Manuscript prepared for J. Name
with version 2014/07/29 7.12 Copernicus papers of the I&TEX class copernicus.cls.
Date: 14 May 2015

Synoptic scale analysis of mechanisms driving surface
chlorophyll dynamics in the North Atlantic

Ana Sofia de Aradjo Ferreira!, Hjdlmar H4tin?, Frangois Counillon®, Mark
R Payne!, and André W Visser!

!Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark,
Denmark

2Faroe Marine Research Institute, Néattn 1, P.O. Box 3051, FO 110 Térshavn, Faroe Islands
3Nansen Environmental and Remote Sensing Center, Thormghlensgate 47, Bergen, Norway

Correspondence to: Ana Sofia de Aradjo Ferreira (asofiaaferreira@gmail.com)

Abstract. Several hypotheses have been proposed for the onset of the spring phytoplankton bloom

in the North Atlantic. Our main objective is to examine which bottom-up processes can best predict
the annual increase in surface phytoplankton concentration in the North Atlantic by applying novel
phenology algorithms to ocean colour data. We construct indicator fields and time series which, in

5 various combinations, provide models consistent with the principle dynamics previously proposed.
Using a multimodel inference approach, we investigate the evidence supporting these models, and
how it varies in space. We show that, in terms of bottom-up processes alone, there is a dominant
physical mechanism, namely mixed layer shoaling, that best predicts the interannual variation in the
initial increase in surface chlorophyll across large sectors of the North Atlantic. We further show

10 that different regions are governed by different physical phenomena, and that wind-driven mixing
is a common component with either heat flux or light as triggers. We believe these findings to be

relevant to the ongoing discussion on North Atlantic bloom onset.

1 Introduction

About half of global primary production is performed by marine phytoplankton. Phytoplankton pro-
15 duction fuels marine ecosystems and the harvesting of marine living resources, as well as playing
an important role in global carbon cycling (Field et al.l [1998). In many parts of the world’s oceans,
marine primary production undergoes a distinct seasonal cycle, with the major part of production oc-
curring in the spring bloom (Longhurst, 1995;|Martinez et al., 2011} |Platt et al.,[2010). This seasonal
cycle is particularly apparent in the North Atlantic (Yoder et al., |1993), where it imprints seasonal

20 variations in species abundance and annual routines (e.g. spawning, migration) throughout the ma-
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rine food web from zooplankton (Gaard, |2000; |Gislason and Silva, 2012; |Heath et al., 2000), to fish
(Trenkel et al.| 2014} [Badcock and Merrett, |1976) and marine mammals (Pauly et al.l [1998)). In the
North Atlantic, the progression of primary production throughout the year, and its variation between
years, is commonly used as a proxy for ecosystem state (Townsend et al.,|1994; |Frajka-Williams and
Rhines| 2010; [Lévy et al.| 2005). The North Atlantic spring bloom is an important biological event
and has attracted considerable attention during the last decades (Behrenfeld, [2010; [Chiswell et al.|
2013; Platt et al., [2003)).

Phenology is the term used to describe the study of the timing of annual recurring biological
events, such as the observed “greening” of the surface ocean, an indicator of bloom initiation. Phe-
nology provides a staple for understanding the cascading fluctuations throughout the food web. To
achieve this, a good phenology metric should be accurate, precise, and sensitive to the underlying
environmental processes, both physical or biological (Ferreira et al., [2014). Much of the recent in-
terest in spring bloom dynamics (Behrenfeld, |2010; |Chiswell et al., 2013)) concerns the mechanisms
that influence different characteristics of the annual cycle.

Chlorophyll concentration is, arguably, the most important ecological variable setting the pace
of life in temperate and high latitude seas. In this study, we use surface chlorophyll concentrations
as derived from satellite ocean colour to detect spring bloom initiation (Cole et al., 2012} |Sasaoka
et al., 2011 Brody et al., |2013). We thus assume that the chlorophyll concentration at the surface
represents that of the surface mixed layer (Evans and Parslow, [1985). While we note that some
aspects of bloom dynamics are more properly described by integrating phytoplankton biomass over
the mixed layer (Behrenfeld, |2010), it is the surface chlorophyll that is the most readily accessible
via the highly-resolved (both spatially and temporally) ocean colour products.

There are essentially three environmental processes that can change the surface chlorophyll con-
centration: phytoplankton growth through light and nutrients; loss terms, such as respiration, grazing,
coagulation and sinking; and dilution through mixed layer deepening. These processes are particu-
larly important during two key phases of the seasonal cycle: 1) events that lead to an increase in
phytoplankton biomass - bloom initiation; and 2) conditions that halt the net increase in biomass -
the peak of the bloom. Phytoplankton biomass will increase whenever the growth rate exceeds the
loss rate (Sverdrupl [1953). This picture, with regards the distinction between biomass and surface
chlorophyll concentration, is somewhat complicated by dilution; a deepening mixed layer dilutes the
concentration but has no effect on the biomass, a process that has repercussion on the feeding success
and thus population dynamics of grazers. However, a shoaling mixed layer has no direct influence
on the concentration but removes biomass to some extent. These processes and their implications for
phytoplankton, the resources they rely on, and their grazers, have been carefully considered in recent
re-analyses of spring bloom dynamics (Behrenfeld et al.,2013aj |Lindemann and St John, 2014).

