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Response to Anonymous Referee #1 1 
 2 
The manuscript shows an interesting study on the use of multiangular spectral measurements 3 
to describe the physiological status of the vegetation canopy in a complex 4 
tree-grass ecosystem. In this context it contributes to the research done within scientific 5 
networks such as Fluxnet, SpecNet , Eurospec, Optimise, etc. that have worked 6 
on the integration and standardization of in situ optical and flux-tower measurements 7 
with the ultimate goal of determining ecosystem fluxes in a spatially and temporally 8 
continuous mode. It is extremely difficult to obtain accurate/reliable in situ spectral 9 
measurements, particularly in a continuous and multiangular mode due to a number 10 
of potential errors caused by instrumental and environmental factors. Therefore, the 11 
manuscript represents a substantial contribution in that field due to the scientific significance of the in 12 
situ dataset analyzed. Also the study site selected in this paper is 13 
very interesting from the remote sensing perspective as, in this savanna ecosystems, 14 
the estimation of biophysical properties is still an issue owing to the challenge of determining 15 
some variables in a highly heterogeneous canopy. The research questions 16 
addressed are relevant and clearly fall within the scope of Biogeosciences.  17 
 18 
Response: We would like to take the opportunity to thank the reviewer for these valuable comments. We 19 
found the review to be highly constructive and after implementing most of the revisions we feel the paper 20 
has improved a great deal. 21 
 22 
Specific comments addressing particular scientific issues: 23 
 24 
1. Abstract and introduction are concise and summarize relevant research to provide 25 
context. However, in the introduction I miss a review of previous works on continuous 26 
multiangular hipersepectral observations for ecosystem monitoring such as the ones 27 
from T. Hilker using the AMSPEC system. 28 
 29 
Response: A section reviewing previous works on continuous multiangular hyperspectral systems 30 
for monitoring ecosystems in situ is included in the revised introduction.  31 
 32 
2. In the methods section some key information on data acquisition is missing. This 33 
information is necessary in order to properly interpret the results, especially in the case 34 
of the hyperspectral reflectance measurements but also for the ecosystem properties. 35 
In the manuscript there is only one paragraph describing hyperspectral reflectance 36 
data acquisition. Authors refer to the work of Huber et al (2014) for additional information, 37 
however, the importance of this data in the context of the paper justifies a 38 
more detailed description in the methods section. One of the key issues related with 39 
continuous spectral observations are the potential errors caused by instrumental and 40 
environmental factors. Those should be at least briefly described in the paper. Another 41 
important information which should be included regarding spectral measurements is 42 
the area observed by the sensor which, in this ecosystem, is assumed to be a mixture 43 
of trees, grass and tree-shadows at the different viewing angles (including nadir 44 
observations). This is a relevant issue because authors are building empirical models 45 
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comparing spectral measurements with some ecosystem parameters as GPP which 46 
results from the mixed contribution of the different ecosystem fractions and others (as 47 
is the case in biomass) where the information comes only from the grass fraction. 48 
 49 
Response: Thanks, we have provided more information regarding the biomass sampling, the 50 
eddy covariance measurements, and the spectral radiometer measurements in the revised method 51 
section. Possible errros in the measurements are also mentioned in the revised manuscript. 52 
   Thank you very much for pointing out to us that it was unclear regarding the instantaneous 53 
field of view (IFOV) by the sensor; this requires a bit more elaborate explanation (also included 54 
in the revised manuscript). There is no influence from trees in the hyperspectral data set used in 55 
this manuscript as the entire  IFOV constitutes of herbacous ground vegetation. In the analysis 56 
for relationships between seasonal dynamics in ecosystem properties and hyperspectral 57 
reflectance, we used nadir observations. The site only constitutes of 3% tree cover, and there are 58 
neither trees nor shading of trees in the IFOV for the nadir observations. For the analysis of 59 
anisotropy, we used angular measurements measured between (12:00 an 14:00), and there is no 60 
influence of trees nor any tree shading for this part of the day in the IFOV of the angular 61 
measurements. It is emphasized in the revised manuscript that the IFOV covers only herbaceous 62 
vegetation.  63 
   The biomass measurements is also only covering the herbaceous vegetation. The FAPAR 64 
measurements are done in the vicinity of the tower containing the radiometers, and thereby 65 
influenced by the same herbaceous vegetation as the radiometric measurements. GPP and light 66 
use efficiency is based on eddy covariance data with a median 70% cummulative footprint of 388 67 
m. These estimates are thereby influenced by both herbaceous vegetation and the tree cover. 68 
However, as the tree cover is only 3%, we consider that the major part of these variables also 69 
depend on the herbaceous vegetation. Information regarding the fetch and footprint of the 70 
measured variables is included in the revised manuscript.  71 
 72 
3. Another key issue in this paper is the representativeness of the empirical relations 73 
found. There is an obvious limitation of the dataset in the spatial domain as it is only one instrument 74 
providing spectral observations. However, for the temporal domain, 75 
there are a large number of observations (1.5 years) that would allow an independent 76 
validation by using only part of the observations to calibrate the statistical model and 77 
another one to validate it. 78 
 79 
Response: In the parameterisation of the statistical models, we used a bootstrap simulation 80 
methodology where the datasets were copied 200 times (Richter et al., 2012). When bootstraping, 81 
a data set with the same number of data points as included in the original data set is created; 82 
some of the data points are left-out, and some ot the data points are included several times. We 83 
used the data points that were included within each bootstrap run to parameterise the models, 84 
whereas the remaining ones were used for validating the models. So for each of the 200 runs we 85 
parameterised a statistical model, which was validated against the left-out subsample by 86 
calculating a root-mean-square-error. We estimated a median and a standard deviation from the 87 
200 runs. This information is emphasized in the revised manuscript.  88 
 89 
4. Authors should better justify the negative correlations found between NIR bands 90 
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and biomass. Previous works have demonstrated negative correlations in the visible 91 
but positive in the NIR both for total and green biomass (could the tree and shadow 92 
fractions of the ecosystem included in the sensor FOV be influencing this relationship?) 93 
 94 
Response: Thank you very much for pointing this out to us, this is very interesting. As there are 95 
no trees in the IFOV of the sensors,  the trees do not influence this relationship. The signal is 96 
based on reflectance from a IFOV only containing herbaceous vegetation. When fitting a 97 
correlation to vegetation water content, there is a positive correlation. But when the correlation is 98 
done versus dry weight biomass, these positive relationships to NIR HCRF turns negative. It is 99 
included in the revised discussion that these strong negative NIR HCRFcorrelation with dry 100 
weight biomass should be studied further to better understand the respective importance of 101 
canopy water and leaf internal cellular structure for the NIR HCRF of herbaceous vegetation 102 
characterised by erectophile leaf angle distribution (LAD).  103 
 104 
5. An interesting issue addressed by the paper is the effects of sun and sensor viewing 105 
geometry on NDSI. Did the authors analyzed how the mixed effect of the different 106 
ecosystem fractions (proportions) observed by the sensor at the different observation 107 
angles is contributing to these directional effects? Discussion about the potential of 108 
this dataset for BRDF modeling would be needed. 109 
 110 
Response: The mixed effect of different ecosystem fractions is a very interesting point, and it 111 
would make a very interesting future study. However, it would require that the entire system is 112 
put on a higher tower. At the present height of the tower, only herbaceous vegetation is seen.  113 
   It is included in the revised discussion that this data set can potentially also be used for BRDF 114 
(bidirectional reflectance distribution function) modelling. 115 
 116 
Specific comments addressing formal/technical corrections: (Line/page numbers are 117 
referred to the marked up version of the manuscript) 118 
 119 
Abstract 120 
Line 115. Use hemispherical conical reflectance factor (HCRF) instead of reflectance 121 
(also throughout the paper) 122 
 123 
Response: Thank you for mentioning this. We have now included the terminology of HCRF 124 
throughout the manuscript and included a footnote in the introduction clarifying this.  125 
 126 
Introduction 127 
Lines 137-138. Review commas in these sentences 128 
 129 
Response: This is taken care of. 130 
 131 
Line 152-153. Suggest to change “: : :.indices are ratio type of indices” by : : :”those 132 
based on band ratios” in order to avoid repetition 133 
 134 
Response: This is taken care of. 135 
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 136 
Line 175-176. Suggest to change “The influence from sun-sensor variantions: : :” by 137 
“The influence of sun-sensor geometry: : :” 138 
 139 
Response: This is taken care of. 140 
 141 
Lines 177-179. Not only goniometers but also multiangular satellite data, as the one 142 
provided by Chris Proba, has been used to analyze these effects. 143 
 144 
Response: We have now added the Chris-Proba, MISR and POLDER satellite instruments 145 
including refs. 146 
 147 
Line 187.Avoid repetition in the same sentence “hyperspectral reflectance” 148 
 149 
Response: This is taken care of 150 
 151 
Materials and method 152 
Line 220. Review the sentence. : : :grass and (other) herbaceous vegetation: : :.? 153 
 154 
Response: This is taken care of. 155 
 156 
Line 259. The second sensor head is a cosine receptor? If so, please specify 157 
 158 
Response: This is taken care of. 159 
 160 
Lines 311-312. How the ANIF thresholds for data filtering were stablished? 161 
 162 
Response: The threshold values of 0.8 and 1.2 indicate that the bias due to directional effects in 163 
the NDSI related to the variable view zenith angles are not larger than 20%. This is the same 164 
threshold value as was chosen for the effects of variable solar zenith angles. This is included in 165 
the revised manuscript. Honestly, the chosen level of 20% is somewhat arbitrary; it is a 166 
compromise between not incorporating too large bias, and not excluding too much data.  167 
 168 
Lines 313-317. Move to section 2.4 169 
 170 
Response: This is taken care of. 171 
 172 
Lines 369-370. Those relationships obtained using filtered or not filtered data? Please 173 
specify also for other ecosystem properties. 174 
 175 
Response: They are based on filtered data, this is specified in the revised manuscript. 176 
 177 
Figures 178 
 179 
Figure 1. I would suggest replacing pictures by a high resolution image with the location 180 
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of the towers and showing the area observed by the spectroradiometer. Additional 181 
information on the location of the biomass sampling plots and the EC mean footprint 182 
would be also useful. 183 
 184 
Response: This is a very good suggestion. We have decided to keep figure 1, but we included 185 
more photos in the figure. We have now photos of both towers, and the IFOV/footprint of both 186 
the spectroradiometers and the Eddy covariance measurements. In addition, we added a high 187 
resolution image includig the location of the towers, the biomass sampling plots and the EC 188 
footprint.  189 
 190 
Figure 5. How the authors explain the correlations peaks in all the graphs at approximately 191 
1200 nm? Also the information included in the figure caption would be quite 192 
useful in a separated table in the methods section summarizing the main characteristics 193 
of the different datasets (units, n) but also data range, aggregation (if any), data 194 
gaps, etc. 195 
 196 
Response: The correlation peak at about 1150 nm is caused by the water absorption peak around 197 
this wavelength (Thenkabail et al., 2012). The lower the reflectance in this peak, the higher the 198 
water content, and hence the higher the biomass. This information is included in the revised 199 
manuscript.  200 
   A table is included in the revised method section with the requested information.  201 
 202 
References: 203 
Richter, K., Atzberger, C., Hank, T. B., and Mauser, W.: Derivation of biophysical variables from 204 
Earth observation data: validation and statistical measures, APPRES, 6, 063557-063551-063557-205 
063523, 10.1117/1.JRS.6.063557, 2012. 206 
 207 
Thenkabail, P. S., Lyon, J. G., and Huete, A.: Advances in hyperspectral remote sensing of vegetation 208 
and agricultural croplands, in: Hyperspectral Remote Sensing of Vegetation, edited by: Thenkabail, P. 209 
S., Lyon, J. G., and Huete, A., CRC Press, Taylor and Francis Group, Boca Raton, FL, 3-35, 2012. 210 
 211 

