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Abstract.

A warming climate is altering land-atmosphere exchanges ofcarbon, with a potential for increased

vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investi-

gate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity

(NEP) and its component fluxes of gross primary productivity(GPP) and ecosystem respiration (ER)5

and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region span-

ning the drainage basin of northern Eurasia. The retrospective simulations cover the period 1960–

2009 at 0.5 degree resolution, which is a scale common among many global carbon and climate

model simulations. Model performance benchmarks were drawn from comparisons against both ob-

served CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale10

GPP estimates based on satellite remote sensing data. The site-based comparisons depict a tendency

for overestimates in GPP and ER for several of the models, particularly at the two sites to the south.

For several models the spatial pattern in GPP explains less than half the variance in the MODIS

MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C

m−2 yr−2, equivalent to 3% to 340% of the respective model means, overthe analysis period. For15

the multimodel average the increase is 135% of the mean from the first to last ten years of record

(1960–1969 vs 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net

primary productivity increased by 8% to 30% from the first to last ten years, contributing to soil

carbon storage gains. The range in regional mean NEP among the group is twice the multimodel

mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil20

carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time.

Our analysis points to improvements in model elements controlling vegetation productivity and soil

respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These ad-

vances will require collection of new field data on vegetation and soil dynamics, the development

of benchmarking datasets from measurements and remote sensing observations, and investments in25

future model development and intercomparison studies.

1 Introduction

Northern boreal regions are known to play a major role in the land-atmosphere exchange of CO2

at high latitudes (Graven et al., 2013). During the Holocenethe Arctic is believed to have been a

net sink of carbon (Pries et al., 2012). During modern times,often referred to as the anthropocene30

(Crutzen, 2006), warming across the high northern latitudes has occurred at a faster rate than the

rest of the globe (Serreze et al., 2006). The enhanced warming is attributable to feedbacks involv-

ing biogeochemical and biogeophysical processes (Chapin III et al., 2005; Serreze and Barry, 2011;

Schuur E. A. G. et al., 2015). Warming may increase soil microbial decomposition, placing the large

permafrost carbon pool at greater risk for being mobilized and transferred to the atmosphere as35
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greenhouse gases (GHGs), thus providing a positive feedback to global climate (Dutta et al., 2006;

Vogel et al., 2009; Schuur et al., 2009). Warming may also lead to longer growing seasons, con-

tributing to increased plant productivity and ecosystem carbon sequestration (Melillo et al., 1993;

Euskirchen et al., 2006). At the same time, warming may also lead to respiration increases through

enhanced microbial activity and/or increased input of plant photosynthates into the soil (Högberg et al.,40

2001), offsetting any productivity increases and resulting in relatively low net carbon uptake (Parmentier et al.,

2011). Satellite observations show broad greening trends in tundra regions (Myneni et al., 1997;

Goetz et al., 2005; Zhang et al., 2008), suggesting a potential increase in the land sink of atmo-

spheric CO2. Some areas, however, are browning (Goetz et al., 2006).

Research studies point to uncertainty in the sign, magnitude and temporal trends in contem-45

porary land-atmosphere exchanges of CO2. A recent synthesis of observations and models by

McGuire et al. (2012) suggests that tundra regions across the pan-Arctic were a sink for atmospheric

CO2 and a source of CH4 from 1990–2009. However a meta-analysis of 40 years of CO2 flux ob-

servations from 54 studies spanning 32 sites across northern high latitudes found that tundra was

an annual CO2 source from the mid-1980s until the 2000s, with the data suggesting an increase50

in winter respiration rates, particularly over the last decade (Belshe et al., 2013). In an analysis

of outputs from several models from recent terrestrial biosphere model intercomparison projects,

Fisher et al. (2014) find that spatial patterns in carbon stocks and fluxes over Alaska in 2003 varied

widely, with some models showing a strong carbon sink, others a strong carbon source, and some

showing the region as carbon neutral. It is critical to understand the net carbon sink as recent studies55

suggest that with continued warming the Arctic may transition from a net sink of atmospheric CO2

to a net source over coming decades (Hayes et al., 2011; Kovenet al., 2011; Schaefer et al., 2011;

MacDougall et al., 2013; Oechel et al., 2014). In a study using a process model which included dis-

turbances, Hayes et al. (2011) estimated a 73% reduction in the strength of the pan-Arctic land-based

CO2 sink over 1997–2006 vs. previous decades in the late 20th century.60

Recent studies have provided new insights into model uncertainties relevant to our understanding

of the land-based CO2 sink across northern Eurasia. Examining several independent estimates of

the carbon balance of Russia including two dynamic global vegetation models (DGVMs), two at-

mospheric inversion methods, and a landscape-ecosystem approach (LEA) incorporating observed

data, Quegan et al. (2011) concluded that estimates of heterotrophic respiration were biased high in65

the two DGVMs, and that the LEA appeared to give the most credible estimates of the fluxes. In an

analysis of the terrestrial carbon budget of Russia using inventory-based, eddy covariance, and inver-

sion methods, Dolman et al. (2012) noted good agreement in net ecosystem exchange among these

bottom-up and top-down methods, estimating an average CO2 sink across the three methods of 613.5

Tg C yr−1. Their examination of outputs from a set of DGVMs, however, showed a much lower sink70

of 91 Tg C yr−1. Graven et al. (2013) point to specification of vegetation dynamics and nitrogen cy-

cling in a subset of CMIP5 models as a potential cause for their underestimation of changes in net
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productivity over the past 50 years. These analyses highlight the need for comprehensive assess-

ments of numerical model estimates of spatial and temporal variations in land-atmosphere CO2 ex-

change against independent benchmarking data. A lack of direct flux measurements across northern75

land areas presents considerable challenges for model validation efforts (Fisher et al., 2014).

In this study we examine model estimates of net ecosystem productivity (NEP) and component

fluxes gross primary productivity (GPP) and ecosystem respiration (ER) across the arctic basin of

northern Eurasia from a series of retrospective simulations for the period 1960–2009. Our analysis

for the region is unique in its synthesis of a large suite of land-surface models, available site-level80

data, and a remote-sensing product. Study goals are two-fold. First, using the available in-situ data

derived from tower-based measurements and the remote-sensing GPP product we seek to assess

model efficacy in simulating spatial and temporal variations in GPP, ER, and NEP across the region.

In doing so we elucidate issues complicating evaluations ofmodel carbon cycle estimates across

northern Eurasia and, by extension, other areas of the northern high latitudes. Second, we estimate85

time changes in NEP and soil organic carbon (SOC) residence time and its controls as an indicator

of climate sensitivity and potential vulnerability of soilcarbon stocks. We focus the analysis and dis-

cussion on assessing how well the models capture the seasonal cycle and spatial patterns in GPP and

ER flux rates, evaluating uncertainties in the net CO2 exchange given reported biases in respiration

rates, and in advancing understanding of the land–atmosphere cycling of CO2 over recent decades.90

2 Methods

2.1 Study Region

The spatial domain is the arctic drainage basin of northern Eurasia which comprises all land areas

draining to the Arctic Ocean, a region of some 13.5 million km2 (Figure 1). The basin covers roughly

half of the Northern Eurasian Earth Science Partnership Initiative (NEESPI) study area, generally95

defined as the region between 15◦E in the west, the Pacific Coast in the east, 40◦N in the south, and

the Arctic Ocean coastal zone in the north (Groisman et al., 2009). Warming and associated envi-

ronmental changes to this region are among the most pronounced globally (Groisman and Bartalev,

2007; Groisman and Soja, 2009). Tundra vegetation is commonacross northern areas, with boreal

forest and taiga comprising much of the remainder of the region. Steppes and grasslands are found100

across a relative small area in the extreme southwest. Continuous permafrost underlies over half of

the region. Sporadic and relic permafrost comprise the southwest portion of the domain. West to

east, the Ob, Yenesey, Lena, and Kolyma rivers drain a large fraction of the total river discharge from

the northern Eurasian basin.
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2.2 Modeled data105

We used outputs from retrospective simulations of nine models participating in the model integra-

tion group of the Permafrost Carbon Network. All simulationoutputs available at the time of this

writing were included in the analysis (http://www.permafrostcarbon.org, accessed May 10, 2014).

