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Abstract. Several hypotheses have been proposed for the onset of the spring phytoplankton bloom

in the North Atlantic. Our main objective is to examine which bottom-up processes can best predict

the annual increase in surface phytoplankton concentration in the North Atlantic by applying novel

phenology algorithms to ocean colour data. We construct indicator fields and time series which, in

various combinations, provide models consistent with the principle dynamics previously proposed.5

Using a multimodel inference approach, we investigate the evidence supporting these models, and

how it varies in space. We show that, in terms of bottom-up processes alone, there is a dominant

physical mechanism, namely mixed layer shoaling, that best predicts the interannual variation in the

initial increase in surface chlorophyll across large sectors of the North Atlantic. We further show

that different regions are governed by different physical phenomena, and that wind-driven mixing10

is a common component with either heat flux or light as triggers. We believe these findings to be

relevant to the ongoing discussion on North Atlantic bloom onset.

1 Introduction

About half of global primary production is performed by marine phytoplankton. Phytoplankton pro-

duction fuels marine ecosystems and the harvesting of marine living resources, as well as playing15

an important role in global carbon cycling (Field et al., 1998). In many parts of the world’s oceans,

marine primary production undergoes a distinct seasonal cycle, with the major part of production oc-

curring in the spring bloom (Longhurst, 1995; Martinez et al., 2011; Platt et al., 2010). This seasonal

cycle is particularly apparent in the North Atlantic (Yoder et al., 1993), where it imprints seasonal

variations in species abundance and annual routines (e.g. spawning, migration) throughout the ma-20
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rine food web from zooplankton (Gaard, 2000; Gislason and Silva, 2012; Heath et al., 2000), to fish

(Trenkel et al., 2014; Badcock and Merrett, 1976) and marine mammals (Pauly et al., 1998). In the

North Atlantic, the progression of primary production throughout the year, and its variation between

years, is commonly used as a proxy for ecosystem state (Townsend et al., 1994; Frajka-Williams and

Rhines, 2010; Lévy et al., 2005). The North Atlantic spring bloom is an important biological event25

and has attracted considerable attention during the last decades (Behrenfeld, 2010; Chiswell et al.,

2013; Platt et al., 2003).

Phenology is the term used to describe the study of the timing of annual recurring biological

events, such as the observed “greening” of the surface ocean, an indicator of bloom initiation. Phe-

nology provides a staple for understanding the cascading fluctuations throughout the food web. To30

achieve this, a good phenology metric should be accurate, precise, and sensitive to the underlying

environmental processes, both physical or biological (Ferreira et al., 2014). Much of the recent in-

terest in spring bloom dynamics (Behrenfeld, 2010; Chiswell et al., 2013) concerns the mechanisms

that influence different characteristics of the annual cycle.

Chlorophyll concentration is, arguably, the most important ecological variable setting the pace35

of life in temperate and high latitude seas. In this study, we use surface chlorophyll concentrations

as derived from satellite ocean colour to detect spring bloom initiation (Cole et al., 2012; Sasaoka

et al., 2011; Brody et al., 2013). We thus assume that the chlorophyll concentration at the surface

represents that of the surface mixed layer (Evans and Parslow, 1985). While we note that some

aspects of bloom dynamics are more properly described by integrating phytoplankton biomass over40

the mixed layer (Behrenfeld, 2010), it is the surface chlorophyll that is the most readily accessible

via the highly-resolved (both spatially and temporally) ocean colour products.

There are essentially three environmental processes that can change the surface chlorophyll con-

centration: phytoplankton growth through light and nutrients; loss terms, such as respiration, grazing,

coagulation and sinking; and dilution through mixed layer deepening. These processes are particu-45

larly important during two key phases of the seasonal cycle: 1) events that lead to an increase in

phytoplankton biomass - bloom initiation; and 2) conditions that halt the net increase in biomass -

the peak of the bloom. Phytoplankton biomass will increase whenever the growth rate exceeds the

loss rate (Sverdrup, 1953). This picture, with regards the distinction between biomass and surface

chlorophyll concentration, is somewhat complicated by dilution; a deepening mixed layer dilutes the50

concentration but has no effect on the biomass, a process that has repercussion on the feeding success

and thus population dynamics of grazers. However, a shoaling mixed layer has no direct influence

on the concentration but removes biomass to some extent. These processes and their implications for

phytoplankton, the resources they rely on, and their grazers, have been carefully considered in recent

re-analyses of spring bloom dynamics (Behrenfeld et al., 2013a; Lindemann and St John, 2014).55

It is also fair to say that the annual trajectory of phytoplankton biomass and surface phytoplank-

ton concentration follow different dynamics (Chiswell et al., 2013). While we recognise that phy-
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toplankton biomass variation is an important aspect of spring bloom dynamics, in this paper, we

examine which fundamental physical processes may best predict the timing of the increase in sur-

face phytoplankton concentrations. Furthermore we do so since ocean surface colour is a readily60

available synoptic scale observable spanning many years of measurements. The interannual variabil-

ity in bloom timing is evaluated in terms of how much the increase in surface layer chlorophyll is

advanced or delayed compared to the day of climatological maximum rate of increase.

1.1 Mixed layer shoaling

Over the years, several theories have been put forwarded which, in one way or the other, try to model65

the growth and loss rates in terms of fundamental processes (Table 1 and Figure 1). The classic ap-

plication of the growth-loss view of bloom initiation relates to when photosynthetic production of

organic matter surpasses respiration (Sverdrup, 1953), where respiration refers to all losses and is

constant. This hypothesis is commonly referred to as the “critical depth hypothesis”, which states

that a bloom begins when the surface mixed layer shoals to a depth above the critical depth (where70

integrated production equals losses). The shoaling of the mixed layer means that individual phyto-

plankton cells remain longer in the euphotic zone (Siegel et al., 2002; Sverdrup, 1953; Chiswell,

2011). By extension, this suggests that the light intensity integrated over the mixed layer is the most

relevant factor driving phytoplankton blooms in the North Atlantic. Here, we term this hypothesis

the “critical depth model” (Table 1).75

1.2 Active mixing

Mixed layer shoaling, however, is not the only process which can increase the residence time of

primary producers in the well-lit surface ocean. Similar effects can be driven by periods of low

surface mixing (Townsend et al., 1992). This has led to a series of alternative interpretations, which

highlight active mixing (specifically the lack thereof) as a key ingredient (Townsend et al., 1994;80

Huisman et al., 1999; Taylor and Ferrari, 2011a).

One of the first quantitative studies (Townsend et al., 1994) examined the combined effects of

wind-driven mixing and light: the hypothesis being that blooms can occur during periods when light

is low but increasing and turbulent mixing weakens. These conditions can be met well before the

surface mixed layer begins to shoal. We call this the “critical light exposure model” (Table 1).85

This type of reasoning can also lead to only considering the competing effects of stratification by

solar heating, and destratification by wind-driven mixing. This view encapsulates the key elements

of the “critical turbulence model” (Huisman et al., 1999, 2002), where brief interludes in mixing and

heating produce a stable layer in which phytoplankton cells are retained within the euphotic layer.

