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Abstract 21 

 22 

The hydrogen isotopic composition (δ2H) of leaf waxes, especially of n-alkanes (δ2Hn-alkanes), 23 

is used increasingly for paleohydrological and –climate reconstructions. However, it is 24 

challenging to disentangle past changes in the isotopic composition of precipitation and 25 

changes in evapotranspirative enrichment of leaf water, that are both recorded in leaf wax δ2H 26 

values. In order to overcome this limitation, Zech M. et al. (2013, Chemical Geology 360-27 

361, pp. 220-230) proposed a coupled δ2Hn-alkane-δ18Osugar biomarker approach. This coupled 28 

approach allows calculating (i) biomarker-based ‘reconstructed’ δ2H/δ18O values of leaf water 29 

(δ2H/δ18Oleaf water), (ii) biomarker-based ‘reconstructed’ deuterium excess (d-excess) of leaf 30 

water, which mainly reflects evapotranspirative enrichment and which can be used to 31 

reconstruct relative air humidity (RH) and (iii) biomarker-based ‘reconstructed’ 32 

δ2H/δ18Oprecipitation values. 33 

Here we present a climate transect validation study by coupling new results from δ2H analyses 34 

on n-alkanes and fatty acids in topsoils along a climate transect in Argentina with previously 35 

measured δ18O results obtained for plant-derived sugars. Accordingly, both the reconstructed 36 

RH and δ2H/δ18Oprecipitation values correlate significantly and highly significantly, respectively, 37 

with actual RH and δ2H/δ18Oprecipitation values. We conclude that compared to single δ2Hn-alkane 38 

or δ18Osugar records, the proposed coupled δ2Hn-alkane-δ18Osugar biomarker approach will allow 39 

more robust δ2H/δ18Oprecipitation reconstructions and additionally the reconstruction of mean 40 

summer daytime RH changes/history in future paleoclimate research. 41 
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1. Introduction  45 

 46 

Long chain n-alkanes and fatty acids are important components of the epicuticular leaf waxes 47 

of terrestrial plants (Eglinton, 1967; Samuels et al., 2008). As leaf waxes can be preserved in 48 

sedimentary archives over a long time they serve as valuable biomarkers for paleo-49 

environmental and -climate reconstructions (Eglinton and Eglinton, 2008; Zech M. et al., 50 

2011b). The δ2H isotopic composition of leaf waxes is of particular interest in this regard, 51 

because, at least to a first order, it reflects the isotopic composition of precipitation δ2Hprec 52 

(Sauer et al., 2001; Huang et al., 2004; Sachse et al., 2004; Schefuss et al., 2005; Pagani et al., 53 

2006; Tierney et al., 2008; Rao et al., 2009), which in turn depends on temperature, amount of 54 

precipitation, atmospheric circulation, etc. (Dansgaard, 1964; Rozanski et al., 1993; Gat, 55 

1996; Araguas-Araguas et al., 2000). While there is probably no fractionation of hydrogen 56 

isotopes during water uptake by the roots (Ehleringer and Dawson, 1992), several studies 57 

have shown that leaf water is enriched in 2H compared to the source water or precipitation 58 

(Flanagan et al., 1991; Yakir, 1992; Sachse et al., 2006; Smith & Freeman, 2006; Farquhar et 59 

al., 2007; Feakins & Sessions, 2010). This 2H enrichment, which is also recorded in the leaf 60 

waxes (Kahmen et al., 2013a,b), can be explained by evapotranspiration and is mainly 61 

controlled by relative air humidity (RH), temperature and the isotopic composition of 62 

atmospheric water vapor. Indeed, a robust reconstruction of δ2Hprec from soils and 63 

sedimentary records turns increasingly out to be quite challenging, because it is hitherto 64 

difficult to disentangle past changes in δ2Hprec and changes in evapotranspirative enrichment 65 

of leaf water (Zech, R. et al., 2013; Zech, M. et al., 2015).  66 

Compared to compound-specific δ2H analyses, compound-specific δ18O analyses are by far 67 

less adopted by the scientific community, so far (Hener et al., 1998; Juchelka et al., 1998; 68 

Jung et al., 2005; Jung et al., 2007; Greule et al., 2008). However, particularly compound-69 

specific δ18O analyses of hemicellulose-derived sugar biomarkers (δ18Osugars) extracted from 70 



plants, soils and sediments are proposed to have large potential especially in paleoclimate/-71 

hydrologic research (Zech M. & Glaser, 2009; Zech M. et al., 2012). Similar to leaf waxes, 72 

hemicellulose-derived sugars record the isotopic composition of water used for metabolism, 73 

i.e. the isotopic composition of precipitation altered by evapotranspirative 18O enrichment of 74 

soil and leaf water (Tuthorn et al., 2014; Zech M. et al., 2014a). Recently, Zech M. et al. 75 