The simulation protocol allowed for the choice of a model’s driving datasets for atmospheric CO2,

N deposition, climate, disturbance, and other forcings (Tables 1 and 2). Simulations were run at110

daily or sub-daily time steps in some models and at 0.5 degreeresolution over all land areas north

of 45◦N latitude. The present study focuses on analysis of spatialpatterns and temporal changes

in land-atmosphere CO2 fluxes over the period 1960–2009. Quantities analyzed are GPP, ER, and

NEP, defined here as NEP = GPP−ER, where a positive value represents a net sink of CO2 into

the ecosystem. ER is the sum of heterotrophic respiration and autotrophic respiration as estimated115

by the models. In this study we follow the conceptual framework for NEP and related terms as

described in Chapin III et al. (2005). For this Permafrost Carbon Network activity modeling groups

are providing gridded data for permafrost regions of the northern hemisphere. The nine models

examined here (full model names in Table 1) are the (1) CLM version 4.5 (hereafter CLM4.5,

Oleson et al. (2013)); (2) CoLM (Ji et al. (2014)); (3) ISBA (Decharme et al. (2011)); (4) JULES120

(Best et al. (2011); Clark et al. (2011)); (5) LPJ Guess WHyMe (hereafter LPJG, Smith et al. (2001);

Wania et al. (2009b,a, 2010); Miller and Smith (2012)); (6) MIROC-ESM (Watanabe et al. (2011));

(7) ORCHIDEE-IPSL (Koven et al. (2009, 2011); Gouttevin et al. (2012)); (8) UVic (Avis et al.

(2011); MacDougall et al. (2013)); and (9) UW-VIC (Bohn et al. (2013)). Table 2 lists the model

elements most closely related to CO2 source and sink dynamics. These include model land cover125

initialization, time series forcings, light use efficiency, and CO2 and nitrogen fertilization. Among

the models there is a wide range of accounting for processes related to disturbances such as fire

and land use change (Table 2). All but two of the nine models (ISBA and UW-VIC) are considered

to be dynamic global vegetation models (DGVMs), possessingthe ability for vegetation to change

over the model simulation. For ORCHIDEE, dynamic vegetation was not enabled in the simula-130

tion examined in this study. While studies that examine the overall ecosystem carbon balance (i.e.

the net ecosystem carbon balance, NECB) are elemental to ourunderstanding of the carbon cycle

of northern Eurasia, the present study focuses on the patterns in NEP and component fluxes GPP

and ER, common in all of the models, in order to avoid the uncertainties given the range of model

formulations related to the full carbon balance. Outputs from several of the nine models have been135

examined in other recent studies. The LPJG and ORCHIDEE wereused in the synthesis of data and

models presented by McGuire et al. (2012). JULES, LPJG, ORCHIDEE, and CLM4.5 participated

in the TRENDY MIP (Piao et al., 2013). CLM4.5, ORCHIDEE, and LPJG were three of the eight

models examined in the study of Dolman et al. (2012).
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2.3 Observational data140

2.3.1 Flux tower eddy covariance data

Model estimates for GPP, ER, and NEP are evaluated against data from six eddy covariance flux

towers in four research areas located across Russia. The data are contained in the La Thuile global

FLUXNET dataset (Baldocchi, 2008). FLUXNET represents a global network of tower eddy co-

variance measurement sites for monitoring land-atmosphere exchanges of carbon dioxide and water145

vapor (http://daac.ornl.gov/FLUXNET/fluxnet.shtml). For these sites, GPP and ER data records

overlap in the years 2002–2005. Observations during coldermonths are few. Tower sites are iden-

tified here by their locations: Chersky (CHE), Chokurdakh (COK), Hakasija (HAK), and Zotino

(ZOT). Data from three towers are available for Hakasija; HAK1 is in an area of grassland-steppe;

HAK2 is grassland; HAK3 an abandoned agricultural fields. Chersky and Chokurdakh are in north-150

east Russia in the general zone of tundra vegetation. Hakasija and Zotino are in an area of generally

higher productivity in southern Siberia (Figure 1). Data are available for years 2002–2004 at Cher-

sky, Hakasija and Zotino, and 2003–2005 at Chokurdakh. General characteristics of these sites are

summarized in Table 3. In this dataset GPP and ER are derived from an empirical model driven by

field-based eddy covariance measurements of net ecosystem CO2 exchange (NEE) using method-155

ologies described in Reichstein et al. (2005).

2.3.2 Satellite-based estimates of GPP

Satellite data driven estimates of annual total GPP are alsoobtained from the MODIS (Moderate Res-

olution Imaging Spectroradiometer) MOD17 operational product (Running et al., 2004; Zhao et al.,

2005). The MOD17 product has been derived operationally from the NASA EOS MODIS sensors160

since 2000 and provides a globally consistent and continuous estimation of vegetation productiv-

ity at 1-km resolution and 8-day intervals. MOD17 uses a light use efficiency algorithm driven by

global land cover classification and canopy fractional photosynthetically active radiation (FPAR) in-

puts from MODIS. The product also uses daily surface meteorology inputs from global reanalysis

data (Zhao and Running, 2010), and land cover class specific biophysical response functions to esti-165

mate the conversion efficiency of canopy absorbed photosynthetically active radiation to vegetation

biomass (g C MJ−1) and GPP (Running et al., 2004). The MOD17 algorithms and productivity es-

timates have been extensively evaluated for a range of regional and global applications, including

northern, boreal and Arctic domains (Heinsch et al., 2006; Turner et al., 2006; Zhang et al., 2008;

Zhao and Running, 2010). We use the MOD17 Collection 5 product, which has undergone five ma-170

jor reprocessing improvements since 2000. The MOD17 data are used in this study as a consistent

satellite-derived baseline for evaluating GPP simulations from the detailed carbon process models.

6



3 Results

3.1 Model evaluation and benchmarking

3.1.1 Site-level evaluations175

Confident assessment of uncertainties in land-atmosphere CO2 fluxes is dependent on robust com-

parisons of model estimates against consistent benchmarking data. We begin by assessing the seven

models which provided estimates through 2005, along with MOD17 GPP product. Monthly GPP

from the models and MOD17 are compared with the cumulative monthly tower values by extracting

the model values for the grid cell encompassing each tower site. Error measures that are based on180

absolute values of differences – like the mean-absolute error (MAE) and mean bias error (MBE)

are preferable to those based on squared differences (Willmott and Matsuura, 2005; Willmott et al.,

2011). Model performance is evaluated here using the mean bias error (MBE), defined as the dif-

ference between the model and observed values:ǫj = Cj −Cobs, whereCj is GPP, ER or NEP for

modelj andCobs is the observed tower value.185

As shown in (Figure 2), MOD17 GPP agrees well with the tower estimates for Chersky and

Chokurdakh, with MBE over the three years of−2 and−11 g C m−2 month−1, respectively (Ta-

ble 4). MOD17 GPP broadly agrees with the observations at Hakasija and Zotino. Average MBEs

are 13 and 10 g C m−2 month−1, respectively, for these sites with higher productivity than Chersky

and Chokurdakh. Averaged across all models the error in GPP is 7, 34, 34 and 13 g C m−2 month−1190

for Chersky, Chokurdakh, Hakasija and Zotino, respectively. The MBE for ER are 8, 35, 43 and 33

g C m−2 month−1, respectively.