It is also fair to say that the annual trajectory of phytoplankton biomass and surface phytoplank-

ton concentration follow different dynamics (Chiswell et al., 2013). While we recognise that phy-
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toplankton biomass variation is an important aspect of spring bloom dynamics, in this paper, we
examine which fundamental physical processes may best predict the timing of the increase in sur-
face phytoplankton concentrations. Furthermore we do so since ocean surface colour is a readily
available synoptic scale observable spanning many years of measurements. The interannual variabil-
ity in bloom timing is evaluated in terms of how much the increase in surface layer chlorophyll is

advanced or delayed compared to the day of climatological maximum rate of increase.
1.1 Mixed layer shoaling

Over the years, several theories have been put forwarded which, in one way or the other, try to model
the growth and loss rates in terms of fundamental processes (Table [T]and Figure[I)). The classic ap-
plication of the growth-loss view of bloom initiation relates to when photosynthetic production of
organic matter surpasses respiration (Sverdrup, [1953), where respiration refers to all losses and is
constant. This hypothesis is commonly referred to as the “critical depth hypothesis”, which states
that a bloom begins when the surface mixed layer shoals to a depth above the critical depth (where
integrated production equals losses). The shoaling of the mixed layer means that individual phyto-
plankton cells remain longer in the euphotic zone (Siegel et al., 2002} [Sverdrup} (1953} |Chiswell,
2011). By extension, this suggests that the light intensity integrated over the mixed layer is the most
relevant factor driving phytoplankton blooms in the North Atlantic. Here, we term this hypothesis

the “critical depth model” (Table [I).
1.2 Active mixing

Mixed layer shoaling, however, is not the only process which can increase the residence time of
primary producers in the well-lit surface ocean. Similar effects can be driven by periods of low
surface mixing (Townsend et al.,[1992). This has led to a series of alternative interpretations, which
highlight active mixing (specifically the lack thereof) as a key ingredient (Townsend et al., [1994;
Huisman et al., [ 1999; Taylor and Ferrari, 2011a).

One of the first quantitative studies (Townsend et al.l [1994) examined the combined effects of
wind-driven mixing and light: the hypothesis being that blooms can occur during periods when light
is low but increasing and turbulent mixing weakens. These conditions can be met well before the
surface mixed layer begins to shoal. We call this the “critical light exposure model” (Table|I)).

This type of reasoning can also lead to only considering the competing effects of stratification by
solar heating, and destratification by wind-driven mixing. This view encapsulates the key elements
of the “critical turbulence model” (Huisman et al.,|1999,2002), where brief interludes in mixing and
heating produce a stable layer in which phytoplankton cells are retained within the euphotic layer.
Thus, a balance between heat-flux and wind-driven mixing may explain North Atlantic phytoplank-

ton seasonality (Table [T).
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More recently, |Taylor and Ferrari| (2011b) have shown that blooms may be detected much earlier
than the shoaling of the mixed layer depth, and it has been proposed that blooms can be initiated as
soon as deep convection ceases (Taylor and Ferrari,[2011a). That is, as soon as the ocean experiences
a net inward heat flux. In this context, the timing of the transition from net cooling to net warming is
a key element linked to the variability of phytoplankton seasonality. We term this the “critical heat
flux model” (Table [I).

1.3 Other processes not considered

There have been theories also focusing on specific regional effects. For instance, Mahadevan et al.
(2012) were able to link bloom onset to eddy-driven stratification, prior to net warming. Fronts were
also found to trigger high-latitude blooms by reduced mixing, which explains high chlorophyll lev-
els in light-limited regions (Taylor and Ferrari, [2011b)). Other studies (Frajka-Williams and Rhines|
2010; [McGillicuddy et al.l[2007;|Garcon et al., 2001) have also linked spring bloom initiation to off-
shore advection, eddy-induced upwelling or river runoff. Finally, oceanic convection has been found
responsible for a significant vertical transport, thus maintaining a winter stock of phytoplankton in
the deep mixed layer that can potentially re-seed the spring bloom (Backhaus et al., 1999, 2003).
Behrenfeld| (2010) adopted a different approach by examining the influence of dynamic top-down
controls, suggesting the “dilution-recoupling hypothesis”. This is a concept that is implicit in |[Evans
and Parslow| (1985))’s model. Behrenfeld (2010)’s hypothesis proposes that a vertically integrated
biomass increases in mid-winter with the increase of day length, even when the mixed layer depth is
at its deepest, and reaches its maximum with the recoupling of grazers due to stratification. Unfor-
tunately, as also noted by [Behrenfeld| (2010)), data on top-down controls remain elusive at the spatial
and temporal resolutions necessary to test this hypothesis against the complex structure of North

Atlantic phytoplankton seasonality.