(2013) proposed a conceptual coupled δ2Hn-alkane-δ18Osugar model for paleoclimate research and 76 

suggested that this coupling allows overcoming the above defined limitation of single δ2Hn-77 

alkane approaches. Accordingly, the coupled δ2Hn-alkane-δ18Osugar approach allows reconstructing 78 

(i) δ2H/δ18Oleaf water values, (ii) deuterium excess (d-excess) of leaf water, which mainly 79 

reflects evapotranspirative enrichment and can be used to reconstruct relative air humidity 80 

(RH) and (iii) δ2H/δ18Oprec values.  81 

The study presented here aimed at evaluating the coupled δ2Hn-alkane-δ18Osugar biomarker 82 

approach by applying it to a modern topsoil climate transect from Argentina. More 83 

specifically, we aimed at (i) analysing and comparing the δ2H values of n-alkanes and fatty 84 

acids, (ii) modelling 2H leaf water enrichment along the transect and comparison of δ2Hleaf water 85 

values with δ2Hn-alkane and δ2Hfatty acid values, (iii) reconstructing d-excess of leaf water using 86 

the coupled δ2Hn-alkane-δ18Osugar approach and evaluating the potential for reconstructing RH, 87 

and (iv) reconstructing ‘biomarker-based’ δ2H/δ18Oprec values and comparison with actual 88 

δ2H/δ18Oprec values. 89 

 90 

2. Material and methods 91 

 92 

2.1. Transect description and samples 93 

The investigated transect in Argentina spans from ~32°S to 47°S, and encompasses 20 94 

sampling locations spanning a large climate and altitudinal (22 – 964 m) gradient (Fig. 1). 95 

Mean annual temperature ranges from 11.4 °C to 18.0 °C and mean annual precipitation from 96 



185 mm to 1100 mm (GeoINTA, 2012). Precipitation shows a systematic southward trend 97 

towards more negative δ18O and δ2H values (δ18Oprec  and δ2Hprec, respectively) (Bowen, 98 

2012). 99 

The transect is described in detail by Tuthorn et al. (2014) and Ruppenthal et al. (2015). 100 

Briefly, it is characterized by warm humid subtropical conditions in the north (Zárate, Buenos 101 

Aires Province), pronounced arid conditions in the middle part of the transect and cool 102 

temperate conditions in the south (Las Heras, Santa Cruz Province). These markedly 103 

contrasting climate conditions are reflected in the vegetation zones of the study area, changing 104 

from Humid/Dry Pampa (with dominance of Triticum, Setaria, Eragrostis, Andopogon, 105 

Panicum and Festuca species) in the north to the Espinal vegetation zone (with dominance of 106 

Festuga and Larrea species) that prevails under semi-arid climate (Burgos and Vidal, 1951), 107 

Low Monte semidesert/desert (with dominance of Larrea species) in the most arid region of 108 

Argentina (Fernández and Busso, 1997), and Patagonian Steppe (with dominance of Stipa 109 

species) in the southernmost part of the transect (Le Houérou, 1996; Paruelo et al., 1998). 110 

During a field campaign in March and April 2010, mixed topsoil samples (Ah-horizons) from 111 

maximum 51 cm depth were collected in triplicate replication from the 20 sample sites along 112 

the transect (for soil type and total organic carbon contents please see Table 1 of Tuthorn et 113 

al., 2014). The soil samples were air-dried in the field and later in an oven at 50°C for several 114 

days. The sampling site heterogeneity was checked for the δ18Osugar analyses and in most 115 

cases did not exceed the analytical uncertainty (Table 2 in Tuthorn et al., 2014). Therefore, 116 

the field replications were merged to one composite sample per study site for δ2Hlipid analyses. 117 

 118 

2.2. Compound-specific δ2H analyses of n-alkanes and fatty acids 119 

For δ2H analyses of n-alkane and fatty acid biomarkers, an Accelerated Solvent Extractor 120 

(Dionex ASE 200) was used to extract free lipids from the dried soil samples with 121 

dichloromethane (DCM) and methanol (MeOH; 9:1) according to Zech R. et al. (2013). The 122 



total lipid extracts were separated over pipette columns filled with ~2 g aminopropyl. n-123 

Alkanes were eluted with hexane, more polar lipids with DCM:MeOH (1:1), and free fatty 124 

acids with diethyl ether:acetic acid (19:1). The n-alkanes were further purified using zeolite 125 

(Geokleen) pipette columns. The zeolite was dried and dissolved in HF after eluting 126 

branched- and cyclo-alkyl compounds with hexane, and the straight-chain (n-alkyl) 127 

compounds were then recovered by liquid-liquid extraction with hexane. For samples 1 – 12, 128 

an additional purification step with silver nitrate columns was carried out in order to eliminate 129 

unsaturated compounds. The chromatograms of the other samples displayed no requirement 130 

for this purification step.  131 

Fatty acids were methylated using 5% HCl in methanol at 80°C for 12 hours. Subsequently, 132 

liquid-liquid extraction with 5% NaCl and hexane was used to retrieve fatty acid methyl esters 133 