Overall the models simulate fairly well the seasonal cycle in GPP (Figure 2) and ER (Figure 3),

including the timing of peak CO2 drawdown. Modest overestimates are noted near growing season

peak at Hakasija and Zotino. However, for all four sites significant over- and under- estimates in GPP195

and ER are also noted (Table 4). For the two sites in the south there is a tendency for overestimation

in GPP and ER. All models overestimate both GPP and ER at Hakasija. Seven of the nine models

overestimate GPP and ER at Zotino, with ER overestimated by aconsiderable degree. Overestimates

in ER for Hakasija and Zotino during late summer and autumn are particularly noteworthy. An

ANOVA test was carried out to determine whether model errorsin ER exceed the errors in GPP. The200

tests confirm that that ER errors are greater on average than the GPP errors for comparisons where

(i) ER errors for all sites are pooled together and compared against GPP pooled across all sites and

(ii) ER and GPP errors for the two northern sites are pooled and compared against ER and GPP

errors from the two southern sites.

The tendency to overestimate ER leads to discrepancies in net CO2 source (negative NEP) at205

Hakasija and Zotino, particularly in autumn (Figure 4). Average NEP errors are−11 and−20 g C

m−2 month−1 for Hakasija and Zotino, respectively (Table 4). Errors in the magnitude and timing
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of NEP prior to and following the dormant season are much smaller at Chersky, and to some extent

Chokurdakh. However, a lack of available tower-based data during the colder months limits the

robustness of our assessments during that time of year.210

We further evaluate model performance through two additional error metrics, the refined in-

dex of agreement (dr) (Willmott et al., 2011) and the Nash-Sutcliffe coefficientof efficiency (E)

(Nash and Sutcliffe, 1970). As described by Willmott et al. (2011), the refined index of agreement

(dr) involves the sum of the magnitudes of the differences between the model-predicted and observed

deviations about the observed mean, relative to the sum of the magnitudes of the perfect-model215

(model predicted = observed) and observed deviations aboutthe observed mean. It is bounded be-

tween−1 and+1. Whendr equals 0.0, it signifies that the sum of the magnitudes of the errors

and the sum of the perfect-model-deviation and observed-deviation magnitudes are equivalent. Like

dr, the Nash-SutcliffeE considers observed deviations within the basis of comparison. For both

metrics, values closer to 1 indicate higher model accuracy.Nash-Sutcliffe’sE is also positively cor-220

related withdr. Values ofE less than zero occur when the residual model variance is larger than the

data variance.

A wide range of model performance is evident from Table 5. As with the mean errors shown in

Table 4, agreements with observations are generally betterat Chersky and Chokurdakh than Hakasija

and Zotino. As well, ER errors are also greater than GPP errors. Nash-SutcliffeEs are negative for225

all models for both GPP and ER at Hakasija, and for most of the comparisons at Chokurdakh. Models

CLM4.5, ISBA and UW-VIC exhibit the largest disagreements among the seven models for which

estimates are available over the 2002–2005 period.

3.1.2 Regional-level evaluation of model GPP

Estimates from the MOD17 product provide a temporally and spatially continuous benchmark to230

assess model simulated GPP over the study domain. Average annual-total GPP from MOD17 over

the period 2000–2009 is shown in Figure 5. The MOD17 product clearly captures three distinct

landcover zones over the region, representing: (i) grasslands across the south; (ii) boreal forests

in the center of the region; and (iii) tundra to the north. Highest production occurs in the western

forests where mean annual temperatures are higher. Both thesteppe and tundra areas show annual235

GPP of less than 300 g C m−2 yr−1. Areas of low productivity in high elevation areas to the north

are well delineated. The spatially averaged mean across theregion is approximately 470 g C m−2

yr−1. In most of the models the patterns in GPP broadly represent the major biome areas captured

in the MODIS landcover product (Figure 1a). The east to west gradient is broadly captured in most

of the models. However, grid-based correlations with the MOD17 GPP estimates (upper left of240

map panels in Figure 5) show a wide range of agreement across the models. Spatial averages of

the correlations across the domain range from r=0.92 (ISBA)to r=0.48 (ORCHIDEE). Four of the

nine (LPJG, MIROC, ORCHIDEE, UVic) simulate a GPP field that explains less than 44% of the
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variability in GPP found within the MOD17 product. Annual GPP in the LPJG is notably low across

the eastern half of the region. The CLM4.5 tends to predict lower GPP than MOD17 over tundra245

areas and higher productivity in the boreal zone. As estimated by the coefficient of variation (CV,

upper right panel of Figure 5), agreement in GPP is best across the higher productivity tiaga biome.

Figure 6 shows the distribution of GPP for all grids of each model. In general the models bracket

the MOD17 estimates, with several models showing a larger spread and several showing a reduced

spread. Regional averages from each model fall within± 20% of the MOD17 average of 468 g C250

m−2 yr−1, with the exception of the LPJG model for which annual GPP is 40% lower than MOD17.

For each model the spatial pattern in ER (not shown) closely matches the pattern in GPP, consis-

tent with the strong dependence of autotrophic respirationand litterfall on vegetation productivity

(Waring et al., 1998; Bond-Lamberty et al., 2004). Area averaged GPP and ER are highly correlated

(r=0.99, Figure 7). That is, models which simulate low (high) GPP also simulate low (high) ER.255

3.1.3 Spatial patterns and area averages

In this study net ecosystem productivity (NEP) represents the net exchange of CO2 between the

land surface and the atmosphere. NEP is defined as the difference between GPP and ER. We do not

examine other emission components of land-atmosphere CO2 exchange (Hayes and Turner, 2012),

as several of the models posses limited representation of disturbance processes important for carbon260

cycling in boreal forest regions (e.g. fire and forest harvest). The multimodel mean NEP is highest

over the south central part of the region and lowest in the tundra to the north (Figure 8a). Only 0.3%

of the region is a net annual source of CO2, notably two small areas in Scandinavia. Tundra areas

are a net sink of approximately 15 g C m−2 yr−1 based on the multimodel mean NEP. As measured

by the coefficient of variation (CV), the agreement in NEP among the models is highest across the265

boreal region and lowest in the tundra to the north and grasslands to the south (Figure 8b). The

multimodel mean NEP is approximately 20 g C m−2 yr−1 or 270 Tg C yr−1 over the simulation

period (Figure 9). Among the models, NEP varies from 4 (UVic)to 48 (JULES) g C m−2 yr−1, a

range that is double the multimodel mean. The UVic simulatesa negative NEP (CO2 source) for

nearly half of the region, and the CoLM and MIROC for nearly 25% of the region.270

3.2 Temporal changes over period 1960–2009

Figure 10 shows the time series of regionally averaged annual NEP each year over the period 1960–

2009 for each model. Across the model group annual NEP is positive in most but not all years.

