
Supplement of Biogeosciences Discuss., 12, 3283–3314, 2015
http://www.biogeosciences-discuss.net/12/3283/2015/
doi:10.5194/bgd-12-3283-2015-supplement
© Author(s) 2015. CC Attribution 3.0 License.

Supplement of

Redox regime shifts in microbially-mediated biogeochemical cycles

T. Bush et al.

Correspondence to:T. Bush (t.bush@sms.ed.ac.uk)



1

Contents

S1. Steady-state solutions for the fully biotic and biotic-abiotic nutrient-cycling models 2
Fully biotic model 2
Biotic-abiotic model 3
Abiotic-abiotic cycles 4

S2. Predictions for the microbial population density 5

S3. The role of the maximal population density parameter nmax 6
Fully biotic cycle 6
Biotic-abiotic cycle 6

S4. Modelling explicit growth limitation by an external nutrient source 7

S5. Spatial heterogeneity accentuates redox regime shifts 8

S6. Redox regime shifts still occur with chemical sources and sinks 10

S7. Connection between our model and the Goldbeter-Koshland model for enzymatic
phosphorylation-dephosphorylation cycles 12

S8. The four-population two-box model: explicit generation of acetate and oxygen 14
Equations and parameters for the fully biotic four-population, two-box model 14
Equivalent results for a biotic-abiotic model 16

S9. Redox regime shifts are preserved when intermediate chemical oxidation states are included 18

S10. Competition for oxygen and acetate 21

References 21



2

S1. STEADY-STATE SOLUTIONS FOR THE FULLY BIOTIC AND BIOTIC-ABIOTIC
NUTRIENT-CYCLING MODELS

In Eqs. (1-3) of the main text, we present dynamical equations for the model of Fig. 1e (blue arrows), for the case
where both the reductive and oxidative reactions are mediated by microbial metabolism. We refer to this as the “fully
biotic” model. Eqs. (1-2) and (6) describe an alternative model where the reductive step is microbe-mediated but
the oxidative step is abiotic (Fig. 1e, red and blue arrows). We refer to this as the “biotic-abiotic” model. Here we
present analytical results for the steady states of both of these models. These are the solutions that are plotted in
Fig. 2 of the main text, except where the parameters are such that the analytical solutions predict negative values of
the microbial population density; this is typically the case where the microbial maximal growth rate is smaller than
the death rate. For these parameter combinations, the analytical solutions are not valid and instead the microbial
population density should be set to zero.

Fully biotic model

The dynamical equations for the fully biotic model are

˙nor = nor

(
vorso

so +Kor

)(
1− nor

nor,max

)
− dnor (S1)

˙nro = nro

(
vrosr

sr +Kro

)(
1− nro

nro,max

)
− dnro (S2)

ṡo = γnro

(
vrosr

sr +Kro

)(
1− nro

nro,max

)
− γnor

(
vorso

so +Kor

)(
1− nor

nor,max

)
(S3)

ṡr = −ṡo (S4)

These equations correspond to Eqs. (1-3) of the main text. Here, nor and nro are the population densities of the
reducer and oxidizer populations respectively, so and sr are the concentrations of the oxidized and reduced forms
of the nutrient being cycled, Kor and vor are the half-maximal nutrient concentration and maximal growth rate for
the reducer population, Kro and vro are the half-maximal nutrient concentration and maximal growth rate for the
oxidizer population, nor,max and nro,max are the respective maximal population densities, d is the microbial death
rate and γ is the number of substrate concentration units required to form one biomass unit (i.e. a yield parameter).
The latter two parameters are here assumed to be equal for the two populations, but similar phenomena are obtained
if they are allowed to be different.

Setting ˙nor and ˙nro to zero, we obtain

d =

(
vorso

so +Kor

)(
1− nor

nor,max

)
=

(
vrosr

sr +Kro

)(
1− nro

nro,max

)
, (S5)

which, upon substitution into Eq. (S3), implies that in the steady state nor = nro, i.e. the two population densities
are equal.

Rearranging Eq. (S5) we obtain the following relations for the population densities:

nor = nor,max

[
1− d[Kor + so]

vorso

]
(S6)
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and

nro = nro,max

[
1− d[Kro + sr]

vrosr

]
. (S7)

Defining stot = so + sr and using the fact that nor = nro, we can then write

nro,max

[
1− d[Kro + stot − so]

vro(stot − so)

]
= nor,max

[
1− d[Kor + so]

vorso

]
. (S8)

We now define a parameter ξ = nro,max/nor,max which measures the ratio of the maximal population densities, allowing
us to rewrite Eq. (S8):

ξ

[
1− d[Kro + stot − so]

vro(stot − so)

]
=

[
1− d[Kor + so]

vorso

]
, (S9)

which, upon rearranging, gives a quadratic equation for so:

s2o[ξvorvro − dξvor − vorvro + dvro] (S10)

+so[−ξvrostotvor + dξvor(Kro + stot) + vorvrostot + dKorvro − dvrostot]− dKorvrostot = 0.

Defining the new parameter combinations α = vro/vor and ω = (ξ − 1)vro, we can rewrite Eq. (S10) as

s2o[ω + d(α− ξ)] + so[dξ(Kro + stot) + dα(Kor − stot)− ωstot]− dKorstotα = 0. (S11)

This equation has the steady-state solution

so =
−B −

√
B2 + 4dKorstotα[ω + d(α− ξ)]

2[ω + d(α− ξ)]
(S12)

where

B = dξ(Kro + stot) + dα(Kor − stot)− ωstot. (S13)

An expression for the steady-state concentration of the reduced chemical species sr can be obtained from Eq. (S12)
using sr = stot−so. Expressions for the steady-state population densities nor and nor can be calculated by substitution
into Eqs. (S6) and (S7). We take the negative solution to the square root in Eq.(S13), as the other root gives a solution
where so > stot which is not physically realistic.
The solution (S12) is not well-defined right at the threshold between oxidized and reduced states, since both its
numerator and denominator go to zero at this point (when ω + d(α− ξ) = 0). However common sense suggests that
at the exact threshold point sr = so = stot/2, and we make this assumption in Fig. 2 of the main text.