(FAMEs). FAMEs were purified by elution with dichloromethane over SiO2 columns (~2 g). 134 

5α androstane and hexamethylbenzene was used for quantification of the compounds on an 135 

Agilent Technologies 7890A gas chromatograph (GC) equipped with a VF1 column (30 m, 136 

0.25 mm i.d., 0.25 µm film thickness) and a flame ionization detector (FID). Compound-137 

specific δ2H values of the long-chain n-alkanes and FAMEs were determined based on at least 138 

triplicate analyses on a gas chromatograph-pyrolysis-isotope ratio mass spectrometer (GC-139 

pyrolysis-IRMS, Delta V, ThermoFisher Scientific, Bremen, Germany). The A4 standard 140 

mixture (provided by Arndt Schimmelmann, Indiana University, USA) was run three times 141 

per sequence at three different concentrations. All results are reported after normalization 142 

using multi-linear regression (Paul et al., 2007) and simple mass-balance correction of the 143 

FAMEs for the isotopic composition of the methanol used for derivatisation. Long-term 144 

precision of the analyses was monitored using a laboratory standard (oak, n-C29). The 145 

standard was analyzed in every sequence and yielded a mean value of -147.2‰ with a 146 

standard deviation of ± 1.7 ‰ across all sequences run for this study.   147 

 148 



2.3. Modeling of leaf water 2H enrichment 149 

The empirical data analyses were combined with mechanistic model simulations of δ2Hleaf water 150 

in order to better detect and evaluate how the dominant climate variables (air temperature and 151 

relative air humidity) influence 2H enrichment in lipids. The 2H enrichment of leaf water due 152 

to evapotranspiration can be predicted by using mechanistic models originally developed for 153 

isotope fractionation processes associated with evaporation from water surfaces by Craig and 154 

Gordon (1965). These models were adapted for plants by Dongmann et al. (1974) and 155 

subsequently by Flanagan et al. (1991) and Farquhar and Lloyd (1993). Evaporative 2H 156 

enrichment of the leaf water (∆2He) at the evaporative surface in the mesophyll is given by the 157 

equation:  158 

( )
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where ε+ is the equilibrium fractionation between liquid water and vapor at the air-water 160 

interfaces, εk is the kinetic fractionation during water vapor diffusion from leaf intercellular air 161 

space to the atmosphere, ∆2HWV is the isotopic difference of the water vapor and the source 162 

water, and еa/еi is the ratio of ambient to intercellular vapor pressure (Farquhar and Lloyd, 163 

1993). This basic calculation was modified by including a Péclet effect that accounts for 164 

opposing fluxes of source water entering the leaf through the transpiration flow and the back-165 

diffusion of isotopically enriched water from the sites of evaporation (Farquhar and Lloyd, 166 

1993): 167 
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The quotient of EL/CD represents the Péclet number (℘ ) where E is the transpiration rate, L 169 

is the effective path length, C is the molar concentration of water and D is the diffusivity of 170 

1H2HO. The model approach we used followed that of Kahmen et al. (2011b), where the 171 

Péclet-modified Craig Gordon model is reduced to three input variables: air temperature, 172 



atmospheric vapour pressure and source water δ2H. This simplified model is based on the 173 

assumption that throughout the season leaf temperature equals air temperature and that 174 

atmospheric vapor δ2H is generally in equilibrium with source water δ2H (Kahmen et al. 175 

2011b). Transpiration rates are estimated using relative humidity and air temperature 176 

(retrieved from GeoINTA, 2012) and assuming a mean stomatal conductance of 0.15 177 

mol/m2/s. Based on reports for a large number of species in the literature (Kahmen et al., 178 

2008; Kahmen et al., 2009; Song et al., 2013), we used an average value of 20 mm for L and 179 

kept it constant across the transect. For our simulation of leaf water δ2H values we obtained 180 

the model input variables air temperature, atmospheric vapor pressure and source water δ2H 181 

from GeoINTA (2012) and Bowen (2012), respectively. 182 

The isotopic composition of the leaf water can be estimated according to Eqn. 3: 183 

 184 

δ2Hleaf water = ∆2Hleaf water + δ2HSW      (Eqn.3), 185 

 186 

where ∆2Hleaf water is the bulk leaf water evaporative enrichment and δ2HSW is the hydrogen 187 

isotope ratio of source/xylem water. 188 

 189 

2.4. Conceptual model for a coupled δ18O-δ2H biomarker approach 190 

The conceptual coupled δ2Hn-alkane-δ18Osugar model was introduced previously by Zech M. et al. 191 