1.4 When and why does a surface bloom start?

As noted by |Cole et al.| (2015)), assessing the drivers of bloom initiation variability may lead to
the understanding of what starts the bloom in the first place. Despite all of the above mentioned
hypotheses, there is still no clear consensus regarding a single main driver of North Atlantic spring
blooms. Additionally, the spatial application of these theories may not hold true in smaller regions,
where local forcing plays a more important role. Nonetheless, the key process, and common to all
hypotheses of surface bloom initiation, is based on the spring stabilization of the water column,
where both light and nutrients are at sufficient levels: whether by mixed layer shoaling (Sverdrup,
1953)), or by weakening turbulent mixing (Huisman et al.l {1999 [2002; |Taylor and Ferrari, 201 1aj
Townsend et al., [1994; Taylor and Ferrari, 2011b)). Their main differences reside in the physical

proxy for bloom initiation: what physical indicator best predicts bloom timing?
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While there are a number of metrics that can be used to delineate bloom initiation (Yoder and
Kennellyl 2003}, |Siegel et al., [2002; Rolinski et al.| 2007)), our goal to seek a metric that can be
credibly related to the processes proposed above, i.e. those that relate to the preconditioning of the
water column prior to surface bloom initiation. In this, any metric that uses the bloom peak (such
as the popular 5 % above annual median (Siegel et al.,|2002)), or seasonally integrated chlorophyll,
will be handicapped because it inherently takes into account not only what starts the bloom, but
also what terminates it some weeks or months later. We seek instead a phenology metric that is not
confounded by the bloom peak, does not require winter values, and is a straightforward indicator of
the greening of the surface ocean as observed from space. Our metric is based on how advance or
delayed the development of surface chlorophyll concentration is in a particular year compared to the
climatological date and rate of maximum concentration increase.

We construct four models based on the literature using a range of physical observations, primarily
from satellite but also model data, and describe key processes observed in the North Atlantic (Table
[[] and Figure[I)). In each case, we make the models as simple as possible - capturing the essential
process dynamics in terms of at most two observable/estimated fields only.

We use the Information Theoretic (IT) approach to investigate which model for surface blooms
has the most support within the North Atlantic. The IT approach is a very useful tool when compar-
ing different models. In particular, it provides a rigorous framework for evaluating the evidence in
support of competing models. It does so by defining a priori a set of “multiple working hypotheses”
rather than a single alternative to the null hypothesis. The IT approach is then followed by expressing
each hypothesis in quantitative terms that represent their strength of evidence to be further used in
the model selection (Burnham et al.,[2011).

We conduct our study focusing on bottom-up controls that may trigger a North Atlantic phy-
toplankton surface bloom, and thus neglect the effect of top-down controls (grazing, (Behrenfeld,
2010; [Evans and Parslowl (1985} Irigoien et al.l [2005))). Information on top-down controls is not
available at the spatial and temporal coverage needed to assess mesoscale physical forcing. In addi-
tion, as Chiswell| (2011} shows, the seasonal cycle of surface chlorophyll differs from the vertically-
integrated chlorophyll. Behrenfeld (2010)’s “dilution-recoupling hypothesis” applied to vertically-
integrated chlorophyll blooms, while the other hypotheses (Sverdrup, 1953 Siegel et al.| 2002 Platt
et al.,|1991}; |Huisman et al.,|[1999; Huisman and Sommeijer, 2002; Huisman et al., 2002} Townsend
et al.,|1994; Taylor and Ferraril 2011a} b) can be applied to surface chlorophyll. Our aim is to com-
pare the latter ones, in which it is assumed that surface blooms only take off when the surface waters

stabilise.
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2 Material and Methods
2.1 Information Theoretic (IT) Approach

The main aspects of the IT framework (Burnham et al., 2011 Burnham and Anderson, 2002} /Akaike]
1973)) in the context of our study include (1) identifying plausible mechanistic hypotheses, and (2)
a strong reliance on the quantitative evidence of factor(s) affecting a response variable, rather than
a formal assessment of the statistical significance of such factor(s). In our study, (1) is expressed
through mathematical descriptions of the different hypotheses to be tested (see Table[I]and Section
[2.2), while (2) is covered by ranking the spatial evidence of the models using the concept of model

selection and multimodel inference (see Burnham et al.| (2011) and Section[2.5).
2.2 Physical mechanisms

We are particularly interested in knowing how much information from raw data is correlated to sur-
face chlorophyll. Raw data refers to the original data in their simplest form, without pre-processing.
Therefore, we quantitatively translate the fundamental physical processes that can be used to predict

a phytoplankton surface bloom in the North Atlantic into simple and straight-forward models (Table
[I]and Figure ).

Critical depth - A bloom initiates if the mixed layer depth (MLD, H) shoals below the critical
depth, so light (photosynthetically active radiation, PAR, L) becomes available to phytoplank-
ton cells (Figure Eh) (Sverdrup| [1953; [Siegel et al, [2002; Platt et al.l [1991). Therefore, L
integrated over the H provides an estimate of the light available within the euphotic depth for

phytoplankton to grow.

Critical turbulence - A bloom initiates if there is a balance between buoyancy (heat flux, ) and
wind-driven mixing (M, Figure m)) (Huisman et al., [1999; Huisman and Sommeijer, 2002;
Huisman et al.| [2002).

Critical light exposure - A bloom initiates if wind-driven mixing (M) is at a low enough level to

allow cells to experience surface light conditions (L, Figure E]:) (Townsend et al.| [1994).

Critical heat flux - Bloom initiation is associated with the date when net warming starts (@) > 0),
and low wind-driven mixing (M) increases the residence time of phytoplankton in the euphotic
layer (Figure Ekl) (Taylor and Ferrari, [201 14, b).