Thus, a balance between heat-flux and wind-driven mixing may explain North Atlantic phytoplank-90

ton seasonality (Table 1).
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More recently, Taylor and Ferrari (2011b) have shown that blooms may be detected much earlier

than the shoaling of the mixed layer depth, and it has been proposed that blooms can be initiated as

soon as deep convection ceases (Taylor and Ferrari, 2011a). That is, as soon as the ocean experiences

a net inward heat flux. In this context, the timing of the transition from net cooling to net warming is95

a key element linked to the variability of phytoplankton seasonality. We term this the “critical heat

flux model” (Table 1).

1.3 Other processes not considered

There have been theories also focusing on specific regional effects. For instance, Mahadevan et al.

(2012) were able to link bloom onset to eddy-driven stratification, prior to net warming. Fronts were100

also found to trigger high-latitude blooms by reduced mixing, which explains high chlorophyll lev-

els in light-limited regions (Taylor and Ferrari, 2011b). Other studies (Frajka-Williams and Rhines,

2010; McGillicuddy et al., 2007; Garçon et al., 2001) have also linked spring bloom initiation to off-

shore advection, eddy-induced upwelling or river runoff. Finally, oceanic convection has been found

responsible for a significant vertical transport, thus maintaining a winter stock of phytoplankton in105

the deep mixed layer that can potentially re-seed the spring bloom (Backhaus et al., 1999, 2003).

Behrenfeld (2010) adopted a different approach by examining the influence of dynamic top-down

controls, suggesting the “dilution-recoupling hypothesis”. This is a concept that is implicit in Evans

and Parslow (1985)’s model. Behrenfeld (2010)’s hypothesis proposes that a vertically integrated

biomass increases in mid-winter with the increase of day length, even when the mixed layer depth is110

at its deepest, and reaches its maximum with the recoupling of grazers due to stratification. Unfor-

tunately, as also noted by Behrenfeld (2010), data on top-down controls remain elusive at the spatial

and temporal resolutions necessary to test this hypothesis against the complex structure of North

Atlantic phytoplankton seasonality.

115

1.4 When and why does a surface bloom start?

As noted by Cole et al. (2015), assessing the drivers of bloom initiation variability may lead to

the understanding of what starts the bloom in the first place. Despite all of the above mentioned

hypotheses, there is still no clear consensus regarding a single main driver of North Atlantic spring

blooms. Additionally, the spatial application of these theories may not hold true in smaller regions,120

where local forcing plays a more important role. Nonetheless, the key process, and common to all

hypotheses of surface bloom initiation, is based on the spring stabilization of the water column,

where both light and nutrients are at sufficient levels: whether by mixed layer shoaling (Sverdrup,

1953), or by weakening turbulent mixing (Huisman et al., 1999, 2002; Taylor and Ferrari, 2011a;

Townsend et al., 1994; Taylor and Ferrari, 2011b). Their main differences reside in the physical125

proxy for bloom initiation: what physical indicator best predicts bloom timing?
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While there are a number of metrics that can be used to delineate bloom initiation (Yoder and

Kennelly, 2003; Siegel et al., 2002; Rolinski et al., 2007), our goal to seek a metric that can be

credibly related to the processes proposed above, i.e. those that relate to the preconditioning of the

water column prior to surface bloom initiation. In this, any metric that uses the bloom peak (such130

as the popular 5 % above annual median (Siegel et al., 2002)), or seasonally integrated chlorophyll,

will be handicapped because it inherently takes into account not only what starts the bloom, but

also what terminates it some weeks or months later. We seek instead a phenology metric that is not

confounded by the bloom peak, does not require winter values, and is a straightforward indicator of

the greening of the surface ocean as observed from space. Our metric is based on how advance or135

delayed the development of surface chlorophyll concentration is in a particular year compared to the

climatological date and rate of maximum concentration increase.

We construct four models based on the literature using a range of physical observations, primarily

from satellite but also model data, and describe key processes observed in the North Atlantic (Table

1 and Figure 1). In each case, we make the models as simple as possible - capturing the essential140

process dynamics in terms of at most two observable/estimated fields only.

We use the Information Theoretic (IT) approach to investigate which model for surface blooms

has the most support within the North Atlantic. The IT approach is a very useful tool when compar-

ing different models. In particular, it provides a rigorous framework for evaluating the evidence in

support of competing models. It does so by defining a priori a set of “multiple working hypotheses”145

rather than a single alternative to the null hypothesis. The IT approach is then followed by expressing

each hypothesis in quantitative terms that represent their strength of evidence to be further used in

the model selection (Burnham et al., 2011).

We conduct our study focusing on bottom-up controls that may trigger a North Atlantic phy-

toplankton surface bloom, and thus neglect the effect of top-down controls (grazing, (Behrenfeld,150

2010; Evans and Parslow, 1985; Irigoien et al., 2005)). Information on top-down controls is not

available at the spatial and temporal coverage needed to assess mesoscale physical forcing. In addi-

tion, as Chiswell (2011) shows, the seasonal cycle of surface chlorophyll differs from the vertically-

integrated chlorophyll. Behrenfeld (2010)’s “dilution-recoupling hypothesis” applied to vertically-

integrated chlorophyll blooms, while the other hypotheses (Sverdrup, 1953; Siegel et al., 2002; Platt155

et al., 1991; Huisman et al., 1999; Huisman and Sommeijer, 2002; Huisman et al., 2002; Townsend

et al., 1994; Taylor and Ferrari, 2011a, b) can be applied to surface chlorophyll. Our aim is to com-

pare the latter ones, in which it is assumed that surface blooms only take off when the surface waters

stabilise.
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2 Material and Methods160

2.1 Information Theoretic (IT) Approach

The main aspects of the IT framework (Burnham et al., 2011; Burnham and Anderson, 2002; Akaike,

1973) in the context of our study include (1) identifying plausible mechanistic hypotheses, and (2)

a strong reliance on the quantitative evidence of factor(s) affecting a response variable, rather than

a formal assessment of the statistical significance of such factor(s). In our study, (1) is expressed165

through mathematical descriptions of the different hypotheses to be tested (see Table 1 and Section

2.2), while (2) is covered by ranking the spatial evidence of the models using the concept of model

selection and multimodel inference (see Burnham et al. (2011) and Section 2.5).

2.2 Physical mechanisms

We are particularly interested in knowing how much information from raw data is correlated to sur-170

face chlorophyll. Raw data refers to the original data in their simplest form, without pre-processing.

Therefore, we quantitatively translate the fundamental physical processes that can be used to predict

a phytoplankton surface bloom in the North Atlantic into simple and straight-forward models (Table

1 and Figure 1).

Critical depth - A bloom initiates if the mixed layer depth (MLD, H) shoals below the critical175

depth, so light (photosynthetically active radiation, PAR, L) becomes available to phytoplank-

ton cells (Figure 1a) (Sverdrup, 1953; Siegel et al., 2002; Platt et al., 1991). Therefore, L

integrated over the H provides an estimate of the light available within the euphotic depth for

phytoplankton to grow.

Critical turbulence - A bloom initiates if there is a balance between buoyancy (heat flux, Q) and180

wind-driven mixing (M , Figure 1b) (Huisman et al., 1999; Huisman and Sommeijer, 2002;

Huisman et al., 2002).

Critical light exposure - A bloom initiates if wind-driven mixing (M ) is at a low enough level to

allow cells to experience surface light conditions (L, Figure 1c) (Townsend et al., 1994).

