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Response to Referee #1. 1 

Old comment: The analysis of effects of varying sun / sensor geometry has been done over 15 days (of 2 

which 3 have 3 

been removed) during the peak of the growing season. This misses the highest zenith angles and times 4 

of different vegetation conditions. I suggest to repeat the analysis for other time periods as well to gain 5 

a full picture of sun / sensor geometry effects. Furthermore, why have only NDSIs been investigated 6 

and not the reflectances themselves? This information would help to understand the behaviour of the 7 

NDSIs and would support the claim in the discussion that NDSIs reduce angular effects. 8 

 9 

Old Response: The reason for not doing the analysis of the varying sun/sensor conditions at the point 10 

in time with the highest zenith angles, is that this occurs during the dry season (two months prior 11 

to the onset of the growing season) where there are no vegetation (herbaceous) influencing the 12 

reflectance spectrum in the measured area. The focus of the manuscript is to investigate how 13 

NDSI is coupled with vegetation parameters, and we hence choose to use the point in time with 14 

most vegetation on the ground. 15 

We agree that it would make a very interesting study to investigate how sun/sensor geometry 16 

influences NDSI differently across the year. However, this is not a minor task and this 17 

manuscript is long as is. We therefore feel that this is beyond the scope of this manuscript. But it 18 

is a very good idea for a future manuscript to investigate seasonal dynamics in anisotropy of both 19 

the reflectance spectrum on its own and on NDSI estimates. This is something that will hopefully 20 

be possible to do in a not too distant future. 21 

The reason for focusing on NDSI, and not on the anisotropy on the reflectance values 22 

themselves is that it has already been done (Huber et al., 2014; Tagesson et al., 2015). The focus 23 

of the paper by Tagesson et al. (2015) is to present all research activities at the Dahra field site. 24 

Among them, a section of the anisotropy of the reflectance spectrum is presented. The aim of the 25 

paper by Huber et al. (2014) is to present the ASD set-up and investigate the quality of the 26 

measurements. A second aim is to study the effects of varying sun/sensor geometry on the 27 

reflectance spectrum. Therefore, in order not to present the same information two times, the 28 

effects of varying sun/sensor geometry part of this paper focus on the effects on the NDSI. 29 

However, the comment is relevant and in the revised manuscript we have included a discussion 30 

regarding the behaviour of the NDSI in relation to the behaviour of the reflectance spectrum and 31 

referred to figures in Huber et al. (2014) and in Tagesson et al. (2015). 32 

 33 

New Comment: The study uses data from 15 July 2011 until 31 December 2012. Relationships between 34 

ecosystem variables and spectral indices have been investigated for the whole time period. This means 35 

phenology from no living vegetation to max living vegetation is included. Therefore it is NOT APPROPRIATE to 36 

restrict the analysis of effects of varying sun / sensor geometry to 15 (-3) days during the peak of the growing 37 

season. 38 
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New response: In the revised version of the manuscript we have incorporated an analysis of effects of 39 

varying sun/sensor geometry for four different periods over the growing season: 1) the dry season 2012 (day 40 

of year (DOY) 71-85), 2) the fast growth period during the beginning of the rainy season 2011 (DOY 200-214), 41 

3) the peak of the growing season in 2011 (DOY 238-253), and 4) the end of the growing season 2011 (DOY 42 

278-293). However, since this analysis alone would generate 4 new figures, we have chosen in the actual 43 

manuscript to present only the figures from the period with strongest effects. This is at the peak of the 44 

growing season with the largest amount of photosynthesising vegetation. Remaining figures are presented in 45 

a supplementary material. This analysis is referred to in the method section (L239-L242, L279-L282, L refers 46 

to line number in revised manuscript), and in the results section (L313-L316). 47 

Old comment: Why has the analysis of the relationship between reflectance / NDSI and ecosystem 48 

variables been restricted to a linear relationship? E.g. other studies found a non-linear relationship between 49 

reflectance and biomass due to saturation effects. Also why have only daily median reflectances / NDSIs been 50 

used when GPP, LUE and FAPAR were daily integrals? Averages would be more appropriate in these cases. And 51 

why have the off-nadir views not been analysed? 52 

 53 

Old response: In case the linear relationship is strong, it indicates limited issues with saturation. For 54 

wavelength regions where there are issues with saturations, exponential and logarithmic 55 

regressions could fit better. However, in case the aim is to find wavelength regions which are as 56 

sensitive as possible for investigating seasonal dynamics in an ecosystem property, wavelength 57 

regions with saturation issues should be avoided. Therefore linear models are better to use than 58 

non-linear models. This was the main reason for fitting linear rather than non-linear regressions. 59 

There is also a practical aspect to it. Fitting the reduced major axis linear relationships using the 60 

bootstrapping methodology required a full month of processing for these 4 variables (GPP, LUE, FAPAR, and 61 

biomass). In case we would try several other regression models, these would require 62 

several months of processing. 63 

   Median values were used in order to minimise the influence of errors in the analysis. Median 64 

provides the most common model output and it is thereby more robust against outliers than 65 

average values. This info was provided in the manuscript, but it was not mentioned the first time 66 

that median values were used. Thank you for pointing this out to us; it has been corrected in the 67 

revised manuscript. 68 

   We have investigated the seasonal dynamics in the off-nadir views as well, but as seen in the 69 

figure below, there was no difference in seasonal dynamics for the different viewing angles. We 70 

thereby choose to only use the nadir one, as it would not make any difference in the analysis. 71 

New comment: This is not a satisfactory response. Many studies have found non-linear relationships to 72 

work much better than linear ones. Therefore, restricting the analysis to linear relationships might not yield the 73 

best wavelength combinations. 74 
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New response: In the revised manuscript, we have fitted exponential regression models between the 75 

ecosystem properties and the NDSI combinations. However, we cannot do this using a bootstrapping 76 

methodology as we do not have the computer capacity for doing these types of fitting 200 times for all 77 

wavelength combination (1451*1451 wavelength combinations). 78 

   There were few wavelength combinations which had stronger relationships using an exponential 79 

regression rather than a linear, and the exponential models did not significantly improve the relationships. 80 

We hence choose to present these results only in a supplementary material, and in the main text we refer to 81 

the supplementary material (L261-L264). 82 

Old comment: page 3330, lines 11-14: This is not the reason for the saturation of the NDVI. The NDVI 83 

saturates at high biomass because the NIR reflectance is much larger than the red reflectance. NDVI therefore 84 

reduces to R_NIR / R_NIR which equals 1. 85 

 86 

Old response: We agree with you, and we are talking about the same thing, we are just using 87 

different phrasing, where you consider it from an equation point of view, we consider it from a 88 

leaf optical property point of view. 89 

   All vegetation indices using red will suffer from saturation problems. The reason for this is 90 

related to the fact that there are only so many photons striking a plant leaf and at a certain point, the 91 

chlorophyll absorbs nearly all the red energy to the point where no matter how much 92 

vegetation you add, more photons cannot be absorbed because they are already all absorbed. It is 93 

normally the red band that saturates. So any index using the red energy will suffer from the same 94 

limitation. For example, the Enhanced Vegetation Index (EVI) is not supposed to saturate as 95 

badly because in the equation empirical constants have been added to put more weight in the 96 

NIR spectrum that preserves sensitivity to higher loads of biomass (more layers of leafs) because 97 

here much more radiation is transmitted and reflected from the leaves. 98 

 99 

New Comment: No, we are not talking about the same thing!!! I say the saturation stems from the specific 100 

equation applied (i.e. normalised difference). You say the saturation stems from the red band showing no 101 

changes. R_NIR << R_RED leads to NDVI=R_NIR/R_NIR=1. If you use a different index, e.g. the simple ratio 102 

R_RED/R_NIR there are not saturation issues if R_RED is small and changes little as long as R_NIR still changes. 103 

New response: We are sorry that we misinterpreted your comment. However, the explanation given in 104 

the discussion is still valid (L435-L441).  105 

   Also, we are sorry but this explanation is incorrect. The smallest ratio between two different HCRF 106 

measurements from the same day that we have in our data set is 0.01, i.e. the same thing as if red was 1% of 107 