Biotic-abiotic model

The dynamical equations for the biotic-abiotic model are

˙nor = nor

(
vorso

so +Kor

)(
1− nor

nor,max

)
− dnor (S14)

ṡo =
vasr

sr +Ka
− γvornorso
so +Kor

(
1− nor

nor,max

)
(S15)

and

ṡr = −ṡo. (S16)
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These equations correspond to Eqs. (1), (4), (6) and (7) of the main text. Eq. (S14) for the dynamics of the
microbial reducer population is exactly the same as in the fully biotic cycle (Eq. S1). However, in this model there
is no microbial oxidizer population; rather the oxidation step occurs abiotically and is described by the first term in
Eq. (S15). Here va is the maximal reaction rate of the abiotic oxidation step while Ka is the concentration of sr at
which the rate is half-maximal. The case of a spontaneous reaction (not catalysed) can be modelled by setting Ka to
be very large.

Setting ˙nor = 0 in Eq. (S14) we obtain, as for the fully biotic cycle

d =

(
vorso

so +Kor

)(
1− nor

nor,max

)
. (S17)

Setting ṡo = 0 in Eq. (S15) gives:

vasr
Ka + sr

=
γvornorso
Kor + so

[
1− nor

nor,max

]
. (S18)

Combining Eqs (S17) and (S18) gives:

vasr
Ka + sr

= γnord = γdnor,max

[
1− d[Kor + so]

vorso

]
. (S19)

We now use the fact that sr = stot − so, and define a new parameter combination φ = γdnor,max, to obtain

va(stot − so)

Ka + (stot − so)
= φ− φd[Kor + so]

vorso
. (S20)

Rearranging Eq. (S20) produces a quadratic equation for so:

s2o [φvor − φd− vorva] + so [φd(Ka + stot)− φvor(Ka + stot)− vorvastot − φdKor] + φdKorKa + φdKorstot = 0 (S21)

the solution of which is

so =
−B′ −

√
B′2 − 4(φvor − φd− vorva)(Kordφ(Ka + stot))

2(φvor − φd− vorva)
(S22)

where B′ is

B′ = φd(Ka + stot)− φvor(Ka + stot)− vorvastot − φdKor. (S23)

Again, we take the negative solution to the square root, as the other root gives a solution where so > stot which is
not physically realistic. An expression for sr can be calculated from Eq. (S22) using sr = stot− so. An expression for
the density nor of the reducer population can be obtained by subtituting Eq. (S22) into Eq. (S17).

Abiotic-abiotic cycles

In this study, we have not analyzed in detail the case of a redox cycle where both the oxidation and reduction steps are
abiotic. This is because abiotic reduction steps are rare in the natural environment, and we are primarly interested in
the effects of microbial population dynamics. However, equations for an entirely abiotic cycle can easily be constructed
along the same lines. These equations turn out to be exactly equivalent to those of the Goldbeter-Koshland model
for enzymatic phosphorylation-dephosphorylation cycles [1] (see section S7). If both reactions are catalyzed and can
be saturated with respect to their chemical substrates, then redox regime shifts are predicted in this case.



5

S2. PREDICTIONS FOR THE MICROBIAL POPULATION DENSITY

In Fig. 2 of the main text, we show how the global redox state of our model systems, so/stot, changes with the
degree of reductive or oxidative driving. This data reveals sharp transitions (redox regime shifts), the sharpness of
which increases with stot. Here we discuss how the microbial population densities vary during these transitions. Fig.
S1 shows the density of the reducing microbial population, nor (which for the fully biotic cycle is equal to nro) as a
function of the parameters which form proxies for reductive or oxidative driving (vor, vro and va). In all cases, the
microbial population density responds gradually to changes in reductive or oxidative driving, even when the global
ecosystem redox state responds sharply (compare to Fig. 2 of the main text). As the driving increases, the population
responds by increasing in size, until it approaches its maximum density nmax which in this case is equal to 9 × 107

cells/l. For the fully biotic cycle, and for the biotic-abiotic cycle under reductive driving, the steady-state population
size is only weakly dependent on the total concentration of the element being cycled (stot).
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Figure S1: Changes in the microbial population density as the model undergoes a redox regime shift. For the fully biotic
cycle (left panels), the oxidizing and reducing populations have equal population densities, nor = nro. For the biotic-abiotic
cycle (right panels), the population density of the reducing population, nor, is plotted. The top panels show the response to

increase in reductive driving (mimicking increase in acetate) while the bottom panels show the response to an increase in
oxidative driving (mimicking increase in oxygen). The parameters are as in Fig. 2 of the main text: Kor = Kro = Ka = 1µM,
nor,max = nro,max = 9 × 107 cells/l, d = 0.1h−1 and γ = 3 × 10−8µmoles/cell. In a, vro is fixed at 2h−1, in b and d vor is fixed
at 2h−1 and in c, va = 0.2µMh−1. Different colors represent different values of stot, as in Fig. 2 of the main text. Where the

analytical solution of our model equations predicts a negative population density, we have set nor = nro = 0.
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S3. THE ROLE OF THE MAXIMAL POPULATION DENSITY PARAMETER nmax