Critical heat flux - Bloom initiation is associated with the date when net warming starts (Q≥ 0),185

and low wind-driven mixing (M ) increases the residence time of phytoplankton in the euphotic

layer (Figure 1d) (Taylor and Ferrari, 2011a, b).

2.3 Data sets

In order to gather the information necessary to formulate the models for the North Atlantic domain,

we used satellite observations (chlorophyll concentration, attenuation coefficient and photosynthet-190
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ically active radiation), model estimations for the variables where satellite data was not available

(mixed layer depth), and model and observational merged data (wind stress and heat flux).

We used products derived from the European Node for Global Ocean Colour (GlobColour Project,

http://www.globcolour.info/). The GlobColour Project blends observational data from the Sea-viewing

Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS-195

AQUA), and the Medium Resolution Imaging Spectrometer (MERIS) instruments by using the

Garver-Siegel-Maritorena (GSM) algorithm (Maritorena et al., 2002) to generate a merged, global

ocean colour product. Combining the three sensors increases the data coverage in both time and

space, thus providing significantly elevated spatio-temporal coverage (Maritorena et al., 2010), mak-

ing it a common choice for phenology studies (Cole et al., 2012; Kahru et al., 2011). For this study,200

we chose to use daily, 1/4◦ resolution level 3 mean chlorophyll concentration (C) and attenuation

coefficient (Kd) products (based on the analysis performed by Ferreira et al. (2014)), from 1998 to

2010 inclusive, thus providing a total of 13 years of data.

The surface photosynthetically active radiation (PAR, L) was obtained from the SeaWifs data

center (http://oceancolor.gsfc.nasa.gov/). We used daily, 9 km resolution product from 1998 to 2010.205

These data were further gridded onto 1/4◦ using linear interpolation to match the spatial resolution

of the other data sets.

The mixed layer PAR (LH ) was defined as L integrated from the surface to the depth of the mixed

layer H:

LH =
L

HKd
(1 − e −HKd) (1)210

using the relevant Kd reported by Irwin et al. (2012) and Cole et al. (2015).

Mixed layer depth (MLD, H) data were obtained from TOPAZ 4 reanalysis (Sakov et al., 2012).

The TOPAZ system is a coupled ocean-sea ice data simulation system for the North Atlantic and

Arctic Ocean with a resolution of 12-16 km, and is the main forecasting system for the Arctic

Ocean in Copernicus (http://www.myocean.eu) and the Norwegian contribution to the Global Ocean215

Data Assimilation Experiment (GODAE). It uses the Hybrid Coordinate Ocean Model (HYCOM,

http://hycom.org/hycom/) (Bleck, 2002). HYCOM is coupled to a EVP sea ice model (Hunke and

Dukowicz, 1997) and a thermodynamic module (Drange et al., 1996). The model assimilates sea

surface temperature, altimetry, ice concentration, ice drift, and available in situ measurements with

the ensemble Kalman Filter (Evensen, 2003). The model daily output is binned onto a 1/4◦ regular220

grid. The MLD is calculated using a density criteria with a threshold of 0.01 kg m−3 (Petrenko et al.,

2013) from 1998 to 2010.

Wind stress (τwind) is used as a measure for wind-driven mixing (M ) (Simpson et al., 1981;

Taboada and Anadón, 2014) and was estimated by using: M ∝ |τwind|
3
2 , which is proportional to

the power exerted by the wind on the surface ocean and the turbulent kinetic energy used in Brody225

and Lozier (2014)’s calculations of the mixing length scale.
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Both τwind and heat flux (Q) data were gathered on a spatial resolution of 1.875◦x 1.905◦from the

National Centers for Environmental Prediction (NCAR) and the National Center for Atmospheric

Research (NCEP) (Kalnay et al., 1996). These data sets were further gridded onto 1/4◦ using linear

interpolation to match the spatial resolution of the other data sets.230

All data sets started on October 1, 1997. We only focused on latitudes north of 40◦N due to the fact

that lower latitudes have a less well-defined seasonal cycle (Follows and Dutkiewicz, 2011; Brody

and Lozier, 2014).

2.4 Metrics

One of the fundamental aspects of spring bloom is the rapid increase in surface chlorophyll concen-235

tration; a phenomenon that can be interpreted as bloom initiation. In this work, we choose a bloom

initiation metric that relates to how advanced or delayed the surface chlorophyll concentration is in

a particular year, compared to the climatological date of maximum surface concentration increase.

We term this the rate of change phenology anomaly (RPA, R). This metric has the advantage of

not depending on the maximum chlorophyll concentration (an indicator of the peak of the bloom).240

Neither does it depend on winter values, which are usually missing from remote sensing products

(Ferreira et al., 2014); or on vertical integration (Behrenfeld, 2010); all of which introduce extrane-

ous factors into the mechanistic reasoning as to the onset of a bloom. These are all limitations that

occur in many other metrics used in the literature (Siegel et al., 2002; Sharples et al., 2006; Brody

and Lozier, 2014). We decided to use an anomaly of surface chlorophyll because it is a more relevant245

measure in regards to higher trophic levels and is one we believe is closer to bloom preconditioning.

Additionally, in order to use an integrated chlorophyll field, we would need to use modelled mixed

layer depth, which is incompatible with testing one of our key models.

At each location x,y (each 1/4◦ pixel), we estimate the climatological pattern of surface chloro-

phyll concentration C̄(x,y, t) by applying a generalized additive model (GAM) to the observations250

from 1998 to 2010 (Figure 2). We then calculate the day of the year where the climatological mean

exhibits the maximum rate of increase g(x,y) =max{dC̄/dt}. We define the climatological date of

maximum increase as T0 = t : dC̄/dt= g, and the climatological chlorophyll concentration on that

day we define as C̄0 = C̄(x,y,T0). For each year i and location x,y, we fit a GAM with a smooth

spline on the period T0± 15 days for observed surface chlorophyll to produce C ′i(x,y, t). Lastly255

we define the rate of change phenology anomaly as Ri(x,y) =
C′

i(x,y,T0)−C̄(x,y,T0)
g(x,y) . Thus, the RPA

metric Ri(x,y) is a value in days and relates to how advanced or delayed the seasonal development

of chlorophyll concentration is in each year i compared to the climatology of the bloom. We set a

threshold that at least 3 observations must exist within the 30-day window for the RPA method to

be valid. We apply a spatial kriging with a maximum radius of 250 km to fill in pixels where the260

method cannot be used, e.g. due to missing data around T0 in some years, or low seasonality.
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We investigated the spatially dependent ranking of the models (Table 1 and Figure 1) using the

IT approach. Thus, we constructed indicator fields and time series which, in various combinations,

provide models consistent with the principle physical dynamics observed in the North Atlantic. At

each location, we apply a centered moving average of 30 days to the physical driver observations and265

these will be referred to asL′,L′H ,M ′ andQ′. We also useQ′0 for the date whenQ′ becomes positive

(start of net warming) and remains positive for seven consecutive days. We further applied an inverse

distance weighted interpolation (using the weighted average of the values at the known pixels) to all

thresholds to fill in the pixels where the thresholds could not be estimated. All pixels in waters

shallower than 200 m were removed as coastal regions have higher associated biases (Maritorena270

et al., 2010) due to high turbidity and consequent different optical properties (McCain et al., 2006;

Antoine et al., 1996; Longhurst et al., 1995; Sathyendranath et al., 2001).