Several models show a net source of CO2 in some years, primarily during the earlier decades of

the period. Among the models NEP increases by 0.01 to 0.79 g C m−2 yr−2, (5 to 40 g C m−2275

total over the period) based on a linear least squares (LLS) regression (Table 6). Seven of the

models (CLM4.5, CoLM, ISBA, JULES, LPJG, MIROC, ORCHIDEE) show statistically significant

trends at the p<0.01. Taking averages over the first decade (1960–1969) and last decade (2000–

9



2009) we estimate that the NEP change ranges from 10% to 400% of the first decade mean, with

a nine model average of 135%. For each model the GPP trend magnitude exceeds the ER trend280

magnitude (Table 6), hence the increase in NEP over time. Theincreases from the first to last decade

of the simulations range from 9–35% of the early decade average for GPP and 8–30% for ER. Total

cumulative NEP over the 50 year period and averaged across all models is approximately 12 (range

3–20) Pg C (Figure 11). Averaged across the models, NEP exhibits an increase during mainly the

earliest decades that tends to weaken over the latter decades (Figure 12). The uncertainty range for285

the multimodel mean suggests that the region has been a net sink for CO2 over the simulation period.

Interestingly the uncertainty range reflects relatively better model agreement in annual NEP (lower

variance) during the years 1960–1965 and in the low NEP years1978 and 1996. Amid this increase

there is evidence of a ’deceleration’ in NEP. The deceleration is apparent when examining trend

magnitude and significance across all time intervals (minimum 20 year interval) over the simulation290

period (Figure 13). Here several models (ISBA, LPJG, ORCHIDEE) exhibit weaker linear trends

over time and all models show a lack of significant positive trends for time intervals spanning the

latter decades (eg. 1980–1999 or 1982–2009). While temporaltrends in NEP are highly variable

across the models, it is clear that the greatest increases inNEP occurred during the earliest decades

of the simulation period. The LLS trend is significant for 20 of 42 (48%) possible time periods295

beginning in 1975 or later, whereas 72 of 107 (67%) are significant for periods starting in 1960–

1962.

3.3 Residence Time

Annual estimates of residence time (RT) are calculated for each model and at each grid cell over

the period 1960–2009 using model soil carbon storage and therate of heteorotrophic respiration300

(Rh). Among the models RT (long-term climatological mean) varies from 40 (CoLM) to 400 years

(CLM4.5), and largely by model soil carbon amount, which varies by an order of magnitude across

the models. Over the period examined all of the models simulate a statistically significant (p< 0.01)

decrease in the regionally-averaged RT. Across the models the decrease from first to last decade of

the study period ranges from−5% to−16% of each model’s mean. The decline occurs amid an305

increase in SOC storage over time. All models with the exception of CoLM simulate a statistically

significant increase in soil carbon and all exhibit an increase inRh. The increases in carbon storage

range from 0.2% to 3.6% while the increases inRh range from 7% to 22%. Likewise the models

simulate an increase in the the rate of net primary production (NPP) of 8% to 30%. Across the model

group the change in RT is highly correlated (r = 0.99) with change inRh. In essence, higher rates in310

Rh and NPP led to a decrease in soil carbon RT, with increased soil carbon storage resulting from

enhanced vegetation productivity and litterfall inputs.

The spatial pattern in RT changes suggests that controllinginfluences are leading to both decreases

and increases over different parts of the region. The largest decreases are found across north-central
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Russia and the eastern third of the domain (Figure 14a). The decline in RT is statistically significant315

(p < 0.01) for just over 46% of the region. exceeding−20% for approximately 16% of the region.

An increase in RT is noted for less than 5% of the region, including a small area in the far north and

across extreme southern parts of the region. The change, however, is not significant in those areas.

The CV map (Figure 14b) lends further confidence to the RT decreases across much of the center

of the region. High uncertainties (CVs> 10) are noted in the areas where the multimodel average320

suggests an increase in RT.

4 Discussion

4.1 Uncertainties in tower-based measurements

The potential for alterations to the terrestrial sink of atmospheric CO2 across the high northern lat-

itudes motivates our examination of model estimates of land-atmosphere exchanges of CO2 across325

the arctic drainage basin of northern Eurasia. Validation of model estimates through comparisons

to measured flux tower data is challenged by several factors.The limited extent of available mea-

surements from a sparse regional tower network clearly challenges the validation of model estimates

and, in turn, identification of model processes which require refinement. There are also inherent

uncertainties in GPP and ER data derived from net ecosystem exchange (NEE) measurements at330

the eddy covariance tower sites. ER is generally assumed to equal NEE during nighttime hours

(Lasslop et al., 2010). An empirical relationship is derived to estimate ER during that time and it

is extrapolated into the daylight hours. GPP is then generally calculated as the difference between

NEE and ER (accounting for appropriate signs). Since there is generally daylight for photosynthe-

sis during the middle of the summer, ER could potentially be underestimated if primary production335

had occurred during the hours used for ER model calibration.Direct validation of the partition-

ing of measured NEE flux to GPP and ER is not possible. However,in a recent sensitivity study

Lasslop et al. (2010), compared two independent methods forpartitioning and found general agree-

ment in the results. This agreement across methods increases our confidence in the partitioned GPP

and ER estimates in the LaThuile FLUXNET dataset. When measurements come from nearly ideal340

sites the error bound on the net annual exchange of CO2 has been estimated to be less than±50 g C

m−2 yr−1 (Baldocchi, 2003). Systematic errors in eddy covariance fluxes due to non-ideal observa-

tion conditions are uncertain at this time. Total error is likely below the value of 200 g C m−2 yr−1

that has been conservatively estimated (Reichstein et al.,2007). The model errors estimated in this

present study often exceed that level for site Hakasija and,for a few models, Zotino as well. Lastly,345

any conclusions about the CO2 sink strength drawn from such a limited number of eddy covariance

sites should be viewed with caution.
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4.2 Model uncertainties contributing to errors in net CO2 sink/source activity

Regionally averaged GPP is within 20% of the MOD17 average (470 g C m−2 yr−1) for 8 of the 9

models. While the models broadly capture the three major biomes across the region, a wide range350

in spatial GPP estimates is evident. This result may reflect differences in model forcings, initial

conditions, parameterization and the dynamic vs static nature of vegetation and LAI (Table 2). While

these differences make it difficult to unambiguously determine the underlying causes for many of the

mismatches, the evaluations, in the context of prior studies, point to particular biases. The timing of

peak summer GPP is generally well captured in most of the models (Figure 4). Despite the agreement355

in peak GPP (and ER) timing, several models overestimate thesmall source of CO2 before, and to

some degree after, winter dormancy at the Hakasija sites andZotino. Overestimates in GPP and ER

are more common than underestimates (Table 4). Indeed, all errors are positive for site Hakasija

and five of the seven models show relatively large overestimates in ER at Zotino. The tendency

to overestimate GPP suggests that parametrizations and process specifications controlling primary360

production (eg. # 1, 2, 3, 4, 6, 8 in Table 2) may require refinement. It should be noted that large

seasonal flux errors (e.g. Keenan et al. (2012); Richardson et al. (2012); Schaefer et al. (2012)) will

appear as more modest monthly errors such as those noted in our analysis. While it is not possible

to evaluate sources of error separately forRh and autotrophic respiration (Ra), our results and those

from prior studies implicatingRh in the model uncertainties (Dolman et al., 2012; Quegan et al.,365

2011) suggests a need for further investigation of model processes controlling respiration. Only

one of the nine models, the CLM4.5, simulated limits on productivity due to nitrogen availability.

