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Abstract

The relationship between the partial pressure of carbon dioxide (pCO;) and dissolved
organic carbon (DOC) concentration in Brazilian lakes, encompassing 194 lakes across a
wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported
for lake waters, which was largely based on temperate lakes, we found no significant
relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO; and
DOC levels. These results suggest substantial differences in the carbon cycling of low
latitude lakes, which must be considered when up scaling limnetic carbon cycling to global
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1.Introduction

Lakes cover less than 2% of the continent’s surface [Downing et al., 2006; McDonald,
2012] but play a significant role in the global carbon (C) cycle [Cole et al., 1994; 2007; Tranvik
et al., 2009], contributing significantly to C burial and emissions to the atmosphere [Cole et al.,
2007; Downing et al., 2008 and Tranvik et al., 2009]. Dissolved organic carbon (DOC)
represents a major C pool in lakes, with both autochthonous and allochthonous contributions
[Duarte and Prairie, 2005; Cole et al., 2007; Prairie 2008; Tranvik et al., 2009], supporting
heterotrophy [Sobek et al., 2007] and affecting key biological and physico-chemical processes
involved in C cycling [Steinberg et al., 2006]. Large inputs of terrestrial organic C and its
subsequent mineralization have been suggested to be a major driver of CO, supersaturation
commonly encountered in lakes [Duarte and Prairie, 2005; Cole et al., 2007; Prairie 2008;

Marotta et al., 2009].

The mechanistic connection between DOC and heterotrophic CO, production is believed to
underpin the significant positive relationship between pCO, and DOC reported in comparative
analyses [Houle, 1995; Sobek et al., 2005; Larsen et al., 2012]. However, recent analyses have
revealed that the relationship between pCO, and DOC in lake waters is regionally variable and
not universal [Lapiere and del Giorgio, 2012]. Hence, the relationship between pCO, and DOC
reported in comparative analyses based on datasets dominated by temperate and high-latitude
lakes (> 33°) may not be extrapolated for all types of lakes, mainly because the tropical low

latitude lakes (< 33°) are generally underrepresented in global datasets [Raymond et al., 2013].

One priority of comparative studies is the latitudinal variance, where lake temperature, ice
cover and mixing regime will differ and these climatically driven processes, in turn, should
strongly influence OC cycling [Hanson et al., 2015]. At low latitudes, warm conditions over the
whole year may increase the metabolic rates involved in the C cycling in terrestrial [Ometto et
al., 2005] and aquatic [Marotta et al., 2009; 2010] ecosystems on an annual basis compared to
the high latitude lakes. High temperatures affect heterotrophic activity and the associated
mineralization rates of organic matter in soils [Davidson et al., 2006], waters [Lopez-Urrutia et
al., 2007; Wohlers et al., 2008; Regaudie-de-Gioux and Duarte 2012] and aquatic sediments
[Wadham et al., 2012; Gudasz et al.; 2010, Marotta et al., 2014]. Enhanced heterotrophic activity
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in warm ecosystems would support high aquatic CO, production and subside high CO, evasion

from global lake water to the atmosphere.

The largest previous comparative analysis already published in the literature for global lake
waters [Sobek et al., 2005] reported a significant positive relationship between DOC and pCO,
and a non-significant variation of pCO, among lakes with changing temperature. However, both
analyses were characterized by a paucity of low latitude data. A strong positive relationship
between temperature and pCO, was observed when subtropical and tropical ecosystems were
included in the dataset [Marotta et al., 2009], likely caused by the potential increase in metabolic
rates under warmer conditions [Brown et al., 2004: Lopez-Urrutia et al., 2006]. Hence, the
relationship between lake pCO, and DOC could also be temperature-dependent and, therefore,
may differ between temperate and tropical lakes. The extensive low latitude territory of Brazil,
which has a high density of lakes and ponds [Downing et al., 2006], is appropriate to examine
general patterns in the tropics [e.g., Marotta et al., 2009, Kosten et al., 2010]. Here, we test the
applicability of the relationship between pCO, and DOC using inputs derived from a high
latitude dataset [Sobek et al., 2005] with added tropical and subtropical data of low latitude lakes

from Brazil.