NIR. Assume that red is 1% of NIR; it generates a SR of 0.01, whereas it generates an NDVI of 0.98. Assume 108 

that the ratio red/NIR rises to 0.015, i.e. a SR of 0.015. This would yield an NDVI of 0.97. This means that a 109 

0.005 increase in red generates a 0.005 change in SR, but a 0.01 change in NDVI. NDVI is thereby more 110 
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sensitive than SR to changes in reflectance values << than reflectance in the reference band. The saturation 111 

effect seen in NDVI can hence not be explained from this equation point of view. 112 

   We can easily find a handful of references supporting our explanation of NDVI given in the earlier 113 

response. But, since this entire discussion arose from the phrasing of a single sentence in the discussion, a 114 

sentence which has been changed, we hope that we can leave this minor detail behind. 115 

  116 
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Response to Referee #2. 117 

The authors have made substantial changes to the manuscript so it has improved its clarity. However, I think 118 

there are still several minor changes that must be considered. My specific edits/comments are below (lines 119 

refer to manuscript version 3).  120 

 121 

Response: Thank you very much for helpful comments that has helped improving the manuscript a great 122 

deal. 123 

 124 

Line 31. Remove “also”  125 

 126 

Line 33. Add “:” after …properties were….  127 

 128 

Line 34 Remove “,” After GPP  129 

 130 

Line 35 Specify which blue wavelengths  131 

 132 

Response: These things have been taken care of in the revised manuscript. 133 

 134 

Lines 36-37 Review the use of commas  135 

 136 

Response: We have asked two native English speakers about this sentence. Both state that it is 137 

grammatically correct. We thereby do not know how to review the use of commas. 138 

 139 

Lines 45-46 Avoid repetition (properties)  140 

 141 

Lines 49-50 “For example” between commas  142 

 143 

Line 67 “at the present state” between commas  144 

 145 

Response: These things have been taken care of in the revised manuscript. 146 

 147 

Lines 100-102. These effects have been also explored from multiangular data sets acquired from tower based 148 

sensor such as the AMSPEC (see Hilker, T., Coops, N.C., Hall, F.G., Black, T.A., Wulder, M.A., Nesic, Z., & 149 

Krishnan, P. (2008). Separating physiologically and directionally induced changes in PRI using BRDF models. 150 

Remote Sensing of Environment, 112, 2777-2788)  151 

 152 

Response: Thank you very much. This reference has been included in the introduction (L102, L means Line in 153 

revised manuscript) 154 

 155 

Lines 127-128. Avoid repetition (dominate)  156 

 157 

Lines 146-147 In order to avoid repetition (and) I suggest to divide this sentence in two: ………….USA). Data 158 

were sampled every 30 s and stored…………..  159 

 160 
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Line 183 Spelling error (dominant)  161 

 162 

Response: These things have been taken care of in the revised manuscript. 163 

 164 

Line 237 Filtered means removed? If not please, specify how the data was filtered  165 

 166 

Response: Yes, filter means removed. This has been clarified in the revised manuscript (L284-288). 167 

 168 

Line 247 UTC times? Please specify here and throughout the text when time references are included  169 

 170 

Response: Yes UTC times. This has been specified throughout the revised text. 171 

 172 

I have an additional question regarding this analysis on the effect of solar zenith angles in the NDSI. Taking into 173 

account that the range of measurements includes acquisitions from early in the morning to late afternoon, is it 174 

possible that the differences in the COV are not only due to the sensitivity of the indices to the solar angles but 175 

also to their sensitivity to the diurnal changes on vegetation status (i.e. water content)?  176 

 177 

Response: Thank you for pointing this out to us. Yes, naturally there can also be diurnal variability in the 178 

vegetation affecting the diurnal variability in the reflectance spectrum. This has been included as a point of 179 

discussion in the revised manuscript (L395-L402): 180 

 181 

“A strong diurnal dynamic does not necessarily mean a poor NDSI. For example, the photochemical 182 

reflectance index (PRI) was created for assessing diurnal dynamics in the xanthophyll cycle activity (Gamon 183 

et al., 1992). Stomatal closure due to high temperatures could also influence diurnal dynamics of vegetation 184 

properties (Lasslop et al., 2010), and hence the diurnal dynamics of NDSI. However, diurnal variation in 185 

reflectance caused by diurnal variability in vegetation status is assumed minor in relation to the diurnal 186 

variability caused by changes in solar zenith angles. Additionally, in our study we are interested in 187 

relationships in seasonal dynamics between ecosystem properties and NDSI; diurnal variation can thereby 188 

interfere and introduce uncertainty in such relationships.” 189 

Lines 275-276 Avoid repetition (thereby)  190 

 191 

Response: This has been taken care of in the revised manuscript. 192 

 193 

Line 281 The ANIF threshold (s)?  194 

 195 

Response: Yes, thresholds. This has been taken care of in the revised manuscript (L282) 196 

 197 

Lines 294-295. Avoid repetition (hyperspectral HCRF). I suggest: ………to clearly illustrate these seasonal 198 

dynamics, the ratio…………..  199 

 200 

Response: We have changed the sentence according your suggestion. 201 

 202 

Line 311 But were these water absorption bands not previously removed?  203 

 204 
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Response: Thank you for pointing this out. In the revised manuscript we have changed the figures so that, 205 

the upper right corner shows unfiltered data and the lower left corner shows filtered data. This sentence has 206 

also been removed.  207 

 208 

Line 328 This correlation is opposite to expected (if related with water absorption) so I am not sure if the  209 

reference to Thenkabail et al 2012 is appropriate here.  210 

 211 

Response: Thank you for pointing this out. This sentence has been removed and these things are instead 212 

discussed in the discussion (L422-L432).  213 

 214 

Lines 378-379 simplify the sentence. I suggest: ……with large differences in effects of variable solar zenith 215 

angles (Fig. 6 in Huber et al. 2014) and variable view zenith angles…………  216 

 217 

Line 380 ….in the case (of)?...  218 

 219 

Response: These things have been taken care of in the revised manuscript. 220 

 221 

Lines 373-784. I think it would be necessary to discuss here the results found in comparison with other authors 222 

that have analyzed this sun-sensor geometry using spectral indices. For example by comparing with the results 223 

found by Huber et al 2014 (section 3.4) with NDVI and SWISI. Have other authors reported larger effects in low 224 

index values? And in NIR/SWIR indices compared with VIS/NIR?  225 

 226 

Response: We have included a comparison of these results to other studies in the revised manuscript (L386-227 

394): 228 

 229 

“The relative HCRF difference between NIR and SWIR is lower as compared to indices including the VIS 230 

domain; NIR/SWIR based indices thereby generate lower NDSI values with higher sensitivity to sun-sensor 231 

geometry generated differences between included wavelengths (Fig. 3 and 4). This can also be seen in the 232 

SIWSI/NDVI comparison by Huber et al (2014); SIWSI had large relative differences depending on viewing 233 

angle (~70%), whereas NDVI had relatively small (~5%) (Fig. 10 in Huber et al. (2014)). Fensholt et al. (2010) 234 

showed the same to be true in a comparison between SIWSI and NDVI based on MODIS data: SIWSI was 235 

insensitive to day-to-day variations in canopy water status due to effects of solar zenith angles and sensor 236 

viewing geometry blurring the signal.” 237 

 238 

Lines 406-411. This results are not only interesting but surprising so I think more elaboration on a possible 239 

explanation is needed  240 

 241 

Response: We have revised the discussion to (L422-L432): 242 

 243 

“Previous studies have generally shown positive relationships between NIR HCRF and biomass since a large 244 

fraction of NIR radiation is reflected in green healthy vegetation to avoid overheating (e.g. Hansen and 245 

Schjoerring, 2003; Asner, 1998). Here, a strong negative relationship between NIR HCRF and dry weight 246 

biomass is generally observed (Fig. 5a), indicating stronger NIR absorption with increased biomass. However, 247 

a strong positive NIR HCRF correlation with vegetation water content was seen (figure not shown). A 248 

possible explanation could be that the sampled biomass at the end of the rainy season contained some 249 

senescent vegetation, and a correlation against vegetation water content is hence closer to green healthy 250 
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vegetation. This relationship is however interesting and should be studied further to better understand the 251 

respective importance of canopy water and leaf internal cellular structure for the NIR HCRF of herbaceous 252 

vegetation characterised by erectophile leaf angle distribution in semi-arid regions.” 253 

