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Abstract

This paper investigates how hyperspectral reflagghetween 350 and 1800 nm) can be used to infer
ecosystem properties for a semi-arid savanna grassgh West Africa using a unique in situ based
multi-angular dataset of hemispherical conicaleetfince factor (HCRF) measurements. Relationships
between seasonal dynamics in hyperspectral HCRFeemsystem properties (biomass, gross primary
productivity (GPP), light use efficiency (LUE), afrdction of photosynthetically active radiation
absorbed by vegetation (FAPAR)) were analysed. HE&E& p) were used to study the relationship
between normalised difference spectral indices (NB&d the measured ecosystem properties. Finally,
also the effects of variable sun sensor viewingmggoy on different NDSI wavelength combinations
were analysed. The wavelengths with the strongestlation to seasonal dynamics in ecosystem
properties were shortwave infrared (biomass), tak@mbsorption band for chlorophyll a and b (at 682
nm) (GPP), the oxygen A-band at 761 nm used famasing chlorophyll fluorescence (GPP, and

LUE), and blue wavelengths (FAPAR). The NDSI witle strongest correlation to: i) biomass
combined red edge HCRP(s) with green HCRFss7), ii) GPP combined wavelengths at the peak of
green reflectionpisis psse), 1ii) the LUE combined redpggg) with blue HCRF f43¢), and iv) FAPAR
combined bluefsgg) and near infrarecb(,95) wavelengths. NDSI combining near infrared and
shortwave infrared were strongly affected by saarith angles and sensor viewing geometry, as were
many combinations of visible wavelengths. This gtpbvides analyses based upon novel multi-
angular hyperspectral data for validation of eafikervation based properties of semi-arid ecosystem

as well as insights for designing spectral charattes of future sensors for ecosystem monitoring.
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1. Introduction

Hyperspectral measurements of the Earth’s surfameéde relevant information for many ecological
applications. An important tool for spatial extrégimn of ecosystem functions and properties is to
study how spectral properties are related to inrsiéasured ecosystem properties. These relatianship
found the basis for up-scaling using earth obsemwdgEQ) data. Continuous in situ measurements of
hyperspectral reflectance in combination with estesy properties are thereby essential for improving
our understanding of the functioning of the obsdreeosystems. Strong relationships have for
example been found between information in the cédlece spectrum and ecosystem properties such as
leaf area index (LAI), fraction of photosynthetigadctive radiation (PAR) absorbed by the vegetatio
(FAPAR), light use efficiency (LUE), biomass, veggadn primary productivity, vegetation water
content, and nitrogen and chlorophyll content (Elgenkabail et al., 2012; Tagesson et al., 2009;
Gower et al., 1999; Sjostrom et al., 2009; Sims@achon, 2003). In situ observations of spectral
reflectance are also important for parameterisatiahvalidation of canopy reflectance models, and
space and airborne products (Coburn and Pedd|é)200

Very few sites across the world exist with astinmental setup designed for multi-angular
continuous hyperspectral measurements. Leuninlg @Q96) present a system mounted ina 70 m
tower above an evergre&ucalyptus forest in New South Wales Austraajch measures spectral
hemispherical conical reflectance factors (HCRurly throughout the year between 300 and 1150
nm at four azimuth angles. Hilker et al. (2007) &hiiter et al. (2010) describe an automated

multiangular spectro-radiometer for estimation af@py HCRF (AMSPEC) mounted on a tower

! Different reflectance terminologies have been usddform on spectral measurements in the fieldHeyremote sensing
community leading to suggestions to the properafiskee terminology (Martonchik et al., 2000). Alklid spectro-
radiometers measure HCRF (hemispherical conickdateince) if the field of view (FOV) of the sensefarger than 3°
(Milton et al., 2009) and is therefore used thraugtthis paper to support the correct inferencewsagje of reflectance
products (Schaepman-Strub et al., 2006; Miltor.e2809).
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above a coniferous forest in Canada. Spectral HER&mpled between 350 and 1200 nm year round
under different viewing and sun angle conditiorthieved by collection of data in a near 360° view
around the tower with adjustable viewing zenithlasgEven though in situ measurements of multi-
angular hyperspectral HCRF are fundamental foEf@eresearch community, such datasets are still
rare and at the present state they do not coviereift biomes at the global scale (Huber et all420

There are many methods for analysing relatiggsshetween hyperspectral reflectance and ecosystem
properties, such as multivariate methods, derieatchniques, and radiative transfer modelling
(Bowyer and Danson, 2004; Ceccato et al., 2002sbaet al., 1992; Roberto et al., 2012). Still, due
to its simplicity, the combination of reflectane#d vegetation indices is the major method for up-
scaling using EO data. By far, the most commonpliad vegetation indices are those based on band
ratios, e.g. the normalised difference vegetatnatex (NDVI), which is calculated by dividing the
difference in the near infrared (NIR) and red wawegth bands by the sum of the NIR and red bands
(Tucker, 1979; Rouse et al., 1974). The NIR radzansstrongly scattered by the air-water interfaces
between the cells whereas red radiance is absbrspellorophyll and its accessory pigments (Gates et
al., 1965). The normalization with the sum in te@ominator is a mean to reduce the effects of solar
zenith angle, sensor viewing geometry, and atmagplgors as well as enhancing the signal of the
observed target (e.g. Qi et al., 1994; Inoue ¢2aD8).