(2013). In brief, it is based on the following fundamentals. Precipitation word-wide typically 192 

plots along/close to the so-called global meteoric water line (GMWL, δ2H = 8 х δ18O + 10) in 193 

a δ18O-δ2H diagram (Dansgaard, 1964) (Fig. 5). Due to fractionation processes, 194 

evaporation/transpiration causes water vapour to be isotopically depleted in 18O and 2H, 195 

whereas residual (leaf) water (δ2H/δ18Oleaf water) is isotopically enriched. In a δ18O-δ2H 196 

diagram, leaf water therefore does not plot on the GMWL but on an evaporation line (EL). 197 

The distance of leaf water to the Global Meteoric Water Line (GMWL) can be described as 198 



deuterium excess (d = δ2H - 8⋅δ18O). Using a Craig-Gordon model adapted by Gat and 199 

Bowser (1991), the d-excess of leaf water can be used to calculate RH values normalized to 200 

the temperature of leaf-water (Zech et al., 2013): 201 
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 (Eqn. 4) 202 

where ∆d represents the difference in d-excess between leaf-water and source water. 203 

According to Merlivat (1978), experimentally determined kinetic isotope fractionation equals 204 

25.1 ‰ and 28.5 ‰ for Ck
2 and Ck

18, respectively, considering that these are the maximum 205 

values of kinetic fractionation during molecular diffusion of water through stagnant air. 206 

Equilibrium isotope enrichments ε2
* and ε18

* as functions of temperature can be calculated 207 

using empirical equations of Horita and Wesolowski (1994). Hence, provided that n-alkanes 208 

and sugars in plants and soils reflect (albeit with a constant offset caused by biosynthetic 209 

fractionation) the isotopic composition of leaf water, a coupled δ2Hn-alkane-δ18Osugar approach 210 

allows reconstructing RH values. The biomarker-based reconstructed δ2H/δ18Oleaf water values 211 

allow furthermore reconstructing the isotopic composition of plant source water, which can be 212 

considered in an approximation to reflect δ2H/δ18Oprec (illustrated as intercepts of the 213 

individual ELs with the GMWL in Fig. 5). Assuming a slope of ~2.82 seems reasonable both 214 

based on model considerations and based on field observations and laboratory experiments 215 

(Allison et al., 1985; Walker and Brunel, 1990; Bariac et al., 1994). For further details on 216 

modelling coupled δ18O-δ2H biomarker results the reader is referred to Zech M. et al. (2013). 217 

 218 

3. Results and Discussion 219 

 220 

3.1. Comparison of δ2Hn-alkanes and δ2Hfatty acids  221 

The C29 and C31 n-alkane homologues were sufficiently abundant in all samples to be 222 

measured for their hydrogen isotopic composition. The δ2H values range from -155 to -222 ‰ 223 



and reveal a similar trend between n-C29 and n-C31 along the investigated transect (Table 1 224 

and Fig. 2). While the northern and middle part of the transect is characterized by relatively 225 

high δ2H values (~ -160 ‰), the southern part of the transect is characterized by considerably 226 

more negative δ2H values (~ -210 ‰). 227 

The δ2H values of the fatty acids n-C22, n-C24, n-C26, n-C28 and n-C30 range from -128 to -225 228 

‰ (Table 1 and Fig. 2). In general, there is a good overall agreement between the n-alkanes 229 

and the fatty acids (R=0.96, p<0.001, n=20; for the weighted means), both showing more 230 

negative δ2H values in the south than in the northern and middle portions of the transect 231 

(Table 1, Fig. 2). Interestingly, the longer homologues n-C28 and n-C30 are systematically 232 

enriched by 3 ‰ to 43 ‰ compared to the n-alkanes. The same was observed by Chikaraishi 233 

and Naraoka (2007), reporting on n-alkanes being depleted in 2H relative to the corresponding 234 

n-alkanoic acid. Reasons for this trend remain vague at this point, but may be relate to 235 

metabolic pathways, seasonal differences in homologue production, or differences in 236 

homologue sources. Roots, for example, have also been suggested as a source of long-chain n-237 

fatty acids (Bull et al., 2000). Shorter homologues, have been suggested to be not only plant-238 

derived, but also of bacterial origin (Matsumoto et al., 2007; Bianchi and Canuel, 2011). 239 

Similarly, soil microbial overprinting of long chain n-alkanes and fatty acids cannot be 240 

excluded (Nguyen Tu et al., 2011; Zech M. et al., 2011a). By contrast, there is strong 241 

evidence suggesting that n-alkanes are not produced by plants in significant amounts 242 

(Gamarra and Kahmen, 2015) and not significantly introduced into soils/subsoils by roots 243 