2.3 Data sets

In order to gather the information necessary to formulate the models for the North Atlantic domain,

we used satellite observations (chlorophyll concentration, attenuation coefficient and photosynthet-



ically active radiation), model estimations for the variables where satellite data was not available
(mixed layer depth), and model and observational merged data (wind stress and heat flux).
We used products derived from the European Node for Global Ocean Colour (GlobColour Project,
http://www.globcolour.info/). The GlobColour Project blends observational data from the Sea-viewing
195 Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS-
AQUA), and the Medium Resolution Imaging Spectrometer (MERIS) instruments by using the
Garver-Siegel-Maritorena (GSM) algorithm (Maritorena et al., 2002)) to generate a merged, global
ocean colour product. Combining the three sensors increases the data coverage in both time and
space, thus providing significantly elevated spatio-temporal coverage (Maritorena et al.,2010), mak-
200 ing it a common choice for phenology studies (Cole et al.,[2012; [Kahru et al., [2011). For this study,
we chose to use daily, 1/4° resolution level 3 mean chlorophyll concentration (C') and attenuation
coefficient (K ;) products (based on the analysis performed by |Ferreira et al.|(2014))), from 1998 to
2010 inclusive, thus providing a total of 13 years of data.
The surface photosynthetically active radiation (PAR, L) was obtained from the SeaWifs data
205 center (http://oceancolor.gsfc.nasa.gov/). We used daily, 9 km resolution product from 1998 to 2010.
These data were further gridded onto 1/4° using linear interpolation to match the spatial resolution
of the other data sets.
The mixed layer PAR (L) was defined as L integrated from the surface to the depth of the mixed
layer H:

L

=T (1 —e ~HEK) (1

210 Lpg

using the relevant K4 reported by Irwin et al.|(2012) and|Cole et al.| (2015)).
Mixed layer depth (MLD, H) data were obtained from TOPAZ 4 reanalysis (Sakov et al., 2012).
The TOPAZ system is a coupled ocean-sea ice data simulation system for the North Atlantic and
Arctic Ocean with a resolution of 12-16 km, and is the main forecasting system for the Arctic
215 Ocean in Copernicus (http://www.myocean.eu) and the Norwegian contribution to the Global Ocean
Data Assimilation Experiment (GODAE). It uses the Hybrid Coordinate Ocean Model (HY COM,
http://hycom.org/hycom/) (Bleck, 2002). HYCOM is coupled to a EVP sea ice model (Hunke and
Dukowicz, [1997) and a thermodynamic module (Drange et al., [1996). The model assimilates sea
surface temperature, altimetry, ice concentration, ice drift, and available in situ measurements with
220 the ensemble Kalman Filter (Evensen, 2003). The model daily output is binned onto a 1/4° regular
grid. The MLD is calculated using a density criteria with a threshold of 0.01 kg m 2 (Petrenko et al.|
2013)) from 1998 to 2010.
Wind stress (Twing) 1S used as a measure for wind-driven mixing (M) (Simpson et al.| (1981}
Taboada and Anadoén, 2014) and was estimated by using: M |Twind\%, which is proportional to
225 the power exerted by the wind on the surface ocean and the turbulent kinetic energy used in |Brody

and Lozier| (2014))’s calculations of the mixing length scale.
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Both 7inq and heat flux (@) data were gathered on a spatial resolution of 1.875°x 1.905°from the
National Centers for Environmental Prediction (NCAR) and the National Center for Atmospheric
Research (NCEP) (Kalnay et al., [1996). These data sets were further gridded onto 1/4° using linear
interpolation to match the spatial resolution of the other data sets.

All data sets started on October 1, 1997. We only focused on latitudes north of 40°N due to the fact
that lower latitudes have a less well-defined seasonal cycle (Follows and Dutkiewicz, [2011; |[Brody

and Lozier, 2014).
2.4 Metrics

One of the fundamental aspects of spring bloom is the rapid increase in surface chlorophyll concen-
tration; a phenomenon that can be interpreted as bloom initiation. In this work, we choose a bloom
initiation metric that relates to how advanced or delayed the surface chlorophyll concentration is in
a particular year, compared to the climatological date of maximum surface concentration increase.
We term this the rate of change phenology anomaly (RPA, R). This metric has the advantage of
not depending on the maximum chlorophyll concentration (an indicator of the peak of the bloom).
Neither does it depend on winter values, which are usually missing from remote sensing products
(Ferreira et al., 2014); or on vertical integration (Behrenfeld, 2010); all of which introduce extrane-
ous factors into the mechanistic reasoning as to the onset of a bloom. These are all limitations that
occur in many other metrics used in the literature (Siegel et al., 2002} [Sharples et al., [2006; |[Brody
and Lozier, [2014)). We decided to use an anomaly of surface chlorophyll because it is a more relevant
measure in regards to higher trophic levels and is one we believe is closer to bloom preconditioning.
Additionally, in order to use an integrated chlorophyll field, we would need to use modelled mixed
layer depth, which is incompatible with testing one of our key models.