Wavelength specific spectral reflectance is kmoavbe related to leaf characteristics such as
chlorophyll concentration, dry matter content, intd structure parameters and equivalent water
thickness (Ceccato et al., 2002). Hyperspectrédetfnce data can be combined into a matrix of
normalised difference spectral indices (NDSI),daling the NDVI rationing approach. Correlating the
NDSI with ecosystem properties provides a way fomaproved empirically based understanding of

the relationship between information in the refiecte spectrum with ground surface properties (e.qg.
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Inoue et al., 2008). Several studies have analydatonships between hyperspectral HCRF, NDSI,
and ecosystem propertiésg. Thenkabail et al., 2000; Cho et al., 2000nfs et al., 2011; Inoue et
al., 2008; Gamon et al., 1992; Feret et al., 200&nkabalil et al., 2012). Still, it is extremelygortant
to examine these relationships for different ectesys across the earth and investigate their
applicability for different environmental conditismnd under different effects of biotic and abiotic
stresses.

A strong correlation between an NDSI and an ecosypteperty does not necessarily indicate that
the NDSI is a good indicator of vegetation conditido be applied to EO systems. Visible, NIR and
shortwave infrared (SWIR) have different sensiyitd variations irsolar zenith angles, stand
structure, health status of the vegetation, vegetand soil water content, direct/diffuse radiatio
ratio, and sensor viewing geometry. The influeniceun-sensor geometry on the reflected signal has
been studied using radiative transfer models @&hdrme (e.g. AirMISR) as well as satellite-based
data from instruments such as CHRIS-PROBA, MISROLDER (Huber et al., 2010; Maignan et al.,
2004; Javier Garcia-Haro et al., 2006; Jacquembad,009; Verhoef and Bach, 2007; Laurent et al.
2011). However, féects of variable sun angles and sensor viewirangariesare not well documented
in situ for different plant functional types of natl ecosystems except for individual controlled
experiments based on the use of field goniomeg&aadmeier et al., 1998; Schopfer et al., 2008).
Improved knowledge regarding the influence from-sansor variability on different NDSI
combinations is thereby essential for validating applicability of an NDSI for EO up-scaling
purposes.

The Dahra field site in Senegal, West Africasweatablished in 2002 as an in situ researchcsite t
improve our knowledge regarding properties of sard-savanna ecosystems and their responses to

climatic and environmental changes (Tagesson ,@l5b). A strong focus of this instrumental setup
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Is to gain insight into the relationships betweeougd surface reflectance and savanna ecosystem
properties for EO up-scaling purposes. This papesents a unique in situ dataset of seasonal
dynamics in hyperspectral HCRF and demonstratesitwan be used to describe the seasonal
dynamics in ecosystem properties of semi-arid Sa¥@tosystems. The objectives are threefold: (i) to
quantify the relationship between seasonal dynaofigs situ hyperspectral HCRF between 350 and
1800 nm and ecosystem properties (biomass, grosamyrproductivity (GPP), LUE, and FAPAR);

(i) to quantify the relationship between NDSI wdkferent wavelength combinations (350 to 1800
nm) and the measured ecosystem properties; (i@h&dyse and quantify effects of variable sun agle

and sensor viewing geometries on different NDSI lzioiattions.

2. Materials and Method
2.1 Site description

All measurements used for the present study wardwzied at the Dahra field site in the Sahelian
ecoclimatic zone north-east of the town Dahra engémi-arid central part of Senegal (15°24'10"N,
15°25'56"W) during 2011 and 2012 (Fig. 1). Rainialparse in the region with a mean annual sum of
416 mm (1951-2003). More than 95% of the rain fla#éveen July and October, with August being
the wettest month. The mean annual air temper& 2@ °C (1951-2003), May is the warmest and
January is the coldest month with mean monthly enadpire of 32°C and 25°C, respectively. The
Dahra site has a short growing season (~3 morftiiEwing the rainy season with leaf area index
generally ranging between 0 and 2 (Fensholt e2@04). South-western winds dominate during the
rainy season and north-eastern winds dominate gltinendry season. The area is dominated by annual
grasses (e.gchoenefeldia gracilis, Digitaria gayana, Dactyl octenium aegypticum, Aristida mutabilis

andCenchrus biflorues) (Mbow et al., 2013) and trees and shrubs ¢&cgcia senegalensis and
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Balanites aegyptiaca) are relatively sparse (~3% of the land cover)sfRassen et al., 2011). The
average tree height was 5.2 m and the peak helighé dierbaceous layer was 0.7 m (Tagesson et al.,
2015b). A thorough description of the Dahra fiele & given in Tagesson et al. (2015b).

<Figure 1>

2.2 Meteorological and vegetation variables

A range of meteorological variables have been nredsn a tower at the Dahra field site for morentha
ten years: air temperature (°C) and relative huiyi@io) were measured at 2 m height; soil tempeeatur
(°C) and soil moisture (volumetric water content (m°x100) (%)) were collected at 0.05m depths;
rainfall (mm) was measured at 2 m height; inconfjpgyiand reflected,§) PAR @mol m? s*) was
measured at 10.5 m height, and PAR transmitteditfiréhe vegetation (PAR.smi) was measured at 6
plots at ~0.01 m height (Table 1) (Tagesson eR@ll5b). The PARnsmitwas measured within 7
meters distance from the tower. PAR absorbed byegetation (APAR) was estimated by:
APAR=PAR, .~ PAR ;= (1~ 0g) X PAR e (1)
whereosi is the PAR albedo of the soil, which was measaed.20 (Tagesson et al., 2015b). FAPAR
was estimated by dividing APARIth PAR;,c.(Tagesson et al., 2015b). All sensors were condéota
CR-1000 logger in combination with a multiplexea(@pbell Scientific Inc., North Logan, USA) and
data were sampled every 30 s, and stored as 13eramarages (sum for rainfall).