None account for competition for nitrogen. Lack of accounting for nitrogen limits on photosynthesis

may be leading to overestimates in simulated GPP, since nitrogen availability limits terrestrial carbon

sequestration in boreal regions (Zaehle, 2013). While accounting for fire is important for estimates of370

impacts on recently disturbed areas, and may be contributing to the wide range in GPP exhibited by

CLM4.5, CoLM, and LPJG (Figure 6), climate variability is a more dominant influence on regional

fluxes (Yi et al., 2013). Regarding errors in respiration rates, models with the highest soil carbon

amounts (CLM4.5 and UW-VIC) exhibit relatively high ER rates when compared to the observations

at several sites (Figure 3). This tendency is consistent with results described by Exbrayat et al.375

(2013), who suggest that initial carbon pool size is the maindriver of the response to warming, with

the magnitude of the carbon pool strongly controlling the sensitivity of Rh to changes in temperature

and moisture. While all of the models incorporate temperature and moisture in their formulations

for Rh, only three of the nine account for the effect of vegetation type on soil thermal dynamics. A

wide range in process specifications for soil thermal dynamics is present across the models.380

In a study of nine models from the TRENDY project, Peng et al. (2015) found that the models

overestimate both GPP and ER, and underestimate NEE at most of the flux sites examined, and for

the Northern Hemisphere based on upscaled measurements. A low NEE, or NEP, may be attributable

to model biases in respiration exceeding those in productivity. Averaged across the nine models and
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the region of the present study, NEP of approximately 20 g C m−2 yr−1 (Figure 9) (270 Tg C yr−1)385

is broadly consistent with inventory assessments for Eurasian forests, which range between 93 and

347 Tg C yr−1 (Hayes et al., 2011). Quegan et al. (2011) concluded that NPPsimulated by two

DGVMs examined was nearly balanced by the models’ estimate of Rh. Dolman et al. (2012) found

that GPP increased from 1920 to 2008, with the GPP increase inthe DGVMs balanced equally

by increases in respiration. They reported NEP over the Russian territory as an average of three390

methods at nearly 30 g C m−2 yr−1. The DGVM average, however, was only 4.4 g C m−2 yr−1 and

so low that the authors chose to remove it from their final carbon budget. This underestimate was

attributed to an excess inRh. While the mean NEP of 20 g C m−2 yr−1 in the present study is more

consistent with the three-method average of Dolman et al. (2012) than their lower DGVM estimates,

our comparisons against tower-based data and results of other studies suggest the sink strength in395

underestimated. Of the three models common to that study andthe present one, the CLM4.5 and

ORCHIDEE rank on the low end of model NEP magnitudes (Figure 9).

Recent research points to phenology as one of the principle sources of error in model simula-

tions of land-atmosphere exchanges of CO2. Graven et al. (2013) found that the change in NEP

simulated by a set of CMIP5 models could not account for the observed increase in the seasonal400

cycle amplitude in atmospheric CO2 concentrations. They point to data showing that boreal regions

have experienced greening and shifting age composition which strongly influence NEP and suggest

that process models under-represent the observed changes.Model inability to capture canopy phe-

nology has been identified as a major source of model uncertainty leading to large seasonal errors

in carbon fluxes such as GPP (Keenan et al., 2012; Richardson et al., 2012; Schaefer et al., 2012).405

Indeed, evaluated against flux tower data across the EasternUS, current state-of-the-art terrestrial

biosphere models have been found to mis-characterize the temperature sensitivity of phenology,

which contributes to poor model performance (Keenan et al.,2014). Two recent studies using eight

land surface models from the TRENDY comparison (Murray-Tortarolo et al., 2013) (several exam-

ined in the present study) and 11 coupled carbon-climate models (Anav et al., 2013) have found that410

models consistently overestimate leaf area index (LAI) andhave a longer growing season, mostly

due to a later autumn dormancy, compared to satellite data. However, when estimated using model

GPP, dormancy was much earlier than previously predicted using LAI. The authors conclude that

the models are keeping inactive leaves for longer than they should, but with little impact on carbon

cycle fluxes. Anav et al. (2013) further suggested that it wasunlikely that differences in climate in415

the coupled models were solely responsible for the positivebias. (Fisher et al., 2014) also concluded

that variability in land model model fluxes was driven primarily by differences in model physics

rather than differences in forcing data.

SimulatedRh estimates among the DGVMs analyzed by Dolman et al. (2012) vary in the range

between 200 to 225 g C m−2 yr−1. In the present study the nine model average is 190 g C m−2420

yr−1. Dolman et al. (2012) point to lower estimates from Kurganova and Nilsson (2003) of 139 g C
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m−2 yr−1 and Schepaschenko et al. (2013) of 174 g C m−2 yr−1 as being more representative for

the region. Our benchmark comparisons of ER against tower-based data are consistent with these

recent studies and suggest that several models are overestimatingRh, particularly over the boreal

forest zone. Among the model examined in this study a wide range in soil carbon parameterizations425

is noted (Table 2). Not surprisingly the effects of active layer depth on the availability of soil organic

carbon for decomposition and combustion has been recognized as a key sensitivity in process models

(Hayes et al., 2014). Regarding below-ground processes, model parameterizations and processes

controlling carbon storage and turnover such as litter decomposition rates and biological activity

in frozen soils (Hobbie et al., 2000) require close examination as well. Model simulations ofRh430

during the nongrowing season are sensitive to the presence or absence of snow (McGuire et al.,

2000), suggesting that future studies of mechanisms controlling winter CO2 emissions in tundra may

help resolve uncertainties in processes within land surface models and provide a means to connect a

warming climate with vegetation changes, permafrost thaw and CO2 dynamics.

4.3 Uncertainties in temporal trend estimates435

Uncertainties exist as to whether tundra areas are presently a net sink or source of CO2. Across

tundra regions, process models indicate a stronger sink in the 2000s compared with the 1990s, at-

tributable to a greater increase in vegetation net primary production than heterotrophic respiration in

response to warming ((McGuire et al., 2012; Belshe et al., 2013). The spatial pattern in multimodel

mean NEP in this study points to small areas in Scandinavia (< 1% of the domain) as sources of440

CO2. Broadly, areas classified as tundra are a modest CO2 sink of approximately 15 g C m−2 yr−1.

Across-model standard deviations in areas of small positive and negative NEP are a factor of ten

or more greater than the multimodel mean in some areas, and are generally high across the tundra

(Figure 8b). Estimates of NEP sink magnitudes must be interpreted with caution given that the mod-

els in general possess inadequate representation of disturbances which are an important component445

of the overall carbon balance (Hayes et al., 2011). Among this model group, four of the nine ac-

count for fire. The nature of model initialization and spinupis also a strong influence on simulated

NEP changes. For example, spin-up procedures can explain some of the discrepancies. ISBA, for

instance, was equilibrated using the 10 coldest year of the WATCH forcing repeatedly to emulate

preindustrial climate. As a result, soil and vegetation carbon were fairly low at the beginning of the450

20th century run, much lower than the equilibrium that wouldresult from the 1960s climate. Due

to the large characteristic time scale of soil carbon, part of ISBA’s large trend during the 1960–2009

period (Figure 11) can be traced to the climate used for the model spinup procedure.