2.Methods
2.1.Study area and Lakes

Brazil extends from 5° 16' 20" North to 33° 44' 42" South, showing an area of
approximately 8,547,000 km?, constituting half of South America and encompasses a high
diversity of low-latitude landscapes [Ab'Saber, 2003] that are predominantly located within
tropical latitudes. We conducted a survey of pH, alkalinity and DOC between 2003 and 2011 in
surface waters of 166 permanent lakes from 0 to 33° of south latitude across Brazil (Figure 1),
yielding a total of 225 water samples. The lakes were sampled in representative biomes of Brazil:
(1) the Amazonia Forest (Amazonia Biome, n = 65), (2) the Pantanal Floodplain (Pantanal
Biome, n = 29) and (3) the Tropical (< 24° of latitude) and (4) Subtropical (> 24° and < 33° of
south latitude) Coasts, both in the Atlantic Forest Biome (n = 35 and n = 37 lakes, respectively;
Figure 1). These biomes follow the classification of the Brazilian Institute of Geography and
Statistics for biomes (IBGE 2004,

ftp://geoftp.ibge.gov.br/mapas_tematicos/mapas_murais/biomas.pdf). Our dataset encompasses a
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broad inter-lake heterogeneity (n=166) for pH, alkalinity and DOC simultaneously sampled

among Brazilian biomes and along the latitudinal gradient, independent of the year’s season.

The Amazonian Forest biome is formed by the most extensive hydrographic network on the
globe: the Amazon River basin, which occupies a total area of approximately 6.11 million km?
from its headwaters in the Peruvian Andes to its mouth in the Atlantic Ocean (ANA —
www.ana.gov.br). The Amazon Forest is the Brazilian biome with the highest mean annual
precipitation (approximately 2200 mm) and has warm mean air temperatures, approximately
25°C, high cloud coverage and high humidity with low fluctuations over the whole year
[Chambers, 1999]. We sampled a wide variety of lakes, characteristic of different areas of the
Amazonian Forest, encompassing “clear” (low DOC and suspended solids), “white” (low DOC
and high suspended solids) and “dark” (high DOC and low suspended solids) lakes.

The Pantanal Floodplain is the world’s largest tropical freshwater wetland, extending
across an area of approximately 150,000 km” between 16° and 20° S and 58° and 55° W [Por,
1995]. The annual average temperature and precipitation are approximately 22°C and 1,000 mm,
respectively [Mariot et al., 2007], with a strong seasonality and subsequent variation in the
flooded area [Junk and Nunes da Cunha, 2005]. The high-water period occurs during the rainy
summer (usually from September to December), and low waters typically occur during the dry
winter (from March to July) [Hamilton, 2002].

The Atlantic Forest biome extends along a broad latitudinal belt, between 5° and 30° S
from the subtropics to tropics and a narrow longitudinal section between 55° and 56° W, and
occupies an area of 1.11 million km? along the Brazilian coast (IBGE-www.ibge.gov.br). This
biome is characterized by numerous shallow coastal lakes receiving high inputs of refractory
organic matter [Farjalla et al., 2009] derived from the typical open xerophytic vegetation on
sandy soils, where water retention is low [Scarano, 2002]. The mean air temperatures vary from
27°C in winter to 30°C in summer at the tropical coast [< 24° of latitude; Chellappa et al., 2009]
and from 17 and 20°C at the subtropical coast [> 24° of latitude; Waechter, 1998]. The mean
annual precipitation reaches 1,164 mm [Henriques et al., 1986] and 1,700 mm [Waechter, 1998]
in the tropical and subtropical Brazilian coast, respectively. This biome is also characterized by

strong seasonality, with rainy summers and dry winters [Chellappa et al., 2009].

2.2 Sampling Design and Analytical Methods
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Our sampling design encompassed the most representative Brazilian biomes from tropical
and subtropical coastal areas to tropical and subtropical forests (Amazon and Atlantic Forest)
and inland wetlands (Pantanal), with the intra-lake heterogeneity and seasonal fluctuations
randomly assessed and further integrated by means of each ecosystem. To analyze the
relationship between pCO, and DOC in tropical lake waters, we joined data on 194 lakes (< 33°
of latitude) with both variables sampled at the same time, including 166 data samples from our
own survey and 28 from the literature compilation (Table S1). The values reported here
represented, gathered in an opportunistic manner, represent daily averages (N= 4 or 5 samples)
for a given year’s season or/and one sampling time over different seasons, which were also both
integrated by means of each lake. To test the global importance of the relationship between pCO,
and DOC, we added our low latitude data (225) to the Sobek et al. [2005] dataset (4902 lakes) as
this dataset had a paucity of tropical ecosystem data (148 tropical lakes, but only one with pCO,
and DOC sampled at the same time).