 254 

Line 740 (table 1) I suggest replace “information about the sensor set-up” by “information about the 255 

instrumental set-up”.  I would also suggest to add a column with information on the time period of each 256 

dataset . 257 

 258 

Response: We have changed to instrumental set-up in the revised table 2. We have also included a column 259 

with first year of measurements, and that if the reader wants more information regarding the sensor set up, 260 

we refer to (Tagesson et al., 2015). In the supplementary material of (Tagesson et al., 2015), all information 261 

about the time periods of the different measured variables are included.  262 

 263 

Line 747 to 751 (table 2). I would suggest adding the Relative Root Mean Square Error (RRMSE) as it facilitates 264 

the comparison between variables with different ranges.( see Richter, K., Atzberger, C., Hank, T. B., and 265 

Mauser, W.: Derivation of biophysical variables 16 from Earth observation data: validation and statistical 266 

measures, APPRES, 6, 063557-063551-17 063557-063523, 10.1117/1.jrs.6.063557, 2012.)  267 

 268 

Response: In the previous version of the manuscript, we had included RRMSE in the text. In the revised 269 

version, we have also included a column with RRMSE in Table 2.  270 

 271 

Figure 2 In figure 2a the a) overlaps the info, maybe can be moved  272 

 273 

Response: The axis of Fig 2a has been changed in order to make sure that the a) is not overlapping the data. 274 

Figures 3, 4 and 6. If the spectral bands between 350-390 and 1300-1500 have been removed shouldn´t be 275 

included in these graphs. Again it is not clear to me if this information was removed (as in figure 5) or filtered. 276 

Response: These data were removed, and this has been clarified in the revised manuscript (L279-299). We 277 

have revised Fig. 3 and fig 4, so that the upper right corner shows all data, and the lower left corner shows 278 

filtered data. 279 

References: 280 

Asner, G. P.: Biophysical and Biochemical Sources of Variability in Canopy Reflectance, Remote Sens. 281 

Environ., 64, 234-253, http://dx.doi.org/10.1016/S0034-4257(98)00014-5, 1998. 282 

Fensholt, R., Huber, S., Proud, S. R., and Mbow, C.: Detecting Canopy Water Status Using Shortwave 283 

Infrared Reflectance Data From Polar Orbiting and Geostationary Platforms, IEEE J. Sel. Top. Appl., 3, 284 

271-285, 10.1109/jstars.2010.2048744, 2010. 285 

Gamon, J. A., Peñuelas, J., and Field, C. B.: A narrow-waveband spectral index that tracks diurnal 286 

changes in photosynthetic efficiency, Remote Sens. Environ., 41, 35-44, 287 

http://dx.doi.org/10.1016/0034-4257(92)90059-S, 1992. 288 

Hansen, P. M., and Schjoerring, J. K.: Reflectance measurement of canopy biomass and nitrogen 289 

status in wheat crops using normalized difference vegetation indices and partial least squares 290 
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regression, Remote Sens. Environ., 86, 542-553, http://dx.doi.org/10.1016/S0034-4257(03)00131-7, 291 

2003. 292 

Huber, S., Tagesson, T., and Fensholt, R.: An automated field spectrometer system for studying VIS, 293 

NIR and SWIR anisotropy for semi-arid savanna, Remote Sens. Environ., 152, 547–556, 2014. 294 

Lasslop, G., Reichstein, M., and Papale, D.: Separation of net ecosystem exchange into assimilation 295 

and respiration using a light response curve approach: critical issues and global evaluation, Global 296 

Change Biol., 16, 187-209, 2010. 297 

Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., 298 

Sandholt, I., Rasmussen, B. H., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., 299 

Madsen, M., Olesen, F. S., and Ardö, J.: Ecosystem properties of semi-arid savanna grassland in West 300 

Africa and its relationship to environmental variability, Global Change Biol., 21, 250-264, doi: 301 

10.1111/gcb.12734, 2015. 302 

 303 

  304 
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Relevant changes made in the manuscript 305 

 306 

• A supplementary material has been included with an analysis of seasonal dynamics in effects of solar and 307 

sensor viewing geometry and an analysis of differences between exponential and linear regression 308 

models. 309 

• In the filtering of data, we have taken into account the effect of sensor and viewing geometry for 310 

different parts of the growing season. 311 

• It has been clarified that the water absorption band was removed within the filtering procedure. 312 

• In the discussion we have added discussions of results of other studies in the effects of sensor and 313 

viewing geometry, a discussion of effects of diurnal variability in vegetation status, and extended the 314 

discussion regarding the biomass correlation to HCRF. 315 

 316 

  317 
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Abstract 340 

This paper investigates how hyperspectral reflectance (between 350 and 1800 nm) can be used to infer 341 

ecosystem properties for a semi-arid savanna grassland in West Africa using a unique in situ based multi-342 

angular dataset of hemispherical conical reflectance factor (HCRF) measurements. Relationships between 343 

seasonal dynamics in hyperspectral HCRF, and ecosystem properties (biomass, gross primary productivity 344 

(GPP), light use efficiency (LUE), and fraction of photosynthetically active radiation absorbed by vegetation 345 

(FAPAR)) were analysed. HCRF data (ρ) were used to study the relationship between normalised difference 346 

spectral indices (NDSI) and the measured ecosystem properties. Finally, also the effects of variable sun sensor 347 

viewing geometry on different NDSI wavelength combinations were analysed. The wavelengths with the 348 

strongest correlation to seasonal dynamics in ecosystem properties were: shortwave infrared (biomass), the 349 

peak absorption band for chlorophyll a and b (at 682 nm) (GPP), the oxygen A-band at 761 nm used for 350 

estimating chlorophyll fluorescence (GPP, and LUE), and blue wavelengths (ρ412) (FAPAR). The NDSI with the 351 

strongest correlation to: i) biomass combined red edge HCRF (ρ705) with green HCRF (ρ587), ii) GPP combined 352 

wavelengths at the peak of green reflection (ρ518, ρ556), iii) the LUE combined red (ρ688) with blue HCRF (ρ436), 353 

and iv) FAPAR combined blue (ρ399) and near infrared (ρ1295) wavelengths. NDSI combining near infrared and 354 

shortwave infrared were strongly affected by solar zenith angles and sensor viewing geometry, as were many 355 

combinations of visible wavelengths. This study provides analyses based upon novel multi-angular 356 

hyperspectral data for validation of earth observation based properties of semi-arid ecosystems, as well as 357 

insights for designing spectral characteristics of future sensors for ecosystem monitoring.   358 
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1. Introduction 359 

Hyperspectral measurements of the Earth´s surface provide relevant information for many ecological 360 

applications. An important tool for spatial extrapolation of ecosystem functions and properties is to study how 361 

spectral properties are related to in situ measured ecosystem properties. These relationships found the basis 362 

for up-scaling using earth observation (EO) data. Continuous in situ measurements of hyperspectral reflectance 363 

in combination with ecosystem properties are thereby essential for improving our understanding of the 364 

functioning of the observed ecosystems. Strong relationships have, for example, been found between 365 

information in the reflectance spectrum and ecosystem properties such as leaf area index (LAI), fraction of 366 

photosynthetically active radiation (PAR) absorbed by the vegetation (FAPAR), light use efficiency (LUE), 367 

biomass, vegetation primary productivity, vegetation water content, and nitrogen and chlorophyll content (e.g. 368 

Thenkabail et al., 2012; Tagesson et al., 2009; Gower et al., 1999; Sjöström et al., 2009; Sims and Gamon, 369 

2003). In situ observations of spectral reflectance are also important for parameterisation and validation of 370 

canopy reflectance models, and space and airborne products (Coburn and Peddle, 2006). 371 

   Very few sites across the world exist with an instrumental setup designed for multi-angular continuous 372 

hyperspectral measurements. Leuning et al. (2006) present a system mounted in a 70 m tower above an 373 

evergreen Eucalyptus forest in New South Wales Australia, which measures spectral hemispherical conical 374 

reflectance factors (HCRF)1 hourly throughout the year between 300 and 1150 nm at four azimuth angles. 375 