In our model, we represent the fact that the microbial population density is ultimately limited by factors other
than the chemical being cycled (s), by introducing a “logistic” term (1 − n/nmax) in the equation for the microbial
growth kinetics. Here we explore the effect of varying the parameters nor,max and nro,max corresponding to the
reducer and oxidizer populations, and find that the qualitative steady-state behaviour of the model is unaffected by
these parameters, although the time-scale for reaching the steady state is affected. In the next section we will also
show that similar results are obtained for a model where we replace this term by equations that represent explicit
growth-limitation by an additional nutrient source.
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Figure S2: The role of the maximal population density parameter. Panel (a) shows that the time to reach the steady state
increases as nor,max increases, for the fully biotic cycle. Panel (b), also for the fully biotic cycle, shows that changing the ratio
of maximal population sizes shifts the tipping point at which the redox regime shift happens but does not alter the qualitative
behaviour of the model. Panel (c), for the biotic-abiotic cycle, shows that changing the maximal microbial population density
nor,max again shifts the tipping point, but redox regime shifts are still present. For this case, if nor,max becomes too small the

regime shift is lost (the system remains oxic for all values of vor). The parameters are as in Fig. 2 of the main text:
Kor = Kro = Ka = 1µM, d = 0.1h−1, γ = 3 × 10−8µmoles/cell and stot = 0.2M. In panel c, va = 0.2µMh−1.

Fully biotic cycle

In our fully biotic model, the steady state solution (Eqs. (S12) and (S13)) depends only on the ratio of the maximal
population densities of the reducer and oxidizer populations, ξ = nor,max/nro,max, and not on the absolute values of
nor,max and nro,max. However, the timescale at which the steady state is reached does depend on the absolute maximal
population densities; as these increase the system responds more slowly (Fig. S2a). Considering only the steady-state
solution, changing the ratio of maximal population densities ξ alters the tipping point at which the redox regime shift
is predicted to occur in our model (Fig. S2b) but does not change the qualitative behaviour of the model.

Biotic-abiotic cycle

For the biotic-abiotic model, the steady-state solution (Eqs. (S22) and (S23)) does depend on the maximal population
density of the reducer population, nor,max. Upon varying this parameter (Fig. S2c) we find that the tipping point
at which the redox regime shift happens changes; for a smaller value of nor,max, we require a greater value of the
maximal reducer growth rate vor to trigger the regime shift. In fact, in this model, the regime shift is lost altogether
if the maximal microbial population density is too small. To observe regime shifts, we require that va < γdnor,max.
This is because, at steady state, the maximal microbial “conversion rate” of so to sr is given by γdnor,max while the
maximal abiotic conversion rate of sr to so is set by va. For a regime shift to occur, the biotic conversion rate must
be able to exceed the abiotic conversion rate.
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S4. MODELLING EXPLICIT GROWTH LIMITATION BY AN EXTERNAL NUTRIENT SOURCE
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Figure S3: Redox regime shifts are still observed in a model where the term (1 − n(t)/nmax) is replaced by explicit growth
limitation by a supply of an external nutrient. The results show the redox state of the ecosystem (so/stot) as a function of the

maximal growth rate of the reducer population (vor). The data was obtained by numerical solution to steady state of Eqs.
(S24)-(S28), for the parameter set vro = 2h−1, γ = 3 × 10−8µmoles/cell, Kro = Kor = Kx = 1µM, stot = 1M, d = 0.1h−1 and

b = 0.001Mh−1.

In this section, we replace the population density limitation term (1− n(t)/nmax), used in the main text, with an
explicit model for growth limitation by an external nutrient source. We show that this model still reproduces the
regime shifting phenomenon as we vary the availability of acetate. To represent limitation by an external nutrient
we introduce additional differential equations for the concentration x(t) of this nutrient into our model for the fully
biotic cycle. We suppose that the nutrient is supplied at a fixed rate b and is consumed by both the oxidiser and
reducer populations as they grow. Both microbial growth rates are assumed to depend on x(t) via multiplicative
Monod growth terms (with half-saturation constant Kx). This results in the following set of equations:

dx(t)

dt
= b− γ

(
x

Kx + x

)[(
nrovrosr
Kro + sr

)
+

(
norvorso
Kor + so

)]
(S24)

dnro(t)

dt
=
vronro(t)sr(t)

Kro + sr(t)

(
x

Kx + x

)
− dnro(t) (S25)

dnor(t)

dt
=
vornor(t)so(t)

Kor + so(t)

(
x

Kx + x

)
− dnor(t) (S26)

dsr(t)

dt
= −γvronro(t)sr(t)

Kro + sr(t)

(
x

Kx + x

)
+
γvornor(t)so(t)

Kor + so(t)

(
x

Kx + x

)
(S27)

dso(t)

dt
= −dsr(t)

dt
(S28)

These equations were iterated numerically using the Euler-forward method to compute the steady state, for the
parameter set vro = 2h−1, γ = 3 × 10−8µmoles/cell, Kro = Kor = Kx = 1µM, stot = 1M, d = 0.1h−1 and
b = 0.001Mh−1. Fig. S3 shows the resulting prediction for the redox state of the ecosystem (so/stot) as a function
of the maximal growth rate of the reducer population (vor, which serves as a proxy for the availability of acetate).
Comparing with Fig. 2a of the main text, we see that indeed this extended model does produce a redox regime shift
which is qualitatively similar to that of the model discussed in the main text.
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S5. SPATIAL HETEROGENEITY ACCENTUATES REDOX REGIME SHIFTS

Figure S4: The “two population, two box” model. The oxidizing and reducing microbial populations are shown by nro and
nor, while the oxidized and reduced forms of chemical species s are denoted so and sr. The superscripts u and d refer to the

upper and lower boxes respectively. The double-headed arrows denote chemical diffusion.

In the main text, we showed analytically that redox regime shifts can occur in response to changes in oxygen or
acetate availability, for a “well-mixed” model with two microbial populations (reducers and oxidizers). In reality,
however, microbial reduction and oxidation processes are usually spatially separated. In this section, we show that
redox regime shifting is in fact enhanced for a model which captures this spatial separation.