(Häggi et al., 2014). 244 

The consistent δ2H pattern revealed by the n-alkanes and fatty acids along the north-south 245 

climate transect does not solely reflect the δ2H isotopic composition of precipitation. 246 

Especially in the middle part of the transect, δ2H of the lipid biomarkers shows a pronounced 247 

offset (Fig. 3). Given that n-alkanes are considered to primarily reflect leaf signals and are 248 



most widely applied in paleoclimate and paleohydrological studies, we will principally refer 249 

to δ2H of long chain n-alkanes in further discussion and calculations. 250 

 251 

3.2. Evapotranspirative 2H enrichment of leaf water 252 

Assuming a constant biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acids 253 

biosynthesis in plants (Sessions et al., 1999; Sachse et al., 2006), we estimated the isotopic 254 

composition of leaf water using our n-alkane and fatty acids δ2H values along the 255 

transect/gradient (Fig. 3). Note that an average biosynthetic fractionation factor of ~-200 ‰ 256 

was reported by Sessions et al. (1999) for short- and mid-chained fatty acids synthesized 257 

mostly by unicellular/multicellular marine algae. By contrast, there are hardly any 258 

biosynthetic fractionation factors reported for long-chained fatty acids of higher plants. Given 259 

that our δ2H n-alkanes and fatty acids values are very similar, using a biosynthetic 260 

fractionation factor of -160 ‰ for both lipids seems appropriate. 261 

Estimated leaf water δ2H values suggest a pronounced 2H enrichment of leaf water compared 262 

to precipitation (up to +62 ‰). This finding highlights the role of aridity for 263 

evapotranspiration and isotopic enrichment of leaf waxes, in good agreement with prior 264 

studies (Sachse et al., 2006; Feakins and Sessions, 2010; Douglas et al., 2012; Kahmen et al., 265 

2013a).   266 

Figure 4 illustrates the overall good agreement between δ2Hleaf water values inferred from the 267 

measured n-alkanes and fatty acids, and δ2Hleaf water values calculated using the Peclet-268 

modified Graig-Gordon model. The correlations are highly significant (r=0.88, p<0.001, 269 

n=20, for n-alkanes and r=0.93, p<0.001, n=20 for fatty acids), suggesting that the model 270 

correctly implements the most relevant processes related to evapotranspirative enrichment of 271 

leaf water. While predicting the overall trend in leaf water δ2H along the transect with 272 

reasonable accuracy, the model does not capture site-to-site excursions in the n-alkane-273 

derived leaf water δ2H values from this overall trend. As such, additional influences that are 274 



not captured by the model, such as possible evaporative 2H enrichment of soil water (see e.g. 275 

Dubbert et al., 2013), could explain the underestimation of the modeled δ2Hleaf water values in 276 

the middle part of the transect (Fig. 4). In contrast, the model might overestimate δ2Hleaf water in 277 

the southern part of the transect. The corresponding ecosystem, the Patagonian Steppe, is a 278 

grassland, whereas the middle part of the transect is dominated by shrubland. Grass-derived 279 

lipids have been shown to be less strongly affected by evaporative leaf water 2H enrichment 280 

than those of trees or shrubs (McInerney et al., 2011; Yang et al., 2011; Sachse et al., 2012; 281 

Kahmen et al., 2013b), and hence the overestimation of the model may be due to plant species 282 

effects (Pedentchouk et al., 2008; Douglas et al., 2012). The more pronounced offsets in 283 

Patagonia could additionally be attributed to a seasonality effect. The growing season in 284 

Patagonia is not year-round but mainly in spring. 285 

In order to assess the sensitivity of the model to the input parameters, we varied vapor 286 

pressure of air by +/- 5 hPa and mean annual temperature by +/- 5°C. Changing ea in eq. (1) 287 

by ± 5 hPa corresponds to changes of RH from ca. 94% to 46% at the beginning of the 288 

transect and 89% to 15% at the end of the transect While changes in temperature have only 289 

negligible effects on the modeled δ2H isotopic composition of leaf water, changes in RH yield 290 

difference in δ2Hleaf water of up to ~30 ‰ (Fig. 4). Different climatic conditions during the 291 

spring growing season in Patagonia could thus explain the overestimation of the 292 

evapotranspirative enrichment in the model.  293 

Evapotranspirative enrichment of leaf water has also been observed in δ18O values of 294 

hemicellulose-derived arabinose, fucose and xylose analysed in topsoils along the investigated 295 

transect (Tuthorn et al., 2014). Model sensitivity tests of 18O enrichment of leaf water using 296 

PMCG model corroborate the observations presented here that air humidity is the key factor 297 

defining the 18O/2H enrichment of leaf water. 298 

 299 

3.3. Coupling of the δ2Hn-alkane and δ18Osugar biomarker results 300 



The conceptual model for the coupled δ2Hn-alkan-δ18Osugar biomarker approach is illustrated in 301 