The total above ground green biomass (§) of the herbaceous vegetation was sampled
approximately every 10 days during the growing eea011 and 2012 at 28 oné pipts located
along two ~1060 m long diagonal transects (Fig(Myow et al., 2013). The method applied was
destructive, so even though the same transectsuseckfor each sampling date, the plots were never

positioned at exactly the same location. The saréw is flat and characterised by homogenous
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grassland savanna and the conditions in these sglgis are generally found to be representative fo
the conditions in the entire measurement area (fedinst al., 2006). All above ground green
herbaceous vegetation matter was collected ancheeiop the field to get the fresh weight. The dry
matter (DW) was estimated by oven-drying the git@emass. For a thorough description regarding
the biomass sampling we refer to Mbow et al. (2013)

<Table 1>

2.3 Estimates of gross primary productivity and light use efficiency

Net ecosystem exchange of COIEE) (umol CO; m? s*) was measured with an eddy covariance
system, consisting of an open path infrared galyse¥a(LI-7500, LI-COR Inc., Lincoln, USA) and a
3-axis sonic anemometer (Gill instruments, HamggshiK) from 18 July 2011 until 31 December
2012 (Table 1). The sensors were mounted 9 m abevground on a tower (placed 50 m south of the
tower including the meteorological and spectroragitric sensors) (Fig. 1f). Data were sampled at 20
Hz rate. The post-processing was done with the Edulg.2.1 software (LI-COR Biosciences, 2012),
and statistics were calculated for 30 minute pexiddhe post-processing includes 2-D coordinate
rotation (Wilczak et al., 2001), time lag removahlseen anemometer and gas analyser by covariance
maximization (Fan et al., 1990), despiking (Vickarsl Mahrt, 1997) (plausibility range: window
average £3.5 standard deviations), linear detrgn@¥oncrieff et al., 2004), and compensation for
density fluctuations (Webb et al., 1980). Fluxesenadso corrected for high pass (Moncrieff et al.,
1997) and low pass filtering effects (Moncrieffagt 2004). The data were filtered for steady shae
fully developed turbulent conditions, following Ferket al. (2004), and according to statisticaktast
recommended by Vickers and Mahrt (1997). Flux messents from periods of heavy rainfall were
also removed. For a thorough description of the pascessing of the raw eddy covariance data, see

Tagesson et al. (2015a).
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A possible source of error in a comparison betwieC-based variables and spectral HCRF is the
difference in footprint/ instantaneous field oéwi (IFOV) between the sensors. The IFOV of the
spectroradiometer set-up contains only soil anbdeous vegetation. The footprint of the EC tower
was estimated using a model based on measuremight,lgirface roughness and atmospheric
stability (Hsieh et al., 2000). The median pointriximum contribution is at 69 m, and the median
70% cumulative flux distance is at 388 m from tbwer. The footprint of the EC tower contains semi-
arid savanna grassland with ~3% tree coveragetenBCE data is thereby affected by both woody and
herbaceous vegetation (Fig. 1a and 1f). But giherldw tree coverage, and the dominanant influence
of herbaceous vegetation on the seasonal dynam{€& fluxes, we still consider it resonable to
compare EC fluxes with seasonal dynamics in spdd@&®F of the herbaceous vegetation.

The daytime NEE was partitioned to GPP and estesy respiration using the Mitscherlich light
response function against PR Falge et al., 2001). A 7-day moving window witheoday time steps
was used when fitting the functions. By subtractiagk respiration (i from the light response

function, it was forced through 0, and GPP wasrestd:

—axPAR;

cRyx(1-d @

GPP=—(F,

sat
where Fsais the CQ uptake at light saturatiopiol CO, m? s%), anda is the quantum efficiency or
the initial slope of the light response curuenpl CO, (umol photons)) (Falge et al., 2001). Vapor
pressure deficit (VPD) limits GPP and to accountliis effect, the & parameter was set as an

exponentially decreasing function:

=

c

F X e (Po-VPDo) VPD >VPD,
sat = ©)

F VPD <VPD,

csat

where VPR is 10 hPa following the method by Lasslop et2010).
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Gaps in GPP less or equal to three days wéed fi¥ith three different methods: (i) gaps shottan
two hours were filled using linear interpolation) aytime gaps were filled by using the light-
response function for the 7-day moving windows) (@maining gaps were filled by using mean
diurnal variation 7-days moving windows (Falgelet2001). A linear regression model was fitted
between daytime GPP and APAR for each 7-day mowingow to estimate LUE, where LUE is the

slope of the line.

2.4 Hyperspectral HCRF measurements and NDSI estimates

Ground surface HCRF spectra were measured evemyirilies between sunrise and sunset from 15
July 2011 until 31 December 2012 using two FieldSp&pectrometers with fiber optic cables (Table
1) (ASD Inc., Colorado, USA). The spectroradiometaver the spectral range from 350 nm to 1800
nm and have a FOV of 25°. The spectral resolusdmm at 350-1000 nm and 10 nm at 1000-1800
nm and the sampling interval is 1.4 nm at 350-1@@0and 2 nm at 1000-1800 nm. From these data, 1
nm spectra were calculated by using cubic spliterpolation functions. One sensor head was
mounted on a rotating head 10.5 m above the su(édbe same tower including instruments to
measure meteorological variables) providing measargs of the herbaceous vegetation from seven
different viewing angles in a transect undernela¢htower (nadir, 15 3C°, 45° off-nadir angles
towards east and west). No trees or effects ofishaaf trees are present in the IFOV of the datdus
in this study (Fig. 1). A reflective cosine recap®used to measure full-sky-irradiance by havhng
second sensor head mounted on a 2 m high stantingoio a Spectralon panel (Labsphere Inc., New
Hampshire, USA) under a glass dome.