  212 
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Response to Anonymous Referee #2 213 
 214 
 215 
The manuscript describes an interesting study using multi-angular hyperspectral data collected from a 216 
tower at a semi-arid savanna. Overall the study seems to have been undertaken in a scientifically 217 
appropriate manner and makes a valuable contribution to scientific progress. The scientific quality is 218 
high. And the presentation of the manuscript is of excellent quality. 219 
 220 
While the data analysis is sound I have the following questions, comments and suggestions which 221 
should be addressed to improve the manuscript: 222 
 223 
Response: We would like to take the opportunity to thank the reviewer for valuable comments 224 
that we believe helped improving the revised version of the manuscript. 225 
 226 
The analysis of effects of varying sun / sensor geometry has been done over 15 days (of which 3 have 227 
been removed) during the peak of the growing season. This misses the highest zenith angles and times 228 
of different vegetation conditions. I suggest to repeat the analysis for other time periods as well to gain 229 
a full picture of sun / sensor geometry effects. Furthermore, why have only NDSIs been investigated 230 
and not the reflectances themselves? This information would help to understand the behaviour of the 231 
NDSIs and would support the claim in the discussion that NDSIs reduce angular effects. 232 
 233 
Response: The reason for not doing the analysis of the varying sun/sensor conditions at the point 234 
in time with the highest zenith angles, is that this occurs during the dry season (two months prior 235 
to the onset of the growing season) where there are no vegetation (herbaceous) influencing the 236 
reflectance spectrum in the measured area. The focus of the manuscript is to investigate how 237 
NDSI is coupled with vegetation parameters, and we hence choose to use the point in time with 238 
most vegetation on the ground.    239 
   We agree that it would make a very interesting study to investigate how sun/sensor geometry 240 
influences NDSI differently across the year. However, this is not a minor task and this 241 
manuscript is long as is. We therefore feel that this is beyond the scope of this manuscript. But it 242 
is a very good idea for a future manuscript to investigate seasonal dynamics in anisotropy of both 243 
the reflectance spectrum on its own and on NDSI estimates. This is something that will hopefully 244 
be possible to do in a not too distant future. 245 
   The reason for focusing on NDSI, and not on the anisotropy on the reflectance values 246 
themselves is that it has already been done (Huber et al., 2014; Tagesson et al., 2015). The focus 247 
of the paper by Tagesson et al. (2015) is to present all research activities at the Dahra field site. 248 
Among them, a section of the anisotropy of the reflectance spectrum is presented. The aim of the 249 
paper by Huber et al. (2014) is to present the ASD set-up and investigate the quality of the 250 
measurements. A second aim is to study the effects of varying sun/sensor geometry on the 251 
reflectance spectrum. Therefore, in order not to present the same information two times, the 252 
effects of varying sun/sensor geometry part of this paper focus on the effects on the NDSI.  253 
   However, the comment is relevant and in the revised manuscript we have included a discussion 254 
regarding the behaviour of the NDSI in relation to the behaviour of the reflectance spectrum and 255 
referred to figures in Huber et al. (2014) and in Tagesson et al. (2015). 256 
 257 
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Why has the analysis of the relationship between reflectance / NDSI and ecosystem variables been 258 
restricted to a linear relationship? E.g. other studies found a non-linear relationship between reflectance 259 
and biomass due to saturation effects. Also why have only daily median reflectances / NDSIs been used 260 
when GPP, LUE and FAPAR were daily integrals? Averages would be more appropriate in these cases. 261 
And why have the off-nadir views not been analysed? 262 
 263 
Response: In case the linear relationship is strong, it indicates limited issues with saturation. For 264 
wavelength regions where there are issues with saturations, exponential and logarithmic 265 
regressions could fit better. However, in case the aim is to find wavelength regions which are as 266 
sensitive as possible for investigating seasonal dynamics in an ecosystem property, wavelength 267 
regions with saturtion issues should be avoided. Therefore linear models are better to use than 268 
non-linear models. This was the main reason for fitting linear rather than non-linear regressions. 269 
There is also a practical aspect to it, fitting the reduced major axis linear relationships using the 270 
bootstraping methodology required a full month of processing for these 4 variables (GPP, LUE, 271 
FAPAR and biomass). In case we would try several other regression models, these would require 272 
several months of processing.    273 
   Median values were used in order to minimise the influence of errors in the analysis. Median 274 
provides the most common model output and it is thereby more robust against outliers than 275 
average values. This info was provided in the manuscript, but it was not mentioned the first time 276 
that median values were used. Thank you for pointing this out to us, it has been corrected in the 277 
revised manuscript.  278 
   We have investigated the seasonal dynamics in the off-nadir views as well, but as seen in the 279 
figure below, there was no difference in seasonal dynamics for the different viewing angles. We 280 
thereby choose to only use the nadir one, as it would not make any difference in the analysis.  281 
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 282 
Some minor more specific comments: 283 
 284 
page 3318, line 22: “Environmental conditions” usually mean variables like temperature, humidity, 285 
rainfall, etc. Do you mean reflectance in different wavelength regions have different sensitivity to 286 
“environmental conditions”? Or do you really mean “vegetation condition”? 287 
 288 
Response: Thank you for pointing this out. We meant variables like stand structure, health status 289 
of the vegetation, direct/diffuse radiation, vegetation and soil water content. This has been 290 
clarified in the revised manuscript.  291 
 292 
page 3320, section 2.1: It would be good to provide some information on the height of the grasses, trees 293 
and shrubs and the tree and shrub cover to get a better idea about the vegetation structure at the site. 294 
 295 
Response: In the revised manuscript information regarding the height of the trees and the 296 
herbaceous layer is included. Much more information regarding the footprint and the vegetation 297 
in the instantaneous field of view of the spectroradiometers are provided in the revised 298 
manuscript.  299 
 300 
page 3320, line 6: “(3%, of the land cover)”. remove comma. 301 
 302 
Response: This has been taken care of. 303 
 304 