Previous studies have pointed to changes in the seasonal drawdown and release of CO2 across

the northern high latitudes (Graven et al., 2013). A change in the seasonal cycle of GPP and ER is455

also noted (figure not shown), with the models analyzed in this study simulating a relatively higher

productivity rate from late spring to mid-summer. Indeed, increased productivity did not occur uni-
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formly across the growing season, as most of the models show little change in August or September

NEP over time. The models also simulate little change in NEP over the cold season. Greater produc-

tivity in spring and early summer may be due in part to earlierspring thawing and temporal advance460

in growing season initiation (McDonald et al., 2004), whereas GPP and NEP are more strongly con-

strained by moisture limitations later in the growing season (Yi et al., 2014). Extension of the grow-

ing season is therefore attributed more to a regional warming driven advance in spring thaw than

a delay in autumn freeze-up (Kimball et al., 2006; Euskirchen et al., 2006; Kim et al., 2012) which

correlates with regional annual evapotranspiration for the region above 40◦N (Zhang et al., 2011).465

There are, however, signs of a delay in the timing of the fall freeze (−5.4 days decade−1) across

Eurasia over the period 1988–2002 (Smith et al., 2004) consistent with fall satellite snow cover

(SCE) increases, and attributed to greater fall/winter snowfall and regional cooling (Cohen et al.,

2012). Consistent with the advance in spring thaw, the models examined here show a greater NEP

increase in spring compared to autumn.470

Soil carbon storage across the region increased significantly over the study period in eight of the

nine models. A relatively larger increase inRh is correlated strongly with the associated decline

in soil carbon residence time. This suggests that amid recent warming, vegetation carbon inputs to

the soil were greater than the enhancement in decomposition. In a recent study involving CMIP5

models, Carvalhais et al. (2014) found that while the coupled climate/carbon-cycle models repro-475

duce the latitudinal patterns of carbon turnover times, differences between the models of more than

one order of magnitude were also noted. The authors suggest that more accurate descriptions of

hydrological processes and water–carbon interactions areneeded to improve the model estimates of

ecosystem carbon turnover times. The reduction in soil carbon residence time may at least partially

be a direct response to increasing NEP, rather than through warming effects on respiration. A recent480

study (Koven et al., 2015) using a set of simulations from fiveCMIP5 models found that, because

heterotrophic respiration equilibrates faster to the increasing NPP than the soil carbon stocks, in-

creased productivity leads to reductions in inferred residence times even when there are no changes

to the environmental controls on decomposition rates, a process they refer to as “false priming”. Be-

cause the experimental protocol analyzed here does not include a fixed-climate simulation, it is not485

possible to unambiguously separate the contribution from the false priming effect from that due to

warming-related respiration increases, but the fact that soil C stocks increase over the period of sim-

ulation suggests that it is the dominant effect. Apart from climatological factors, vegetation growth

is also dependent on biological nitrogen availability. Failure to account for nitrogen limitation may

thus impart a bias in the modeled carbon flux estimates. However, more process models are incor-490

porating linkages between carbon and nitrogen dynamics (Thornton et al., 2009). Given the broad

range in spatial patterns in GPP across the models, a closer examination of processes related to ni-

trogen limitations and primary production is needed. The lower rate of NEP increase over the latter

decades of the simulation period suggests a weakening of theland CO2 sink, driven by increased
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Rh from warming, associated permafrost thaw, and an upward trend in fire emissions (Hayes et al.,495

2011).

As the climate warms, the amount of carbon emitted as CH4 and CO2 will depend on whether

soils become wetter or drier. A synthesis of observations and models points to intensification of the

pan-Arctic hydrological cycle over recent decades (Rawlins et al., 2010), manifested prominently

by increasing river discharge from northern Eurasia (Peterson et al., 2002). In addition to hydrolog-500

ical cycle intensification and deepening soil active layer (Romanovsky et al., 2010), rapid thaw and

ground collapse will also likely alter the landscape and impact land-atmosphere carbon exchanges.

Land surface models are now beginning to implement new process formulations to account for these

fine scale perturbations. Several of the models examined in this study incorporate the effect of soil

freeze-thaw state on decomposition of organic carbon (Table 2). Only four of the nine models, how-505

ever, account for methane emissions. Six simulate talik formation, and among these a variety of

approaches are employed to compute snow insulation type.

5 Conclusions

Outputs from a suite of land surface models were evaluated against independent data sets and used

to investigate elements of the land-atmosphere exchange ofCO2 across northern Eurasia over the510

period 1960–2009. The models exhibit a wide range in spatialpatterns and regional mean magni-

tudes. Compared to tower-based data, overestimates in bothGPP and ER are noted in several of the

models, with larger errors in ER relative to GPP, particularly for the comparisons at the southern

higher productivity sites. Regarding agreement in the spatial pattern in GPP, less than half of the

variance in GPP expressed in the MOD17 product is explained by the GPP pattern from four of the515

nine models. Over the simulation period NEP increases between 10% and 400% of the respective

model mean. The models exhibit a decrease in residence time of the soil carbon pool that is driven

by an increase inRh, simultaneous with an increase in soil carbon storage. Thisresult suggests that

net primary productivity (NPP) inputs to the pool increasedmore thanRh fluxes out. Among the

quantities examined, uncertainties are lowest for GPP across the forest/tiaga biome and highest for520

residence time over tundra and steppe areas. Amid the uncertainty in NEP magnitude, the results of

this study and others suggests that the CO2 sink of the region is underestimated.

Several recommendations are made as a result of this analysis. The range in area and climato-

logical mean NEP across the models, more than double the meanvalue, illustrates the considerable

uncertainty in the magnitude of the contemporary CO2 sink. The results of the site-level comparison525

point to a need to better understand the connections betweenmodel simulated productivity rates, soil

dynamics controlling heterotrophic respiration rates, and errors in total ER. Given the strong con-

nections between soil thermal and hydrological variationsand soil respiration, we recommend that

model improvements are targeted at processes and parameterizations controlling respiration with

16



depth in the soil profile. These validation efforts are especially important given the likelihood of530

net carbon transfer from ecosystems to the atmosphere from permafrost thaw (Schuur and Abbott ,

2012; Schuur E. A. G. et al., 2015). Model responses to CO2 fertilization and nitrogen limitation,

processes largely underrepresented in the models, should be evaluated in the context of ecosystem

productivity. While insights have been gained by examining the model estimates of GPP, ER, and

NEP, an improved understanding of net CO2 sink/source dynamics will require the continued devel-535

opment and application of model formulations for carbon emissions from fire and other disturbances.

The limited number of measured site data across this important region clearly hampers model as-

sessments, highlighting the critical need for new field, tower, and aircraft data for model validation

and parametrization. Specifically, new observations in theboreal zone are required to better evaluate

model biases documented in this and in other recent studies.Moreover, our finding of biases in CO2540

source activity during the shoulder seasons points to a critical need for observations during autumn,

winter, and spring. Given our results, conclusions drawn from studies which use a single model

should be viewed cautiously in the absence of rigorous validation against observations across the

region of interest.

New observations from current and upcoming field campaigns such as Carbon in Arctic Reser-545

voirs Vulnerability Experiment (CARVE) and the Arctic Boreal Vulnerability Experiment (ABoVE)

should be used to confirm the results of the study. Future model evaluations will benefit from contin-

ued development of consistent benchmarking datasets from field measurements and remote sensing.