Hilker et al. (2007) and Hilker et al. (2010) describe an automated multi-angular spectro-radiometer for 376 

estimation of canopy HCRF (AMSPEC) mounted on a tower above a coniferous forest in Canada. Spectral HCRF 377 

is sampled between 350 and 1200 nm year round under different viewing and sun angle conditions, achieved 378 

                                                           
1 Different reflectance terminologies have been used to inform on spectral measurements in the field by the remote sensing 
community leading to suggestions to the proper use of the terminology (Martonchik et al., 2000). All field spectro-
radiometers measure HCRF (hemispherical conical reflectance) if the field of view (FOV) of the sensor is larger than 3° 
(Milton et al., 2009) and is therefore used throughout this paper to support the correct inference and usage of reflectance 
products (Schaepman-Strub et al., 2006; Milton et al., 2009). 
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by collection of data in a near 360° view around the tower with adjustable viewing zenith angles. Even though 379 

in situ measurements of multi-angular hyperspectral HCRF are fundamental for the EO research community, 380 

such datasets are still rare and, at the present state, they do not cover different biomes at the global scale 381 

(Huber et al., 2014).   382 

   There are many methods for analysing relationships between hyperspectral reflectance and ecosystem 383 

properties, such as multivariate methods, derivative techniques, and radiative transfer modelling (Bowyer and 384 

Danson, 2004; Ceccato et al., 2002; Danson et al., 1992; Roberto et al., 2012). Still, due to its simplicity, the 385 

combination of reflectance into vegetation indices is the major method for up-scaling using EO data. By far, the 386 

most commonly applied vegetation indices are those based on band ratios, e.g. the normalised difference 387 

vegetation index (NDVI), which is calculated by dividing the difference in the near infrared (NIR) and red 388 

wavelength bands by the sum of the NIR and red bands (Tucker, 1979; Rouse et al., 1974). The NIR radiance is 389 

strongly scattered by the air-water interfaces between the cells whereas red radiance is absorbed by 390 

chlorophyll and its accessory pigments (Gates et al., 1965). The normalization with the sum in the denominator 391 

is a mean to reduce the effects of solar zenith angle, sensor viewing geometry, and atmospheric errors as well 392 

as enhancing the signal of the observed target (e.g. Qi et al., 1994; Inoue et al., 2008).  393 

   Wavelength specific spectral reflectance is known to be related to leaf characteristics such as chlorophyll 394 

concentration, dry matter content, internal structure parameters and equivalent water thickness (Ceccato et 395 

al., 2002). Hyperspectral reflectance data can be combined into a matrix of normalised difference spectral 396 

indices (NDSI), following the NDVI rationing approach. Correlating the NDSI with ecosystem properties provides 397 

a way for an improved empirically based understanding of the relationship between information in the 398 

reflectance spectrum with ground surface properties (e.g. Inoue et al., 2008). Several studies have analysed 399 

relationships between hyperspectral HCRF, NDSI, and ecosystem properties (e.g. Thenkabail et al., 2000; Cho et 400 
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al., 2007; Psomas et al., 2011; Inoue et al., 2008; Gamon et al., 1992; Feret et al., 2008; Thenkabail et al., 2012). 401 

Still, it is extremely important to examine these relationships for different ecosystems across the earth and 402 

investigate their applicability for different environmental conditions and under different effects of biotic and 403 

abiotic stresses.  404 

   A strong correlation between an NDSI and an ecosystem property does not necessarily indicate that the NDSI 405 

is a good indicator of vegetation conditions to be applied to EO systems. Visible, NIR and shortwave infrared 406 

(SWIR) have different sensitivity to variations in solar zenith angles, stand structure, health status of the 407 

vegetation, vegetation and soil water content, direct/diffuse radiation ratio, and sensor viewing geometry. The 408 

influence of sun-sensor geometry on the reflected signal has been studied using radiative transfer models  and 409 

airborne (e.g. AirMISR) as well as satellite-based data from instruments such as CHRIS-PROBA, MISR or POLDER 410 

(Huber et al., 2010; Maignan et al., 2004; Javier García-Haro et al., 2006; Jacquemoud et al., 2009; Verhoef and 411 

Bach, 2007; Laurent et al., 2011). However, effects of variable sun angles and sensor viewing geometries are 412 

not well documented in situ for different plant functional types of natural ecosystems except for some 413 

individual controlled experiments based on the use of field goniometers (Hilker et al., 2008; Sandmeier et al., 414 

1998; Schopfer et al., 2008). Improved knowledge regarding the influence from sun-sensor variability on 415 

different NDSI combinations is thereby essential for validating the applicability of an NDSI for EO up-scaling 416 

purposes.  417 

   The Dahra field site in Senegal, West Africa, was established in 2002 as an in situ research site to improve our 418 

knowledge regarding properties of semi-arid savanna ecosystems and their responses to climatic and 419 

environmental changes (Tagesson et al., 2015b). A strong focus of this instrumental setup is to gain insight into 420 

the relationships between ground surface reflectance and savanna ecosystem properties for EO up-scaling 421 

purposes. This paper presents a unique in situ dataset of seasonal dynamics in hyperspectral HCRF and 422 
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demonstrates how it can be used to describe the seasonal dynamics in ecosystem properties of semi-arid 423 

savanna ecosystems. The objectives are threefold: (i) to quantify the relationship between seasonal dynamics 424 

of in situ hyperspectral HCRF between 350 and 1800 nm and ecosystem properties (biomass, gross primary 425 

productivity (GPP), LUE, and FAPAR); (ii) to quantify the relationship between NDSI with different wavelength 426 

combinations (350 to 1800 nm) and the measured ecosystem properties; (iii) to analyse and quantify effects of 427 

variable sun angles and sensor viewing geometries on different NDSI combinations.  428 

2. Materials and Method 429 

2.1 Site description 430 

All measurements used for the present study were conducted at the Dahra field site in the Sahelian 431 

ecoclimatic zone north-east of the town Dahra in the semi-arid central part of Senegal (15°24'10"N, 432 

15°25'56"W) during 2011 and 2012 (Fig. 1). Rainfall is sparse in the region with a mean annual sum of 433 

416 mm (1951-2003). More than 95% of the rain falls between July and October, with August being 434 

the wettest month. The mean annual air temperature is 29 °C (1951-2003), May is the warmest and 435 

January is the coldest month with mean monthly temperature of 32°C and 25°C, respectively. The 436 

Dahra site has a short growing season (~3 months), following the rainy season with leaf area index 437 

generally ranging between 0 and 2 (Fensholt et al., 2004). South-western winds dominate during the 438 

rainy season and north-eastern winds dominate during the dry season. The area is dominated by annual 439 

grasses (e.g. Schoenefeldia gracilis, Digitaria gayana, Dactyloctenium aegypticum, Aristida mutabilis 440 

and Cenchrus biflorues) (Mbow et al., 2013) and trees and shrubs (e.g. Acacia senegalensis and 441 

Balanites aegyptiaca) are relatively sparse (~3% of the land cover) (Rasmussen et al., 2011). The 442 

average tree height was 5.2 m and the peak height of the herbaceous layer was 0.7 m (Tagesson et al., 443 

2015b). A thorough description of the Dahra field site is given in Tagesson et al. (2015b).  444 
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 <Figure 1> 445 

2.2 Meteorological and vegetation variables 446 

A range of meteorological variables have been measured in a tower at the Dahra field site for more than ten 447 

years: air temperature (°C) and relative humidity (%) were measured at 2 m height; soil temperature (°C) and 448 

soil moisture (volumetric water content (m3 m-3×100) (%)) were collected at 0.05m depths; rainfall (mm) was 449 

measured at 2 m height; incoming (inc) and reflected (ref) PAR (μmol m-2 s-1) was measured at 10.5 m height, and 450 

PAR transmitted through the vegetation (PARtransmit) was measured at 6 plots at ~0.01 m height  (Table 1) 451 