Each sensor measurement starts with an optiimized adjust the sensitivity of the detectors

according to the specific illumination conditiortdlee time of measurement. The optimisation is

10
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followed by a dark current measurement to accoamthie noise generated by the thermal electrons
within the ASDs that flows even when no photonsearering the device. The measurement sequence
starts with a full-sky-irradiance measurement,dettd by measurements of the 7 angles of the land
surface and finalized by a second full-sky-irradameasurement. Thirty scans are averaged to one
measurement to improve the signal-to-noise rati@éech measurement (optimisation, dark current,
full-sky irradiance and each of the seven targedisueements). The full measurement sequence takes
less than one minute. The two ASD instruments alibrated against each other before and after each
rainy season. Poor quality measurements causedfayarable weather conditions, changing
illumination conditions, irregular technical issugere filtered by comparing full-sky solar irracice
before and after the target measurements (Hular, @014). The spectral HCRF was derived by
estimating the ratio between the ground surfacenaé and full sky irradiance. For a complete
description/illustration of the spectroradiometet p, the measurement sequence and the quality
control, see Huber et al. (2014).

NDSI using all possible combinations of two sepawavelengths were calculated as:

(Pi_Pj)

NDS|:m (4)

wherep; andp; are the daily median HCRF in two separate singleaelengths;(@nd;) between 350

and 1800 nm. In order to minimise the influencewbrs we used daily median hyperspectral HCRF in
the analysis (since median provides the most conmnaxtel output and is thereby more robust against
outliers than average values). NDSI including tteéew absorption band (1300-1500 nm) was filtered
as it is strongly sensitive to atmospheric watertent, and is less suitable for spatial extrapohatf

ecosystem properties using air/space borne se(ssmsr, 1998). Finally, NDSI combinations

11
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including wavelengths between 350 and 390 nm whkeedd owing to low signal to noise ratio in the

ASD sensors (Thenkabail et al., 2004).

2.5 Effects of varying sun and sensor viewing geometry on NDSI

The effects of variable solar zenith angles oredé@ht NDSI combinations were studied with nadir
measurements taken over 15 days during the pethle @rowing season in 2011 (day of year 237-251).
Only days with full data coverage were used (1thefl5 days) in order not to include bias in the
results from days with incomplete datasets. Theiamedl CRF of the 15 days was calculated for each
wavelength for every 15 minutes between 8:00 and0L& hese HCRF values were combined into
NDSI with different wavelength combinations. Fiyalllaily mean and standard deviation for all
wavelength combinations were calculated. Diurnailamlity in the NDSI was assessed with the
coefficient of variation (COV), which is the rati@tween the standard deviation and the mean. The
COV gives an indication of effects related to valéasolar zenith angles.

To capture directional effects in the NDSI rethto the variable view zenith angles (150°, 45°
off-nadir angles towards east and west) the NDSJ egdculated using median HCRF values from the
peak of the growing season 2011 (day of year 23j-&5 the different viewing angles. Only data
measured between 12:00 and 14:00 was used to effedls of variable solar zenith angles. The
anisotropy factor (ANIF) is defined as the fractmfma reflected property at a specific view direnti
relative to the nadir, and it was calculated by:

NDSI(),0)

ANIF(1,6) =~ 0)

(5)

where NDSIE,0) is NDSI for the different wavelengths) (and the different viewing angle®)(and

NDSIy(4) is the nadir measured NDSI (Sandmeier et al.81.99

12
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2.6 Relationship between hyperspectral HCRF, NDSI and ecosystem properties

We examined the relationship between predictoabées (daily median hyperspectral HCRF, and
NDSI from nadir observations) and response varsaflemass, GPP, LUE, and FAPAR) using linear
regression analysis. Possible errors (random sagplirors, aerosols, dust or water on the sensor
heads, electrical senor noise, filtering and gl errors, errors in correction factors, sendiot,
and instrumentation errors) can be present in predand response variables. We thereby used a
reduced major axis linear regression to accoungifiars in both the predictor and response vargable
when fitting the regression lines. In order torestie the robustness of the empirical relationshyes,
used a bootstrap simulation methodology, wherel#tasets were copied 200 times (Richter et al.,
2012). The runs generated 200 sets of slopescéyits, coefficients of determination?Rfrom which
median and standard deviation was estimated. Tinergeed statistical models were validated against
the left-out subsamples within the bootstrap sitmtamethod by calculating the root-mean square
error (RMSE) and the relative RMSE (RRMSE=100*RM8&f#an(observed)); median and standard
deviation were estimated. Within the regressioryaitgall variables used were repeated observations
of the same measurement plot. The dependent aegdendent variables are thereby temporally auto-
correlated and cannot be regarded as statisticalgpendent. We thereby choose not to present any
statistical significance. The analyses, howevdt,stlicate how closely coupled the explanatory
variables are with the ecosystem properties.

A filter was created for the analysis between\Bnd ecosystem properties; all NDSI combinations
with a COV higher than 0.066 and all NDSI combioas with ANIF values higher than 1.2 and lower
than 0.8 were filtered. The ANIF threshold of 1i21®.8, and the COV threshold of 0.066 was used

since values then vary less than 20% due to eftdatariablesun-sensor geometry

13
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3. Results

3.1 Seasonal dynamics in meteorological variables, ecosystem properties and
hyperspectral HCRF

Daily average air temperature at 2 m height rarggdieen 18.4°C and 37.8°C, with low values during
winter and peak values at the end of the dry se@Sgn2a). Yearly rainfall was 486 mm and 606 mm
for 2011 and 2012, respectively. Soil moisture eghigetween 1.9% and 14.1%, and it clearly followed
the rainfall patterns (Fig. 2b and 2c). The Ql0xes were low during the dry period and highidgr

the rainy season (July-October) (Fig. 2e). The lfblewed GPP closely (Fig. 2f). FAPAR was low at
the start of the rainy season, followed by a maxmtowards the end of the rainy season, and then
slowly decreased over the dry season (Fig. 29).