Regarding tower data, any new measurements must be supported by refinements in the models used

to partition the measured NEE flux into GPP and ER components.Regarding these and similar550

model intercomparisons, investments must be made which will minimize or eliminate differences in

a priori climate forcings used in the simulations. At a programmatic level support for these activ-

ities should lead to well designed model intercomparisons which minimize, to the extent possible,

differences in model forcings and other elements which confound model intercomparisons.
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Table 1. Models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN) retrospective simulations. Modeling groups provided outputs

for year 1960-2009, with the exception of CLM (–2005); JULES (–1999); UW-VIC (–2006).

Model Institution Climate Data Set

Community Land Model (CLM4.5) National Center for Atmospheric Research, USA CRUNCEP41

Common Land Model (CoLM) Beijing Normal University, China Princeton2

Interaction Sol-Biosph̀ere-Atmosphere (ISBA) National Centre for Meteorological Research, France WATCH3

WFDEI6,∗

Joint UK Land Environment Simulator (JULES) Met Office, United Kingdom WATCH3

Lund-Potsdam-Jenna General Ecosystem Simulator (LPJG) Lund University, Sweden CRU TS 3.14

Model for Interdisciplinary Research on Climate, Earth System Model

(MIROC)

Japan Agency for Marine-Earth Science and Technology, Japan CMIP55

Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) Institute Pierre Simon Laplace (IPSL), France WATCH3

WFDEI6,∗

University of Victoria (UVic) University of Victoria, Canada CRUNCEP41

Variable Infiltration Capacity (UW-VIC) University of Washington, USA CRU7, UDel8,

NCEP-NCAR9

1

Viovy and Ciais (2011) (http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm)
2 Sheffield et al. (2006) (http://hydrology.princeton.edu/data.pgf.php)
3 Weedon et al. (2011) (http://www.waterandclimatechange.eu/about/watch-forcing-data-20th-century)
4 Harris et al. (2014)
5 Watanabe et al. (2011)
6 http://www.eu-watch.org/gfxcontent/documents/README-WFDEI.pdf
7 Mitchell and Jones (2005) for temperature
8 Willmott and Matsura (2001) for precipitation; Adam and Lettenmaier (2003) and Adam et al. (2006) for precipitation adjustments
9 Kalnay et al. (2006) for wind speed
* WATCH used for 1901–1978; WFDEI used for 1978–2009
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Table 2. Properties in each model relevant to simulation of land-atmosphere CO2 dynamics, particularly for the northern high latitude terrestrial biosphere. Properties are

indicated as present (✓), absent (✗) or otherwise (see footnote for details).

CLM4.5 CoLM ISBA JULES LPJG MIROC ORCHIDEE UVic UW-VIC

Tree mortality/senescence included? ✓/✓ ✓/✓ ✗/✗ ✓/✗ ✓/✓ ✓/✓ ✓/✓ ✗/✗ ✗/✗

Light limits phtosynthesis? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

N limits photosynthesis? ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Vegetation competes for light/water/nitrogen? ✗/✓/✗ ✓/✓/✗ ✗/✗/✗ ✓/✗/✗ ✓/✓/✗ ✓/✓/✗ ✓/✓/✗ ✓/✓/✗ ✗/✗/✗

No. of PFTs 16 14 9 5 15 13 12 5 20

CO2 fertilization? ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Turnover time of carbon in heartwood (yr) 50 process dependent 30–50 PFT dependent PFT dependent 20 20–80 PFT dependent 33.3

Turnover time of carbon in sapwood (yr) 50 29 30–50 PFT dependent PFT dependent 20 1 PFT dependent 33.3

Turnover time of carbon in leaves (yr) 1 0.5–2 0.4–1 PFT dependent PFT dependent 0.15–4.5 80days PFT dependent 2.86

Turnover time of carbon in coarse/fine roots 50yrs 1–2yrs 150–365days PFT dependent PFT dependent 20/1.1–6.25yrs 80days PFT dependent 33.3

Time step of carbon cycle 0.5hr 1hr 30min–1day 0.5hr 1month 1day 0.5hr–1day 1hr 3hr

Disturbance (F/L/I)c? F+L F ✗ ✗ F F+L ✗ L ✗

Vegetation dynamic? ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Vegetation dynamics time step NA 1yr NA 10days 1month 1yr 1yr 5days NA

LAI d dynamic? ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

LAI max prescribed? ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗

LAI time step 0.5 hr 1 day 1 day 1 day 1 month 1 day 1 day 5 days 30 days

Max veg height prescribed? ✗ ✓ ✓ ✓ ✗∗ ✓ ✗ ✗ ✓

Max rooting depth variable 3.4m 2m 3m 2m 1m variable 3.35m 1m

Csoil
b layered? (Depth) ✓(4m) ✗(3.4m) ✗(1m) implicit implicit implicit ✓(2-47m) ✓(3.35m) ✗

Soil layers for hydrology 10 10 14 30 2 6 11 8 25

Biogenic CH4 fluxes ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Depth of water extraction (m) PFT dependent 3.4 PFT dependent PFT dependent 2 2 Soil depth limited 3.35 1

Approach to soil thermal dynamics heat diffusion heat diffusion multi-layer(Fourier law) multi-layer finite difference model multi-layer finite difference model heat conduction 1D Fourier Avis (2011) Finite difference

Effect of vegetation on soil thermal dynamics? ✓ ✗ ✓(only at surface) ✓ ✓ ✗ ✗ ✓(water+albedo) ✗

Snow insulation type multi-layer multi-layer multi-layer multi-layer implicit multi-layer implicit - bulk

Capable of talik formation and dynamics? ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

a Heterotrophic respiration
b Soil carbon
c Fire; Land-use change;Insects
d LeafAreaIndex
e Moisture;Temperature;Carbon/Nitrogen ratio;Oxygen
* max height prescribed for shrubs
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Table 3. Flux tower sites from the LaThuile dataset (Baldocchi, 2008) used in this study. Site Hakasija consists

of records from 3 sub-sites which all fall within the same RCN model grid.Each sub-site is represented with a

different symbol in Figures 2c, 3c, 4c. GPP and ER in the La Thuile dataset are calculated using methodologies

described in Reichstein et al. (2005).

site coordinates IGBP class start/end years

Chersky (CHE) 68.61N, 161.34E mixed forest 2002–

Chokurdakh (COK) 70.62N, 147.88E open shrubland 2003–2005

Hakasija∗ (HAK) 54.77N, 89.95E grassland 2002–2004

Zotino (ZOT) 60.80N, 89.35E evergreen needleleaf forest 2002–

* Data used from three research sites (HAK1, HA2, HAK3)
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Table 4. Average model error in g C m−2 month−1 for site-level comparisons over the years 2002–2005 shown

in Figures 2–4. Errors are calculated as the average (ǫ̂j) over all years and months for which a model estimate

and site estimate are available at a given site. Thus for each site and month,the mean bias error (MBE) is

calculated as the average difference between the model and observedvalues:ǫj = Cj−Cobs, whereCj is GPP,

ER or NEP for modelj andCobs is the observed value from the La Thuile FLUXNET observations (Baldocchi,

2008). The last column lists mean NEP error (NEP) across all sites. Model estimates for years 2002–2005 are

not available for CoLM and JULES. Differences were evaluated using a2-way repeated measures ANOVA test.

Test design was a comparison of GPP vs ER t-tests for (i) each area separately; (ii) GPP and ER pooled for

the the two tundra sites and across the two forest sites; and (iii) GPP errorspooled across the four sites vs. ER

errors pooled across the four sites.