(Tagesson et al., 2015b). The PARtransmit was measured within 7 meters distance from the tower. PAR absorbed 452 

by the vegetation (APAR) was estimated by: 453 

transmitsoilrefinc PAR)α(1PARPARAPAR ×−−−=     454 

   (1) 455 

where αsoil is the PAR albedo of the soil, which was measured as 0.20 (Tagesson et al., 2015b). FAPAR was 456 

estimated by dividing APAR with PARinc (Tagesson et al., 2015b). All sensors were connected to a CR-1000 457 

logger in combination with a multiplexer (Campbell Scientific Inc., North Logan, USA). D and data were sampled 458 

every 30 s, and stored as 15 minute averages (sum for rainfall). 459 

   The total above ground green biomass (g m-2) of the herbaceous vegetation was sampled approximately 460 

every 10 days during the growing seasons 2011 and 2012 at 28 one m2 plots located along two ~1060 m long 461 

diagonal transects (Fig. 1f) (Mbow et al., 2013). The method applied was destructive, so even though the same 462 

transects were used for each sampling date, the plots were never positioned at exactly the same location. The 463 

study area is flat and characterised by homogenous grassland savanna and the conditions in these sample plots 464 

are generally found to be representative for the conditions in the entire measurement area (Fensholt et al., 465 
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2006). All above ground green herbaceous vegetation matter was collected and weighed in the field to get the 466 

fresh weight. The dry matter (DW) was estimated by oven-drying the green biomass. For a thorough 467 

description regarding the biomass sampling we refer to Mbow et al. (2013). 468 

<Table 1> 469 

2.3 Estimates of gross primary productivity and light use efficiency 470 

Net ecosystem exchange of CO2 (NEE) (μmol CO2 m
-2 s-1) was measured with an eddy covariance system, 471 

consisting of an open path infrared gas analyser (LI-7500, LI-COR Inc., Lincoln, USA) and a 3-axis sonic 472 

anemometer (Gill instruments, Hampshire, UK) from 18 July 2011 until 31 December 2012 (Table 1). The 473 

sensors were mounted 9 m above the ground on a tower (placed 50 m south of the tower including the 474 

meteorological and spectroradiometric sensors) (Fig. 1f). Data were sampled at 20 Hz rate. The post-processing 475 

was done with the EddyPro 4.2.1 software (LI-COR Biosciences, 2012), and statistics were calculated for 30 476 

minute periods. The post-processing includes 2-D coordinate rotation (Wilczak et al., 2001), time lag removal 477 

between anemometer and gas analyser by covariance maximization (Fan et al., 1990), despiking (Vickers and 478 

Mahrt, 1997) (plausibility range: window average ±3.5 standard deviations), linear detrending (Moncrieff et al., 479 

2004), and compensation for density fluctuations (Webb et al., 1980). Fluxes were also corrected for high pass 480 

(Moncrieff et al., 1997) and low pass filtering effects (Moncrieff et al., 2004). The data were filtered for steady 481 

state and fully developed turbulent conditions, following Foken et al. (2004), and according to statistical tests 482 

as recommended by Vickers and Mahrt (1997). Flux measurements from periods of heavy rainfall were also 483 

removed. For a thorough description of the post processing of the raw eddy covariance data, see Tagesson et 484 

al. (2015a). 485 

   A possible source of error in a comparison between EC-based variables and spectral HCRF is the difference in  486 

footprintin footprint/ instantaneous field of view (IFOV) between the sensors. The IFOV of the 487 
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spectroradiometer set-up contains only soil and herbaceous vegetation. The footprint of the EC tower was 488 

estimated using a model based on measurement height, surface roughness and atmospheric stability (Hsieh et 489 

al., 2000). The median point of maximum contribution is at 69 m, and the median 70% cumulative flux distance 490 

is at 388 m from the tower. The footprint of the EC tower contains  semicontains semi-arid savanna grassland 491 

with ~3% tree coverage and the EC data is thereby affected by both woody and herbaceous vegetation (Fig. 1a 492 

and 1f). But given the low tree coverage, and the dominanant influence of herbaceous vegetation on the 493 

seasonal dynamics in CO2 fluxes, we still consider it resonablereasonable to compare EC fluxes with seasonal 494 

dynamics in spectral HCRF of the herbaceous vegetation.  495 

   The daytime NEE was partitioned to GPP and ecosystem respiration using the Mitscherlich light response 496 

function against PARinc (Falge et al., 2001). A 7-day moving window with one day time steps was used when 497 

fitting the functions. By subtracting dark respiration (Rd) from the light response function, it was forced through 498 

0, and GPP was estimated: 499 
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where Fcsat is the CO2 uptake at light saturation (μmol CO2 m
-2 s-1), and α is the quantum efficiency or the initial 502 

slope of the light response curve (μmol CO2 (μmol photons)-1) (Falge et al., 2001). Vapour pressure deficit (VPD) 503 

limits GPP and to account for this effect, the Fcsat parameter was set as an exponentially decreasing function: 504 
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505 

where VPD0 is 10 hPa following the method by Lasslop et al. (2010).  506 
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   Gaps in GPP less or equal to three days were filled with three different methods: (i) gaps shorter than 507 

two hours were filled using linear interpolation; (ii) daytime gaps were filled by using the light-508 

response function for the 7-day moving windows; (iii) remaining gaps were filled by using mean 509 

diurnal variation 7-days moving windows (Falge et al., 2001). A linear regression model was fitted 510 

between daytime GPP and APAR for each 7-day moving window to estimate LUE, where LUE is the 511 

slope of the line.  512 

2.4 Hyperspectral HCRF measurements and NDSI estimates 513 

Ground surface HCRF spectra were measured every 15 minutes between sunrise and sunset from 15 July 2011 514 

until 31 December 2012 using two FieldSpec3 spectrometers with fiber optic cables (Table 1) (ASD Inc., 515 

Colorado, USA). The spectroradiometers cover the spectral range from 350 nm to 1800 nm and have a FOV of 516 

25°. The spectral resolution is 3 nm at 350-1000 nm and 10 nm at 1000-1800 nm and the sampling interval is 517 

1.4 nm at 350-1000 nm and 2 nm at 1000-1800 nm. From these data, 1 nm spectra were calculated by using 518 

cubic spline interpolation functions. One sensor head was mounted on a rotating head 10.5 m above the 519 

surface (at the same tower including instruments to measure meteorological variables) providing 520 

measurements of the herbaceous vegetation from seven different viewing angles in a transect underneath the 521 

tower (nadir, 15°, 30°, 45° off-nadir angles towards east and west). No trees or effects of shading of trees are 522 

present in the IFOV of the data used in this study (Fig. 1). A reflective cosine receptor is used to measure full-523 

sky-irradiance by having the second sensor head mounted on a 2 m high stand pointing to a Spectralon panel 524 

(Labsphere Inc., New Hampshire, USA) under a glass dome.  525 

   Each sensor measurement starts with an optimization to adjust the sensitivity of the detectors according to 526 

the specific illumination conditions at the time of measurement. The optimisation is followed by a dark current 527 

measurement to account for the noise generated by the thermal electrons within the ASDs that flows even 528 
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when no photons are entering the device. The measurement sequence starts with a full-sky-irradiance 529 

measurement, followed by measurements of the 7 angles of the land surface and finalized by a second full-sky-530 

irradiance measurement. Thirty scans are averaged to one measurement to improve the signal-to-noise ratio 531 

for each measurement (optimisation, dark current, full-sky irradiance and each of the seven target 532 

measurements). The full measurement sequence takes less than one minute. The two ASD instruments are 533 

calibrated against each other before and after each rainy season. Poor quality measurements caused by 534 

unfavorableunfavourable weather conditions, changing illumination conditions,  irregular technical issues were 535 

filtered by comparing full-sky solar irradiance before and after the target measurements (Huber et al., 2014). 536 

The spectral HCRF was derived by estimating the ratio between the ground surface radiance and full sky 537 

irradiance. For a complete description/illustration of the spectroradiometer set up, the measurement sequence 538 

and the quality control, see Huber et al. (2014).  539 

   NDSI using all possible combinations of two separate wavelengths were calculated as:  540 