pH, salinity and temperature were measured in situ. pH was determined using a pH meter
(Digimed — DM2) with reference standards certified by Mettler Toledo (4.00 = 0.01 and 7.00 %
0.01 units) before each sampling hour. Temperature and salinity were measured using a
Thermosalinometer (Mettler Toledo - SevenGo SG3) coupled to a probe in Lab 737 previously
calibrated with 0.01 M KCI. Surface lake water was collected for total alkalinity and DOC
analyses, taking care to avoid bubbles at approximately 0.5 m of depth using a 1 L Van Dorn
bottle. Total alkalinity (TA) was determined in the field by the Gran's titration method with
0.0125 M HCI immediately after sampling [Stumm and Morgan, 1996]. Water samples for DOC
were pre-filtered (0.7 um, Whatman GF/F) and preserved by acidification with 85% H3POj4 to
reach a pH < 2.0 in sealed glass vials [Spyres et al., 2000]. In the lab, DOC was determined by
high-temperature catalytic oxidation using a TOC-5000 Shimadzu Analyzer, quality control was
checked with calibration curve made with potassium hydrogen phthalate before each sample
battery analisys. pCO, concentrations in surface waters were calculated from pH and alkalinity
following Weiss [1974], after corrections for temperature, altitude and ionic strength according

to Cole et al. [1994].

In order to address the potential contribution of DOC to TA, which is especially
important in DOC-enriched acid freshwaters, we used the data set from Abril et al., [2015] to

correct pCQO;, values calculated from pH and TA after the corrections for temperature, altitude
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and ionic strength [Cole et al., 1994]. Full details on fitted regression equations to correct pCO,

in function of the DOC and pH are described in the supplementary information section. (Figure

S3).
2.3. Statistical Analyses

The variables pCO, and DOC did not meet the assumptions of parametric tests even after
logarithmic transformations [Zar, 1996] as the data were not normally distributed (Kolmogorov-
Smirnov, p < 0.05) and the variances were heterogeneous (Bartlett, p > 0.05). Therefore, we used
medians and non-parametric tests to compare these variables among biomes (Kruskall-Wallis
followed by Dunn's multiple comparison post hoc test, p < 0.05). The linear regression equations
were fitted to compare our results with those of previous studies from Sobek et al., [2005].
Statistical analyses were performed using the software Graphpad Prism version 4.0 for

Macintosh (GraphPad Software, San Diego, CA).
3.Results

The lake waters surveyed were warm across all biomes (median 25-75% interquartile
range = 27.5° C, 25.2 — 30.1) but colder in subtropical coastal lakes (23.4° C, 20.0 — 26.2) than in
Pantanal and Amazonian lakes (29.5° C, 27.7 — 31.4 and 29.4° C, 27.6 — 31.0, respectively;
Dunn’s test, p < 0.05, Figure 2a). DOC concentrations were consistently high (6.3 mg C L, 4.3
— 11.9) for all Brazilian biomes but significant lower in the Amazonian Forest (3.8 mg C L', 2.7
— 5.8) than in the tropical coast (13.4 mg C L, 6.1 — 32.8; Figure 2b; Dunn’s test, p < 0.05).
Most lakes (approximately 83% of raw data) showed surface waters supersaturated in CO;
relative to the atmospheric equilibrium (pCO; in atmospheric equilibrium is 400.83 patm, 2015
annual mean; data available in www.esrl.noaa.gov/gmd/ccgg/trends), with much higher pCO,
values in Amazonian lakes (7,956 patm, 3,033 — 11,346) than in subtropical coastal lakes (900
patm, 391.3 — 3,212; Figure 2c; Dunn’s test, p < 0.05).

The pCO, in the surface waters of Brazilian lakes was independent of DOC
concentrations (Linear regression for raw data, p > 0.05, Figure 3). The same absence of positive
significance pattern was found comparing at corrected data. Negative (Linear regression, p <
0.05, R?= 0.03, n = 194, pCO,= -98.76 (+ 39.92) x DOC + 6529 (+ 641.1) or non significant
(Linear regression, p > 0.05) DOC-pCO, relationship for tropical lakes (N = 194, DOC and pH

corrected, respectively (figure S3a and c) contrasting with a significant positive relationship for
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those at other latitudes (N = 4,433) (Linear regression, p < 0.05, R?= 0.20, pCO, = 64.43 (+ 2.04)
x DOC + 625.1 (£ 20.87) and R*= 0.12, pCO,= 45.70 (+ 1.84) x DOC + 623.7 (+ 18.83)) for
DOC corrected data and pH corrected data, respectively (Figure S3b and d, full details on
corrections in the supplementary information). The range of pCO, for a similar DOC range in
Brazilian lakes was larger than that reported by Sobek et al., [2005] for the dataset dominated by
high-latitude cold lakes, despite the number of lakes in their dataset being much larger (more

details in supplementary information section, figure S3).