9 
 

page 3320, line 12: “rainfall (mm) was measured at 2m height”. Is the height relevant? Rainfall always 305 
has to be measured with the rain gauge not obstructed by any obstacles. What would be more 306 
interesting here is to know at what interval rainfall has been collected, i.e. daily, hourly, etc. 307 
 308 
Response: All sensors were connected to a CR-1000 logger in combination with a multiplexer 309 
(Campbell Scientific Inc., North Logan, USA) and data were sampled every 30 s, and stored as 15 310 
minute averages (sum for rainfall). This info has been included in the revised manuscript.  311 
 312 
page 3320, equation 1: Please define “albedo_soil”. Has it been measured? 313 
 314 
Response: Albedosoil is defined as PAR albedo of the soil, and it has been been measured as 0.20 315 
(Tagesson et al., 2015). This info is included in the revised manuscript.  316 
 317 
page 3321, line 19: Please define “VPD” on first use. 318 
 319 
Response: This has been taken care of. 320 
 321 
page 3322, section 2.4: The authors refer to Huber et al. (2014) for more detail on the spectrometer 322 
setup. However, the manuscript should provide some of the more fundamental information: 1. Were 323 
foreoptics used? 2. What are spectral resolution and spectral sampling of the spectrometers? 3. Have 324 
the seven different viewing angles been measured simultaneously? Or has a rotating or moving head 325 
been used? Was always the same target in the field of view? Or did the target change because of the 326 
rotating head? 4. How have solar irradiance measurements been made? Transmissive or reflective 327 
diffusor? 5. If multiplexing setup how long does it take to go through a whole measurement sequence? 328 
6. Has solar irradiance been measured for each view angle measurement separately? 329 
 330 
Response: Thank you very much for pointing this out. Much more information about the 331 
spectroradaiometer set-up is given in the revised manuscript, including information regarding all 332 
the points raised above.  333 
 334 
page 3322, line 22: Why have daily median reflectances been used? Why not an average over a certain 335 
time interval? 336 
 337 
Response: As mentioned above. We consider median values being more robust as they are not as 338 
sensitive to outliers and hence less affected by errors in the data set.  339 
 340 
page 3323, line 6: “median” over what? The 15 days? 341 
 342 
Response: Yes the median of the 15 days. This has been clarified in the revised manuscript.  343 
 344 
page 3323, lines 19-22: I suggest to move the last sentence to the start of the paragraph, i.e. before line 345 
13 as the NDSI has to be calculated before the ANIF can be calculated. 346 
 347 
Response: Thank you for this suggestion, it has been taken care of. 348 
 349 
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page 3325, line 5 + 22: Change “in the end” to “at the end”. 350 
 351 
page 3329, line 15: Change “accurate and extra” to “additional”. 352 
 353 
page 3329, line 25: Change “the majority” to “most”. 354 
 355 
Response: Thank you for these suggestions, they have been taken care of. 356 
 357 
page 3330, line 12: “Peak” suggests it is lower again at very high biomass. Rephrase. 358 
 359 
Response: We meant that the absorption of red light saturates at higher biomass loads. This has 360 
been changed in the revised manuscript. 361 
 362 
page 3330, lines 11-14: This is not the reason for the saturation of the NDVI. The NDVI saturates at 363 
high biomass because the NIR reflectance is much larger than the red reflectance. NDVI therefore 364 
reduces to R_NIR / R_NIR which equals 1. 365 
 366 
Response: We agree with you, and we are talking about the same thing, we are just using 367 
different phrasing, where you consider it from an equation point of view, we consider it from a 368 
leaf optical property point of view.  369 
   All vegetation indices using red will suffer from saturation problems. The reason for this is 370 
related to the fact that there are only so many photons striking a plant leaf and at a certain point, 371 
the chlorophyll absorbs nearly all the red energy to the point where no matter how much 372 
vegetation you add, more photons cannot be absorbed because they are already all absorbed. It is 373 
normally the red band that saturates. So any index using the red energy will suffer from the same 374 
limitation. For example, the Enhanced Vegetation Index (EVI) is not supposed to saturate as 375 
badly because in the equation empirical constants have been added to put more weight in the 376 
NIR spectrum that preserves sensitivity to higher loads of biomass (more layers of leafs) because 377 
here much more radiation is transmitted and reflected from the leaves.  378 
 379 
page 3330, lines 14-17: Again this is wrong. The saturation is not necessarily reduced with narrower 380 
bands. Narrow bands might even cause saturation earlier. Saturation can be reduced by selection of 381 
bands that show a smaller difference therefore avoiding the NDVI equation becoming 1 (see above). 382 
 383 
Response: Thank you for pointing this out for us. You are correct, it is not the narrowness of the 384 
band which results in that saturation is avoided, it is which wavelength region that is chosen. 385 
This has been clarified in the revised manuscript.  386 
 387 
page 3331, line 17-18: “As fluorescence is competing with photochemical conversion : : :” suggests 388 
high fluorescence equals low photochemical conversion. The reality is more complex. And it looks like 389 
often the opposite is true. So either remove this sentence or formulate differently. 390 
 391 
Response: Thank you again, this sentence is removed in the revised manuscript. 392 
 393 
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page 3331, line 19-20: “: : : should have very spectral high resolution (0.05-0.1nm)”. This is not true. 394 
Fluorescence has been measured successfully with a spectral resolution of about 10nm. Whether very 395 
high spectral resolution is necessary depends on the method applied. 396 
 397 
Response: Thank for this comment; this also explains why we see such a strong peak even though 398 
the spectral resolution of the ASDs are 3 nm. This has been changed in the revised manuscript. 399 
 400 
page 3332, lines 1-7: The whole discussion only focuses on what is happening at the leaf level, i.e. 401 
reduced pigment contents. What about changes in vegetation cover? 402 
 403 
Response: Ok thanks. It has been clarified in the revised manuscript that the discussion is on the 404 
canopy level.  405 
 406 
page 3342, Figure 2. Why are there gaps in the reflectance time series? Black vertical lines at the start 407 
and end of the rain seasons should be in all diagrams. 408 
 409 
Response: The gaps are caused by technical issues due to loss of power supply, broken sensors or 410 
filtering of data due to bad weather conditions. This info is included in the revised manuscript.  411 
The black lines are included in all subplots in the revised manuscript.  412 
 413 
References 414 
Huber, S., Tagesson, T., and Fensholt, R.: An automated field spectrometer system for studying VIS, 415 
NIR and SWIR anisotropy for semi-arid savanna, Remote Sens. Environ., 152, 547–556, 2014. 416 
Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., 417 
Sandholt, I., Rasmussen, B. H., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., 418 
Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semi-arid savanna grassland in West 419 
Africa and its relationship to environmental variability, Global Change Biol., 21, 250-264, doi: 420 
10.1111/gcb.12734, 2015. 421 
 422 

  423 
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Relevant changes made in the manuscript 424 

• The word reflectance was changed to hemispherical conical reflectance factor. 425 
• More information regarding the footprint/instantaneous field of view of the different sensor have 426 

been included. 427 
• A table with sensor information has been included. 428 
• More detailed information regarding the material and method has been included. 429 
• A section reviewing previous works on continuous multiangular hyperspectral systems for 430 

monitoring ecosystems in situ is included in the revised introduction. 431 
• A discussion regarding the behaviour of the NDSI in relation to the behaviour of the reflectance 432 

spectrum has been included. 433 
• A discussion regarding the negative correlations between NIR HCRF and biomass has been 434 

included. 435 
 436 
  437 
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Abstract 463 

This paper investigates how seasonal hyperspectral reflectance data (between 350 and 1800 nm) can be 464 

used to infer ecosystem properties for a semi-arid savanna grassland ecosystem in West Africa using a 465 

unique in situ based multi-angular dataset of hemispherical conical reflectance factor (HCRF) 466 

measurements. Relationships between seasonal dynamics in hyperspectral reflectanceHCRF, and 467 

ecosystem properties (biomass, gross primary productivity (GPP), light use efficiency (LUE), and 468 

fraction of photosynthetically active radiation absorbed by vegetation (FAPAR)) were analysed. 469 

Reflectance HCRF data (ρ) were used to study the relationship between normalised difference spectral 470 

indices (NDSI) and the measured ecosystem properties. Finally, also the effects of variable sun sensor 471 

viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with 472 

the strongest correlation to seasonal dynamics in ecosystem properties were shortwave infrared 473 

(biomass), the peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A-band at 474 

761 nm used for estimating chlorophyll fluorescence (GPP, and LUE), and blue wavelengths (FAPAR). 475 

The NDSI with the strongest correlation to: i) biomass combined red edge reflectanceHCRF (ρ705) with 476 

green reflectanceHCRF (ρ587), ii) GPP combined wavelengths at the peak of green reflection (ρ518, ρ556), 477 

iii) the LUE combined red (ρ688) with blue reflectanceHCRF (ρ436), and iv) FAPAR combined blue 478 

(ρ399) and near infrared (ρ1295) wavelengths. NDSI combining near infrared and shortwave infrared 479 

were strongly affected by solar zenith angles and sensor viewing geometry, as were many combinations 480 

of visible wavelengths. This study provides analyses based upon novel multi-angular hyperspectral data 481 

for validation of Earth earth Observation observation based properties of semi-arid ecosystems, as well 482 

as insights for designing spectral characteristics of future sensors for ecosystem monitoring.  483 
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1. Introduction 484 

Hyperspectral measurements of the Earth´s surface provide relevant information for many ecological 485 

applications. An important tool for spatial extrapolation of ecosystem functions and properties is to 486 

study how spectral properties are related to in situ measured ecosystem properties. These relationships 487 

found the basis for up-scaling using earth observation (EO) data. Continuous in situ measurements of 488 

hyperspectral reflectance in combination with ecosystem properties are thereby essential for improving 489 

our understanding of the functioning of the observed ecosystems. Strong relationships have for 490 

example been found between information in the reflectance spectrum and ecosystem properties such as, 491 

leaf area index (LAI), fraction of photosynthetically active radiation (PAR) absorbed by the vegetation 492 

(FAPAR), light use efficiency (LUE), biomass, vegetation primary productivity, vegetation water 493 

content, and nitrogen and chlorophyll content , and vegetation water content (e.g. Thenkabail et al., 494 

2012; Tagesson et al., 2009; Gower et al., 1999; Sjöström et al., 2009; Sims and Gamon, 2003). In situ 495 

observations of spectral reflectance are also important for parameterisation and validation of canopy 496 

reflectance models, and space and airborne products (Coburn and Peddle, 2006). 497 

    Even though in situ measurements are fundamental for the EO research community, such datasets 498 

are still rare and at the present state they do not cover different biomes at the global scale (Huber et al., 499 

2014).There are vVery few sites across the world exist with an instrumental setup designed for multi-500 

angular continuous hyperspectral measurements.Even though continuous in situ measurements of 501 

multi-angular hyperspectral HCRF are fundamental for the EO research community, such datasets still 502 

only cover a limited number of biomes at the global scale (Huber et al., 2014). Leuning et al. (2006) 503 

present a system mounted in a 70 m tower above an evergreen Eucalyptus forest in New South Wales 504 
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Australia, which measures spectral hemispherical conical reflectance factors (HCRF)1 HCRFhourly 505 

throughout the year between 300 and 1150 nm at four azimuth angles. Hilker et al. (2007) and Hilker et 506 

al. (2010) describe an automated multiangular spectro-radiometer for estimation of canopy 507 

reflectanceHCRF (AMSPEC) mounted on a tower above a coniferous forest in Canada. It sample 508 

sSpectral reflectanceHCRF is sampled between 350 and 1200 nm year round under different viewing 509 

and sun angle conditions, achieved by and it is able to collection of data in a near 360° view around the 510 

tower with adjustable viewing zenith angles.E Even though in situ measurements of multi-angular 511 

hyperspectral HCRF are fundamental for the EO research community, such datasets are still rare and at 512 

the present state they do not cover different biomes at the global scale (Huber et al., 2014).   513 