( )
( )ji

ji

ρρ

ρρ
NDSI

+
−

=
      

541 

   (4)
 542 

where ρi and ρj are the daily median HCRF in two separate single wavelengths (i and j) between 350 and 1800 543 

nm. In order to minimise the influence of errors we used daily median hyperspectral HCRF in the analysis (since 544 

median provides the most common model output and is thereby more robust against outliers than average 545 

values). NDSI including the water absorption band (1300-1500 nm) was removedfiltered as it is strongly 546 

sensitive to atmospheric water content, and is less suitable for spatial extrapolation of ecosystem properties 547 

using air/space borne sensors (Asner, 1998). Finally, NDSI combinations including wavelengths between 350 548 

and 390 nm were filtered owing to low signal to noise ratio in the ASD sensors (Thenkabail et al., 2004). 549 
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2.5 Effects of varying sun and sensor viewing geometry on NDSI 550 

The effects of variable solar zenith angles on different NDSI combinations were studied with nadir 551 

HCRF measurements. In order to capture the seasonal dynamics, data were taken over 15 days during 552 

four periods: 1) the dry season in 2012 (day of year (DOY) 71-85), 2) the fast growth period in 2011 553 

(start of the rainy season) (DOY 200-214), 3) the peak of the growing season in 2011 (day of yearDOY 554 

237-251), and 4) the senescent period in 2011 (the end of the rainy season) (DOY 278-293) . Only days 555 

with full data coverage were used (12 of the 15 days) in order not to include bias in the results from 556 

days with incomplete datasets. The median HCRF of the 15 days was calculated for each wavelength 557 

for every 15 minutes between 8:00 and 18:00 (UTC). These HCRF values were combined into NDSI 558 

with different wavelength combinations. Finally, daily mean and standard deviation for all wavelength 559 

combinations were calculated. Diurnal variability in the NDSI was assessed with the coefficient of 560 

variation (COV), which is the ratio between the standard deviation and the mean. The COV gives an 561 

indication of effects related to variable solar zenith angles.  562 

   To capture directional effects in the NDSI related to the variable view zenith angles (15°, 30°, 45° 563 

off-nadir angles towards east and west) the NDSI was calculated using median HCRF values from the 564 

peak of the growing season 2011 (day of year 237-251) four above-mentioned periods for the different 565 

viewing angles. Only data measured between 12:00 and 14:00 (UTC) was used to avoid effects of 566 

variable solar zenith angles. The anisotropy factor (ANIF) is defined as the fraction of a reflected 567 

property at a specific view direction relative to the nadir, and it was calculated by: 568 

( )λ
λλ
0NDSI

θ),NDSI(
θ),ANIF( =       569 

   (5) 570 
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where NDSI(λ,θ) is NDSI for the different wavelengths (λ) and the different viewing angles (θ), and NDSI0(λ) is 571 

the nadir measured NDSI (Sandmeier et al., 1998).  572 

2.6 Relationship between hyperspectral HCRF, NDSI and ecosystem properties 573 

We examined the relationship between predictor variables (daily median hyperspectral HCRF, and NDSI from 574 

nadir observations) and response variables (biomass, GPP, LUE, and FAPAR) using linear regression analysis. A 575 

comparison between fitted linear and exponential regression models indicated no improvement by fitting 576 

exponential regression models; we hence choose to use linear regression analysis (Supplementary material). 577 

Possible errors (random sampling errors, aerosols, dust or water on the sensor heads, electrical senor noise, 578 

filtering and gap-filling errors, errors in correction factors, sensor drift, and instrumentation errors) can be 579 

present in predictor and response variables. We thereby used a reduced major axis linear regression to account 580 

for errors in both the predictor and response variables when fitting the regression lines. In order to estimate 581 

the robustness of the empirical relationships, we used a bootstrap simulation methodology, where the 582 

datasets were copied 200 times (Richter et al., 2012). The runs generated 200 sets of slopes, intercepts, 583 

coefficients of determination (R2), from which median and standard deviation was estimated. The generated 584 

statistical models were validated against the left-out subsamples within the bootstrap simulation method by 585 

calculating the root-mean square error (RMSE) and the relative RMSE (RRMSE=100*RMSE*mean(observed) -1); 586 

median and standard deviation were estimated. Within the regression analysis all variables used were 587 

repeated observations of the same measurement plot. The dependent and independent variables are 588 

therebyhence  temporally auto-correlated and cannot be regarded as statistically independent. We thereby 589 

choose not to present any statistical significance. The analyses, however, still indicate how closely coupled the 590 

explanatory variables are with the ecosystem properties.  591 
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   A filter was created for the analysis between NDSI and ecosystem properties; all NDSI combinations with a 592 

COV higher than 0.066 in any of the four periods (dry season, fast growth period, peak of the growing season, 593 

and senescent period) and all NDSI combinations with ANIF values higher than 1.2 and lower than 0.8 in any of 594 

the four periods were filtered. The ANIF thresholds of 1.2 and 0.8, and the COV threshold of 0.066 was used 595 

since values then vary less than 20% due to effects of variable sun-sensor geometry. NDSI including the water 596 

absorption band (1300-1500 nm) was also removed as it is strongly sensitive to atmospheric water content, 597 

and is less suitable for spatial extrapolation of ecosystem properties using air/space borne sensors (Asner, 598 

1998). Finally, NDSI combinations including wavelengths between 350 and 390 nm were removed owing to low 599 

signal to noise ratio in the ASD sensors (Thenkabail et al., 2004). 600 

3. Results 601 

3.1 Seasonal dynamics in meteorological variables, ecosystem properties and 602 

hyperspectral HCRF 603 

Daily average air temperature at 2 m height ranged between 18.4°C and 37.8°C, with low values during 604 

winter and peak values at the end of the dry season (Fig. 2a). Yearly rainfall was 486 mm and 606 mm 605 

for 2011 and 2012, respectively. Soil moisture ranged between 1.9% and 14.1%, and it clearly followed 606 

the rainfall patterns (Fig. 2b and 2c). The CO2 fluxes were low during the dry period and high during 607 

the rainy season (July-October) (Fig. 2e). The LUE followed GPP closely (Fig. 2f). FAPAR was low at 608 

the start of the rainy season, followed by a maximum towards the end of the rainy season, and then 609 

slowly decreased over the dry season (Fig. 2g).   610 

   The range in HCRF is large across the spectral space, and would hide the seasonal dynamics in hyperspectral 611 

HCRF if directly shown. Therefore, to clearly illustrate these seasonal dynamics in hyperspectral HCRF, the ratio 612 

between daily median nadir HCRF and the average HCRF for the entire measurement period was calculated for 613 

each wavelength (350-1800 nm). This gives a fraction of how the HCRF for each wavelength varies over the 614 
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measurement period in relation to the average of the entire period (Fig. 2d). In the visible (VIS) part of the 615 

spectrum (350-700 nm) there was a stronger absorption during the second half of the rainy season and at the 616 

beginning of the dry season than during the main part of the dry season and the start of the rainy season. 617 

There was stronger NIR absorption (700-1300 nm) at the end of the rainy season and the beginning of the dry 618 

season, whereas the absorption decreased along with the dry season. Strong seasonal variation was observed 619 

in the water absorption region around 1400 nm following the succession of rainy and dry seasons. HCRF in the 620 

short-wave infrared (SWIR; 1400-1800 nm) generally followed the seasonal dynamics of the visible part of the 621 

spectrum. 622 

<Figure 2> 623 

3.2 Effects of sensor viewing geometry and variable sun angles on NDSI 624 

The most pronouncedstrongest effects of solar zenith angles and variable viewing geometry on NDSI  625 

at the peak of the growing season 2011 were observed at the peak of the growing season 2011 (Fig. 3, 626 

Fig 4, and Fig S1-S5 in Supplementary material). In the main paper, we hence choose to present the 627 

figures from this period; figures from remaining periods are located in supplementary material. The 628 

most pronounced effects of solar zenith angles were observed for NDSI combining SWIR and NIR 629 

wavelengths, and with VIS wavelengths between 550 nm and 700 nm (n=576) (Fig. 3). Remaining VIS 630 

wavelengths were mostly affected by solar zenith angles when combined with the water absorption 631 

wavelengths around 1400 nm. The same effects were seen for the view zenith angles; the strongest 632 

effects were seen for NDSI with SWIR and NIR combinations, and VIS wavelengths between 550 and 633 