We extend the basic “two-population” model of the main text, for the fully biotic cycle, by introducing two spatial
boxes, coupled by chemical diffusion. We assume that the reducer population is located in the lower box while the
oxidizer population is located in the upper box. The reduced and oxidized chemical species sr and so can be located
in either box and are transferred between boxes by diffusion, as shown in Fig. S4. For the chemical species, we use
the superscripts u and d to denote the upper and lower boxes respectively.

This “two population, two box model” is described by the following dynamical equations:

dnor(t)

dt
=
vornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− dnor(t) (S29)

dnro(t)

dt
=
vronro(t)sdr (t)

Kro + sdr (t)

(
1− nro(t)

nro,max

)
− dnro(t) (S30)

dsuo(t)

dt
= −γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksuo(t) + ksdo(t) (S31)

dsdo(t)

dt
=
γvronro(t)sdr (t)

Kro + sdr (t)

(
1− nro(t)

nro,max

)
− ksdo(t) + ksuo(t) (S32)

dsur (t)

dt
=
γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksur (t) + ksdr (t) (S33)

dsdr (t)

dt
= −γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksdr (t) + ksur (t) (S34)
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Here, as before, Kor and Kro are the half-saturation constants for the microbial reducers and oxidizers respectively,
vor and vro are their maximal growth rates, nor,max and nro,max are their maximal population sizes, γ is the yield
parameter (amount of chemical substrate needed to create one bacterium) and d is the microbial death rate.
Compared to the main text, we now have a new parameter k which represents the rate of diffusive chemical transport
between the two spatial boxes.

To investigate the behaviour of the two-population, two-box model, we integrated Eqs (S29)-(S34) numerically using
the Euler-forward method to steady state. Fig. S5 shows that indeed we obtain redox regime shifting behaviour as
we vary the parameters vor or vro, which serve as proxies for the acetate and oxygen availabilities. Comparing Fig.
S5a and b we see that the redox regime shift occurs over a broader range of parameter values as the rate of chemical
diffusion (k) increases.

(a) (b)

Figure S5: Steady state of the fully biotic spatial heterogeneous model (a) and (b) are phase plots where the colour key
refers to the steady state value of so/stot with parameters d = 0.1h−1, γ = 3 × 10−8µmoles/cell, nmax = 9 × 107cells/litre, and

Kro = Kor = KM = 1µM (a): Slow diffusion k = 0.001h−1. (b): Fast diffusion, k = 100h−1.
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S6. REDOX REGIME SHIFTS STILL OCCUR WITH CHEMICAL SOURCES AND SINKS

Figure S6: The “two population, two box” model with chemical sources and sinks.

In the natural environment, redox-cycling microbial ecosystems do not exist in isolation but are coupled to the
environment via chemical sources and sinks. For example, in the sulphur cycle, hydrogen sulphide can react with
iron to form pyrite, which is sufficiently unreactive that it effectively represents a loss of sulphide [2]. To test the
effect of chemical sources and sinks on the behaviour of our models, we simulated the model shown in Fig. S6,
in which the “two-population, two-box model” of section S5 is supplemented by terms describing the inflow of
the oxidized chemical species so and the outflow of the reduced chemical species sr. This topology was chosen to
roughly correspond to the biogeochemical sulfur cycle, where oxidized substrate (sulfate) is input from rivers, and
reduced substrate (sulfide) reacts with iron oxides to form pyrite. We expect other topologies to produce similar results.

The differential equations describing this model are

dnor(t)

dt
=
vornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− dnor(t) (S35)

dnro(t)

dt
=
vronro(t)sdr (t)

Kro + sdr (t)

(
1− nro(t)

nro,max

)
− dnro(t) (S36)

dsuo(t)

dt
= −γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksuo(t) + ksdo(t) + J (S37)

dsdo(t)

dt
=
γvronro(t)sdr (t)

Kro + sdr (t)

(
1− nro(t)

nro,max

)
− ksdo(t) + ksuo(t) (S38)

dsur (t)

dt
=
γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksur (t) + ksdr (t) (S39)
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and

dsdr (t)

dt
= −γvornor(t)s

u
o(t)

Kor + suo(t)

(
1− nor(t)

nor,max

)
− ksdr (t) + ksur (t)− Isdr (t). (S40)

Eqs. (S35) - (S40) are identical to Eqs. (S29)-(S34) except for the addition of the source and sink terms in Eqs.
(S37) and (S40). Here J represents an inflow rate (in units of µMh−1) while I represents an outflow rate (in units of
h−1).
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Figure S7: Redox regime shifts with source and sink terms included. The parameters are Kro = Kor = 1µM, stot = 4M,
nor,max = nro,max = 9 × 107cells per litre, γ = 3 × 10−8µmoles/cell, k = 10h−1, d = 0.1h−1 and vro = 2h−1. The black solid

line shows results for I = 1h−1 and J = 1mMh−1. The black dashed line shows results for I = 1 × 10−3h−1 and
J = 1 × 10−3µMh−1. The black dashed line shows equivalent results for I = 1 × 10−5h−1 and J = 10µMh−1

Eqs. (S35) - (S40) were integrated numerically using the Euler-forward method to reach the steady state. Fig. S7
shows the resulting predictions for the global redox state, as measured by the fraction of oxidized chemical species
(suo + sdo)/stot, as a function of the maximal growth rate of the reducer population, vor, which serves as a proxy for
the availability of acetate. We still observe redox regime shifts in the presence of the source and sink terms.
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S7. CONNECTION BETWEEN OUR MODEL AND THE GOLDBETER-KOSHLAND MODEL FOR
ENZYMATIC PHOSPHORYLATION-DEPHOSPHORYLATION CYCLES

Figure S8: The model of Goldbeter and Koshland for an enzymatic phosphorylation-dephosphorylation cycle. here E1

represents a kinase enzyme, E2 represents a phosphatase enzyme, W represents the unphosphorylated form of a protein and
W∗ represents its phosphorylated form [1].