   There are many methods for analysing relationships between hyperspectral reflectance and ecosystem 514 

properties, such as multivariate methods, derivative techniques, and radiative transfer modelling 515 

(Bowyer and Danson, 2004; Ceccato et al., 2002; Danson et al., 1992; Roberto et al., 2012). Still, due 516 

to its simplicity, the combination of reflectance into vegetation indices is the major method for up-517 

scaling using EO data. By far, the most commonly applied vegetation indices are the ratio type of 518 

indicesthose based on band ratios, e.g. the normalised difference vegetation index (NDVI), which is 519 

calculated by dividing the difference in the reflectanceHCRF in the near infrared (ρNIRNIR) and red 520 

(ρred ) wavelength bands by the sum of ρNIR the NIR and ρred red bands (Tucker, 1979; Rouse et al., 521 

1974). The near infrared (NIR) radiance is strongly scattered by the air-water interfaces between the 522 

cells whereas red radiance is absorbed by chlorophyll and its accessory pigments (Gates et al., 1965). 523 

The normalization with the sum in the denominator is a mean to reduce the effects of solar zenith 524 

                                                 
1 Different reflectance terminologies have been used to inform on spectral measurements in the field by the remote sensing 
community leading to suggestions to the proper use of the terminology (Martonchik et al., 2000). All field spectro-
radiometers measure HCRF (hemispherical conical reflectance) if the field of view (FOV) of the sensor is larger than 3° 
(Milton et al., 2009) and is therefore used throughout this paper to support the correct inference and usage of reflectance 
products (Schaepman-Strub et al., 2006; Milton et al., 2009). 
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angle, sensor viewing geometry, and atmospheric errors as well as enhancing the signal of the observed 525 

target (e.g. Qi et al., 1994; Inoue et al., 2008).  526 

   Wavelength specific spectral reflectance is known to be related to leaf characteristics such as 527 

chlorophyll concentration, dry matter content, internal structure parameters and equivalent water 528 

thickness (Ceccato et al., 2002). Hyperspectral reflectance data can be combined into a matrix of 529 

normalised difference spectral indices (NDSI), following the NDVI rationing approach. Correlating the 530 

NDSI with ecosystem properties provides a way for an improved empirically based understanding of 531 

the relationship between information in the reflectance spectrum with ground surface properties (e.g. 532 

Inoue et al., 2008). Several studies have analysed relationships between hyperspectral 533 

reflectanceHCRF, NDSI, and ecosystem properties (e.g. Thenkabail et al., 2000; Cho et al., 2007; 534 

Psomas et al., 2011; Inoue et al., 2008; Gamon et al., 1992; Feret et al., 2008; Thenkabail et al., 2012). 535 

Still, it is extremely important to examine these relationships for different ecosystems across the earth 536 

and investigate their applicability for different environmental conditions and under different effects of 537 

biotic and abiotic stresses.  538 

   A strong correlation between an NDSI and an ecosystem property does not necessarily indicate that 539 

the NDSI is a good indicator of vegetation conditions to be applied to EO systems. Visible, NIR and 540 

shortwave infrared (SWIR) have different sensitivity to variations in solar zenith angles, stand 541 

structure, environmental conditionshealth status of the vegetation, vegetation and soil water content, 542 

direct/diffuse radiation ratio, and sensor viewing geometry. The influence from of sun-sensor variations 543 

geometry on the reflected signal has been studied using radiative transfer models  and airborne (e.g. 544 

AirMISR ) as well as satellite-based data from instruments, such as CHRIS-PROBA, MISR orand 545 

POLDER (Huber et al., 2010; Maignan et al., 2004; Javier García-Haro et al., 2006; Jacquemoud et al., 546 

2009; Verhoef and Bach, 2007; Laurent et al., 2011). However, effects of variable sun angles and 547 
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sensor viewing geometries are not well documented in situ for different plant functional types of 548 

natural ecosystems except for individual controlled experiments based on the use of field goniometers 549 

(Sandmeier et al., 1998; Schopfer et al., 2008)(e.g. Sandmeier et al., 1998). Improved knowledge 550 

regarding the influence from sun-sensor variability on different NDSI combinations is thereby essential 551 

for validating the applicability of an NDSI for EO up-scaling purposes.  552 

   The Dahra field site in Senegal, West Africa, was established in 2002 as an in situ research site to 553 

improve our knowledge regarding properties of semi-arid savanna ecosystems and their responses to 554 

climatic and environmental changes (Tagesson et al., 2015b). A strong focus of this instrumental setup 555 

is to gain insight into the relationships between ground surface reflectance and savanna ecosystem 556 

properties for EO up-scaling purposes. This paper presents a unique in situ dataset of seasonal 557 

dynamics in hyperspectral reflectanceHCRF and demonstrates how seasonal dynamics in hyperspectral 558 

reflectanceit can be used to describe the seasonal dynamics in ecosystem properties of semi-arid 559 

savanna ecosystems. The objectives are threefold: (i) to quantify the relationship between seasonal 560 

dynamics of in situ hyperspectral reflectanceHCRF between 350 and 1800 nm and ecosystem 561 

properties (biomass, gross primary productivity (GPP), LUE, and FAPAR); (ii) to quantify the 562 

relationship between NDSI with different wavelength combinations (350 to 1800 nm) and the 563 

measured ecosystem properties; (iii) to analyse and quantify effects of variable sun angles and sensor 564 

viewing geometries on different NDSI combinations.  565 

2. Materials and Method 566 

2.1 Site description 567 

All measurements used for the present study were conducted at the Dahra field site in the Sahelian 568 

ecoclimatic zone north-east of the town Dahra in the semi-arid central part of Senegal (15°24'10"N, 569 
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15°25'56"W) during 2011 and 2012 (Fig. 1). Rainfall is sparse in the region with a mean annual sum of 570 

416 mm (1951-2003). More than 95% of the rain falls between July and October, with August being 571 

the wettest month. The mean annual air temperature is 29 °C (1951-2003), May is the warmest and 572 

January is the coldest month with mean monthly temperature of 32°C and 25°C, respectively. The 573 

Dahra site has a short growing season (~3 months), following the rainy season with leaf area index 574 

generally ranging between 0 and 2 (Fensholt et al., 2004). South-western winds dominate during the 575 

rainy season and north-eastern winds dominate during the dry season. The area is dominated by annual 576 

grasses (e.g. Schoenefeldia gracilis, Digitaria gayana, Dactyloctenium aegypticum, Aristida mutabilis 577 

and Cenchrus biflorues) (Mbow et al., 2013) and trees and shrubs (e.g. Acacia senegalensis and 578 

Balanites aegyptiaca) are relatively sparse (~3%, of the land cover) (Rasmussen et al., 2011). The 579 

average tree height was 5.2 m and the peak height of the herbaceous layer was 0.7 m (Tagesson et al., 580 

2015b). A thorough description of the Dahra field site is given in Tagesson et al. (2015b).  581 

 <Figure 1> 582 

2.2 Meteorological and vegetation variables 583 

At the Dahra field site, aA range of meteorological variables have been measured fromin a tower at the 584 

Dahra field site  for more than ten years in a tower located at a for more than ten yearssunlit grass 585 

patch: air temperature (°C) and relative humidity (%) were measured at 2 m height; soil temperature 586 

(°C) and soil moisture (volumetric water content (m3 m-3×100) (%)) were collected at 0.05m depths; 587 

rainfall (mm) was measured at 2 m height; incoming (inc) and reflected (ref) PAR (µmol m-2 s-1) was 588 

measured at 10.5 m height, and PAR transmitted through the vegetation (PARtransmit) was measured at 6 589 

plots at ~0.01 m height  (Table 1) (Tagesson et al., 2015b). The PARtransmit was measured within 7 590 

meters distance from the tower. PAR absorbed by the vegetation (APAR) was estimated by: 591 
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transmitsoilrefinc PAR)α(1PARPARAPAR ×−−−=        (1) 592 

where αsoil is the PAR albedo of the soil, which was measured as 0.20 (Tagesson et al., 2015b). and 593 

FAPAR was estimated by dividing APAR with PARinc (Tagesson et al., 2015b). All sensors were 594 

connected to a CR-1000 logger in combination with a multiplexer (Campbell Scientific Inc., North 595 

Logan, USA) and data were sampled every 30 s, and stored as 15 minute averages (sum for rainfall). 596 

   The total above ground green biomass (g m-2) of the grass and herbaceous vegetation was sampled 597 

approximately every 10 days during the growing seasons 2011 and 2012 at 28 one m2 plots located 598 

along two ~1060 m long diagonal transects (Fig. 1f) (Mbow et al., 2013). The method applied was 599 

destructive, so even though the same transects were used for each sampling date, the plots were never 600 

locatedpositioned at exactly the same location. The study area is flat and characterised by homogenous 601 

grassland savanna and the conditions in these sample plots are generally found to be representative for 602 

the conditions in the entire measurement area (Fensholt et al., 2006). All above ground green grass and 603 

herbaceous vegetation matter was collected and weighed in the field to get the fresh weight. The dry 604 

matter (DW) was estimated by oven-drying the green biomass. For a thorough description regarding 605 

the biomass sampling we refer to Mbow et al. (2013). 606 

<Table 1> 607 
 608 

2.3 Estimates of gross primary productivity and light use efficiency 609 

Net ecosystem exchange of CO2 (NEE) (µmol CO2 m
-2 s-1) was measured with an eddy covariance 610 

system, consisting of an open path infrared gas analyser (LI-7500, LI-COR Inc., Lincoln, USA) and a 611 

3-axis sonic anemometer (GILL Gill instruments, Hampshire, UK) from 18 July 2011 until 31 612 

December 2012 (Table 1). The sensors were mounted 9 m above the ground on a tower (locatedplaced 613 



22 
 

50 m sSouth of the tower containingincluding the meteorological and spectroradiometric sensors) (Fig. 614 