The range in HCRF is large across the spectraksgan would hide the seasonal dynamics in
hyperspectral HCRF if directly shown. Thereforeglearly illustrate the seasonal dynamics in
hyperspectral HCRF, the ratio between daily medaudir HCRF and the average HCRF for the entire
measurement period was calculated for each wauti¢B50-1800 nm)This gives a fraction of how
the HCRF for each wavelength varies over the measet period in relation to the average of the
entire period (Fig. 2d). In the visible (VIS) paftthe spectrum (350-700 nm) there was a stronger
absorption during the second half of the rainy seasd at the beginning of the dry season thamguri
the main part of the dry season and the starteofdimy season. There was stronger NIR absorption
(700-1300 nm) at the end of the rainy season amthélginning of the dry season, whereas the
absorption decreased along with the dry seasoon@seasonal variation was observed in the water
absorption region around 1400 nm following the ggs@n of rainy and dry seasons. HCRF in the
short-wave infrared (SWIR; 1400-1800 nm) generfalipwed the seasonal dynamics of the visible

part of the spectrum.
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<Figure 2>

3.2 Effects of sensor viewing geometry and variable sun angles on NDSI

The most pronounced effects of solar zenith argfiéise peak of the growing season 2011 were
observed for NDSI combining SWIR and NIR wavelesgténd with VIS wavelengths between 550
nm and 700 nm (n=576) (Fig. 3). Remaining VIS wawugths were mostly affected by solar zenith
angles when combined with the water absorption leagths around 1400 nm. The same effects were
seen for the view zenith angles; the strongesttff@ere seen for NDSI with SWIR and NIR
combinations, and VIS wavelengths between 550 &dchh (Fig. 4). Remaining VIS wavelengths
were less affected. It was also clear that groumthse anisotropy increased strongly as a funaifon
increasing viewing angle (Fig. 4). Moreover, sormadcombinations showed already angular
sensitivity at view zenith angles of 25while other band combinations only manifest aimguc
behaviour with higher view angles. Some band coatimns, however, do not show any increased
anisotropy at all (areas coloured in green inhake plots).

<Figure 3>

<Figure 4>

3.3 Relationship between hyperspectral HCRF, NDSI and ecosystem properties
3.3.1 Biomass

HCRF values for all wavelengths except the watspgition band at 1100 nm were strongly correlated
to biomass (Fig. 5a). The strongest correlation fwasd atp;575 (mediant 1standard deviatiars-
0.88%0.09), but biomass was almost equally weltetated to blue, red and NIR wavelengths. All
presented correlations and relationships througtimutext are based on filtered data. Negative

correlations indicate that the more biomass thadrighe absorption and hence the lower the HCRF. A
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small peak of positive correlation is seen at 11260 nm caused by a water absorption peak around
this wavelength (Thenkabail et al., 2012). NDSI bamtions with HCRF in the red edg&do—7s0)

and HCRF in the VIS region explained seasonal dyc&in biomass well (Fig. 6a). The strongest
relationship (R=0.88+0.07; RRMSE=18.6+5.7%) between NDSI and hissnwas found for NDSI

combining 705 and 587 nm (NDSI[705, 587]) (Tabl&®,. 7a).

3.3.2 Gross primary productivity

The relationship between GPP and nadir measureerfyypctral HCRF is inverted as compared to
other correlation coefficient lines (Fig. 5b), nGPP is defined as a withdrawal of {m the
atmosphere with higher negative values for a la@@r uptake. The seasonal dynamics in GPP was
strongly positively correlated to HCRF in the bloed, SWIR wavelengths, and the water absorption
band at 1100 nm whereas it was strongly negate@iselated to the NIR HCRF. The study revealed
the strongest positive and negative correlation$ifoRF at 682 nmrE0.70+0.02) and 761 nnm=-
0.7410.02), respectively. NDSI combinations thatlained most of the GPP variability were different
combinations of the VIS and NIR or red and SWIR &laagths (Fig. 6b). However, the strongest

relationship was seen at NDSI[518, 556{4886+0.02; RRMSE=3442.3%) (Table 2; Fig. 7b).

3.3.3 Light use efficiency

LUE was negatively correlated with HCRF in the blaed red spectral ranges and in the water
absorption band at 1100 nm and it was positivetyatated in the NIR wavelengths (Fig. 5¢). HCRF at
761 nm yielded the strongest positive correlatizgi®(87+0.01). When combining the different
wavelengths to NDSI, the VIS wavelengths explavadation in LUE well, with the strongest
relationships in the red and blue parts of the tspet(Fig. 6¢). LUE correlated most strongly with

NDSI[436, 688] (B=0.81+0.02; RRMSE=52.8+3.8 %)) (Table 2; Fig. 7c).
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3.3.4 Fraction of photosynthetically active radiation absorbed by the vegetation

FAPAR was negatively correlated to nadir measur€RH for most wavelengths (Fig. 5d); the higher
FAPAR the higher the absorption, and thereby thestdhe HCRF. The strongest correlation was
found at a blue wavelengfhi, (r=-0.92+0.01). When wavelengths were combined to NDSI
combining violet/blue with NIR and SWIR wavelengtienerated the NDSI with the strongest
relationships (Fig. 6d) with a maximunt Rf 0.81+0.02 (RRMSE=14#8.7 %) for NDSI[399, 1295]
(Table 2; Fig. 7d).