At each location z,y (each 1/4° pixel), we estimate the climatological pattern of surface chloro-
phyll concentration C(z,y,t) by applying a generalized additive model (GAM) to the observations
from 1998 to 2010 (Figure [2). We then calculate the day of the year where the climatological mean
exhibits the maximum rate of increase g(z,y) = max{dC/dt}. We define the climatological date of
maximum increase as Ty = t : dC/dt = g, and the climatological chlorophyll concentration on that
day we define as Cy = C(z,y,Tp). For each year i and location z,y, we fit a GAM with a smooth
spline on the period Tp+ 15 days for observed surface chlorophyll to produce C.(z,y,t). Lastly
we define the rate of change phenology anomaly as R;(z,y) = Ciley,To)=Cley.To) Thyg, the RPA

9(z,y)
metric R;(xz,y) is a value in days and relates to how advanced or delayed the seasonal development

of chlorophyll concentration is in each year 7 compared to the climatology of the bloom. We set a
threshold that at least 3 observations must exist within the 30-day window for the RPA method to
be valid. We apply a spatial kriging with a maximum radius of 250 km to fill in pixels where the

method cannot be used, e.g. due to missing data around 7}, in some years, or low seasonality.
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We investigated the spatially dependent ranking of the models (Table [1| and Figure [1)) using the
IT approach. Thus, we constructed indicator fields and time series which, in various combinations,
provide models consistent with the principle physical dynamics observed in the North Atlantic. At
each location, we apply a centered moving average of 30 days to the physical driver observations and
these will be referred to as L, L, M and Q. We also use @, for the date when @)’ becomes positive
(start of net warming) and remains positive for seven consecutive days. We further applied an inverse
distance weighted interpolation (using the weighted average of the values at the known pixels) to all
thresholds to fill in the pixels where the thresholds could not be estimated. All pixels in waters
shallower than 200 m were removed as coastal regions have higher associated biases (Maritorena
et al., [2010) due to high turbidity and consequent different optical properties (McCain et al.| 2006}
Antoine et al.,[1996; [Longhurst et al.l [1995; Sathyendranath et al.,[2001]).

2.5 Analysis

There are several model selection tools that can be used for comparing and ranking models. In our IT
approach, we used the Akaike Information Criterion (AIC) (Burnham et al.| [2011), which is based
on the residual sum of squares (RSS) from each model. By comparing and ranking the evidence
from different models, their relative importance can be quantified. Since we only aimed at assessing
13 years of data ( from 1998 to 2010), we used the AICc. The AICc is the AIC corrected for small
samples. Theoretically, as sample size increases, AICc converges to AIC. Another model selection
unit is the Akaike weight, which can be either based on the AIC or the AICc. The Akaike weight is
a value between 0 and 1 representing the weighted mean probability of each model, i.e. the strength
of evidence in support of each model.

Each model was formulated as a regression as shown in Table [T] Based on the weight of each

model, we could select the most supported model for each 1/4° pixel.

3 Results

From the four hypotheses considered (critical depth; critical turbulence; critical light exposure, and
critical heat flux) within each 1/4° pixel, the one with the highest Akaike weight is selected as the
winning hypothesis (Figure [3), where we see that the critical depth seems to be the most frequent
winning hypothesis.

The spatial distribution of winning hypotheses shows no systematic pattern with regards to basin,
depth, or latitude (Figure [3). We also ran this analysis with two other bloom timing metrics: 5 %
above annual median (Siegel et al.| 2002} Racault et al., [2012; |[Henson et al., 2010) and maximum
increase in chlorophyll concentration (Rolinski et al., 2007} [Sharples et al.l 2006 Wiltshire et al.|

2008) and we found similar results: no systematic pattern (results not shown).



295

300

305

310

315

320

325

In spite of the general dominance of the critical depth hypothesis, there are, however, regions that
show some coherency: the critical turbulence appears to be well supported mainly off Newfoundland;
the critical heat flux has local support north of Iceland and in the Labrador Sea; the critical light
exposure appears to have a wider distribution with very low frequencies. Spatial distribution of
Akaike weights (Figure AT) indicate the strength of support for the "winning" hypothesis. There
are regions where the weights are close to 1, indicating that the corresponding models are clear
winners. Some of these regions are the same as the ones observed in Figure[3} for instance, offshore
of Newfoundland, suggesting a strong support for the critical turbulence hypothesis in this region.

A pixel-wise multimodel inference approach also allows the quantification of the number of oc-
currences of each of the four alternative hypotheses as the winning (Figure [3). There are no clear
differences in the ranking units of the three less frequent hypothesis (0.15, 0.11 and 0.07), whilst the
critical depth showed a higher ranking unit (0.67).

To better understand the effect of each physical component (L', L', M’, @', Q) within the four
hypotheses (Figure|[I), we built single-variable models (linear regressions) using each component as
variable for each location (Figure[d). The most frequent winning physical driver based on the Akaike
weights is heat flux Q’. Its spatial distribution dominates off Newfoundland, in the subpolar gyre and
intermediate gyre regions, and in the Bay of Biscay. Its dominance is however only slightly greater

than the other physical components.

