chesapeake Bay stations shown in Figure 2.  
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Figure 11. Time series of observations at Station CB4.1C from 2003 – 2006 for (a) 

bottom dissolved oxygen, (b) dissolved oxygen at the MLDO, and (c) MLDO.  
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Figure 12. Time series of observations of dissolved oxygen and MLDO contours at 

Station CB4.1C for 2004 and 2005.  
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