4.Discussion

The Brazilian lakes sampled here were characterized by a prevalence of CO,
supersaturation, consistent with general trends previously reported for global lakes [e.g.,
Raymond et al, 2013; Cole et al., 1994; 2007] including those at tropical latitudes [Marotta et al.,
2009]. The very high pCO, levels observed here, with a median of 900 and 8,300 patm for
subtropical and Amazon lake waters, respectively, are consistent with those reported previously
for the Amazon River and tributaries (2,000-12,000 patm; Richey et al., [2002]), Amazon
floodplain lakes (3,000 - 4,898 patm; Rudorff et al., [2012]), Pantanal lakes and wetlands (2,732-
10,620 patm; Hamilton et al., [1995]), and coastal lakes (768 - 9,866 patm; Kosten et al., [2010];
361-20,037 patm; Marotta et al., [2010]) and for global values for tropical lakes (1,255-35,278
patm; Marotta et al., [2009]), reservoirs (1,840 patm; Aufdenkampe et al., [2011]) and wetlands
(3,080-6,170 patm; Aufdenkampe et al., [2011]).

The non-significant or weakly negative relationship (Figure S3) between DOC and pCO,
reported here for warm low-latitude lakes contrasted with significant positive relationships
derived from previous datasets dominated by high-latitude lakes [Houle, 1995; Prairie et al.,
2002; Jonsson et al., 2003; Sobek et al., 2005; Roehm et al., 2009; Lapiere and del Giorgio,
2012; Larsen et al., 2012]. The results presented show that warm low-latitude lakes range widely
in pCO,, reaching very high and low values, but tend to have comparatively more uniform DOC
concentrations (Figure 3). More intense metabolic processes that uptake and release CO, in lake
waters, respectively autotrophy and heterotrophy, could determine an enhanced variability in lake

pCO, with decreasing latitude [Marotta et al., 2009].

In this way, the inclusion of warm tropical data in our study revealed novel increases in

the variability of the DOC-pCO, relationship in lakes over the latitudinal gradient. One
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explanation for this pattern is that even similar DOC concentrations, representing the total pool
of DOC, may show different mixtures between origins from aquatic primary producers and
terrestrial sources [Kritzberg et al., 2006]. The autochthonous DOC (i.e. produced in the lake) is
related to the net CO, uptake [Staehr and Sand Jansen 2007], while the allochthonous DOC (i.e.
produced in the catchment) is resource to the net CO; release in lake waters [Sobek et al., 2007].
The increased DOC release from aquatic primary producers into waters under tropical
conditions, especially warmer annual conditions and higher solar incidence, can offset any
positive relationship between pCO, and the terrestrial DOC that subsides the net aquatic
heterotrophy [Marotta et al., 2010; 2012]. This contributes to explain non-significant
relationships reported here (Figure 3), suggesting a temperature dependence of the DOC-pCO,
relationship in global lakes

In conclusion, the finding that pCO, does not increase with DOC concentration in
Brazilian tropical lakes rejects the hypothesis that DOC serves as a universal predictor for pCO,
in lake waters [Larsen et al., 2012]. Even discounting a possible artifact of the method that could
be causing an overestimation in the values of pCO, or considering the contribution of organic
acids on the alkalinity, the pattern of no relationship between DOC and pCO, in the Tropical
lakes was strongly confirmed (Figure S3). Therefore, our results contributing to fill the tropical
gap suggest potentially important latitudinal differences for depositional aquatic environments,

whose causes still need to be better addressed to improve accuracy of global C cycle models.
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Figure 1. Geographic location of Brazilian lakes sampled in different biomes (IBGE 2004,

available

in ftp://geoftp.ibge.gov.br/mapas_tematicos/mapas murais/biomas.pdf): Amazonia

Forest (vertical lines), Pantanal Floodplain (dark gray), and Atlantic Forest (gray; Tropical and

Subtropical costal lakes).
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Figure 2. Values of (A) temperature (°C), (B) DOC concentrations (mg C L) and (C) pCO,
concentration (patm) of Brazilian lakes sampled from different biomes, as defined by (SUBT)

Subtropical Coastal lakes (n = 37), (TROP) Tropical coastal lake (n = 63), (PANT) Pantanal
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lowercase letters near the boxplot indicate significant statistic differences between the groups

(Kruskall-Wallis followed by Dunn's multiple comparison post hoc test, p < 0.05).
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Figure 3. Comparisons of pCO, against DOC concentrations for lakes from this study (black
circles) and from Sobek et al. [2005] (gray circles). Each point in the plot represents one
measurement. The dashed line represents the linear regression for all Brazilian data points (not
significant; p > 0.05), and the solid line represents the linear regression from Sobek et al. [2005]

(p <0.05, R* = 0.26, log pCO, (patm) = 2.67 + 0.414 log DOC (mg C L™")).
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