4 Discussion

The phenology of spring bloom characteristics (e.g. initiation, peak) is thought to be controlled
by a number of mechanisms including bottom-up and top-down processes. Here we specifically
set out to test various bottom-up processes that can be used as indicators of phytoplankton surface
blooms, testing several simplified hypotheses across a broad extent of the North Atlantic. In this
regard, spring surface bloom initiation is problematic in that defining it has as much to do with
what limits the bloom amplitude as what starts it in the first place. Moreover, limiting factor(s)
can be the ultimate switching mechanism needed for a bloom to start. Instead, we seek to explain
what bottom-up processes determine the interannual variability of bloom development around the
time where, climatologically, one would expect the maximum rate of increase in surface chlorophyll
concentration. By quantifying each physical mechanism independently, we observe that, even though
there is no clear losing mechanism in the North Atlantic domain, |[Sverdrup, (1953)’s classical theory
(critical depth) still dominates; i.e. it has a superior evidence supporting the interannual variability
of timing across the greatest range of space in the North Atlantic (Figure[3).

All of the four alternative hypotheses are expressed as simple interpretations of what potentially
drives the surface blooms in the North Atlantic at the mesoscale (Figure [I). The models are con-

structed so as to be as simple as possible, using at most two physical observables (light intensity,

10
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light intensity integrated over the mixed layer depth, wind-driven mixing and heat flux) in various
combinations. Each model is based on one of the two classes of mechanisms discussed in the intro-
duction: mixed layer shoaling (critical depth) or active mixing (critical turbulence, critical light ex-
posure and critical heat flux). Our study shows the strength of the critical depth model and indicates
a dominance of the mixed layer shoaling over the active mixing mechanism, but not everywhere.

There is an apparent inconsistency between our results and some recently reported results, no-
tably by |Cole et al.|(2015) and Brody and Lozier| (2014). In the former, the strongest relationship
with bloom initiation was found with the date of zero heat flux (Q), while in the latter it was with
the shoaling of mixing length (essentially heat flux tempered by wind stress and stratification). There
are however several reasons why the results may differ. Firstly, Brody and Lozier| (2014) tested the
climatological bloom initiation date against the various drivers in a spatial context, rather than the
interannual variations in a temporal context as we do here. In contrast, |Cole et al.| (2015), while
maintaining the temporal aspect, reduced each seasonal cycle of potential drivers to a single annual
metric, e.g. the date when the mixed layer depth shoals most rapidly. Precisely how these different
aggregation processes influence the outcome of statistical treatments remains unresolved. More im-
portantly, the bloom initiation metric chosen by each of these studies are also different. |Cole et al.
(2015) chose the 5% above annual median as their metric (Siegel et al.l [2002); a metric that may
be less than reliable with regards to bloom initiation. [Brody and Lozier| (2014) used the date of first
increase of surface chlorophyll concentration (F}), specifically given by F}) =t : dC'/dt = 0 rather
than our date of maximum increase Ty = t : dC/dt = g. While it may be debated as to which of these
have greater significance (and for which ecosystem process), it also underscores an important issue;
that different milestones in the seasonal development of the spring bloom may well come under the
influence of different dynamics.

In our study, even though the critical depth hypothesis is the winner (most spatially frequent), the
spatial distribution of the winning model shows regions where the mixed layer shoaling mechanism
seems not to be supported. For instance, there is a dominance of the critical turbulence and critical
light exposure models in the Bay of Biscay. This may be due to the high degree of upwelling in this
region; hence the failure of critical depth hypothesis to predict surface bloom dynamics. Another
example occurs east of Newfoundland, where the critical turbulence and critical heat flux hypotheses
dominate. Both of these hypotheses have wind-driven mixing as a common parameter. In addition,
heat flux and light intensity are also key individual drivers in this region (as confirmed in Figure
[). These findings suggest that spring bloom seasonality in these regions may be driven by periods
of reduced active turbulent mixing, increasing exposure to light (Huisman et al. [1999; Taboadal
and Anadon| [2014). The region off Newfoundland is also very energetic (high physical forcing),
highly influenced by the subpolar gyre, and serves as a path for the northward movement of the Gulf
Stream waters. The failure of critical depth to explain the bloom dynamics in this region may be due

to subduction of cold waters from the subpolar gyre and the warm waters from the North Atlantic
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drift. This may explain why the critical turbulence and the critical heat flux were dominating in the
region east of Newfoundland and into the central North Atlantic. These 3D processes should be
tested in the future to help understand the dynamics of the North Atlantic system.

The explanatory power of the hypotheses that assume the mechanism of active mixing (critical
turbulence; critical light exposure and critical heat flux) is fairly evenly distributed (Figure[3). These
three hypotheses seem to operate with a switch-on mechanism, i.e. a number of conditions has to
be met for bloom growth, and any one may be the critical condition that triggers the growth spurt.
This interpretation is supported by comparing Figures [3| and 4] where the critical depth model is a
clear winner in the model inter-comparison, but only scores average when tested against individ-
ual parameters. In this case, the limiting conditions appear to be either light intensity or heat flux
(since all three have wind-driven mixing as a common parameter). Our results show that there is
no clear winning hypothesis among these three active mixing models, but there is a bias towards
mechanisms involving heat flux (Figure d). This finding is supported by [Taylor and Ferrari (2011a),
where a bloom develops due to the start of net warming, weakening turbulent mixing, and subse-
quent increase of the residence time of phytoplankton cells within the euphotic layer. In order for
this to happen, a standing stock of phytoplankton cells needs to exist a priori. The “seed stock” is
the left overs from the previous year that have been surviving all winter at depth due to convection.
As suggested by Backhaus et al.|(2003}|1999) and|Chiswell| (2011), deep convection spreads out the
overwintering remnants, but, as soon as stratification comes in, those lucky enough to be in the sur-
face start to bloom. From our results (Figure[3), we confirm that heat flux is a strong physical driver.
Thus, in regions where the critical depth is not the winning model, the active mixing mechanism
(either triggered by light intensity or heat flux) seems to play an important role.