An interesting mathematical analogy exists between the microbial nutrient-cycling models introduced in our work
and classic results obtained by Goldbeter and Koshland for a phenomenon on a completely different scale, relating
to the biochemical networks that control the response of a single biological cell to an external stimulus. Cells
often mediate metabolic responses to stimuli such as changes in temperature or nutrient concentration, using
phosphorylation-dephosphorylation cycles [3, 4]. In these cycles, a target protein is activated by addition of a
phosphate group, and deactivated by removal of the phosphate group; the kinase and phosphatase enzymes mediating
these reactions act in opposition to each other, the kinase being stimulated by the extracellular signal (Fig. S8).
Activation of the target enzyme leads ultimately to the cell’s response. In this model, the “input signal” is mediated
via a change in the relative activities of the kinase and phosphatase enzymes, while the “output response” is manifest
as a change in the relative proportions of the target protein W which are in the phosphorylated and dephosphorylated
forms.

Assuming Michaelis-Menten kinetics for the phosphorylation and dephosphorylation steps, Goldbeter and Koshland
derived steady-state solutions for the concentration of protein substrate W in the dephosphorylated form ([W ]).
These results revealed a phenomenon which Goldbeter and Koshland termed “zero order ultrasensitivity”: when the
total substrate concentration Wtot is high, the system responds extremely sharply to a small change in the relative
activities of the kinase and phosphatase enzymes [1, 4].

Goldbeter and Koshland’s steady state solution is given by

[W ] =
−B −

√
B2 − 4[Wtot][E2]KMα([E1]α− [E2])

2(α[E1]− [E2])
(S41)

where

B = [Wtot]([E2]− α[E1]) +KM([E2] + α[E1]). (S42)

Here, [E1] and [E2] represent the concentrations of the kinase and phosphatase enzymes, KM is the half-saturation
constant for the enzymatic reactions (assumed to be the same for kinase and phosphatase) and α is the ratio of the
maximal reaction rates for the kinase and phosphatase.

The two-population, fully biotic, nutrient cycle models studied in our work bear a striking topological similarity to
the Goldbeter-Koshland model (compare Fig. 2e of the main text with Fig. S8). In this analogy, the role of the
kinase and phosphatase enzymes is played by the reducing and oxidizing microbial populations while the role of the
protein target molecule is played by the chemical species being cycled.

This analogy extends to the mathematical solutions of the two models. If we assume that both microbial populations
have identical half-saturation constants (Kro = Kor = K) and maximal population densities (nro,max = nor,max =
nmax), then ξ = 1 and ω = (ξ − 1)vro = 0.
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We then obtain the following solution for the concentration of the oxidized chemical species (from Eq. S12):

so =
−B −

√
B2 − 4stotKα(α− 1)

2(α− 1)
(S43)

where

B = stot(1− α) +K(1 + α) (S44)

and α = vro/vor. Comparing Eq. (S43) with Eq. (S41) we see that the two models are mathematically equivalent, as
long as the enzyme concentrations in the Goldbeter-Koshland model are set equal ([E1] = [E2]). Note that the maxi-
mal population density nmax does not play an analogous role to the enzyme concentration, however. When we set the
two maximal population densities to be different, we obtain the more complex steady state solution shown in Eq. (S12).

It is important to note that this mathematical analogy does not extend to the biotic-abiotic cycle model, which has
a more complex steady state solution, Eq. (S22), although with a similar functional form.
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S8. THE FOUR-POPULATION TWO-BOX MODEL: EXPLICIT GENERATION OF ACETATE AND
OXYGEN

In the main text, we present results for an extended redox cycling ecosystem model in which the populations of
photosynthesizers and organic matter degraders are explicitly represented, as well as the reducers and oxidizers. This
model accounts for the production of acetate and oxygen, having as its inputs the light intensity (which stimulates
production of oxygen by the photosynthesizer population) and the organic matter concentration (which stimulates
production of acetate by the degrader population). This model is illustrated in the main text, Fig. 3a, for the fully
biotic cycle. Here we list the equations corresponding to this model, which were solved numerically to obtain the data
shown in Fig. 3b of the main text, and give the full set of parameters used in these calculations. We also discuss an
equivalent model for the biotic-abiotic cycle.

Equations and parameters for the fully biotic four-population, two-box model

The equations corresponding to the model shown in Fig. 3a of the main text are listed below (Eqs. (S45)-(S54)),
with a brief description of the meaning of each one.

dnP(t)

dt
=
vPnP(t)L

KL + L

(
1− nP(t)

nP,max

)
− dnP(t) (S45)

Eq. (S45) describes growth of the photosynthesizer population, with density nP. Photosynthesizers are located in the
upper box. They grow in response to light intensity L (which is a constant parameter in our model), with maximal
growth rate vP and half-saturation constant KL. We impose a population density limitation term with maximal
population density nP,max and a death rate d.

dnD(t)

dt
=
vDnD(t)C

KC + C

(
1− nD(t)

nD,max

)
− dnD(t) (S46)

Eq. (S46) describes growth of the decomposer population, with density nD. Decomposers are located in the lower
box. They grow in response to organic carbon concentration C (which is a constant parameter in our model), with
maximal growth rate vD and half-saturation constant KC. We impose a population density limitation term with
maximal population density nD,max and a death rate d.

dnor(t)

dt
= vornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− dnor(t) (S47)

Eq. (S47) describes growth of the microbial reducer population, with density nor. Reducers are located in the lower
box. Reducer growth requires both the oxidized form of the redox chemical species, so, and acetate. We describe this
using multiplicative Monod terms, with maximal growth rate vor and half-saturation constants Kor for so and Kac

for acetate. The concentration of acetate is denoted as a(t). The reducer population density is limited to nor,max and
we impose a death rate d.