700 nm (Fig. 4). Remaining VIS wavelengths were less affected. It was also clear that ground surface 634 

anisotropy increased strongly as a function of increasing viewing angle (Fig. 4). Moreover, some band 635 

combinations showed already angular sensitivity at view zenith angles of 15 °, while other band 636 
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combinations only manifest anisotropic behaviour with higher view angles. Some band combinations, 637 

however, do not show any increased anisotropy at all (areas coloured in green in all three six plots). 638 

<Figure 3> 639 

<Figure 4> 640 

3.3 Relationship between hyperspectral HCRF, NDSI and ecosystem properties 641 

3.3.1 Biomass 642 

HCRF values for all wavelengths except the water absorption band at 1100 nm were strongly correlated to 643 

biomass (Fig. 5a). The strongest correlation was found at ρ1675 (median± 1standard deviation; r=-0.88±0.09), 644 

but biomass was almost equally well correlated to blue, red and NIR wavelengths. All presented correlations 645 

and relationships throughout the text are based on filtered data. Negative correlations indicate that the more 646 

biomass the higher the absorption and hence the lower the HCRF. A small peak of positive correlation is seen at 647 

1120-1150 nm caused by a water absorption peak around this wavelength (Thenkabail et al., 2012). NDSI 648 

combinations with HCRF in the red edge (ρ680–ρ750) and HCRF in the VIS region explained seasonal dynamics in 649 

biomass well (Fig. 6a). The strongest relationship (R2=0.88±0.07; RRMSE=18.6±5.7%)  between) between NDSI 650 

and biomass was found for NDSI combining 705 and 587 nm (NDSI[705, 587]) (Table 2, Fig. 7a).  651 

3.3.2 Gross primary productivity 652 

The relationship between GPP and nadir measured hyperspectral HCRF is inverted as compared to 653 

other correlation coefficient lines (Fig. 5b), since GPP is defined as a withdrawal of CO2 from the 654 

atmosphere with higher negative values for a larger CO2 uptake. The seasonal dynamics in GPP was 655 

strongly positively correlated to HCRF in the blue, red, SWIR wavelengths, and the water absorption 656 

band at 1100 nm whereas it was strongly negatively correlated to the NIR HCRF. The study revealed 657 

the strongest positive and negative correlations for HCRF at 682 nm (r=0.70±0.02) and 761 nm (r=-658 
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0.74±0.02), respectively. NDSI combinations that explained most of the GPP variability were different 659 

combinations of the VIS and NIR or red and SWIR wavelengths (Fig. 6b). However, the strongest 660 

relationship was seen at NDSI[518, 556] (R2=0.86±0.02; RRMSE=34.9±2.3%) (Table 2; Fig. 7b).  661 

3.3.3 Light use efficiency 662 

LUE was negatively correlated with HCRF in the blue, and red spectral ranges and in the water 663 

absorption band at 1100 nm and it was positively correlated in the NIR wavelengths (Fig. 5c). HCRF at 664 

761 nm yielded the strongest positive correlation (r=0.87±0.01). When combining the different 665 

wavelengths to NDSI, the VIS wavelengths explained variation in LUE well, with the strongest 666 

relationships in the red and blue parts of the spectrum (Fig. 6c). LUE correlated most strongly with 667 

NDSI[436, 688] (R2=0.81±0.02; RRMSE=52.8±3.8 %)) (Table 2; Fig. 7c). 668 

3.3.4 Fraction of photosynthetically active radiation absorbed by the vegetation 669 

FAPAR was negatively correlated to nadir measured HCRF for most wavelengths (Fig. 5d); the higher 670 

FAPAR the higher the absorption, and thereby the lower the HCRF. The strongest correlation was 671 

found at a blue wavelength ρ412 (r=-0.92±0.01). When wavelengths were combined to NDSI, 672 

combining violet/blue with NIR and SWIR wavelengths generated the NDSI with the strongest 673 

relationships (Fig. 6d) with a maximum R2 of 0.81±0.02 (RRMSE=14.6±0.7 %) for NDSI[399, 1295] 674 

(Table 2; Fig. 7d).  675 

<Table 2> 676 

<Figure 5> 677 

<Figure 6> 678 

<Figure 7> 679 
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4. Discussion  680 

4.1 Effects of sensor viewing geometry and variable sun angles on the NDSI 681 

Effects of solar zenith angles and sensor viewing geometry were similar (Fig. 3 and 4), since they affect HCRF 682 

measurements in a similar way (Kimes, 1983). In dense and erectophile canopies, HCRF increases with sensor 683 

viewing and solar zenith angles, because a larger fraction of the upper vegetation canopy is 684 

viewed/illuminated, whereas the shadowed lower part of the canopy contributes less to the measured signal as 685 

shown previously by several studies (Huete et al., 1992; Jin et al., 2002; Huber et al., 2014; Kimes, 1983). 686 

However, the radiative transfer within a green canopy is complex, and differs across the spectral region (Huber 687 

et al., 2014). Less radiation is available for scattering of  high absorbing spectral ranges (such as the VIS 688 

wavelengths), and this tends to increase the contrast between shadowed and illuminated areas for these 689 

wavelengths, whereas in the NIR and SWIR ranges, more radiation is scattered and transmitted, which thereby 690 

decreases the difference between shadowed and illuminated areas within the canopy (Kimes, 1983; Hapke et 691 

al., 1996). A recognised advantage of NDSI calculations is that errors/biases being similar in both wavelengths 692 

included in the index are suppressed by the normalisation. However, for a given situation where errors/biases 693 

are different for the wavelengths used, such as effects generated by sun-sensor geometry, it will affect the 694 

value of the index. This was also the case at the Dahra field site: NDSI values were strongly affected at 695 

wavelength combinations with large differences in effects of variable solar zenith angles (Fig. 6 in Huber et al. 696 

(2014)) and at wavelength combinations with large differences in effects related to the variable view zenith 697 

angles (Fig. 4 in  Tagesson et al. (2015b)). This effect is especially pronounced in the case for of low index values 698 

(closer to 0) whereas larger index values (closer to 1 and -1) become less sensitive. The relative HCRF difference 699 

between NIR and SWIR is lower as compared to indices including the VIS domain; NIR/SWIR based indices 700 

thereby generate lower NDSI values with higher sensitivity to sun-sensor geometry generated differences 701 

between included wavelengths (Fig. 3 and 4). This can also be seen in the SIWSI/NDVI comparison by Huber et 702 
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al (2014);  SIWSI had large relative differences depending on viewing angle (~70%), whereas NDVI had relatively 703 

small (~5%) (Fig. 10 in Huber et al. (2014)). Fensholt et al. (2010a) showed the same to be true in a comparison 704 

between SIWSI and NDVI based on MODIS data.: SIWSI was insensitive to day-to-day variations in canopy water 705 

status due to effects of solar zenith angles and sensor viewing geometry blurring the signal.  706 

   A strong diurnal dynamic does not necessarily mean a poor NDSI. For example, the photochemical reflectance 707 

index (PRI) was created for assessing diurnal dynamics in the xanthophyll cycle activity (Gamon et al., 1992). 708 

Stomatal closure due to high temperatures could also  influence diurnal dynamics of vegetation properties 709 

(Lasslop et al., 2010), and hence the diurnal dynamics of NDSI. However, diurnal variation in reflectance caused 710 

by diurnal variability in vegetation status is assumed minor in relation to the diurnal variability caused by 711 

changes in solar zenith angles. Additionally, in our study we are interested in relationships in seasonal dynamics 712 

ofbetween the ecosystem properties and NDSI; diurnal variation can thereby interfere and introduce 713 

uncertainty in such relationships. 714 

   The importance of directional effects for the applicability of normalized difference spectral indices has been 715 

pointed out as an issue in numerous papers (e.g. Holben and Fraser, 1984; van Leeuwen et al., 1999; Cihlar et 716 

al., 1994; Fensholt et al., 2010b; Gao et al., 2002). This study confirms these challenges for NIR/SWIR based 717 

indices, but the results also indicate several wavelength combinations from which these effects are less severe 718 

and potentially applicable to EO data without disturbance from viewing/illumination geometry for this type of 719 

vegetation. Multi-angular HCRF data provide additional information of e.g. canopy structure, photosynthetic 720 

efficiency and capacity (Bicheron and Leroy, 2000; Asner, 1998; Pisek et al., 2013; Huber et al., 2010), and this 721 

unique in situ based multi-angular high temporal resolution dataset may thus be used for future research of 722 

canopy radiative transfer and BRDF (bidirectional reflectance distribution function) modelling 723 