<Table 2>

<Figure 5>

<Figure 6>

<Figure 7>

4. Discussion
4.1 Effects of sensor viewing geometry and variable sun angles on the NDSI

Effects of solar zenith angles and sensor viewemngetry were similar (Fig. 3 and 4), since they
affect HCRF measurements in a similar way (Kim@&83). In dense and erectophile canopies, HCRF
increases with sensor viewing and solar zenithemd¢lecause a larger fraction of the upper vegetati
canopy is viewed/illuminated, whereas the shadoawer part of the canopy contributes less to the
measured signal as shown previously by severalesti(Hluete et al., 1992; Jin et al., 2002; Huber et
al., 2014; Kimes, 1983). However, the radiativesfar within a green canopy is complex, and differs
across the spectral region (Huber et al., 2014slradiation is available for scattering of high
absorbing spectral ranges (such as the VIS waviisp@gnd this tends to increase the contrast

between shadowed and illuminated areas for theselerggths, whereas in the NIR and SWIR ranges,
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more radiation is scattered and transmitted, wtheheby decreases the difference between shadowed
and illuminated areas within the canopy (Kimes,338apke et al., 1996). A recognised advantage of
NDSI calculations is that errors/biases being sinih both wavelengths included in the index are
suppressed by the normalisation. However, for argsituation where errors/biases are different for
the wavelengths used, such as effects generatedmbyensor geometry, it will affect the value & th
index. This was also the case at the Dahra fiédd KIDSI values were strongly affected at wavelengt
combinations with large differences in effects afiable solar zenith angles (Fig. 6 in Huber et al.
(2014)) and at wavelength combinations with lardieiences in effects related to the variable view
zenith angles (Fig. 4 in Tagesson et al. (201591)is effect is especially pronounced in the case f
low index values (closer to 0) whereas larger ing&les (closer to 1 and -1) become less sensitive.
The relative HCRF difference between NIR and SWdRwer as compared to indices including the
VIS domain; NIR/SWIR based indices thereby gendmter NDSI values with higher sensitivity to
sun-sensor geometry generated differences betwekmed wavelengths (Fig. 3 and 4).

The importance of directional effects for th@lagability of normalized difference spectral indg
has been pointed out as an issue in numerous p@pgrélolben and Fraser, 1984; van Leeuwen et al.,
1999; Cihlar et al., 1994; Fensholt et al., 2018p@t al., 2002). This study confirms these chghsn
for NIR/SWIR based indices, but the results alsbaate several wavelength combinations from which
these effects are less severe and potentiallycgipé to EO data without disturbance from
viewing/illumination geometry for this type of vagéon. Multi-angular HCRF data provide additional
information of e.g. canopy structure, photosynthefficiency and capacity (Bicheron and Leroy,
2000; Asner, 1998; Pisek et al., 2013; Huber eR8l10), and this unique in situ based multi-angula
high temporal resolution dataset may thus be useftlifure research of canopy radiative transfer and

BRDF (bidirectional reflectance distribution furart) modelling (Jacquemoud et al., 2009; Bicheron
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and Leroy, 2000). The multi-angular dataset is higbly valuable for evaluation and validation of
satellite based products, where the separatioreof &ngle and atmospheric effects can only be done

using radiative transfer models (Holben and Frak@s4).

4.2 Seasonal dynamics in hyperspectral HCRF, NDSI and ecosystem properties
4.2.1 Biomass

The strong correlation between biomass and masteatpectrum indicates the strong effects of
phenology on the seasonal dynamics in the HCRRsp@€g. 5a). Variability in VIS (350-700 nm)
HCRF for vegetated areas is strongly related tmgbsa in leaf pigments (Asner, 1998), and this can
also be seen in Fig. 2d since absorption was muchger during the rainy (growing) season, than
during the dry season. Previous studies have génsh@wn positive relationships between NIR
HCRF and biomass since a large fraction of NIRathaln is reflected in green healthy vegetation to
avoid overheating (e.g. Hansen and Schjoerring3288ner, 1998). Here, a strong negative
relationship between NIR HCRF and dry weight biosnaggenerally observed (Fig. 5a), whereas a
strong positive NIR HCRF correlation with vegetatiwater content was seen (figure not shown). This
is interesting and should be studied further téebeinderstand the respective importance of canopy
water and leaf internal cellular structure for Mi&® HCRF of herbaceous vegetation characterised by
erectophile leaf angle distribution (LAD). We foutige strongest correlation for biomass with a SWIR
wavelength thereby confirming the studies by Lé#@) and Psomas et al. (2011) in that SWIR
wavelengths are good predictors of LAI or biomass.

The NDVI is known to saturate at high biomassdose the absorption of red light at ~680 nm
saturates at higher biomass loads whereas the KIRARtontinues to increase due to multiple

scattering effects (Mutanga and Skidmore, 2004adoh Eklundh, 2014). Several studies have shown
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that NDSI computed with narrowband HCRF improve tielationship by choosing a wavelength
region not as close to the maximum red absorptiei®80 nm, for example using shorter and longer
wavelengths of the red edge (700 - 780nm) (Chd.,2@07; Mutanga and Skidmore, 2004; Lee,
2004), and NIR and SWIR wavelengths (Psomas €2@l]; Lee, 2004). The NDSI with the strongest
correlation to biomass was computed using red etfgfRF (p705) and green HCRFpés;). Vegetation
stress and information about chlorophyll and nigrogtatus of plants can be extracted from the red-
edge region (Gitelson et al., 1996). Wavelengtbsiradpsso are located right at the peak of green
reflection and closely related to the total chldrgpcontent, leaf nitrogen content, and
chlorophyll/carotenoid ratio and have previouslgtehown to be closely related to biomass (Inoue et

al., 2008; Thenkabalil et al., 2012).