2.5 Analysis

There are several model selection tools that can be used for comparing and ranking models. In our IT

approach, we used the Akaike Information Criterion (AIC) (Burnham et al., 2011), which is based275

on the residual sum of squares (RSS) from each model. By comparing and ranking the evidence

from different models, their relative importance can be quantified. Since we only aimed at assessing

13 years of data ( from 1998 to 2010), we used the AICc. The AICc is the AIC corrected for small

samples. Theoretically, as sample size increases, AICc converges to AIC. Another model selection

unit is the Akaike weight, which can be either based on the AIC or the AICc. The Akaike weight is280

a value between 0 and 1 representing the weighted mean probability of each model, i.e. the strength

of evidence in support of each model.

Each model was formulated as a regression as shown in Table 1. Based on the weight of each

model, we could select the most supported model for each 1/4◦ pixel.

3 Results285

From the four hypotheses considered (critical depth; critical turbulence; critical light exposure, and

critical heat flux) within each 1/4◦ pixel, the one with the highest Akaike weight is selected as the

winning hypothesis (Figure 3), where we see that the critical depth seems to be the most frequent

winning hypothesis.

The spatial distribution of winning hypotheses shows no systematic pattern with regards to basin,290

depth, or latitude (Figure 3). We also ran this analysis with two other bloom timing metrics: 5 %

above annual median (Siegel et al., 2002; Racault et al., 2012; Henson et al., 2010) and maximum

increase in chlorophyll concentration (Rolinski et al., 2007; Sharples et al., 2006; Wiltshire et al.,

2008) and we found similar results: no systematic pattern (results not shown).
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In spite of the general dominance of the critical depth hypothesis, there are, however, regions that295

show some coherency: the critical turbulence appears to be well supported mainly off Newfoundland;

the critical heat flux has local support north of Iceland and in the Labrador Sea; the critical light

exposure appears to have a wider distribution with very low frequencies. Spatial distribution of

Akaike weights (Figure A1) indicate the strength of support for the "winning" hypothesis. There

are regions where the weights are close to 1, indicating that the corresponding models are clear300

winners. Some of these regions are the same as the ones observed in Figure 3: for instance, offshore

of Newfoundland, suggesting a strong support for the critical turbulence hypothesis in this region.

A pixel-wise multimodel inference approach also allows the quantification of the number of oc-

currences of each of the four alternative hypotheses as the winning (Figure 3). There are no clear

differences in the ranking units of the three less frequent hypothesis (0.15, 0.11 and 0.07), whilst the305

critical depth showed a higher ranking unit (0.67).

To better understand the effect of each physical component (L′H , L′, M ′, Q′, Q′0) within the four

hypotheses (Figure 1), we built single-variable models (linear regressions) using each component as

variable for each location (Figure 4). The most frequent winning physical driver based on the Akaike

weights is heat fluxQ′. Its spatial distribution dominates off Newfoundland, in the subpolar gyre and310

intermediate gyre regions, and in the Bay of Biscay. Its dominance is however only slightly greater

than the other physical components.

4 Discussion

The phenology of spring bloom characteristics (e.g. initiation, peak) is thought to be controlled

by a number of mechanisms including bottom-up and top-down processes. Here we specifically315

set out to test various bottom-up processes that can be used as indicators of phytoplankton surface

blooms, testing several simplified hypotheses across a broad extent of the North Atlantic. In this

regard, spring surface bloom initiation is problematic in that defining it has as much to do with

what limits the bloom amplitude as what starts it in the first place. Moreover, limiting factor(s)

can be the ultimate switching mechanism needed for a bloom to start. Instead, we seek to explain320

what bottom-up processes determine the interannual variability of bloom development around the

time where, climatologically, one would expect the maximum rate of increase in surface chlorophyll

concentration. By quantifying each physical mechanism independently, we observe that, even though

there is no clear losing mechanism in the North Atlantic domain, Sverdrup (1953)’s classical theory

(critical depth) still dominates; i.e. it has a superior evidence supporting the interannual variability325

of timing across the greatest range of space in the North Atlantic (Figure 3).

All of the four alternative hypotheses are expressed as simple interpretations of what potentially

drives the surface blooms in the North Atlantic at the mesoscale (Figure 1). The models are con-

structed so as to be as simple as possible, using at most two physical observables (light intensity,
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light intensity integrated over the mixed layer depth, wind-driven mixing and heat flux) in various330

combinations. Each model is based on one of the two classes of mechanisms discussed in the intro-

duction: mixed layer shoaling (critical depth) or active mixing (critical turbulence, critical light ex-

posure and critical heat flux). Our study shows the strength of the critical depth model and indicates

a dominance of the mixed layer shoaling over the active mixing mechanism, but not everywhere.

There is an apparent inconsistency between our results and some recently reported results, no-335

tably by Cole et al. (2015) and Brody and Lozier (2014). In the former, the strongest relationship

with bloom initiation was found with the date of zero heat flux (Q′0), while in the latter it was with

the shoaling of mixing length (essentially heat flux tempered by wind stress and stratification). There

are however several reasons why the results may differ. Firstly, Brody and Lozier (2014) tested the

climatological bloom initiation date against the various drivers in a spatial context, rather than the340

interannual variations in a temporal context as we do here. In contrast, Cole et al. (2015), while

maintaining the temporal aspect, reduced each seasonal cycle of potential drivers to a single annual

metric, e.g. the date when the mixed layer depth shoals most rapidly. Precisely how these different

aggregation processes influence the outcome of statistical treatments remains unresolved. More im-

portantly, the bloom initiation metric chosen by each of these studies are also different. Cole et al.345

(2015) chose the 5% above annual median as their metric (Siegel et al., 2002); a metric that may

be less than reliable with regards to bloom initiation. Brody and Lozier (2014) used the date of first

increase of surface chlorophyll concentration (F ′0), specifically given by F ′0 = t : dC̄/dt= 0 rather

than our date of maximum increase T0 = t : dC̄/dt= g. While it may be debated as to which of these

have greater significance (and for which ecosystem process), it also underscores an important issue;350

that different milestones in the seasonal development of the spring bloom may well come under the

influence of different dynamics.

In our study, even though the critical depth hypothesis is the winner (most spatially frequent), the

spatial distribution of the winning model shows regions where the mixed layer shoaling mechanism

seems not to be supported. For instance, there is a dominance of the critical turbulence and critical355

light exposure models in the Bay of Biscay. This may be due to the high degree of upwelling in this

region; hence the failure of critical depth hypothesis to predict surface bloom dynamics. Another

example occurs east of Newfoundland, where the critical turbulence and critical heat flux hypotheses

dominate. Both of these hypotheses have wind-driven mixing as a common parameter. In addition,

heat flux and light intensity are also key individual drivers in this region (as confirmed in Figure360

4). These findings suggest that spring bloom seasonality in these regions may be driven by periods

of reduced active turbulent mixing, increasing exposure to light (Huisman et al., 1999; Taboada

and Anadón, 2014). The region off Newfoundland is also very energetic (high physical forcing),

highly influenced by the subpolar gyre, and serves as a path for the northward movement of the Gulf

Stream waters. The failure of critical depth to explain the bloom dynamics in this region may be due365

to subduction of cold waters from the subpolar gyre and the warm waters from the North Atlantic
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drift. This may explain why the critical turbulence and the critical heat flux were dominating in the

region east of Newfoundland and into the central North Atlantic. These 3D processes should be

tested in the future to help understand the dynamics of the North Atlantic system.