Fig. 5. The model is based on the assumption that the investigated n-alkane and hemicellulose 302 

biomarkers are primarily leaf-derived and reflect the isotopic composition of leaf water. With 303 

regard to the topsoil transect investigated here, this assumption is reasonable and supported by 304 

leaf water modeling (for δ2H in Section 3.2, and for δ18O see Tuthorn et al., 2014). 305 

Accordingly, biomarker-based ‘reconstructed’ δ2H/δ18Oleaf water values can be calculated from 306 

the biomarkers by applying biosynthetic fractionation factors εbio. For our reconstructions we 307 

applied εbio factors of -160 ‰ (Sessions et al., 1999; Sachse et al., 2006) and +27 ‰ 308 

(Sternberg et al., 1986; Yakir and DeNiro, 1990; Schmidt et al., 2001; Cernusak et al., 2003; 309 

Gessler et al., 2009) for δ2H and δ18O, respectively (Fig. 5). 310 

 311 

3.3.1. Reconstructed RH values along the climate transect and comparison with actual 312 

RH values 313 

The reconstructed d-excess values of leaf water along the investigated transect range from -67 314 

to -178 ‰ and reveal a systematic trend towards more negative values in the south (Fig. 6). 315 

The reconstructed RH values calculated using the leaf water d-excess values according to the 316 

above-described coupled δ2Hn-alkane - δ18Osugar approach range from 16 to 65 %, with one 317 

extremely low value of 5 % (Fig. 6). Reconstructed RH values follow the systematic d-excess 318 

trend and correlate significantly (r=0.79, p<0.001, n=20) with the actual mean annual RH 319 

values retrieved from GeoINTA (2012) for all investigated sites.  320 

However, as depicted by Fig. 6, the reconstructed RH values systematically underestimate the 321 

actual mean annual RH values. This is especially pronounced for the three southernmost 322 

locations (18-20) and may be attributed to several causes. First, the applied model calculations 323 

do not account for evaporative enrichment of soil water. In the δ18O-δ2H diagram, the soil 324 

water enrichment shifts the source water (simplified to ‘reconstructed precipitation’ in Fig. 5 325 

and our model) along the evaporation line and thus leads to too negative d-excess values and 326 



an underestimation of RH. Second, given that leaf waxes are considered to be formed mostly 327 

during early stages of leaf ontogeny (Kolattukudy, 1970; Riederer & Markstaedter, 1996; 328 

Kahmen et al., 2011a; Tipple et al., 2013) they may not necessarily reflect the mean annual 329 

isotopic composition of precipitation in regions with pronounced seasonality, but rather the 330 

isotopic composition of precipitation during the growing season. Furthermore, mean annual 331 

RH values likely overestimate the RH values actually seen by leaves being photosynthetically 332 

active. Indeed when comparing the biomarker-based ‘reconstructed’ RH values with mean 333 

summer daytime RH values (available for 6 stations along the investigated transect from 334 

www.ncdc.noaa.gov), satisfactory agreement between ‘reconstructed’ and actual RH values is 335 

obtained, with the exception of the southern portion of the transect (Fig. 6). Third, the δ18O 336 

biosynthetic fractionation factor of ~+27 ‰, which has been reported for newly assimilated 337 

sugars and cellulose, underestimates in our opinion the actual fractionation factor of 338 

hemicelluloses (Tuthorn et al., 2014; Zech M. et al., 2014a). This results in reconstructed leaf 339 

water values plotting too far to the right in the δ18O-δ2H diagram (Fig. 5) and in turn to the 340 

observed underestimated RH values (Fig. 6). We argue with the loss of a relatively 18O-341 

depleted oxygen atom attached to C-6 during pentose biosynthesis (C-6 decarboxylation; 342 

Altermatt and Neish, 1956; Harper and Bar-Peled, 2002; Burget et al., 2003) and point to a 343 

recent study of Waterhouse et al. (2013) who have determined the position specific δ18O 344 

values in cellulose. Further experimental studies as suggested and encouraged by Sternberg 345 

(2014) and Zech M. et al. (2014b) are urgently needed to ascertain an improved biosynthetic 346 

fractionation factor for hemicellulose-derived sugars. 347 

 348 

3.3.2. Comparison of reconstructed and actual δ2Hprec and δ18Oprec values  349 

Values of δ18Oprec and δ2Hprec reconstructed as the intercepts of the individual evaporation 350 

lines (EL) with the GMWL in the δ18O-δ2H diagram (Fig. 5) range from -7 to -22 ‰ and from 351 

-47 to -166 ‰, respectively. They correlate highly significantly (Fig. 7; r=0.90, p<0.001, 352 



n=20, and r=0.88, p<0.001, n=20 for δ18Oprec and δ2Hprec, respectively) with the ‘actual’1 353 