dnro(t)

dt
= vronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
− dnro(t) (S48)

Eq. (S48) describes growth of the microbial oxidizer population, with density nro. Oxidizers are located in the upper
box. Oxidizer growth requires both the reduced form of the redox chemical species, sr, and oxygen. Again, we describe
this using multiplicative Monod terms, with maximal growth rate vro and half-saturation constants Kro for sr and
Kox for oxygen. The concentration of oxygen is denoted as o(t). The oxidizer population density is limited to nro,max

and we impose a death rate d.

do(t)

dt
= γoxvPnP(t)

[
L

KL + L

](
1− nP(t)

nP,max

)
− γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
− βoxo(t)

(S49)
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Eq. (S49) describes the dynamics of the oxygen concentration. Oxygen is assumed to be located only in the upper
box. Oxygen is produced upon growth of the photosynthesizers (first term in Eq. (S49)), with yield parameter
γox (number of micromoles of oxygen produced per bacterial division cycle). Oxygen is consumed upon growth of
the oxidizer population (second term in Eq. (S49)), with yield parameter γ. We also include a term describing
consumption of oxygen by other processes, not included in the model (third term in Eq. (S49)), such as growth of
aerobes or abiotic oxidation reactions. The parameter βox controls the strength of this “competition” term.

da(t)

dt
= γacvDnD(t)

[
C

KC + C

](
1− nD(t)

nD,max

)
− γvornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− βaca(t)

(S50)

Eq. (S50) describes the dynamics of the acetate concentration. Acetate is assumed to be located only in the lower box.
Acetate is produced upon growth of the decomposers (first term in Eq. (S50)), with yield parameter γac. Acetate is
consumed upon growth of the reducer population (second term in Eq. (S50)), with yield parameter γ (here assumed
to be the same as that of the reducers). We also include a “competition” term describing consumption of acetate by
other processes (third term in Eq. (S50)), such as growth of methanogens. The parameter βac controls the strength
of this term.

dsuo(t)

dt
= γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
+ ksdo(t)− ksuo(t) (S51)

dsdo(t)

dt
= −γvornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
+ ksuo(t)− ksdo(t) (S52)

dsur (t)

dt
= −γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
+ ksdr (t)− ksur (t) (S53)

dsdr (t)

dt
= γvornor(t)

[
sdr (t)

Kor + sdr (t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
+ ksur (t)− ksdr (t) (S54)

Eqs. (S51)-(S54) describe the dynamics of the reduced and oxidized forms of the redox chemical species, sr and so,
in the upper and lower boxes. These equations are identical to Eqs. (S41)-(S44) for the two-population, two-box
model, apart from the inclusion of multiplicative Monod terms in the reducer and oxidizer growth rates. As in
the two-population, two-box model, sr and so can be transported between the upper and lower boxes by diffusion,
described by the rate parameter k.

Table S1 lists the parameter values used to generate the data shown in Fig. 3b of the main text. The calculations were
run for different values of the light intensity L (with units of µEinstein s−1 cm−2 and the organic matter concentration
(with units of mg cm−3). The parameters used in these simulations were chosen to correspond approximately to the
microbial sulfur cycle (see Table S1). We note that although our model does not contain anoxygenic sulfide oxidizing
phototrophs (such as green sulfur bacteria), we do not expect that their inclusion would prevent redox regime shifts
from occurring, and would instead move the transition point while preserving the switching behaviour.
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Table S1: Parameter values used in the model of Eqs. (S45)-(S54) to generate the data shown in Fig. 3b of the main text.
These parameters are chosen to correspond approximately to the microbial sulfur cycle (with references where appropriate).

Half saturation constants and maximal growth rates are given to an order of magnitude. Growth yields are calculated
assuming a bacterial mass of 10−12g. Kox is set to 1µM as a conservative estimate, as literature values range between 1µM [5]

and 20µM [6]. Kac is set to 1µM as a conservative estimate, to represent the fact that the electron donor could be either
acetate (Kac ∼ 10µM) [7] or hydrogen(KH ∼ 1µM) [8]. Growth rates are set to v = 1h−1 for simplicity, but we acknowledge
that this would represent quite a fast growth rate for the photosynthetic and degrading populations; lower values of vP and
vD do not affect the result. Furthermore all yields have been set to γ = 3 × 10−8 µmoles per cell for simplicity. Although in
nature yield values may vary, this value is reasonable to an order of magnitude for all of the microbial populations discussed.
d is chosen to correspond to generic bacterial growth [9]. Redox regime shifts are not dependent on the value of βox or βac, see

Section S10.

Parameter Value Unit
KL 10 µ Einstein s−1 m−2 [10, 11]
KC 100 mg cm−3 [12, 13]
Kor 1 µM [14]
Kro 1 µM [15]
Kox 1 µM [5, 6]
Kac 1 µM [7, 8, 16]
vP 1 h−1 [10, 17]
vD 1 h−1 [18, 19]
vor 1 h−1 [16]
vro 1 h−1 [15]
nP,max 1 × 109 cells per litre
nD,max 1 × 109 cells per litre
nor,max 1 × 109 cells per litre [20]
nro,max 1 × 109 cells per litre [20]
γ 3 × 10−8 µmoles per cell[21]
γox 3 × 10−8 µmoles per cell [22]
γac 3 × 10−8 µmoles per cell [23]
βox 0.5 h−1

βac 0.5 h−1

k 0.1 h−1

d 0.1 h−1

Equivalent results for a biotic-abiotic model

The equation set for an equivalent model, for a biotic-abiotic cycle (in which the reduction step is biotically-mediated
but the oxidation step is abiotic), is

dnP(t)

dt
=
vPnP(t)L

KL + L

(
1− nP(t)

nP,max

)
− dnP(t) (S55)

dnD(t)

dt
=
vDnD(t)C

KC + C

(
1− nD(t)

nD,max

)
− dnD(t) (S56)

dnor(t)

dt
= vornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− dnor(t) (S57)

do(t)

dt
= γoxvPnP(t)