4.2.2 Gross primary productivity

The maximum absorption in the red wavelengths gélyasccurs at 682 nm as this is the peak
absorption for chlorophyll a and b (Thenkabaillet2000), and this was also the wavelength being
most strongly correlated with GPP. HCRF at 682 ras wreviously shown to be strongly related to
LAI, biomass, plant height, NPP, and crop type msimation (Thenkabail et al., 2004; Thenkabalil et
al., 2012). The NDSI with the strongest relatiopsioi GPP was based on HCRF in the vicinity of the
green peak. The photochemical reflectance index) (fRiRmalizes HCRF at 531 nm and 570 nm and it
was suggested for detection of diurnal variatiothenxanthophyll cycle activity (Gamon et al., 1392
and it is commonly used for estimating productiwfficiency of the vegetation (e.g. Soudani et al.,
2014) The present study thereby confirms the strong eability of the wavelengths in the vicinity of

the green peak for vegetation productivity studkegain, wavelengths around the green peak are
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related to the total chlorophyll content, leaf ogen content, chlorophyll/carotenoid ratio, andiss

(Inoue et al., 2008; Thenkabail et al., 2012).

4.2.3 Light use efficiency

Both LUE and GPP were most strongly correlated Wi@RF at 761 nm, which is the oxygen A-band
within the NIR wavelengths. HCRF at 761 nm is comiyaused for estimating solar-induced
chlorophyll fluorescence due to radiation emittgdhe chlorophyll, and it has been suggested as a
direct measure of health status of the vegetatargni et al., 2009). Earth observation data for
estimating fluorescence should have very high sple@solution (<10 nm) due to its narrow features,
but considering the rapid technical developmentiwisensors for hyperspectral measurements,
fluorescence possibly has strong practical potefdranonitoring vegetation status (Meroni et al.,
2009; Entcheva Campbell et al., 2008). Globally peapterrestrial chlorophyll fluorescence retrievals
are already produced from the GOME-2 instrumeat gtatial resolution of 0.5°x0.5°, but hopefully
this will be available also with EO sensors of l@ghpatial and temporal resolution in the future
(Joiner et al., 2013).

The strongest wavelength combinations for edtigd UE for this semi-arid ecosystem was
NDSI[688, 435]. The 688 nm wavelength is just & Ibase of the red edge region, again indicating the
importance of this spectral region for estimatihgtosynthetic activity. The wavelength at 435 nm is
at the center of the blue range characterized lwyabhyll utilization, and strongly related to
chlorophyll a and b, senescing, carotenoid, losshtdrophyll, and vegetation browning (Thenkabail e
al., 2004; Thenkabalil et al., 2012). The NDSI[6&85] thereby explores the difference between
information about chlorophyll contemstnd information about senescence of the canopyhagtiould

be a good predictor of ecosystem level photosyittledficiency.

21



460
461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

4.2.4 Fraction of photosynthetically active radiation absorbed by the vegetation

FAPAR is an estimate of radiation absorption inghetosynthetically active spectrum and thereby
strongly negatively correlated to most parts ofgspectrum (Fig. 5d). FAPAR remained high during

the dry season because of standing dry biomassvidgaslowly degrading over the dry season (Fig.
20). The seasonal dynamics in FAPAR is therebyngtsorelated to senescence of the vegetation,
which explains why FAPAR was most strongly corretbto blue wavelengthg4,). Several studies
reported a strong relationship between NDVI and ARFe.g. Tagesson et al., 2012; Myneni and
Williams, 1994; Fensholt et al., 2004), but thigtienship has been shown to vary for the vegetativ
phase and the periods of senescence (Inoue £988; Tagesson et al., 2015b). As showed by Inbue e
al. (2008), and confirmed by this study, new indicembining blue with NIR wavelengths could be
used for estimating FAPAR for the entire phenolabaycle. This result has implications for studies

using the LUE approach for estimating C assimitati(Hilker et al., 2008).

4.3 Outlook and perspectives

Very limited multi-angular hyperspectral in situta@&xists, even though it has been, and will comltin
to be extremely valuable for an improved understandf the interaction between ground surface
properties and radiative transfer. In this studg,have presented a unique in situ dataset of multi-
angular, high temporal resolution hyperspectral IHGB50-1800 nm) and demonstrated the
applicability of hyperspectral data for estimatgrgund surface properties of semi-arid savanna
ecosystems using NDSI. The study was conducteplatiadly homogeneous savanna grassland,
suggesting that the results should be commonlyi@dpé for this biome type. Howeverttention
should be paid to site-specific details that caffdct the indices, such as species compositiah, so

type, biotic and abiotic stresses, and stand strecAdditionally, the biophysical mechanisms behin
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the NDSls are not well understood at the momemt farther studies are needed to examine the
applicability of these indices to larger regions ather ecosystemBeing a 2-band ratio approach,
NDSI does not take full advantage of exploringtilch information given by the hyperspectral HCRF
measurements. In the future, this hyperspectral H@&a-set could be fully explored using e.g.
derivative techniques, multivariate methods, améiion, parameterisation and evaluation of BRDF
and radiative transfer models.

Even though several other methods exists whilth éxploit the information in the hyperspectral
spectrum, results of the present study still in@disahe strength of normalised difference indices f
extrapolating seasonal dynamics in properties wduisiaa ecosystems. A number of wavelengths
spectra that are highly correlated to seasonalrdigsain properties of semiarid savanna ecosystems
have been identified. The relationships between NAD8 ecosystem properties were better
determined, or at the same level, as results eique studies exploring relationships between
hyperspectral reflectance and ecosystem propéKiasar, 2007; Cho et al., 2007; Mutanga and
Skidmore, 2004; Psomas et al., 2011; Ide et aLQRM®y studying also the impact from varying
viewing and illumination geometry the feasibilitgydaapplicability of using indices for up-scaling to
EO data was evaluated. As such, the results pextéete offer insights for assessment of ecosystem
properties using EO data and this information cdxdised for designing future sensors for

observation of ecosystem properties of the Earth.
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740 Tables

741 Table 1. Information about the sensor set-up femtieasured environmental variables. HCRF is herarggi conical reflectance
742 factor; GPP is gross primary productivity; LUEiight use efficiency; and FAPAR is fraction of pheyathetically active radiation
743 absorbed by the vegetation. Min and Max are mininamech maximum values measured, respectively; DWisveight; C is carbon;
744 and MJ is megajoule.