1f). Dand data were sampled at 20 Hz rate. The post-processing was done with the EddyPro 4.2.1 615 

software (LI-COR Biosciences, 2012), and the statistics were calculated for 30 minute periods. The 616 

post-processing includes 2-D coordinate rotation (Wilczak et al., 2001), time lag removal between 617 

anemometer and gas analyser by covariance maximization (Fan et al., 1990), despiking (Vickers and 618 

Mahrt, 1997) (plausibility range: window average ±3.5 standard deviations), linear detrending 619 

(Moncrieff et al., 2004), and compensation for density fluctuations (Webb et al., 1980). The fFluxes 620 

were also corrected for high pass (Moncrieff et al., 1997) and low pass filtering effects (Moncrieff et 621 

al., 2004). The data were filtered for steady state and fully developed turbulent conditions, following 622 

Foken et al. (2004), and according to statistical tests as recommended by Vickers and Mahrt (1997). 623 

Flux measurements from periods of heavy rainfall were also removed. For a thorough description of the 624 

post processing of the raw eddy covariance data, see Tagesson et al. (2015a). 625 

   A possible source of error in a comparison between EC-based variables and spectral 626 

reflectanceHCRF is the difference in  fetchfootprint/ instantaneous field of view (IFOV) differences 627 

between the sensors. The fetchIFOV of the spectroradiometer set-up contains onlythe includingsoil and 628 

herbaceous vegetation. The footprint of the EC tower was estimated using a model based on 629 

measurement height, surface roughness and atmospheric stability (Hsieh et al., 2000). The median 630 

point of maximum contribution is at 69 m, and the median for 70% cumulative flux distance is at 388 631 

m from the tower. The footprint of the EC tower contains  semi-arid savanna grassland with ~3% tree 632 

coverage and the EC data is thereby affected by both woody and herbaceous vegetation (Fig. 1a and 633 

1f). But given the low tree coverage, and the dominanant influence of herbaceous vegetation on the 634 

seasonal dynamics in CO2 fluxes, we still consider it resonable to compare EC fluxes with seasonal 635 

dynamics in spectral HCRF of the herbaceous vegetation.  636 
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   The daytime NEE was partitioned to GPP and ecosystem respiration using the Mistscherlich light 637 

response function against PARinc (Falge et al., 2001). A 7-day moving window with one day time steps 638 

was used when fitting the functions. By subtracting dark respiration (Rd) from the light response 639 

function, it was forced through 0, and GPP was estimated: 640 
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where Fcsat is the CO2 uptake at light saturation (µmol CO2 m
-2 s-1), and α is the quantum efficiency or 642 

the initial slope of the light response curve (µmol CO2 (µmol photons)-1) (Falge et al., 2001). Vapor 643 

pressure deficit (VPD) limits GPP and to account for this effect, the Fcsat parameter was set as an 644 

exponentially decreasing function: 645 
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646 

where VPD0 is 10 hPa following the method by Lasslop et al. (2010).  647 

   Gaps in GPP less or equal to three days were filled with three different methods: (i) gaps shorter than 648 

two hours were filled using linear interpolation; (ii) daytime gaps were filled by using the light-649 

response function for the 7-day moving windows; (iii) remaining gaps were filled by using mean 650 

diurnal variation 7-days moving windows (Falge et al., 2001). A linear regression model was fitted 651 

between daytime GPP and APAR for each 7-day moving window to estimate LUE, where LUE is the 652 

slope of the line.  653 

2.4 Hyperspectral reflectanceHCRF measurements and NDSI estimates 654 

Ground surface reflectanceHCRF spectra were measured every 15 minutes between sunrise and sunset 655 

from 15 July 2011 until 31 December 2012 using two FieldSpec3 spectrometers with fiber optic cables 656 

(Table 1) (ASD Inc., Colorado, USA). The spectroradiometers cover the spectral range from 350 nm to 657 
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1800 nm and have an instantaneous field of viewFOV of 25°. The spectral resolution is 3 nm at 350-658 

1000 nm and 10 nm at 1000-1800 nm and the sampling interval is 1.4 nm at 350-1000 nm and 2 nm at 659 

1000-1800 nm. From these data, 1 nm spectra were calculated by using cubic spline interpolation 660 

functions. One sensor head was mounted on a rotating head 10.5 m above the surface (atin the same 661 

tower containingincluding instruments to measurethemeasurements of  meteorological variables) 662 

providing measurements from of the land surfacea sunlit grass patchthe herbaceous vegetation fromin 663 

seven different viewing angles in a transect underneath the tower (nadir, 15°, 30°, 45° off-nadir angles 664 

towards east and west). There are nNo trees or effects of shading of trees are present in the IIFOV of 665 

the data used in this study (Fig. 1). A reflective cosine receptor is used to measure full-sky-irradiance; 666 

it constitutes of by having tThe second sensor head was mounted on a 2 m high stand pointing to a 667 

Spectralon panel (Labsphere Inc., New Hampshire, USA) under a glass dome.used for full-sky-668 

irradiance measurements.  669 

   Each sensor measurement starts with an optimization to adjust the sensitivity of the detectors 670 

according to the specific illumination conditions at the time of measurement. The optimisation is 671 

followed by a dark current measurement to account for the noise generated by the thermal electrons 672 

within the ASDs that flows even when no photons are entering the device. The measurement sequence 673 

starts with a full-sky-irradiance measurement, secondlyfollowed the by measurements fromof the 7 674 

angles of the  land surface is conducted, and finallyized by a second full-sky-irradiance is 675 

measuredment. Thirty scans are averaged to one measurement to improve the signal-to-noise ratio for 676 

each measurement (optimisation, dark current, full-sky irradiance and each of the seven target 677 

measurements). The full measurement sequence takes less than one minute. The two ASD instruments 678 

are calibrated against each other before and after each rainy season. Poor quality measurements caused 679 



25 
 

by unfavorable weather conditions, changing illumination conditions,  irregular technical issues were 680 

filtered by comparing full-sky solar irradiance before and after the target measurements (Huber et al., 681 

2014).  The spectral reflectanceHCRF was derived by estimating the ratio between the ground surface 682 

radiance and full sky irradiance. For a complete description/illustration of the spectroradiometer set up, 683 

the measurement sequence and the quality control, see Huber et al. (2014).  684 

   NDSI using all possible combinations of two separate wavelengths were calculated as:  685 
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 686 

where ρi and ρj are the daily median reflectanceHCRF in two separate single wavelengths (i and j)  687 

between 350 and 1800 nm. In order to minimise the influence of errors we used daily median 688 

hyperspectral HCRF in the analysis (since median provides the most common model output and is 689 

thereby more robust against outliers than average values). Additionally,NDSI including  the water 690 

absorption band (1300-1500 nm) was filtered as it is strongly sensitive to atmospheric water content, 691 

and is less suitable for spatial extrapolation of ecosystem properties using air/space borne sensors 692 

(Asner, 1998). Finally, NDSI combinations including wavelengths between 350 and 390 nm were 693 

filtered owing to low signal to noise ratio in the ASD sensors (Thenkabail et al., 2004). 694 

2.5 Effects of varying sun and sensor viewing geometry on NDSI 695 

The effects of variable solar zenith angles on different NDSI combinations were studied with nadir 696 

measurements taken over 15 days during the peak of the growing season in 2011 (day of year 237-251). 697 

Only days with full data coverage were used (12 of the 15 days) in order not to include bias in the 698 

results from days with incomplete datasets. The median reflectanceHCRF of the 15 days was calculated 699 

for each wavelength for every 15 minutes between 8:00 and 18:00. These reflectanceHCRF values 700 
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were combined into NDSI with different wavelength combinations. Finally, daily mean and standard 701 

deviation for all wavelength combinations were calculated. Diurnal variability in the NDSI was 702 

assessed with the coefficient of variation (COV), which is the ratio between the standard deviation and 703 

the mean. The COV gives an indication of effects related to variable solar zenith angles.  704 

   To capture directional effects in the NDSI related to the variable view zenith angles (15°, 30°, 45° 705 

off-nadir angles towards east and west) the NDSI was calculated using median HCRF values from the 706 

peak of the growing season 2011 (day of year 237-251) for the different viewing angles. Only data 707 

measured between 12:00 and 14:00 was used to avoid effects of variable solar zenith angles. The 708 

anisotropy factor (ANIF)The anisotropy factor (ANIF) was used to capture directional effects in the 709 

NDSI related to the variable view zenith angles (15°, 30°, 45° off-nadir angles towards east and west).  710 

The ANIF is defined as the fraction of a reflected property at a specific view direction relative to the 711 

nadir, and it was calculated by: 712 

( )λ
λλ
0NDSI

θ),NDSI(
θ),ANIF( =          (65) 713 

where NDSI(λ,θ) is NDSI for the different wavelengths (λ) and the different viewing angles (θ), and 714 

NDSI0(λ) is the nadir measured NDSI (Sandmeier et al., 1998). The NDSI was calculated from median 715 

reflectanceHCRF values from the peak of the growing season 2011 (day of year 237-251) and only data 716 

measured between 12:00 and 14:00 were used to avoid effects of variable solar zenith angles. 717 

2.6 Relationship between hyperspectral reflectanceHCRF, NDSI and ecosystem 718 
properties 719 

We examined the relationship between predictor variables (daily median hyperspectral 720 

reflectanceHCRF, and NDSI from nadir observations) and response variables (biomass, GPP, LUE, and 721 