The explanatory power of the hypotheses that assume the mechanism of active mixing (critical370

turbulence; critical light exposure and critical heat flux) is fairly evenly distributed (Figure 3). These

three hypotheses seem to operate with a switch-on mechanism, i.e. a number of conditions has to

be met for bloom growth, and any one may be the critical condition that triggers the growth spurt.

This interpretation is supported by comparing Figures 3 and 4, where the critical depth model is a

clear winner in the model inter-comparison, but only scores average when tested against individ-375

ual parameters. In this case, the limiting conditions appear to be either light intensity or heat flux

(since all three have wind-driven mixing as a common parameter). Our results show that there is

no clear winning hypothesis among these three active mixing models, but there is a bias towards

mechanisms involving heat flux (Figure 4). This finding is supported by Taylor and Ferrari (2011a),

where a bloom develops due to the start of net warming, weakening turbulent mixing, and subse-380

quent increase of the residence time of phytoplankton cells within the euphotic layer. In order for

this to happen, a standing stock of phytoplankton cells needs to exist a priori. The “seed stock” is

the left overs from the previous year that have been surviving all winter at depth due to convection.

As suggested by Backhaus et al. (2003, 1999) and Chiswell (2011), deep convection spreads out the

overwintering remnants, but, as soon as stratification comes in, those lucky enough to be in the sur-385

face start to bloom. From our results (Figure 3), we confirm that heat flux is a strong physical driver.

Thus, in regions where the critical depth is not the winning model, the active mixing mechanism

(either triggered by light intensity or heat flux) seems to play an important role.

The second most common physical property was wind-driven mixing (Figure 4) and is the com-

mon parameter in the models concerning the active mixing mechanism. In the past, the importance390

of wind-driven mixing has been shown by Huisman et al. (1999); Huisman and Sommeijer (2002)

and Huisman et al. (2002), and confirmed by Taylor and Ferrari (2011a, b). The first group of authors

stresses a balance between wind-driven mixing and sinking rates, so that an intermediate mixing al-

lows both enough surface nutrient replenishment, and sufficient average light exposure. Recently,

Taboada and Anadón (2014) suggested that wind forcing (wind stress as a proxy for wind surface395

mixing) played a key role in bloom timing and magnitude (see their Figures 5a and 5c). The results

shown by these authors are based on single-parameter hypotheses (not including heat flux) and con-

firm that spring blooms are triggered by different physical properties in different mesoscale regions.

Our results are thus in agreement, where wind stress is found as a common parameter within the

North Atlantic domain.400

Winds have essentially two effects: turbulent mixing (Backhaus et al., 2003; Townsend et al.,

1994) which is only shallow (around 50 m in mid-latitudes), and surface cooling which promotes

deep convection (Backhaus et al., 2003; Brody and Lozier, 2014). Together with the cessation of
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convective overturn, wind stress decreases during the spring. Deep mixing is therefore no longer

active, and there is a shift from a deep-mixed regime to a shallow light-driven regime. However, it is405

important to note that the depth of the mixed layer is not the same as the depth of vertical mixing of

plankton (Chiswell, 2011). These two depths only match when vertical mixing is at its limit (Taylor

and Ferrari, 2011a). In the presence of low vertical mixing, a surface bloom can initiate even if crit-

ical depth conditions (Sverdrup, 1953) are not met, i.e. even if the thermocline is deeper than the

critical depth. This mechanism is presented by Chiswell (2011) as the “stratification-onset model”,410

in which the author contends that the critical depth hypothesis is valid during autumn and winter,

when the deepening thermocline may suppress production due to downward mixing of plankton, but

not in spring, since the upper layers are not well mixed in plankton. The model is consistent with

the findings by Taylor and Ferrari (2011a), in which surface stratification results from cessation of

convective overturn and low wind stress. In our study, we show that the critical depth hypothesis is415

still valuable to predict phytoplankton spring surface blooms in the North Atlantic.

Our findings have, however, assumptions that are worth considering. Firstly, we based the criti-

cal depth hypothesis on Sverdrup’s classical theory, thus only accounting for LH . This makes the

model inherently simpler. The other three hypotheses use two parameters separately, and are there-420

fore somewhat handicapped (higher penalty due to higher number of parameters) when compared to

the critical depth. We believe that this type of study would improve if similar combinations would be

found for the remaining hypotheses: critical turbulence, critical light exposure and critical heat flux.

For this reason, we tried to use a two-parameter approach (considering H ′ and L′ separately) for the

critical depth hypothesis, so that the four models would have the same number of parameters, and425

thus the AICc weights would be comparable. The critical depth explained by L′H alone showed to be

inherently superior (with a much stronger signal) than the combined H and L model, thus we chose

to keep our interpretation of the critical depth hypothesis using LH . This underscores the point that

physical reasoning can come a long way in improving model predictions.

Secondly, we recognise that our study assumes that the same mechanism predicts surface bloom430

timing at a given location for the entire time frame (from 1998 to 2010). However, it is conceivable

that different mechanisms may be best predictors in different years. Considering the high variability

in the spatial distribution of the models (Figure 3), it is reasonable to expect similar high temporal

variability. In the same way we observe that different mechanisms dominate in different regions,

intuitively, one can assume that different mechanisms will also dominate in different years. Indeed,435

given the scatter in winning models, it is entirely conceivable that bloom timing is governed by a

limiting factor; that multiple conditions have to be met, any one of which may be the trigger in any

given year or location.

Thirdly, we also recognise that our study fails at assessing top-down mechanisms. A key hypoth-

esis that has been attempted by Brody and Lozier (2014) is the “dilution-recoupling hypothesis”440
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(Behrenfeld, 2010). Brody and Lozier (2014) found very little correspondence between seasonal

thermocline increases and integrated chlorophyll increases. However, as they noted, in order to suc-

cessfully study this hypothesis, one would require temporally and spatially distributed data on graz-

ing pressure and encounter rates between grazers and phytoplankton. Since such highly-resolved

data sets are not available, top-down mechanisms cannot be properly assessed at this time.445

5 Conclusions

The complexity of spring bloom dynamics in the North Atlantic has been discussed since Sver-

drup (1953) published the “critical depth hypothesis”. The discussion took a different direction

when Behrenfeld (2010) suggested a top-down control of the phytoplankton seasonal cycle with

the “dilution-recoupling hypothesis”. Various studies followed the same line of thought (Behrenfeld450

et al., 2013c, a, b; Irigoien et al., 2005). However, bottom-up factors are still the most studied (Siegel

et al., 2002; Huisman et al., 1999; Townsend et al., 1994; Taylor and Ferrari, 2011a), especially

because data is more readily available than for top-down factors. All these theories (Figure 1) are

not necessarily contradictory. Instead, each one adds a missing element necessary to fully under-

stand spring bloom dynamics (Lindemann and St John, 2014). Even though satellite observations455

have provided great insight over the last decades, the picture is still one of complexity. Our study

thus confirms that a single hypothesis for what drives a North Atlantic spring bloom may be too

simplistic.