Data Aggregation Data

Variable Unit Sensors Sensor company size method gaps Min Max
Hyperspectral - Fieldspec 3 ASD Inc., Colorado, USA 371 Daily median 31% 0 1
HCRF
Herbaceous g DW m? - - 12 Daily mean - 0 223
biomass 28 plots
gC d? LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 285 Daily sums 56% -14.22 -0.22
GPP - .
Gill instruments, Hampshire, UK
gC M)t LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 272 Daily estimates 28% 0.02 1.89
LUE - .
Gill instruments, Hampshire, UK
EAPAR - Quantum SKP Skye instruments Ltd., 369 Daily averages 1% 0.07 0.77
215 Llandridod wells, UK 10:00-16:00
745
746
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Table 2. Wavelengths of the hemispherical coniefi¢ctance factors (HCRFp;(j) used in the
normalized difference spectral indices (NDSI) thanerated the strongest correlations with ecosystem
properties. DW is dry weight; FAPAR is the fractiohphotosyntetically active radiation absorbed by
the vegetation; AVG is average; SD is standardat®n; RMSE is root-mean-square-error.

Sample Observation
Ecosystem property sizz Pi P R? (AVG#SD) RMSE
Biomass (g DW m™) 12 587 705 0.88+0.07 153459 28.4+8.7
Gross primary productivity 285 518 556  0.86+0.02 -4.3+4.0 1.540.1
(gCm~d7)
Light use efficiency (g C MJ™) 272 688 436 0.81+0.02 0.53+0.65 0.26+0.02
FAPAR 369 399 1295  0.81+0.02 0.41+0.16 0.06+0.003
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753 Figures
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755 Figure 1. Map and photos of the Dahra field site measured areas. The map shows the location of
756 Dabhra within the Sahel (orange area). a) Photbefdotprint of the eddy covariance (EC) tower; b)
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photo of the EC tower; c) photo of the meteorolagtower with the spectroradiometers; d) photo of
the instantaneous field of view (IFOV) of the specdiometers during the rainy season; e) photo of
the IFOV of the spectroradiometer during the beigigrof the dry season; and f) Quickbird image from
the Dahra field site from 11 September 2011 showhegocation of the meteorological tower, the EC
tower, the biomass sampling plots and the footmithe EC measurements. The EC footprint area is
the median 70% cummulative flux distance from ttiédyecovariance tower. The photos of the EC
tower and its footprint are taken during the rasepson whereas the photo of the meteorologicalrtowe
shows the late dry season.
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calculating the ratio between daily median HCRFeach wavelength (350-1800 nm) and the average
HCREF for the entire measurement period, e€) grassgoy productivity (GPP) (black dots) and
ecosystem respiration (grey dots), f) the light efieiency (LUE), and g) the fraction of
photosynthetically active radiation absorbed bywhgetation (FAPAR). The black vertical lines are
the start and end of the rainy seasons (first arad dlay of rainfall). The gaps are caused by textin
issues due to loss of power supply, broken sersdikering of data due to bad weather conditions.

36



77
778

779
780
781
782

350

0.25

0.2
700

0.15

J

1050

0.1

Wavelength. (nm)

1400

(AOD) @dueLIeA JO JUBIDIY0D

- 10.05

1750 ‘

350 700 1050 10 1750
Wavelengthi (nm)

Figure 3. The coefficient of variation (COV), itbe ratio between daily standard deviation and the

daily mean (measurements taken between 8:00 a08)1&or different normalised difference spectral
index (NDSI) wavelength () combinations for 12 days at the peak of the gnovéieason 2011 (day of
year 237-251; n=576). The COV indicates how strptigt NDSI are affected by variable sun angles
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Figure 4. The anisotropy factor (ANIF) for diffetemormalised difference spectral index (NDSI)
wavelength;(j) combinations for 15 days at the peak of the gnoveieason 2011 (day of year 237-251)
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calculations (n=48).
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793 Figure 5. Median correlation coefficient (+1 starttldeviation) between seasonal dynamics in
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Figure 6. Coefficient of determination{fbetween normalised difference spectral index (NBSd a)
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whereas the lower left half shows filterel Based on the filtering criteria described unders®ct.
2.6.

40



808
809

810
811
812

250 0
NA
'c 200t _
2 & -5}
O 150} o
RS o
“ 100}
e & -10!
£ o
.n% 50 Y=2663+244*X-515+63
n=12; R%>=0.88
' ‘ -15

0 | '
02 022 024 026 028 03
NDSI[587,705]

2
o 0.75

<™ 1.5 Y=7.9£0.3*X+4.90.1 06
= n=272; R%*=0.81 z -
O 4l ]
o ! % 0.45
w (1
3 0.5+ 03}

0 0.15

-0.6 0.5 -0.4
NDSI[688,435]

Figure 7. The least square linear regressionstivélstrongest relationships between the normalised
difference spectral index (NDSI) and a) dry weigioimass, b) gross primary productivity (GPP), c)
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light use efficiency (LUE), and d) fraction of pbsinthetically active radiation absorbed by the
vegetation (FAPAR). In the equations, the slopeiatetcepts (+1 standard deviation) is given.
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