FAPAR) using linear regression analysis. There are pPossible errors (random sampling errors, weather 722 
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conditions, aerosols, dust or water on the sensor heads, electrical senor noise, filtering and gap-filling 723 

errors, errors in correction factors, sensor drift, and instrumentation errors) can be present in both 724 

predictor and response variablesHCRF(providesis ther). We thereby used a reduced major axis linear 725 

regression to account for errors in both the predictor and response variables when fitting the regression 726 

lines. In order to estimate the robustness of the empirical relationships, we used a bootstrap simulation 727 

methodology, where the datasets were copied 200 times (Richter et al., 2012). The runs generated 200 728 

sets of slopes, intercepts, coefficients of determination (R2), and root-mean-square-errors (RMSE), 729 

from which median and standard deviation was estimated. The generated statistical models were 730 

validated against the left-out subsamples within the bootstrap simulation method by calculating the 731 

root-mean square error (RMSE) and the relative RMSE (RRMSE=100*RMSE*mean(observed) -1); 732 

median and standard deviation waswere estimated. Median was used instead of average since it gives 733 

the most common model output and hereby more robust against outliers. Within the regression analysis 734 

all variables used were repeated observations of the same measurement plot. The dependent and 735 

independent variables are thereby temporally auto-correlated and cannot be regarded as statistically 736 

independent. We thereby choose not to present any statistical significance. The analyses, however, still 737 

indicate how closely coupled the explanatory variables are with the ecosystem properties.  738 

   A filter was created for the analysis between NDSI and ecosystem properties ; all NDSI combinations 739 

with a COV higher than 0.066 and all NDSI combinations with ANIF values higher than 1.2 and lower 740 

than 0.8 were filtered. The ANIF threshold of 1.2 and 0.8, and tThe COV threshold of 0.066 was used 741 

since 99.9% of the values then vary less than 20% due to effects of variable sun-sensor geometrysolar 742 

zenith angles. Additionally, the water absorption band (1300-1500 nm) was filtered as it is strongly 743 

sensitive to atmospheric water content, and is less suitable for spatial extrapolation of ecosystem 744 

properties using air/space borne sensors (Asner, 1998). Finally, NDSI combinations including 745 
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wavelengths between 350 and 390 nm were filtered owing to low signal to noise ratio in the ASD 746 

sensors (Thenkabail et al., 2004). 747 

3. Results 748 

3.1 Seasonal dynamics in meteorological variables, ecosystem properties and 749 
hyperspectral reflectanceHCRF 750 

Daily average air temperature at 2 m height ranged between 18.4°C and 37.8°C, with low values during 751 

winter and peak values in at the end of the dry season (Fig. 2a). Yearly rainfall was 486 mm and 606 752 

mm for 2011 and 2012, respectively. Soil moisture ranged between 1.9% and 14.1%, and it clearly 753 

followed the rainfall patterns (Fig. 2b and 2c). The CO2 fluxes were low during the dry period and high 754 

during the rainy season (July-October) (Fig. 2e). The LUE followed GPP closely (Fig. 2f). FAPAR was 755 

low at the start of the rainy season, followed by a maximum towards the end of the rainy season, and 756 

then slowly decreased over the dry season (Fig. 2g).   757 

   The range in reflectanceHCRF is large across the spectral space, and would hide the seasonal 758 

dynamics in hyperspectral reflectanceHCRF if directly shown. Therefore, to clearly illustrate the 759 

seasonal dynamics in hyperspectral reflectanceHCRF, the ratio between daily median nadir 760 

reflectanceHCRF and the average reflectanceHCRF for the entire measurement period was calculated 761 

for each wavelength (350-1800 nm). This gives a fraction of how the reflectanceHCRF for each 762 

wavelength varies over the measurement period in relation to the average of the entire period (Fig. 2d). 763 

In the visible (VIS) part of the reflectance spectrum (350-700 nm) there was a stronger absorption 764 

during the second half of the rainy season and at the beginning of the dry season than during the main 765 

part of the dry season and the start of the rainy season. There was stronger NIR absorption (700-1300 766 

nm) in at the end of the rainy season and the beginning of the dry season, whereas the absorption 767 

decreased along with the dry season. Strong seasonal variation was observed in the water absorption 768 
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region around 1400 nm following the succession of rainy and dry seasons. ReflectanceHCRF in the 769 

short-wave infrared (SWIR; 1400-1800 nm) generally followed the seasonal dynamics of the visible 770 

part of the spectrum. 771 

<Figure 2> 772 

3.2 Effects of sensor viewing geometry and variable sun angles on NDSI 773 

The most pronounced effects of solar zenith angles at the peak of the growing season 2011 were 774 

observed for NDSI combining SWIR and NIR wavelengths, and with VIS wavelengths between 550 775 

nm and 700 nm (n=576) (Fig. 3). Remaining VIS wavelengths were mostly affected by solar zenith 776 

angles when combined with the water absorption wavelengths around 1400 nm. The same effects were 777 

seen for the view zenith angles; the strongest effects were seen for NDSI with SWIR and NIR 778 

combinations, and VIS wavelengths between 550 and 700 nm (Fig. 4). Remaining VIS wavelengths 779 

were less affected. It was also clear that ground surface anisotropy increased strongly as a function of 780 

increasing viewing angle (Fig. 4). Moreover, some band combinations showed already angular 781 

sensitivity at view zenith angles of 15 °, while other band combinations only manifest anisotropic 782 

behaviour with higher view angles. Some band combinations, however, do not show any increased 783 

anisotropy at all (areas coloured in green in all three plots). 784 

<Figure 3> 785 

<Figure 4> 786 



30 
 

3.3 Relationship between hyperspectral reflectanceHCRF, NDSI and ecosystem 787 
properties 788 

3.3.1 Biomass 789 

ReflectanceHCRF values for all wavelengths except the water absorption band at 1100 nm were 790 

strongly correlated to biomass (Fig. 5a).  The strongest correlation was found at ρ1675 (median ± 1 791 

standard deviation; r = =-0.88±0.09), but biomass was almost equally well correlated to blue, red and 792 

NIR wavelengths. All presented correlations and relationships throughout the text areis based on 793 

filtered data. Negative correlations indicate that the more biomass the higher the absorption and hence 794 

the lower the reflectanceHCRF.  A small peak of positive correlation is seen at 1120-1150 nm caused 795 

by a water absorption peak around this wavelength (Thenkabail et al., 2012). 796 

   NDSI combinations with reflectanceHCRF in the red edge (ρ680–ρ750) and reflectanceHCRF in the 797 

VIS region explained seasonal dynamics in biomass well (Fig. 6a). The strongest relationship 798 

(R2=0.88±0.07; RRMSE=28.418.6±85.7 %g DW m-2)  between NDSI and biomass was found for 799 

NDSI combining 705 and 587 nm (NDSI[705, 587]) (Table 12, Fig. 7a).  800 

3.3.2 Gross primary productivity 801 

The relationship between GPP and nadir measured hyperspectral reflectanceHCRF is inverted as 802 

compared to other correlation coefficient lines (Fig. 5b), since GPP is defined as a withdrawal of CO2 803 

from the atmosphere with higher negative values for a larger CO2 uptake. The seasonal dynamics in 804 

GPP was strongly positively correlated to reflectanceHCRF in the blue, red, SWIR wavelengths, and 805 

the water absorption band at 1100 nm whereas it was strongly negatively correlated to the NIR 806 

reflectanceHCRF. The study revealed the strongest positive and negative correlations for 807 

reflectanceHCRF at 682 nm (r = 0.70±0.02) and 761 nm (r = -0.74±0.02), respectively. NDSI 808 

combinations that explained most of the GPP variability were different combinations of the VIS and 809 
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NIR or red and SWIR wavelengths (Fig. 6b). However, the strongest relationship was seen at 810 

NDSI[518, 556] (R2=0.86±0.02; RRMSE=1.534.9±0.12.3 %g C m-2 d-1) (Table 12; Fig. 7b).  811 

3.3.3 Light use efficiency 812 

LUE was negatively correlated with reflectanceHCRF in the blue, and red spectral ranges and in the 813 

water absorption band at 1100 nm and it was positively correlated in the NIR wavelengths (Fig. 5c). 814 

ReflectanceHCRF at 761 nm yielded the strongest positive correlation (r = 0.87±0.01). When 815 

combining the different wavelengths to NDSI, the VIS wavelengths explained variation in LUE well, 816 

with the strongest relationships in the red and blue parts of the spectrum (Fig. 6c). LUE correlated most 817 

strongly with NDSI[436, 688] (R2 = 0.81±0.02; RRMSE=0.2652.8±0.023.8 % g C MJ-1)) (Table 12; 818 

Fig. 7c). 819 

3.3.4 Fraction of photosynthetically active radiation absorbed by the vegetation 820 

FAPAR was negatively correlated to nadir measured reflectanceHCRF for most wavelengths (Fig. 5d); 821 

the higher FAPAR the higher the absorption, and thereby the lower the reflectanceHCRF. The strongest 822 

correlation was found at a blue wavelength ρ412 (r = -0.92±0.01). When wavelengths were combined to 823 

NDSI, combining violet/blue with NIR and SWIR wavelengths generated the NDSI with the strongest 824 

relationships (Fig. 6d) with a maximum R2  of 0.81±0.02 (RRMSE=0.05914.6±0.0030.7 %) for 825 

NDSI[399, 1295] (Table 12; Fig. 7d).  826 

<Table 12> 827 

<Figure 5> 828 

<Figure 6> 829 

<Figure 7> 830 
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4. Discussion  831 

4.1 Effects of sensor viewing geometry and variable sun angles on the NDSI 832 

Effects of solar zenith angles and sensor viewing geometry were similar (Fig. 3 and 4), since they 833 

affect reflectanceHCRF measurements in a similar way (Kimes, 1983). In dense and erectophile 834 

canopies, reflectanceHCRF increases with sensor viewing and solar zenith angles, because a larger 835 

fraction of the upper vegetation canopy is viewed/illuminated, whereas the shadowed lower part of the 836 

canopy contributes less to the measured signal as shown previously by several studies (Huete et al., 837 

1992; Jin et al., 2002; Huber et al., 2014; Kimes, 1983). However, the radiative transfer within a green 838 

canopy is complex, and differs across the spectral region (Huber et al., 2014). Less radiation is 839 

available for scattering of  high absorbing spectral ranges (such as the VIS wavelengths), and this tends 840 

to increase the contrast between shadowed and illuminated areas for these wavelengths, whereas in the 841 