δ2Hprec and δ18Oprec values as derived from Bowen (2012). While the reconstructed δ18Oprec 354 

and δ2Hprec values, like the reconstructed RH values, generally validate our conceptual model, 355 

they appear to systematically underestimate the actual δ18O and δ2H values of the 356 

precipitation water (Fig. 7). 357 

The uncertainties discussed above for the observed offset of ‘reconstructed’ versus actual RH 358 

values can also affect the accuracy of reconstructed δ18Oprec and δ2Hprec values. Hence, the 359 

‘actual’ δ2H/δ18Oprec values used for our comparison with the biomarker-based ‘reconstructed’ 360 

values can be assumed to be one of the possible sources of uncertainty . While Bowen (2012) 361 

reported a confidence interval (95%) ranging from 0.2‰ to 1.2‰, and from 2‰ to 11‰ for 362 

δ2Hprec and δ18Oprec, respectively, future climate transect studies will be ideally carried out 363 

with actual precipitation being sampled for δ2H/δ18O analyses. Moreover, we would like to 364 

emphasize also here the very likely influence of seasonality. As reported for sugar biomarkers 365 

(Tuthorn et al., 2014), we suggest that also leaf waxes mainly reflect the humidity and the 366 

isotopic composition of spring and summer precipitation rather than mean annual values. 367 

 368 

5. Conclusions 369 

 370 

The hydrogen isotopic composition of leaf wax n-alkanes and n-alkanoic (fatty) acids 371 

extracted from topsoils along a transect in Argentina varies significantly, with δ2H values 372 

ranging from -155 to -222 ‰ and -128 to -225 ‰, respectively. These δ2H values broadly 373 

parallel variations in the hydrogen isotopic composition of precipitation, but are modulated by 374 

evaporative 2H enrichment of leaf water. A mechanistic leaf water model correctly simulates 375 

                                                      
1  Please note that we chose here the term ‚actual’ for reasons of simplification in order to make the 

difference to the biomarker-based ‘reconstructed’ δ18Oprec and δ2Hprec values. Indeed, both the ‘reconstructed’ 
and the ‘actual’ values are derived from modelling, namely from our conceptual δ2Hn-alkane-δ18Osugar model and 
from Bowen’s (2012) online isotopes in precipitation calculator.   



the overall trends. Sensitivity tests show that relative humidity exerts a much stronger 376 

influence on evaporative enrichment than temperature.  377 

Based on the premise that n-alkanes and hemicellulose biomarkers are primarily leaf-derived, 378 

we reconstruct δ2Hleaf water and δ18Oleaf water, respectively, which in turn allows assessment of 379 

the d-excess of leaf water. The large calculated range in d-excess along the transect (-67 to -380 

178 ‰) can be used to calculate biomarker-based ‘reconstructed’ RH values. ‘Reconstructed’ 381 

RH values correlate significantly with actual mean annual RH values along the transect. 382 

Despite this overall correlation, ‘reconstructed’ RH values systematically underestimate 383 

actual mean annual RH values. However, this discrepancy is largely reduced when 384 

‘reconstructed’ RH values are compared with actual mean summer daytime RH values. 385 

Similarly, biomarker-based ‘reconstructed’ δ18Oprec and δ2Hprec values correlate highly 386 

significantly with ‘actual’ δ18Oprec and δ2Hprec values, but reveal systematic offsets, too. 387 

We conclude that compared to single δ2Hn-alkane or δ18Osugar records, the proposed coupled 388 

δ2Hn-alkane-δ18Osugar approach will allow more robust δ2H/δ18Oprec reconstructions and 389 

additionally the reconstruction of mean summer daytime RH changes/history using d-excess 390 

of leaf water as proxy in future paleoclimate studies. However, further studies are needed to 391 

ascertain an improved biosynthetic fractionation factor for hemicellulose-derived sugars. 392 

Also, in the light of strong diurnal variations of δ2H and δ18O of leaf water, it would be 393 

important to determine which portion of this diurnal signal is actually incorporated in the n-394 

alkanes and sugars being synthesized in the leaves. 395 
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below. 659 

Fig. 2: Comparison of δ2H results of individual leaf wax n-alkanes and n-alkanoic (fatty) 660 

acids along the investigated transect. 661 

Fig. 3: Comparison of measured δ2Hn-alkanes (weighted mean of n-C29 and n-C31) and δ2Hfatty 662 

acids (weighted mean of n-C22, n-C24, n-C26, n-C28 and n-C30) pattern with δ2Hprec 663 

(Bowen, 2012) along the north-south climate transect (xmin and +max representing 664 

annual minimum and maximum value at the sampling site). Additionally, assuming a 665 

biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acid biosynthesis in 666 

plants the biomarker-based ‘reconstructed’ isotopic composition of leaf water is 667 

shown. 668 

Fig. 4: Results of δ2Hleaf water model simulations and comparison with biomarker-based 669 