The second most common physical property was wind-driven mixing (Figure @) and is the com-
mon parameter in the models concerning the active mixing mechanism. In the past, the importance
of wind-driven mixing has been shown by [Huisman et al.[|(1999); Huisman and Sommeijer| (2002)
and Huisman et al.| (2002)), and confirmed by [Taylor and Ferrari| (201 1al [b). The first group of authors
stresses a balance between wind-driven mixing and sinking rates, so that an intermediate mixing al-
lows both enough surface nutrient replenishment, and sufficient average light exposure. Recently,
Taboada and Anaddn| (2014) suggested that wind forcing (wind stress as a proxy for wind surface
mixing) played a key role in bloom timing and magnitude (see their Figures 5a and 5c). The results
shown by these authors are based on single-parameter hypotheses (not including heat flux) and con-
firm that spring blooms are triggered by different physical properties in different mesoscale regions.
Our results are thus in agreement, where wind stress is found as a common parameter within the
North Atlantic domain.

Winds have essentially two effects: turbulent mixing (Backhaus et al., 2003; [Townsend et al.,
1994)) which is only shallow (around 50 m in mid-latitudes), and surface cooling which promotes

deep convection (Backhaus et al.l 2003} Brody and Lozier, |2014)). Together with the cessation of
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convective overturn, wind stress decreases during the spring. Deep mixing is therefore no longer
active, and there is a shift from a deep-mixed regime to a shallow light-driven regime. However, it is
important to note that the depth of the mixed layer is not the same as the depth of vertical mixing of
plankton (Chiswell, |2011). These two depths only match when vertical mixing is at its limit (Taylor|
and Ferrari, [2011a)). In the presence of low vertical mixing, a surface bloom can initiate even if crit-
ical depth conditions (Sverdrupl [1953) are not met, i.e. even if the thermocline is deeper than the
critical depth. This mechanism is presented by (Chiswell| (2011)) as the “stratification-onset model”,
in which the author contends that the critical depth hypothesis is valid during autumn and winter,
when the deepening thermocline may suppress production due to downward mixing of plankton, but
not in spring, since the upper layers are not well mixed in plankton. The model is consistent with
the findings by [Taylor and Ferrari| (201 1a)), in which surface stratification results from cessation of
convective overturn and low wind stress. In our study, we show that the critical depth hypothesis is

still valuable to predict phytoplankton spring surface blooms in the North Atlantic.

Our findings have, however, assumptions that are worth considering. Firstly, we based the criti-
cal depth hypothesis on Sverdrup’s classical theory, thus only accounting for Ly . This makes the
model inherently simpler. The other three hypotheses use two parameters separately, and are there-
fore somewhat handicapped (higher penalty due to higher number of parameters) when compared to
the critical depth. We believe that this type of study would improve if similar combinations would be
found for the remaining hypotheses: critical turbulence, critical light exposure and critical heat flux.
For this reason, we tried to use a two-parameter approach (considering H’ and L’ separately) for the
critical depth hypothesis, so that the four models would have the same number of parameters, and
thus the AICc weights would be comparable. The critical depth explained by L’; alone showed to be
inherently superior (with a much stronger signal) than the combined H and L model, thus we chose
to keep our interpretation of the critical depth hypothesis using L. This underscores the point that
physical reasoning can come a long way in improving model predictions.

Secondly, we recognise that our study assumes that the same mechanism predicts surface bloom
timing at a given location for the entire time frame (from 1998 to 2010). However, it is conceivable
that different mechanisms may be best predictors in different years. Considering the high variability
in the spatial distribution of the models (Figure [3), it is reasonable to expect similar high temporal
variability. In the same way we observe that different mechanisms dominate in different regions,
intuitively, one can assume that different mechanisms will also dominate in different years. Indeed,
given the scatter in winning models, it is entirely conceivable that bloom timing is governed by a
limiting factor; that multiple conditions have to be met, any one of which may be the trigger in any
given year or location.

Thirdly, we also recognise that our study fails at assessing top-down mechanisms. A key hypoth-

esis that has been attempted by Brody and Lozier| (2014) is the “dilution-recoupling hypothesis”
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(Behrenfeld, 2010). [Brody and Lozier| (2014) found very little correspondence between seasonal
thermocline increases and integrated chlorophyll increases. However, as they noted, in order to suc-
cessfully study this hypothesis, one would require temporally and spatially distributed data on graz-
ing pressure and encounter rates between grazers and phytoplankton. Since such highly-resolved

data sets are not available, top-down mechanisms cannot be properly assessed at this time.