NIR and SWIR ranges, more radiation is scattered and transmitted, which thereby decreases the 842 

difference between shadowed and illuminated areas within the canopy (Kimes, 1983; Hapke et al., 843 

1996). A recognised advantage of NDSI calculations is that errors/biases being similar in both 844 

wavelengths included in the index are suppressed by the normalisation. However, for a given situation 845 

where errors/biases are different for the wavelengths used, such as effects generated by sun-sensor 846 

geometry, it will affect the value of the index. This was also the case at the Dahra field site: NDSI 847 

values were strongly affected at wavelength combinations with large differences in effects of variable 848 

solar zenith angles (Fig. 6 in Huber et al. (2014)) and at wavelength combinations with large 849 

differences in effects related to the variable view zenith angles (Fig. 4 in  Tagesson et al. (2015b)). This 850 

effect is  especially pronounced in the case for low index values (closer to 0) whereas larger index 851 

values (closer to 1 and -1) become less sensitive. The relative reflectanceHCRF difference between 852 

NIR and SWIR is lower as compared to indices including the VIS domain; NIR/SWIR based indices 853 
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thereby generate lower NDSI values with higher sensitivity to sun-sensor geometry generated 854 

differences between included wavelengths (Fig. 3 and 4).  855 

   The importance of directional effects for the applicability of normalized difference spectral indices 856 

has been pointed out as an issue in numerous papers (e.g. Holben and Fraser, 1984; van Leeuwen et al., 857 

1999; Cihlar et al., 1994; Fensholt et al., 2010; Gao et al., 2002). This study confirms these challenges 858 

for NIR/SWIR based indices, but the results also indicate several wavelength combinations from which 859 

these effects are less severe and potentially applicable to EO data without disturbance from 860 

viewing/illumination geometry for this type of vegetation. Additionally,M multi-angular 861 

reflectanceHCRF data provide accurate and extraadditional information of e.g. canopy structure, 862 

photosynthetic efficiency and capacity (Bicheron and Leroy, 2000; Asner, 1998; Pisek et al., 2013), 863 

and this unique in situ based multi-angular high temporal resolution dataset may thus be used for future 864 

research of canopy radiative transfer and creation, parameterisation and evaluation of BRDF 865 

(bidirectional reflectance distribution functions) modelling  (Jacquemoud et al., 2009; Bicheron and 866 

Leroy, 2000). The multi-angular dataset is also highly valuable for evaluation and validation of satellite 867 

based products, where the separation of view angle and atmospheric effects can only be done using 868 

radiative transfer models (Holben and Fraser, 1984).  869 

4.2 Seasonal dynamics in hyperspectral reflectanceHCRF, NDSI and ecosystem 870 
properties 871 

4.2.1 Biomass 872 

The strong correlation between biomass and the majority most of the reflectance spectrum indicates the 873 

strong effects of phenology on the seasonal dynamics in the reflectanceHCRF spectra (Fig. 5a). 874 

Variability in VIS (350-700 nm) reflectanceHCRF for vegetated areas is strongly related to changes in 875 

leaf pigments (Asner, 1998), and this can also be seen in Fig. 2d since absorption was much stronger 876 
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during the rainy (growing) season, than during the dry season. Previous studies have generally shown 877 

positive relationships between NIR reflectanceHCRF and biomass since To avoid overheating a large 878 

fraction of NIR radiation is reflected in green healthy vegetation to avoid overheating and NIR 879 

reflectance is mostly affected by changes in LAI, canopy architecture, and by the spongy mesophyll 880 

layer in green leaves (e.g. Hansen and Schjoerring, 2003; Asner, 1998). (e.g. Hansen and Schjoerring, 881 

2003) Here,We a genarally showed strong negative relationships between NIR HCRF and dry weight 882 

biomass is generally observed (Fig. 5a), whereas a  being very different from a strong positive NIR 883 

HCRF correlation with vegetation water content was seen (figure not shown). an increased 884 

fromwithinHCRFgeneral  conditionsThe strong negative NIR HCRFcorrelation with dry weight 885 

biomass found hereThis is interesting and should be studied further to better understand the respective 886 

importance of canopy water and leaf internal cellular structure for the NIR HCRF of herbaceous 887 

vegetation characterised by erectophile leaf angle distribution (LAD). Several studies have shown that 888 

biomass accumulation increases ecosystem water content, which thereby increases SWIR absorption 889 

(e.g. Psomas et al., 2011; Asner, 1998). We found the strongest correlation for biomass with a SWIR 890 

wavelength thereby confirming the studies by Lee (2004) and Psomas et al. (2011) in that SWIR 891 

wavelengths are good predictors of LAI or biomass. 892 

   The NDVI is known to saturate at high biomass because the absorption of red light at ~670 680 nm 893 

reaches a peaksaturates at higher biomass loads whereas the NIR reflectanceHCRF continues to 894 

increase due to multiple scattering effects (Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). 895 

Several studies have shown that NDSI computed with narrowband reflectanceHCRF improve this 896 

relationship by choosing a wavelength region not as close to the maximum red absorption at ~680 nm, 897 

for example using shorter and longer wavelengths of the red edge (700 - 780nm) (Cho et al., 2007; 898 

Mutanga and Skidmore, 2004; Lee, 2004), and NIR and SWIR wavelengths (Psomas et al., 2011; Lee, 899 
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2004). The NDSI with the strongest correlation to biomass was computed using red edge 900 

reflectanceHCRF (ρ705) and green reflectanceHCRF (ρ587). Vegetation stress and information about 901 

chlorophyll and nitrogen status of plants can be extracted from the red-edge region (Gitelson et al., 902 

1996).  Wavelengths around ρ550 are located right at the peak of green reflection and closely related to 903 

the total chlorophyll content, leaf nitrogen content,  and chlorophyll/carotenoid ratio and have 904 

previously been shown to be closely related to biomass (Inoue et al., 2008; Thenkabail et al., 2012).  905 

4.2.2 Gross primary productivity  906 

The maximum absorption in the red wavelengths generally occurs at 682 nm as this is the peak 907 

absorption for chlorophyll a and b (Thenkabail et al., 2000), and this was also the wavelength being 908 

most strongly correlated with GPP. ReflectanceHCRF at 682 nm was previously shown to be strongly 909 

related to LAI, biomass, plant height, NPP, and crop type discrimination (Thenkabail et al., 2004; 910 

Thenkabail et al., 2012). The NDSI with the strongest relationship to GPP was based on 911 

reflectanceHCRF in the vicinity of the green peak. The photochemical reflectance index (PRI) 912 

normalizes reflectanceHCRF at 531 nm and 570 nm and it was suggested for detection of diurnal 913 

variation in the xanthophyll cycle activity (Gamon et al., 1992), and it is commonly used for estimating 914 

productivity efficiency of the vegetation (e.g. Soudani et al., 2014). The present study thereby confirms 915 

the strong applicability of the wavelengths in the vicinity of the green peak for vegetation productivity 916 

studies. Again, wavelengths around the green peak are related to the total chlorophyll content, leaf 917 

nitrogen content, chlorophyll/carotenoid ratio, and biomass (Inoue et al., 2008; Thenkabail et al., 2012).      918 

4.2.3 Light use efficiency 919 

Both LUE and GPP were most strongly correlated with reflectanceHCRF at 761 nm, which is the 920 

oxygen A-band within the NIR wavelengths. ReflectanceHCRF at 761 nm is commonly used for 921 
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estimating solar-induced chlorophyll fluorescence due to radiation emitted by the chlorophyll, and it 922 

has been suggested as a direct measure of health status of the vegetation (Meroni et al., 2009). As 923 

fluorescence is competing with photochemical conversion, it may allow a more correct estimate of the 924 

carbon assimilation (Entcheva Campbell et al., 2008). Earth observation data for estimating 925 

fluorescence should have very high spectral resolution (<10 nm) (0.05-0.1 nm) due to its narrow 926 

features, but considering the rapid technical development within sensors for hyperspectral 927 

measurements, fluorescence possibly has strong practical potential for monitoring vegetation status 928 

(Meroni et al., 2009; Entcheva Campbell et al., 2008). Globally mapped terrestrial chlorophyll 929 

fluorescence retrievals are already produced from the GOME-2 instrument at a spatial resolution of 930 

0.5º×0.5º, but hopefully this will be available also with EO sensors of higher spatial and temporal 931 

resolution in the future (Joiner et al., 2013). 932 

   The strongest wavelength combinations for estimating LUE for this semi-arid ecosystem was 933 

NDSI[688, 435]. The 688 nm wavelength is just at the base of the red edge region, again indicating the 934 

importance of this spectral region for estimating photosynthetic activity. The wavelength at 435 nm is 935 

at the center of the blue range characterized by chlorophyll utilization, and strongly related to 936 

chlorophyll a and b, senescing, carotenoid, loss of chlorophyll, and vegetation browning (Thenkabail et 937 

al., 2004; Thenkabail et al., 2012).  The NDSI[688, 435] thereby explores the difference between 938 

information about chlorophyll content  and information about senescence of the vegetationcanopy, 939 

which should be a good predictor of ecosystem level photosynthetic efficiency. 940 

4.2.4 Fraction of photosynthetically active radiation absorbed by the vegetationFAPAR 941 

FAPAR is an estimate of radiation absorption in the photosynthetically active spectrum and thereby 942 

strongly negatively correlated to most parts of the reflectance spectrum (Fig. 5d). FAPAR remained 943 
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high during the dry season because of standing dry biomass that was slowly degrading over the dry 944 

season (Fig. 2g). The seasonal dynamics in FAPAR is thereby strongly related to senescence of the 945 

vegetation, which explains why FAPAR was most strongly correlated to blue wavelengths (ρ412). 946 

Several studies reported a strong relationship between NDVI and FAPAR (e.g. Tagesson et al., 2012; 947 