‘reconstructed’ (assuming a biosynthetic fractionation factor of -160 ‰) isotopic 670 

composition of leaf water based on n-alkanes and fatty acids, respectively. Sensitivity 671 

tests for δ2Hleaf water are shown for changes in RH and air temperature for all 20 sites 672 

along the transect. 673 

Fig. 5: δ18O-δ2H diagram illustrating the conceptual model of the coupled δ2Hn-alkane-δ18Osugar 674 

approach (modified after Zech M. et al., 2013a). δ2Hn-alkane (mean of n-C29 and n-C31) 675 

and δ18Osugar (mean of arabinose, fucose and xylose) results are used to reconstruct 676 

δ2H/δ18Oleaf water by subtracting the biosynthetic fractionation factors. The deuterium 677 

excess (d = δ2H - 8⋅δ18O) of leaf water serves as proxy for RH and δ2H/δ18Oprec is 678 



calculated as intersection of the individual evaporation lines (ELs, slope 2.82) with the 679 

global meteoric water line (GMWL). 680 

Fig. 6: Comparison of biomarker-based ‘reconstructed’ relative humidity (RH) values with 681 

actual RH values (mean annual RH retrieved for all investigated sites from GeoINTA, 682 

2012; summer daytime RH for six stations retrieved from www.ncds.noaa.gov). 683 

Deuterium excess values were calculated using δ18Oleaf water reconstructed from 684 

terrestrial sugars (Tuthorn et al., 2014) and δ2Hleaf water reconstructed from n-alkanes. 685 

Fig. 7: Correlation of biomarker-based ‘reconstructed’ δ18Oprec and δ2Hprec values with 686 

modern ‘actual’ δ18Oprec and δ2Hprec values (from Bowen, 2012). 687 
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Fig. 1: Sampling locations along the investigated transect in Argentina. The colors illustrate 690 

the gradient in δ2Hprec, and mean annual temperature and precipitation are shown 691 

below. 692 
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Fig. 2: Comparison of δ2H results of individual leaf wax n-alkanes and n-alkanoic (fatty) 694 

acids along the investigated transect. 695 
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Fig. 3: Comparison of measured δ2Hn-alkanes (weighted mean of n-C29 and n-C31) and δ2Hfatty 697 

acids (weighted mean of n-C22, n-C24, n-C26, n-C28 and n-C30) pattern with δ2Hprec 698 

(Bowen, 2012) along the north-south climate transect (xmin and +max representing 699 

annual minimum and maximum value at the sampling site). Additionally, assuming a 700 

biosynthetic fractionation of -160 ‰ for the n-alkane and fatty acid biosynthesis in 701 

plants the biomarker-based ‘reconstructed’ isotopic composition of leaf water is 702 

shown. 703 



 704 

Fig. 4: Results of δ2Hleaf water model simulations and comparison with biomarker-based 705 

‘reconstructed’ (assuming a biosynthetic fractionation factor of -160 ‰) isotopic 706 

composition of leaf water based on n-alkanes and fatty acids, respectively. Sensitivity 707 

tests for δ2Hleaf water are shown for changes in RH and air temperature for all 20 sites 708 

along the transect. 709 



 710 

Fig. 5: δ18O-δ2H diagram illustrating the conceptual model of the coupled δ2Hn-alkane-δ18Osugar 711 

approach (modified after Zech M. et al., 2013a). δ2Hn-alkane (mean of n-C29 and n-C31) 712 

and δ18Osugar (mean of arabinose, fucose and xylose) results are used to reconstruct 713 

δ2H/δ18Oleaf water by subtracting the biosynthetic fractionation factors. The deuterium 714 

excess (d = δ2H - 8⋅δ18O) of leaf water serves as proxy for RH and δ2H/δ18Oprec is 715 

calculated as intersection of the individual evaporation lines (ELs, slope 2.82) with the 716 

global meteoric water line (GMWL). 717 



 718 

Fig. 6: Comparison of biomarker-based ‘reconstructed’ relative humidity (RH) values with 719 

actual RH values (mean annual RH retrieved for all investigated sites from GeoINTA, 720 

2012; summer daytime RH for six stations retrieved from www.ncds.noaa.gov). 721 

Deuterium excess values were calculated using δ18Oleaf water reconstructed from 722 

terrestrial sugars (Tuthorn et al., 2014) and δ2Hleaf water reconstructed from n-alkanes. 723 



 724 

Fig. 7: Correlation of biomarker-based ‘reconstructed’ δ18Oprec and δ2Hprec values with 725 

modern ‘actual’ δ18Oprec and δ2Hprec values (from Bowen, 2012). 726 