A consensus is yet to be reached regarding the onset of spring phytoplankton blooms in the North

Atlantic. Every theory published in the literature claims to best predict the timing of the spring460

bloom. However, one cannot adopt a single hypothesis simply because all of the theories seem to

apply, either at shorter temporal or spatial scales. By revisiting four of the main hypotheses on the

subject, we are able to confirm that phytoplankton surface bloom dynamics in the highly-variable

North Atlantic are far too complex to be driven by the same mechanism in all places and in all

years. We show that, in terms of bottom-up processes alone, there is a dominant physical mechanism465

(mixed layer shoaling) that best predicts the growing phase of North Atlantic phytoplankton blooms

at the mesoscale. However, some regions show coherent patterns, supporting the idea that there are

distinct physical phenomena driving spring surface blooms, rather than a single one. We believe

these findings to be relevant for the ongoing discussion on North Atlantic bloom onset.

Appendix A: Appendix A470

Figure A1 - Map of the Akaike weights of the winner model.

Acknowledgements. The data outputs from this study can be obtained by contacting ASA Ferreira at asofiaafer-

reira@gmail.com. GlobColor data were provided by accessing the GlobColour’s FTP server available at ftp://

14

ftp://ftp.acri.fr/
ftp://ftp.acri.fr/
ftp://ftp.acri.fr/


ftp.acri.fr/, supported by EU FP7 MyOcean and ESA GlobColor projects, using ESA ENVISAT MERIS, NASA

MODIS and SeaWiFS data. PAR was obtained from the SeaWifs data center available at http://oceancolor.475

gsfc.nasa.gov/. MLD was obtained from the Hybrid Coordinate Ocean Model (HYCOM) avialble at http:

//hycom.org/hycom/. Wind stress and heat flux were obtained from the Earth System Research Laboratory,

Physical Sciences Division, and are available at http://www.esrl.noaa.gov/psd/data/gridded/tables/daily.html.

This paper is a deliverable of the Nordic Centre for Research on Marine Ecosystems and Resources under Cli-

mate Change (NorMER), which is funded by the Norden Top-level Research Initiative sub-programme “Effect480

Studies and Adaptation to Climate Change”. AWV acknowledges the Danish Council for Strategic Research

and its support for the NAACOS project. The research leading to these results has received funding from the Eu-

ropean Union 7th Framework Programme (FP7 2007-2013) under grant agreement number 308299 (NACLIM

project).

15

ftp://ftp.acri.fr/
ftp://ftp.acri.fr/
http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
http://hycom.org/hycom/
http://hycom.org/hycom/
http://hycom.org/hycom/
http://www.esrl.noaa.gov/psd/data/gridded/tables/daily.html


References485

Akaike, H.: Information theory as an extension of the maximum likelihood principle, pp. 267–281, Akademiai

Kiado, Budapest, 1973.

Antoine, D., Andre, J., and Morel, A.: Oceanic primary production 2. Estimation at global scale from satellite

(coastal zone color scanner) chlorophyll, Global biogeochemical cycles, 10, 57–69, 1996.

Backhaus, J. O., Wehde, H., Hegseth, E. N., and Kämpf, J.: ’Phyto-convection’: the role of oceanic convection490

in primary production, Marine Ecology Progress Series, 189, 77–92, 1999.

Backhaus, J. O., Hegseth, E. N., Wehde, H., Irigoien, X., Hatten, K., and Logemann, K.: Convection and primary

production in winter, Marine Ecology Progress Series, 251, 1–14, 2003.

Badcock, J. and Merrett, N. R.: Midwater fishes in the eastern North Atlantic—I. Vertical distribution and asso-

ciated biology in 30 N, 23 W, with developmental notes on certain myctophids, Progress in Oceanography,495

7, 3–58, 1976.

Behrenfeld, M. J.: Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms, Ecology, 91,

977–989, 2010.

Behrenfeld, M. J., Boss, E. S., and Banse, K.: Resurrecting the Ecological Underpinnings of Ocean Plankton

Blooms, Annual Review of Marine Science, 6, 16.1–16.28, 2013a.500

Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S., and Siegel, D. A.: Annual cycles of ecological disturbance

and recovery underlying the subarctic Atlantic spring plankton bloom, Global biogeochemical cycles, 27,

526–540, doi:10.1002/gbc.20050, 2013b.

Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S., and Siegel, D. A.: Reply to a comment by Stephen M.

Chiswell on: “Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring505

plankton bloom” by MJ Behrenfeld et al. (2013), Global Biogeochemical Cycles, 27, 1294–1296, 2013c.

Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean mod-

elling, 4, 55–88, 2002.

Brody, S. R. and Lozier, M. S.: Changes in dominant mixing length scales as a driver of subpolar phytoplankton

bloom initiation in the North Atlantic, Geophysical Research Letters, 41, 3197–3203, 2014.510

Brody, S. R., Lozier, M. S., and Dunne, J. P.: A comparison of methods to determine phytoplankton bloom

initiation, Journal of Geophysical Research, 118, 2345–2357, 2013.

Burnham, K. P. and Anderson, D. R.: Model selection and multimodel inference: a practical information-

theoretic approach, Springer, New York, 2002.

Burnham, K. P., Anderson, D. R., and Huyvaert, K. P.: AIC model selection and multimodel inference in be-515

havioral ecology: some background, observations, and comparisons, Behavioral Ecology and Sociobiology,

65, 23–35, 2011.

Chiswell, S. M.: Annual cycles and spring blooms in phytoplankton: don’t abandon Sverdrup completely, Ma-

rine ecology progress series, 443, 39–50, 2011.

Chiswell, S. M., Bradford-Grieve, J., Hadfield, M. G., and Kennan, S. C.: Climatology of surface chlorophyll a,520

autumn-winter and spring blooms in the southwest Pacific Ocean, Journal of Geophysical Research: Oceans,

118, 1003–1018, 2013.

16

http://dx.doi.org/10.1002/gbc.20050


Cole, H., Henson, S., Martin, A., and Yool, A.: Mind the gap: The impact of missing data on

the calculation of phytoplankton phenology metrics, Journal of Geophysical Research, 117, C08 030,

doi:10.1029/2012JC008249, 2012.525

Cole, H. S., Henson, S., Martin, A. P., and Yool, A.: Basin-wide mechanisms for spring bloom initia-

tion: how typical is the North Atlantic?, ICES Journal of Marine Science: Journal du Conseil, p. fsu239,

doi:10.1093/icesjms/fsu239, 2015.

Drange, H., Simonsen, K., Environmental, N., and Center, R. S.: Formulation of air-sea fluxes in the ESOP2

version of MICOM, Nansen Environmental and Remote Sensing Center, Norway, 1996.530

Evans, G. T. and Parslow, J. S.: A model of annual plankton cycles, Biological Oceanography, 3, 327–347,

1985.

Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean dy-

namics, 53, 343–367, 2003.

Ferreira, A. S. A., Visser, A. W., MacKenzie, B. R., and Payne, M. R.: Accuracy and precision in the calculation535

of phenology metrics, Journal of Geophysical Research: Oceans, 119, doi:10.1002/2014JC010323, http://dx.

doi.org/10.1002/2014JC010323, 2014.

Field, C., Behrenfeld, M., Randerson, J., and Falkowski, P.: Primary production of the biosphere: integrating

terrestrial and oceanic components, Science, 281, 237–240, 1998.

Follows, M. J. and Dutkiewicz, S.: Modeling Diverse Communities of Marine Microbes, Annual Review of540

Marine Science, 3, 427–451, 2011.