[
L

KL + L

](
1− nP(t)

nP,max

)
− va

[
sur (t)

Ka + sur (t)

] [
o(t)

o(t) +Ka,ox

]
− βoxo(t) (S58)

da(t)

dt
= γacvDnD(t)

[
C

KC + C

](
1− nD(t)

nD,max

)
− γvornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− βaca(t)

(S59)
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dsuo(t)

dt
= va

[
sur (t)

Ka + sur (t)

] [
o(t)

o(t) +Ka,ox

]
+ ksdo(t)− ksuo(t) (S60)

dsdo(t)

dt
= −γvornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
+ ksuo(t)− ksdo(t) (S61)

dsur (t)

dt
= −va

[
sur (t)

Ka + sur (t)

] [
o(t)

o(t) +Ka,ox

]
+ ksdr (t)− ksur (t) (S62)

and

dsdr (t)

dt
= γvornor(t)

[
sdr (t)

Kor + sdr (t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
+ ksur (t)− ksdr (t). (S63)

In Eqs. (S58), (S60) and (S62), the parameter va is the maximal abiotic reaction rate, Ka denotes the half saturation
constant with respect to so for the abiotic oxidation reaction, and Ka,ox is its half-saturation constant with respect
to oxygen.

Fig. S9 shows that this biotic-abiotic cycle model can produce redox regime shifts. The steady-state global redox state
of the system ((suo + sdo)/stot) is plotted as a function of the concentration C of organic carbon, for the steady-state
of Eqs. (S55)-(S63) as obtained by numerical solution. The parameter set used is as in Table S1, with va = 0.2µM
h−1, Ka = 1µM and Ka,ox = 1µM, stot = 4mM,βox = βac = 0.5
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Figure S9: Redox regime shift in the biotic-abiotic model of Eqs. (S55)-(S63), obtained by numerical solution. The global
redox state of the system ((suo + sdo)/stot) is plotted as a function of the concentration C of organic carbon. Light intensity L

= 20µ Einstein s−1 m−2.
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S9. REDOX REGIME SHIFTS ARE PRESERVED WHEN INTERMEDIATE CHEMICAL OXIDATION
STATES ARE INCLUDED

In this work we have focused on models for biogeochemical cycles in which a chemical species is shuttled between
two redox states. In reality, however, many biogeochemical cycles involve more than two redox states [24]; examples
include the sulphur and nitrogen cycles as illustrated in Fig. 1 of the main text. Here we show that our main result,
the existence of redox regime shifts, still holds if additional, intermediate redox states are included.

Figure S10: A microbial nutrient-cycling model with an intermediate chemical species si(t). An increase in oxygen
availability stimulates all reactions within the upper red box, while an increase in acetate availability stimulates all reactions

within the lower red box.

To investigate the effect of intermediate redox species, we extended our “4-population, 2-box” model for the fully
biotic cycle to include a new chemical species, denoted si, whose redox state is intermediate between so and sr. We
suppose that microbial populations exist that can carry out all the possible oxidative and reductive transformations:
the oxidative reactions sr → si, si → so and sr → so, all of which require oxygen, and the reductive transformations
so → si, si → sr and so → sr, all of which require acetate. We denote the population densities of these 6
populations nri, nio, nro, noi, nir and nor, respectively. We assume that oxidative transformations only happen in the
top box and reductive transformations only happen in the lower box. The two boxes are coupled by chemical diffusion.

The equations corresponding to this model are:

dnP(t)

dt
=
vPnP(t)L

KL + L

(
1− nP(t)

nP,max

)
− dnP(t) (S64)

dnD(t)

dt
=
vDnD(t)C

KC + C

(
1− nD(t)

nD,max

)
− dnD(t) (S65)
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dnor(t)

dt
= vornor(t)

[
sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− dnor(t) (S66)

dnri(t)

dt
= vrinri(t)

[
sur (t)

Kri + sur (t)

] [
o(t)

o(t) +Kox

](
1− nri(t)

nri,max

)
− dnri(t) (S67)

dnio(t)

dt
= vionio(t)

[
sui (t)

(Kio + sui (t))

] [
o(t)

o(t) +Kox

](
1− nio(t)

nio,max

)
− dnio(t) (S68)

dnoi(t)

dt
= voinoi(t)

[
sdo(t)

(Koi + sdo(t))

] [
a(t)

a(t) +Kac

](
1− noi(t)

noi,max

)
− dnoi(t) (S69)

dnir(t)

dt
= virnir(t)

[
sdi (t)

(Kir + sdi (t))

] [
a(t)

a(t) +Kac

](
1− nir(t)

nir,max

)
− dnir(t) (S70)

dnro(t)

dt
= vronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
− dnro(t) (S71)

do(t)

dt
= γoxvPnP(t)

[
L

KL + L

](
1− nP(t)

nP,max

)
− βoxo(t) (S72)

− γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
− γvrinri(t)

[
sur (t)

Kri + sur (t)

] [
o(t)

o(t) +Kox

](
1− nri(t)

nri,max

)
− γvionio(t)

[
sui (t)

Kio + sui (t)

] [
o(t)

o(t) +Kox

](
1− nio(t)

nio,max

)

da(t)

dt
= γacvDnD(t)

[
C

KC + C

](
1− nD(t)

nD,max

)
− βaca(t) (S73)

− γvornor(t)
[

sdo(t)

Kor + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
− γvoinoi(t)

[
sdo(t)

Koi + sdo(t)

] [
a(t)

a(t) +Kac

](
1− noi(t)

noi,max

)
− γvirnir(t)

[
sdi (t)

Kir + sdi (t)

] [
a(t)

a(t) +Kac

](
1− nir(t)

nir,max

)

dsuo(t)

dt
= γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
(S74)