Myneni and Williams, 1994; Fensholt et al., 2004), but this relationship has been shown to vary for the 948 

vegetative phase and the periods of senescence (Inoue et al., 1998; Tagesson et al., 2015b). As showed 949 

by Inoue et al. (2008), and confirmed by this study, new indices combining blue with NIR wavelengths 950 

could be used for estimating FAPAR for the entire phenological cycle. This result has implications for 951 

studies using the LUE approach for estimating C assimilations (Hilker et al., 2008).  952 

4.3 Outlook and perspectives 953 

Very limited multi-angular hyperspectral in situ data exists, even though it has been, and will continue 954 

to be extremely valuable for an improved understanding of the interaction between ground surface 955 

properties and radiative transfer. In this study, we have presented a unique in situ dataset of multi-956 

angular, high temporal resolution hyperspectral reflectanceHCRF (350-1800 nm) and demonstrated the 957 

applicability of hyperspectral data for estimating ground surface properties of semi-arid savanna 958 

ecosystems using NDSI. The study was conducted in spatially homogeneous savanna grassland, 959 

suggesting that the results should be commonly applicable for this biome type. However, attention 960 

should be paid to site-specific details that could affect the indices, such as species composition, soil 961 

type, biotic and abiotic stresses, and stand structure. Additionally, the biophysical mechanisms behind 962 

the NDSIs are not well understood at the moment, and further studies are needed to examine the 963 

applicability of these indices to larger regions and other ecosystems. Being a 2-band ratio approach, 964 

NDSI does not take full advantage of exploring the rich information given by the hyperspectral 965 
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reflectanceHCRF measurements. In the future, this hyperspectral reflectanceHCRF data-set could be 966 

fully explored using e.g. derivative techniques, multivariate methods, and creation, parameterisation 967 

and evaluation of bidirectional reflectance distribution functionsBRDF and radiative transfer models.  968 

   Even though several other methods exists which fully exploit the information in the hyperspectral  969 

reflectance spectrum, results of the present study still indicates the strength of normalised difference 970 

indices for extrapolating seasonal dynamics in properties of savanna ecosystems. A number of 971 

wavelengths in the reflectance spectra that are highly correlated to seasonal dynamics in properties of 972 

semiarid savanna ecosystems have been identified. The relationships between NDSI and ecosystem 973 

properties were better determined, or at the same level, as results of previous studies exploring 974 

relationships between hyperspectral reflectanceHCRFreflectance and ecosystem properties (Kumar, 975 

2007; Cho et al., 2007; Mutanga and Skidmore, 2004; Psomas et al., 2011; Ide et al., 2010). By 976 

studying also the impact from varying viewing and illumination geometry the feasibility and 977 

applicability of using indices for up-scaling to EO data was evaluated. As such, the results presented 978 

here offer insights for assessment of ecosystem properties using EO data and this information could be 979 

used for designing future sensors for observation of ecosystem properties of the Earth. 980 
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Tables 1221 

Table 1. Information regardingabout the sensor set-up offor the measured environmental variables. HCRF is hemispherical conical 1222 
reflectance factor; GPP is gross primary productivity; LUE is light use efficiency; and FAPAR is fraction of photosynthetically active 1223 
radiation absorbed by the vegetation. Min and Max are minimum and maximum values measured, respectively; DW is dry weight; C 1224 
is carbon; and MJ is megajoule. 1225 

Variable Unit Sensors Sensor company 

Data 

size 

Aggregation 

method 

Data 

gaps Min  Max 

Hyperspectral 

reflectanceHCR

F 

- Fieldspec 3 ASD Inc., Colorado, USA 371 Daily median 31% 0 1 

Herbaceous 

biomass 

g DW m
-2

 - - 12 Daily mean 

 28 plots 

- 0 223 

GPP 
g C d

-1
 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 

Gill instruments, Hampshire, UK 

285 Daily sums 56% -14.22 -0.22 

LUE 
g C MJ

-1
 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 

Gill instruments, Hampshire, UK 

272 Daily estimates 28% 0.02 1.89 

FAPAR 
- Quantum SKP 

215 

Skye instruments Ltd., 

Llandridod wells, UK 

369 Daily averages 

10:00-16:00 

1% 0.07 0.77 

  1226 
  1227 
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Table 12. Wavelengths of the hemispherical conical reflectance factors (reflectances HCRF) (ρi, j) used 1228 
in the normalized difference spectral indices (NDSI) that generated the strongest correlations with 1229 
ecosystem properties. DW is dry weight; FAPAR is the fraction of photosyntetically active radiation 1230 
absorbed by the vegetation;. AVG is average; SD is standard deviation; RMSE is root-mean-square-1231 
error. 1232 

Ecosystem property 
Sample 

size 
ρi ρj R

2
 

Observation 

(AVG±SD) RMSE 

Biomass (g DW m-2
) 12 587 705 0.88±0.07 153±59 28.4±8.7 

Gross primary productivity  

(g C m
-2

 d
-1

) 
285 518 556 0.86±0.02 -4.3±4.0 1.5±0.1 

Light use efficiency (g C MJ
-1

) 272 688 436 0.81±0.02 0.53±0.65 0.26±0.02 

FAPAR 369 399 1295 0.81±0.02 0.41±0.16 0.06±0.003 

  1233 
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Figures 1235 

 1236 
Figure 1. Map and pOverview Ppicturehotos of the Dahra field siteof and the measured areas, and maps 1237 
over the Dahra field site.and tower set-up for the eddy covariance tower (left), and the meteorological 1238 
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tower with the spectroradiometers (right). The map shows the location of Dahra within the Sahel 1239 
(orange area).  a) Picturehoto of the footprint of the eddy covariance (EC) tower; b) picturephoto of the 1240 
EC tower; c) picturephoto of the meteorological tower with the spectroradiometers; d) picturephoto of 1241 
the instantaneous field of view (fetchIFOV) of the spectroradiometers during the rainy season; e) 1242 
picturephoto of the fetchIFOV of the spectroradiometer during the beginning of the dry season; and f) 1243 
Quickbird image from the Dahra field site from 11 September 2011 showing the location of the 1244 
meteorological tower, the EC tower, the biomass sampling plots and the footprint of the EC 1245 
measurements. The EC footprint area is the median 70% cummulative flux distance from the eddy 1246 
covariance tower. The overview picturephotos of the EC tower and its footprint and the picture of the 1247 
eddy covariance tower showisare taken during the rainy season whereas the picture photo of the 1248 
meteorological tower shows the late dry season. The map shows the location of Dahra within the Sahel 1249 
(orange area).  1250 
 1251 
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 1252 
Figure 2. Time series of the measured variables: a) daily averaged air temperature (black line), and soil 1253 
temperature at 0.05 m depth (grey line), b) daily sums of rainfall, c) daily average of soil moisture at 1254 
0.05 m depth, d) hyperspectral hemispherical conical reflectance factor (reflectanceHCRF) normalized  1255 
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by calculating the ratio between daily median reflectanceHCRF for each wavelength (350-1800 nm) 1256 
and the average reflectanceHCRF for the entire measurement period, e) gross primary productivity 1257 
(GPP) (black dots) and ecosystem respiration (grey dots), f) the light use efficiency (LUE), and g) the 1258 
fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR). The black vertical 1259 
lines are the start and end of the rainy seasons (first and final day of rainfall). The gaps are caused by 1260 
technical issues due to loss of power supply, broken sensors or filtering of data due to bad weather 1261 
conditions. 1262 
  1263 
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 1264 
Figure 3. The coefficient of variation (COV), i.e. the ratio between daily standard deviation and the 1265 
daily mean (measurements taken between 8:00 and 18:00), for different normalised difference spectral 1266 
index (NDSI) wavelength (i, j) combinations for 12 days at the peak of the growing season 2011 (day of 1267 
year 237-251; n= 576). The COV indicates how strongly the NDSI are affected by variable sun angles. 1268 
  1269 
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 1270 
Figure 4. The anisotropy factor (ANIF) for different normalised difference spectral index (NDSI) 1271 
wavelength (i, j) combinations for 15 days at the peak of the growing season 2011 (day of year 237-251) 1272 
for the different sensor viewing angles: a) 15°, b) 30°, and c) 45°. The sensor is pointing east and west 1273 
in the lower left and upper right corners of each plot, respectively. In order not to include effects of 1274 
solar zenith angles in the analysis, only data measured between 12:00 and 14:00 were used in the ANIF 1275 
calculations (n= 48).  1276 
 1277 
 1278 
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 1279 
Figure 5. Median correlation coefficient (±1 standard deviation) between seasonal dynamics in 1280 
hyperspectral hemispherical conical reflectance factors (reflectanceHCRF) 2011-2012 and a) dry 1281 
weight biomass (n=12; g m-2), b)  gross primary productivity (GPP) (n=285; g C day-1), c) light use 1282 
efficiency (LUE) (n=272; g C MJ-1), and d) fraction of photosynthetically active radiation absorbed by 1283 
the vegetation (FAPAR) (n=369).  1284 
 1285 
 1286 
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 1287 
Figure 6. Coefficient of determination (R2) between normalised difference spectral index ( NDSI) and 1288 
a) dry weight biomass (n=12; g m-2), b) gross primary productivity (GPP) (n=285; g C day-1), c) light 1289 
use efficiency (LUE) (n=272; g C MJ -1), and d) fraction of photosynthetically active radiation 1290 
absorbed by the vegetation (FAPAR) (n=369). The upper right half of each image shows the unfiltered 1291 
R2 values, whereas the lower left half shows filtered R2, based on the filtering criteria described under 1292 
Subsect. 2.6. 1293 
 1294 
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 1295 
Figure 7. The least square linear regressions with the strongest relationships between the normalised 1296 
difference spectral index (NDSI) and a) dry weight biomass, b) gross primary productivity (GPP), c) 1297 
light use efficiency (LUE), and d) fraction of photosynthetically active radiation absorbed by the 1298 
vegetation (FAPAR). In the equations, the slope and intercepts (±1 standard deviation) is given. 1299 