Frajka-Williams, E. and Rhines, P. B.: Physical controls and interannual variability of the Labrador Sea spring

phytoplankton bloom in distinct regions, Deep Sea Research Part I: Oceanographic Research Papers, 57,

541–552, 2010.

Gaard, E.: Seasonal abundance and development of Calanus finmarchicus in relation to phytoplankton and545

hydrography on the Faroe Shelf, ICES Journal of Marine Science: Journal du Conseil, 57, 1605–1611, 2000.

Garçon, V. C., Oschlies, A., Doney, S. C., McGillicuddy, D., and Waniek, J.: The role of mesoscale variability

on plankton dynamics in the North Atlantic, Deep Sea Research Part II: Topical Studies in Oceanography,

48, 2199–2226, 2001.

Gislason, A. and Silva, T.: Abundance, composition, and development of zooplankton in the Subarctic Iceland550

Sea in 2006, 2007, and 2008, ICES Journal of Marine Science: Journal du Conseil, 69, 1263–1276, 2012.

Heath, M. R., Fraser, J. G., Gislason, A., Hay, S. J., Jónasdóttir, S. H., and Richardson, K.: Winter distribution

of Calanus finmarchicus in the Northeast Atlantic, ICES Journal of Marine Science: Journal du Conseil, 57,

1628–1635, 2000.

Henson, S., Sarmiento, J., Dunne, J., Bopp, L., Lima, I., Doney, S., John, J., and Beaulieu, C.: Detection of555

anthropogenic climate change in satellite records of ocean chlorophyll and productivity, Biogeosciences, 7,

621–640, 2010.

Huisman, J. and Sommeijer, B.: Maximal sustainable sinking velocity of phytoplankton species, Marine ecology

progress series, 244, 39 – 48, 2002.

Huisman, J., Oostveen, P. v., and Weissing, F. J.: Critical Depth and Critical Turbulence: Two Different Mecha-560

nisms for the Development of Phytoplankton Blooms, Limnology and oceanography, 44, 1781–1787, 1999.

17

http://dx.doi.org/10.1029/2012JC008249
http://dx.doi.org/10.1093/icesjms/fsu239
http://dx.doi.org/10.1002/2014JC010323
http://dx.doi.org/10.1002/2014JC010323
http://dx.doi.org/10.1002/2014JC010323
http://dx.doi.org/10.1002/2014JC010323


Huisman, J., Arrayás, M., Ebert, U., and Sommeijer, B.: How Do Sinking Phytoplankton Species Manage to

Persist?, The American Naturalist, 159, 245–254, 2002.

Hunke, E. and Dukowicz, J.: An elastic-viscous-plastic model for sea ice dynamics, Journal of Physical

Oceanography, 27, 1849–1867, 1997.565

Irigoien, X., Flynn, K., and Harris, R.: Phytoplankton blooms: a ‘loophole’in microzooplankton grazing im-

pact?, Journal of Plankton Research, 27, 313–321, 2005.

Irwin, A. J., Nelles, A. M., and Finkel, Z. V.: Phytoplankton niches estimated from field data, Limnology and

oceanography, 57, 787–797, 2012.

Kahru, M., Brotas, V., Manzano-Sarabia, M., and Mitchell, B.: Are phytoplankton blooms occurring earlier in570

the Arctic?, Global Change Biology, 17, 1733–1739, 2011.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., and

Woollen, J.: The NCEP/NCAR 40-year reanalysis project, Bulletin of the American meteorological Society,

77, 437–471, 1996.

Lévy, M., Lehahn, Y., André, J.-M., Mémery, L., Loisel, H., and Heifetz, E.: Production regimes in the575

northeast Atlantic: A study based on Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll and

ocean general circulation model mixed layer depth, Journal of Geophysical Research-Oceans, 110, C07S10,

doi:10.1029/2004JC002771, 2005.

Lindemann, C. and St John, M.: A seasonal diary of phytoplankton in the North Atlantic, Frontiers in Marine

Science, 1, 1–6, 2014.580

Longhurst, A.: Seasonal cycles of pelagic production and consumption, Progress in Oceanography, 36, 77–167,

1995.

Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An estimate of global primary production in the

ocean from satellite radiometer data, Journal of Plankton Research, 17, 1245–1271, 1995.

Mahadevan, A., D’Asaro, E., Lee, C., and Perry, M. J.: Eddy-Driven Stratification Initiates North Atlantic585

Spring Phytoplankton Blooms, Science, 337, 54–58, 2012.

Maritorena, S., Siegel, D. A., and Peterson, A. R.: Optimization of a semianalytical ocean color model for

global-scale applications, Applied Optics, 41, 2705–2714, 2002.

Maritorena, S., d’Andon, O. H. F., Mangin, A., and Siegel, D. A.: Merged satellite ocean color data products

using a bio-optical model: Characteristics, benefits and issues, Remote Sensing of Environment, 114, 1791–590

1804, 2010.

Martinez, E., Antoine, D., D’Ortenzio, F., and de Boyer Montegut, C.: Phytoplankton spring and fall

blooms in the North Atlantic in the 1980s and 2000s, Journal of Geophysical Research, 116, C11 029,

doi:10.1029/2010JC006836, 2011.

McCain, C., Hooker, S., Feldman, G., and Bontempi, P.: Satellite data for ocean biology, biogeochemistry, and595

climate research, Eos, Transactions American Geophysical Union, 87, 337–343, 2006.

McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S.,

Ewart, C., Falkowski, P. G., and Goldthwait, S. A.: Eddy/wind interactions stimulate extraordinary mid-ocean

plankton blooms, Science, 316, 1021–1026, 2007.

Pauly, D., Trites, A., Capuli, E., and Christensen, V.: Diet composition and trophic levels of marine mammals,600

ICES Journal of Marine Science: Journal du Conseil, 55, 467–481, 1998.

18

http://dx.doi.org/10.1029/2004JC002771
http://dx.doi.org/10.1029/2010JC006836


Petrenko, D., Pozdnyakov, D., Johannessen, J., Counillon, F., and Sychov, V.: Satellite-derived multi-year trend

in primary production in the Arctic Ocean, International Journal of Remote Sensing, 34, 3903–3937, 2013.

Platt, T., Bird, D. F., and Sathyendranath, S.: Critical depth and marine primary production, Proceedings of the

Royal Society of London. Series B: Biological Sciences, 246, 205–217, 1991.605

Platt, T., Fuentes-Yaco, C., and Frank, K. T.: Marine ecology: Spring algal bloom and larval fish survival,

Nature, 423, 398–399, 2003.

Platt, T., Sathyendranath, S., White, G., Fuentes-Yaco, C., Zhai, L., Devred, E., and Tang, C.: Diagnostic Prop-

erties of Phytoplankton Time Series from Remote Sensing, Estuaries and Coasts, 33, 428–439, 2010.

Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S., and Platt, T.: Phytoplankton phenology in the610

global ocean, Ecological Indicators, 14, 152–163, 2012.

Rolinski, S., Horn, H., Petzoldt, T., and Paul, L.: Identifying cardinal dates in phytoplankton time series to

enable the analysis of long-term trends, Oecologia, 153, 997–1008, 2007.

Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A.: TOPAZ4: an ocean-sea ice

data assimilation system for the North Atlantic and Arctic, Ocean Science, 8, 633–656, doi:10.5194/os-8-615

633-2012, http://www.ocean-sci.net/8/633/2012/, 2012.

Sasaoka, K., Chiba, S., and Saino, T.: Climatic forcing and phytoplankton phenology over the subarctic North

Pacific from 1998 to 2006, as observed from ocean color data, Geophysical Research Letters, 38, L15 609,

doi:10.1029/2011GL048299, 2011.

Sathyendranath, S., Cota, G., Stuart, V., Maass, H., and Platt, T.: Remote sensing of phytoplankton pigments: A620

comparison of empirical and theoretical approaches, International Journal of Remote Sensing, 22, 249–273,

2001.

Sharples, J., Ross, O., Scott, B., Greenstreet, S., and Fraser, H.: Inter-annual variability in the timing of strat-

ification and the spring bloom in the North-western North Sea, Continental Shelf Research, 26, 733–751,

2006.625

Siegel, D. A., Doney, S. C., and Yoder, J. A.: The North Atlantic Spring Phytoplankton Bloom and Sverdrup’s

Critical Depth Hypothesis, Science, 296, 730–733, 2002.

Simpson, J., Crisp, D., and Hearn, C.: The shelf-sea fronts: Implications of their existence and behaviour [and

discussion], Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical

Sciences, 302, 531–546, 1981.630

Sverdrup, H. U.: On Conditions for the Vernal Blooming of Phytoplankton, Journal du Conseil, 18, 287–295,

1953.

Taboada, F. G. and Anadón, R.: Seasonality of North Atlantic phytoplankton from space: impact of environ-

mental forcing on a changing phenology (1998–2012), Global change biology, 20, 698–712, 2014.

Taylor, J. R. and Ferrari, R.: Shutdown of turbulent convection as a new criterion for the onset of spring phyto-635

plankton blooms, Limnology and oceanography, 56, 2293–2307, 2011a.

Taylor, J. R. and Ferrari, R.: Ocean fronts trigger high latitude phytoplankton blooms, Geophysical Research

Letters, 38, L23 601, doi:10.1029/2011GL049312, 2011b.

Townsend, D. W., Keller, M. D., Sieracki, M. E., and Ackleson, S. G.: Spring phytoplankton blooms in the

absence of vertical water column stratification, Nature, 360, 59–62, 1992.640

19

http://dx.doi.org/10.5194/os-8-633-2012
http://dx.doi.org/10.5194/os-8-633-2012
http://dx.doi.org/10.5194/os-8-633-2012
http://www.ocean-sci.net/8/633/2012/
http://dx.doi.org/10.1029/2011GL048299
http://dx.doi.org/10.1029/2011GL049312


Townsend, D. W., Cammen, L. M., Holligan, P. M., Campbell, D. E., and Pettigrew, N. R.: Causes and con-

sequences of variability in the timing of spring phytoplankton blooms, Deep Sea Research Part I: Oceano-

graphic Research Papers, 41, 747–765, 1994.

Trenkel, V., Huse, G., MacKenzie, B., Alvarez, P., Arrizabalaga, H., Castonguay, M., Goñi, N., Grégoire, F.,

Hátún, H., and Jansen, T.: Comparative ecology of widely distributed pelagic fish species in the North At-645

lantic: implications for modelling climate and fisheries impacts, Progress in Oceanography, 129, 219–243,

doi:10.1016/j.pocean.2014.04.030, 2014.

Wiltshire, K., Malzahn, A., Wirtz, K., Greve, W., Janisch, S., Mangelsdorf, P., Manly, B., and Boersma, M.:

Resilience of North Sea phytoplankton spring bloom dynamics: An analysis of long-term data at Helgoland

Roads, Limnology and oceanography, 53, 1294–1302, 2008.650

Yoder, J. A. and Kennelly, M. A.: Seasonal and ENSO variability in global ocean phytoplankton chloro-

phyll derived from 4 years of SeaWiFS measurements, Global Biogeochemical Cycles, 17, 1112,

doi:10.1029/2002GB001942, 2003.

Yoder, J. A., McClain, C. R., Feldman, G. C., and Esaias, W. E.: Annual cycles of phytoplankton chlorophyll

concentrations in the global ocean: A satellite view, Global Biogeochemical Cycles, 7, 181–193, 1993.655

Table 1. Models to explain the Rate of change Phenology Anomaly (R) were built based on published theories

regarding the bloom onset. These are indicators of physical processes observed in the North Atlantic.

Name Parameters Mathematical expression References

Critical

depth

LH : light intensity (L)

integrated from the sur-

face to the mixed layer

depth (H)

R∼ α1L
′
H +β1 Sverdrup (1953); Siegel

et al. (2002)

Critical

turbulence

Q: heat flux. M : wind-

driven mixing

R∼ α2aQ
′+α2bM

′+β2 Huisman et al. (1999);

Huisman and Sommei-

jer (2002); Huisman

et al. (2002)

Critical light

exposure

L: light intensity. M :

wind-driven mixing

R∼ α3aL
′+α3bM

′+β3 Townsend et al. (1994)

Critical heat

flux

Q: heat flux. M : wind-

driven mixing

R∼ α3aQ
′
0 +α3bM

′+β3 Taylor and Ferrari

(2011a, b)
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Figure 1. Definitions of each mechanism: a) critical depth; b) critical turbulence; c) critical light exposure; d)

critical heat flux (Table 1). Grey vertical area: 30 days prior to the date of climatological maximum rate of

change in chlorophyll concentration; open circles: average conditions during the 30 days. Lines show: mixed

layer depth (H , light blue), photosynthetic active radiation (L, dashed red), integrated light over the mixed layer

depth (LH , filled red), heat flux (Q, orange), and wind-driven mixing (M , dark blue).
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Figure 2. Calculation of the rate of change phenology anomaly for each location x,y, i.e. each 1/4◦ pixel,

(Ri(x,y)). (a) Each seasonal cycle (dashed, black and blue lines) is used to estimate the climatology (C̄(x,y, t),

darkred line). (b) The maximum increase g in C̄ and the day on which it occurs (T0) are used as a reference to

estimate how delayed or advanced each year surface bloom is. (c) A 30-day window around the T0 is isolated

for each year seasonal cycle. Ri(x,y) is estimated from the difference between annual C′i(T0) and climatology

C̄(T0) and g. The Ri(x,y) is thus a value in days.
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Figure 3. Selected model for each 1/4◦ pixel (top), and relative frequency of each model (bottom). C. depth:

critical depth; C. turbulence: critical turbulence; C. light exposure critical light exposure; C. heat flux: critical

heat flux. Only pixels where the weight of the winning model is higher than 30 %, and the bottom depth exceeds

200 m are used in this map.
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Figure 4. Selected variable for each 1/4◦ pixel (top), and relative frequency of each single-variable model

(bottom). PAR integrated to the MLD: L′H ; PAR: L′; wind-driven mixing: M ′; heat flux: Q′ and start of net

warming: Q′0. Only pixels where the weight of the winner model is higher than 30 %, and the bottom depth

exceeds 200 m are used in this map.
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Figure A 1. Akaike weights of the selected model for each 1/4◦ pixel as in Figure 3 in the main manuscript.

Only pixels where the weight of the winner model is higher than 30 %, and the bottom depth exceeds 200 m

are used in this map.
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