CHE COK HAK ZOT

Model GPP ER NEP GPP ER NEP GPP ER NEP GPP ER NEPNEP

MOD17 −2 - - −11 - - 13 - - 10 - -

CLM4.5 −25 −19 −6 −42 −23 −19 8 22 −15 78 81 −3 −11

ISBA 27 25 2 34 41 −7 82 78 3 82 98 −16 −5

LPJG −10 −5 −5 −5 −1 −4 53 74 −22 −34 −13 −20 −13

MIROC 20 18 2 49 43 6 28 37 −10 −4 21 −25 −7

ORCHIDEE 23 12 11 49 32 17 16 21 −6 −30 −6 −24 −1

UVic −14 −7 −7 16 36 −20 30 38 −9 −7 31 −38 −19

UW-VIC 27 34 −6 140 119 19 18 33 −16 2 20 −18 −5

mean 7 8 −1 34 35 −1 34 43 −11 13 33 −20 −8
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Table 5. Nash-Sutcliffe coefficient of efficiency (E) (Nash and Sutcliffe, 1970) and Willmott’s refined index of agreement (dr) (Willmott et al., 2011) for comparison of GPP

and ER errors derived from comparisons at sites shown in Table 4.

CHE COK HAK ZOT

Model GPP ER GPP ER GPP ER GPP ER

CLM4.5 0.15,0.67 −0.09,0.50 −0.74,0.44 −1.52,0.15 −1.20,0.39 −2.77,−0.03 −0.19,0.66 −5.34,−0.19

ISBA 0.43,0.67 −0.79,0.34 −0.04,0.54 −5.64,−0.26 −10.25,−0.24 −19.44,−0.55 −0.82,0.62 −10.56,−0.34

LPJG 0.64,0.77 0.68,0.76 0.86,0.83 0.62,0.71−5.37,−0.09 −26.99,−0.64 0.76,0.85 0.64,0.76

MIROC 0.49,0.76 −0.38,0.48 −1.23,0.33 −8.02,−0.29 −2.69,0.24 −2.85,−0.01 0.95,0.94 0.35,0.60

ORCHIDEE 0.44,0.69 0.45,0.66 −1.08,0.32 −3.37,−0.04 −2.39,0.33 −1.29,0.21 0.80,0.87 0.74,0.83

UVic 0.35,0.68 0.69,0.76 0.59,0.74 −3.98,−0.14 −1.93,−0.44 −9.50,−0.41 0.91,0.87 −0.17,0.50

VIC 0.14,0.67 −3.41,0.10 −14.88,−0.45 −60.73,−0.74 −2.04,0.30 −0.32,0.61 0.83,0.87 −0.27,0.56
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Table 6. Trend in GPP, ER, and NEP over simulation period for each model. Trendslopes (g C m−2 yr−2) are

estimated using an auto-regressive AR[1] model to account for temporal autocorrelation. Standard error for the

regression is indicated in ( ). Standard deviation of the model means is shown in [ ]. Significant trends (p<

0.01) are denoted with an asterisk (∗).

Model GPP ER NEP

CLM4.5 1.3∗(0.18) 1.0∗(0.15) 0.27∗(0.06)

CoLM 1.3∗(0.19) 0.9∗(0.18) 0.31∗(0.07)

ISBA 3.9∗(0.29) 3.1∗(0.23) 0.78∗(0.11)

JULES 1.7(0.27) 1.3(0.19) 0.33∗(0.11)

LPJG 1.2∗(0.11) 1.0∗(0.11) 0.17∗(0.06)

MIROC 1.9∗(0.16) 1.7∗(0.15) 0.24∗(0.12)

ORCHIDEE 1.6∗(0.15) 1.1∗(0.13) 0.43∗(0.08)

UVic 1.7∗(0.18) 1.6∗(0.18) 0.11(0.06)

UW-VIC 1.4∗(0.12) 1.4∗(0.13) 0.02(0.05)

mean 1.8[0.78] 1.5[0.64] 0.29[0.18]
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Fig. 1. Study domain spanning the arctic drainage basin in northern Eurasia. Mappanels show a) plant func-

tional types (PFTs) and b) permafrost classification along with tower sitesused in the study: a) Chersky, b)

Chokurdakh, c) Hakasija, and d) Zotino locations (Table 3). Gridded PFTs are from the MODIS MOD12 prod-

uct (Oak Ridge National Laboratory, 2014). Permafrost classes for each grid are drawn from the CAPS dataset

(International Permafrost Association Standing Committee on Data Information and Communication, 2003) .
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Fig. 2. Monthly GPP at sites a) Chersky, b) Chokurdakh, c) Hakasija, and d) Zotino (Obs, Table 3). Colored

lines trace monthly GPP for each model grid that encompassing the tower location. Site Hakasija includes

research areas Ha1 (filled circle), Ha2 (open circle), and Ha3 (triangle)
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Fig. 3. As in figure 2, for ER.
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Fig. 4. As in figure 2, for NEP. NEP = GPP−ER.
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Fig. 5. Mean annual Gross Primary Productivity (GPP) from the permafrostRCN models and from the MOD17

product. The averaging period is 2000–2009 for GPP from the MOD17 product and all models with the ex-

ception of CLM4.5 (1995–2004); CoLM (1991–2000); and JULES (1991–2000). Spatial correlations between

MOD17 GPP and each model GPP for all grids is shown at upper left in each map panel. Map panel at upper

right is coefficient of variation (CV) for GPP. At each grid the CV is estimated from the mean and standard

deviation across the nine models (MOD17 not included).
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Fig. 6. Distributions for mean annual GPP from the models and the MOD17 product over the averaging period

listed in Figure 5. The rectangles bracket the 25th and 75th percentiles. Whiskers extend to the 5th and 95th

percentiles. Thick and thin horizontal lines mark the mean and median respectively.
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Fig. 7. Spatially averaged ER vs. GPP over the period 1960–2009. Horizontal and vertical lines span the range

across the 5th and 75th percentiles for GPP and ER, respectively. The GPP 5th and 75th percentiles are shown in

Figure 6. NEP is equal to the difference GPP minus ER.

39



a)

b)

Fig. 8. a) Annual NEP (1960–2009) averaged across the nine models. Areas in blue are a net annual source of

CO2. b) Coefficient of variation as estimated from the across model mean and standard deviation for each grid.40



Fig. 9. Distributions for mean annual NEP from the models over the averaging period listed in Figure 5. Boxplot

quartiles are as described in caption for Figure 6.
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Fig. 10. Annual NEP as a spatial average across the region for each year 1960–2009.
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Fig. 11. Cumulative NEP in Pg C over the simulation period for each model.
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Fig. 12. Spatially averaged annual NEP as an average across the nine models. Gray region marks the 95th

confidence interval, where CI =µ ± (SE× 1.96), whereµ is the nine model average and SE is the standard

error. Standard deviation (σ) used to estimate SE is obtained each year from the set of nine model NEP values

used to obtain the yearly average.
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Fig. 13. Magnitude of linear trend in NEP over given time interval for all trends significant at p< 0.05. For

each model, linear trends are calculated for all time intervals of 20 years or more. For example, 1960–1979,

1960–1980, ...., 1990–2009. Intervals for which the trend is significant are marked with a line from the start to

end year of the interval and shaded by the trend magnitude. As an example, one time interval is indentified with

a significant NEP trend for UW-VIC, from 1964–1993.
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a)

b)

Fig. 14. a) Change in soil organic carbon (SOC) residence time (RT) averagedacross all nine models. Change

is significant for 46% of the region, predominantly negative changes (decreases). b) CV for RT as estimated

from the across-model mean and standard deviation at each grid.
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