5 Conclusions

The complexity of spring bloom dynamics in the North Atlantic has been discussed since [Sver-
drup| (1953) published the “critical depth hypothesis”. The discussion took a different direction
when [Behrenfeld| (2010) suggested a top-down control of the phytoplankton seasonal cycle with
the “dilution-recoupling hypothesis”. Various studies followed the same line of thought (Behrenfeld
et al.,|2013cl|al |b; Irigoien et al.,2005). However, bottom-up factors are still the most studied (Siegel
et al.l 2002; [Huisman et al.| [1999; [Townsend et al. |1994; Taylor and Ferrari, [2011a), especially
because data is more readily available than for top-down factors. All these theories (Figure[I]) are
not necessarily contradictory. Instead, each one adds a missing element necessary to fully under-
stand spring bloom dynamics (Lindemann and St John| 2014)). Even though satellite observations
have provided great insight over the last decades, the picture is still one of complexity. Our study
thus confirms that a single hypothesis for what drives a North Atlantic spring bloom may be too
simplistic.

A consensus is yet to be reached regarding the onset of spring phytoplankton blooms in the North
Atlantic. Every theory published in the literature claims to best predict the timing of the spring
bloom. However, one cannot adopt a single hypothesis simply because all of the theories seem to
apply, either at shorter temporal or spatial scales. By revisiting four of the main hypotheses on the
subject, we are able to confirm that phytoplankton surface bloom dynamics in the highly-variable
North Atlantic are far too complex to be driven by the same mechanism in all places and in all
years. We show that, in terms of bottom-up processes alone, there is a dominant physical mechanism
(mixed layer shoaling) that best predicts the growing phase of North Atlantic phytoplankton blooms
at the mesoscale. However, some regions show coherent patterns, supporting the idea that there are
distinct physical phenomena driving spring surface blooms, rather than a single one. We believe

these findings to be relevant for the ongoing discussion on North Atlantic bloom onset.

Appendix A: Appendix A

Figure AlT]- Map of the Akaike weights of the winner model.
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Table 1. Models to explain the Rate of change Phenology Anomaly (R) were built based on published theories

regarding the bloom onset. These are indicators of physical processes observed in the North Atlantic.

Name Parameters Mathematical expression References
Critical Ly light intensity (L) | R~ a1 Ly + B Sverdrup7( 1953;Siegeli
depth integrated from the sur- et al.[(2002)

face to the mixed layer

depth (H)
Critical Q: heat flux. M: wind- | R~ a2,Q" + aopy M’ + 3> | [Huisman et al.| (1999);
turbulence driven mixing Huisman and Sommei-

jer| (2002); Huisman!
et al.|(2002)

Critical light | L: light intensity. M: | R~ asoL’ +aspM’' + B3 | [Townsend et al.|(1994)

exposure wind-driven mixing

Critical heat | Q: heat flux. M: wind- | R~ a3,Q0 + azp M’ 433 | [Taylor and  Ferrari
flux driven mixing (2011al |b)
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Figure 1. Definitions of each mechanism: a) critical depth; b) critical turbulence; c) critical light exposure; d)
critical heat flux (Table [T). Grey vertical area: 30 days prior to the date of climatological maximum rate of
change in chlorophyll concentration; open circles: average conditions during the 30 days. Lines show: mixed
layer depth (H, light blue), photosynthetic active radiation (L, dashed red), integrated light over the mixed layer
depth (L, filled red), heat flux (@, orange), and wind-driven mixing (M, dark blue).

21



(€]

C(T,)

Time

Figure 2. Calculation of the rate of change phenology anomaly for each location z,y, i.e. each 1/4° pixel,
(R;(z,y)). (a) Each seasonal cycle (dashed, black and blue lines) is used to estimate the climatology (C'(z,y,t),
darkred line). (b) The maximum increase g in C' and the day on which it occurs (7p) are used as a reference to
estimate how delayed or advanced each year surface bloom is. (c) A 30-day window around the 7p is isolated
for each year seasonal cycle. R;(x,y) is estimated from the difference between annual C; (Tp) and climatology

C(To) and g. The R;(z,y) is thus a value in days.
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Figure 3. Selected model for each 1/4° pixel (top), and relative frequency of each model (bottom). C. depth:
critical depth; C. turbulence: critical turbulence; C. light exposure critical light exposure; C. heat flux: critical

heat flux. Only pixels where the weight of the winning model is higher than 30 %, and the bottom depth exceeds

200 m are used in this map.
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Figure 4. Selected variable for each 1/4° pixel (top), and relative frequency of each single-variable model
(bottom). PAR integrated to the MLD: L’;; PAR: L’; wind-driven mixing: M’; heat flux: Q' and start of net
warming: Q. Only pixels where the weight of the winner model is higher than 30 %, and the bottom depth

exceeds 200 m are used in this map.

24



o

N~

Lo

©

o

©
[}
°
2
E Lo
-

o

m i

YA, 8 TR ]
\ - nie oo ol R R P
N P N R
o Tk N, S SRR T [t g e L TR
8 M R B i
2 i T e TR b )
N | | | |
-70 -60 -50 -40 -30 -20 -10 0
Longitude
. . . .
0.0 0.2 0.4 0.6 0.8 1.0
AlCc's weights

Figure A 1. Akaike weights of the selected model for each 1/4° pixel as in Figure |3|in the main manuscript.
Only pixels where the weight of the winner model is higher than 30 %, and the bottom depth exceeds 200 m

are used in this map.
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