+ γvionio(t)

[
sui (t)

Kio + sui (t)

] [
o(t)

o(t) +Kox

](
1− nio(t)

nio,max

)
+ ksdo(t)− ksuo(t)
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dsdo(t)

dt
= −γvornor(t)

[
sdo(t)

Kro + sdo(t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
(S75)

− γvoinoi(t)
[

sdo(t)

Koi + sdo(t)

] [
a(t)

a(t) +Kac

](
1− noi(t)

noi,max

)
+ ksuo(t)− ksdo(t)

dsur (t)

dt
= −γvronro(t)

[
sur (t)

Kro + sur (t)

] [
o(t)

o(t) +Kox

](
1− nro(t)

nro,max

)
(S76)

− γvrinri(t)
[

sur (t)

Kri + sur (t)

] [
o(t)

o(t) +Kox

](
1− nri(t)

nri,max

)
+ ksdr (t)− ksur (t)

dsdr (t)

dt
= γvornor(t)

[
sdr (t)

Kor + sdr (t)

] [
a(t)

a(t) +Kac

](
1− nor(t)

nor,max

)
(S77)

+ γvirnir(t)

[
sdi (t)

Kir + sdi (t)

] [
a(t)

a(t) +Kac

](
1− nir(t)

nir,max

)
+ ksur (t)− ksdr (t)

dsui (t)

dt
= −γvionio(t)

[
sui (t)

Kio + sui (t)

] [
o(t)

o(t) +Kox

](
1− nio(t)

nio,max

)
(S78)

+ γvri

[
nri(t)s

u
r (t)

Kri + sur (t)

] [
o(t)

o(t) +Kox

](
1− nri(t)

nri,max

)
+ ksdi (t)− ksui (t)

and

dsdi (t)

dt
= −γvirnir(t)

[
sdi (t)

Kir + sdi (t)

] [
a(t)

a(t) +Kac

](
1− nir(t)

nir,max

)
(S79)

+ γvoinoi(t)

[
sdo(t)

Koi + sdo(t)

] [
a(t)

a(t) +Kac

](
1− noi(t)

noi,max

)
+ ksui (t)− ksdi (t).

Here, we have defined new parameters voi, vir, vri and vio, representing the maximal growth rates of the four
new microbial populations, Koi, Kir, Kri and Kio representing their half-saturation constants with respect to
their redox chemical substrate, and noi,max, nir,max, nri,max, nio,max representing their maximal population den-
sities. For simplicity, we have assumed in our numerical calculations that voi = vir = vri = vio = vor = vro,
Koi = Kir = Kri = Kio = Kor = Kro and noi,max = nir,max = nri,max = nio,max = nor,max = nro,max, i.e. that
all populations have identical growth parameters. We have also implicitly assumed in Eqs. (S64)-(S79) that all
populations have equal yield parameter γ and equal half-saturation constants with respect to oxygen or acetate (Kox

and Kac). Finally we assume equal diffusion constants for all three chemical redox species.

The full parameter set used in our numerical calculations is then: voi = vir = vri = vio = vor = vro = 1h−1,
Koi = Kir = Kri = Kio = Kor = Kro = 1µM, noi,max = nir,max = nri,max = nio,max = nor,max = nro,max = 1× 109cells
per litre, k = 0.1h−1, d = 0.01h−1, γ = 3 × 10−8µmoles/cell, stot = 50mM, L=20µ Einstein s−1 m−2, Kox = 1µM,
Kac = 1µM, γox = 3× 10−8µmoles/cell, γac = 3× 10−8µmoles/cell, βox = βox = 0.5h−1.

Fig. S11 shows the steady-state predictions of this model, obtained by numerical integration of Eqs. (S64)-(S79) by
the Euler-forward method. This model does indeed show a regime shift as we increase the organic matter concentration
(thus increasing the availability of acetate).
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Figure S11: Redox regime shift in a model with an intermediate chemical redox state. These results were obtained by
numertical solution of Eqs. (S64)-(S79) for the steady state. The global redox state of the system ((suo + sdo)/stot) is plotted

as a function of the concentration C of organic carbon.

S10. COMPETITION FOR OXYGEN AND ACETATE

In our four-population, two-box model, we introduced terms representing the loss of oxygen and acetate from the
system (controlled by the parameters βox and βac). These losses could be due to competition from other oxidizing or
reducing microbial populations [25], abiotic processes, or diffusive loss.

Here, we show that the existence of redox regime shifts in our model is not very sensitive to the magnitude of these loss
terms. Fig. S12 shows predictions of the model, Eqs. (S45)-(S54), for a range of values of βox = βac. Redox regime
shifts are preserved in all cases; although the strength of the loss term affects the sharpness of the regime-shifting
behaviour.
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Figure S12: Redox regime shifts are not sensitive to the loss of oxygen and acetate from the system. These results were
obtained by numerical solution of Eqs. (S45)-(S54) for the steady state, for various values of the loss parameter βox = βac
(here denoted β). The global redox state of the system ((suo + sdo)/stot) is plotted as a function of the concentration C of

organic carbon. Parameters as shown in Table S1, with L=20µ Einstein s−1 m−2.

[1] Goldbeter, A. & Koshland, D. E. Sensitivity amplification in biochemical systems. Q. Rev. Biophys 15, 555–591 (1982).
[2] Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle past present and future. Geochemical Perspectives 1 (2012).
[3] Alberghina, L., Höfer, T. & Vanoni, M. Molecular networks and system-level properties. J. Biotechnol. 144, 224–233

(2009).



22

[4] Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent modification in biological systems. Proc.
Natl Acad. Sci. USA 78, 6840–6844 (1981).

[5] Klok, J. B. M. et al. A physiologically based kinetic model for bacterial sulfide oxidation. Water Research 47, 483–492
(2012).
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