(Jacquemoud et al., 2009; Bicheron and Leroy, 2000). The multi-angular dataset is also highly valuable for 724 
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evaluation and validation of satellite based products, where the separation of view angle and atmospheric 725 

effects can only be done using radiative transfer models (Holben and Fraser, 1984).  726 

4.2 Seasonal dynamics in hyperspectral HCRF, NDSI and ecosystem properties 727 

4.2.1 Biomass 728 

The strong correlation between biomass and most of the spectrum indicates the strong effects of phenology on 729 

the seasonal dynamics in the HCRF spectra (Fig. 5a). Variability in VIS (350-700 nm) HCRF for vegetated areas is 730 

strongly related to changes in leaf pigments (Asner, 1998), and this can also be seen in Fig. 2d since absorption 731 

was much stronger during the rainy (growing) season, than during the dry season. Previous studies have 732 

generally shown positive relationships between NIR HCRF and biomass since a large fraction of NIR radiation is 733 

reflected in green healthy vegetation to avoid overheating (e.g. Hansen and Schjoerring, 2003; Asner, 1998). 734 

Here, a strong negative relationship between NIR HCRF and dry weight biomass is generally observed (Fig. 5a), 735 

indicating stronger NIR absorption with increased biomass. However,whereas a strong positive NIR HCRF 736 

correlation with vegetation water content was seen (figure not shown). A possible explanation could be that 737 

the sampled biomass at the end of the rainy season contained some senescent vegetation, and a correlation 738 

against vegetation water content is hence closer to green healthy vegetation. This relationship is however 739 

interesting and should be studied further to better understand the respective importance of canopy water and 740 

leaf internal cellular structure for the NIR HCRF of herbaceous vegetation characterised by erectophile leaf 741 

angle distribution (LAD) in semi-arid regions. We found the strongest correlation for biomass with a SWIR 742 

wavelength thereby confirming the studies by Lee (2004) and Psomas et al. (2011) in that SWIR wavelengths 743 

are good predictors of LAI or biomass. 744 

   The NDVI is known to saturate at high biomass because the absorption of red light at ~680 nm saturates at 745 

higher biomass loads because chlorophyll absorbs nearly all the red light at ~680 nm to the point where no 746 
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matter how much vegetation you add, more photons cannot be absorbed because they are already all 747 

absorbedwhereas the NIR HCRF continues to increase due to multiple scattering effects (Mutanga and 748 

Skidmore, 2004; Jin and Eklundh, 2014). Several studies have shown that NDSI computed with narrowband 749 

HCRF improve this relationship by choosing a wavelength region not as close to the maximum red absorption at 750 

~680 nm, for example using shorter and longer wavelengths of the red edge (700 - 780nm) (Cho et al., 2007; 751 

Mutanga and Skidmore, 2004; Lee, 2004), and NIR and SWIR wavelengths (Psomas et al., 2011; Lee, 2004). The 752 

NDSI with the strongest correlation to biomass was computed using red edge HCRF (ρ705) and green HCRF (ρ587). 753 

Vegetation stress and information about chlorophyll and nitrogen status of plants can be extracted from the 754 

red-edge region (Gitelson et al., 1996). Wavelengths around ρ550 are located right at the peak of green 755 

reflection and closely related to the total chlorophyll content, leaf nitrogen content, and 756 

chlorophyll/carotenoid ratio and have previously been shown to be closely related to biomass (Inoue et al., 757 

2008; Thenkabail et al., 2012).  758 

4.2.2 Gross primary productivity  759 

The maximum absorption in the red wavelengths generally occurs at 682 nm as this is the peak absorption for 760 

chlorophyll a and b (Thenkabail et al., 2000), and this was also the wavelength being most strongly correlated 761 

with GPP. HCRF at 682 nm was previously shown to be strongly related to LAI, biomass, plant height, NPP, and 762 

crop type discrimination (Thenkabail et al., 2004; Thenkabail et al., 2012). The NDSI with the strongest 763 

relationship to GPP was based on HCRF in the vicinity of the green peak. The photochemical reflectance index 764 

(PRI) normalizes HCRF at 531 nm and 570 nm and it was suggested for detection of diurnal variation in the 765 

xanthophyll cycle activity (Gamon et al., 1992), and it is commonly used for estimating productivity efficiency of 766 

the vegetation (e.g. Soudani et al., 2014). The present study thereby confirms the strong applicability of the 767 

wavelengths in the vicinity of the green peak for vegetation productivity studies. Again, wavelengths around 768 
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the green peak are related to the total chlorophyll content, leaf nitrogen content, chlorophyll/carotenoid ratio, 769 

and biomass (Inoue et al., 2008; Thenkabail et al., 2012).  770 

4.2.3 Light use efficiency 771 

Both LUE and GPP were most strongly correlated with HCRF at 761 nm, which is the oxygen A-band within the 772 

NIR wavelengths. HCRF at 761 nm is commonly used for estimating solar-induced chlorophyll fluorescence due 773 

to radiation emitted by the chlorophyll, and it has been suggested as a direct measure of health status of the 774 

vegetation (Meroni et al., 2009). Earth observation data for estimating fluorescence should have very high 775 

spectral resolution (<10 nm) due to its narrow features, but considering the rapid technical development within 776 

sensors for hyperspectral measurements, fluorescence possibly has strong practical potential for monitoring 777 

vegetation status (Meroni et al., 2009; Entcheva Campbell et al., 2008). Globally mapped terrestrial chlorophyll 778 

fluorescence retrievals are already produced from the GOME-2 instrument at a spatial resolution of 0.5º×0.5º, 779 

but hopefully this will be available also with EO sensors of higher spatial and temporal resolution in the future 780 

(Joiner et al., 2013). 781 

   The strongest wavelength combinations for estimating LUE for this semi-arid ecosystem was NDSI[688, 435]. 782 

The 688 nm wavelength is just at the base of the red edge region, again indicating the importance of this 783 

spectral region for estimating photosynthetic activity. The wavelength at 435 nm is at the centercentre of the 784 

blue range characterized by chlorophyll utilization, and strongly related to chlorophyll a and b, senescing, 785 

carotenoid, loss of chlorophyll, and vegetation browning (Thenkabail et al., 2004; Thenkabail et al., 2012).  The 786 

NDSI[688, 435] thereby explores the difference between information about chlorophyll content  and 787 

information about senescence of the canopy, which should be a good predictor of ecosystem level 788 

photosynthetic efficiency. 789 
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4.2.4 Fraction of photosynthetically active radiation absorbed by the vegetation 790 

FAPAR is an estimate of radiation absorption in the photosynthetically active spectrum and thereby strongly 791 

negatively correlated to most parts of the spectrum (Fig. 5d). FAPAR remained high during the dry season 792 

because of standing dry biomass that was slowly degrading over the dry season (Fig. 2g). The seasonal 793 

dynamics in FAPAR is thereby strongly related to senescence of the vegetation, which explains why FAPAR was 794 

most strongly correlated to blue wavelengths (ρ412). Several studies reported a strong relationship between 795 

NDVI and FAPAR (e.g. Tagesson et al., 2012; Myneni and Williams, 1994; Fensholt et al., 2004), but this 796 

relationship has been shown to vary for the vegetative phase and the periods of senescence (Inoue et al., 1998; 797 

Tagesson et al., 2015b). As showed by Inoue et al. (2008), and confirmed by this study, new indices combining 798 

blue with NIR wavelengths could be used for estimating FAPAR for the entire phenological cycle. This result has 799 

implications for studies using the LUE approach for estimating C assimilations (Hilker et al., 2008).  800 

4.3 Outlook and perspectives 801 

Very limited multi-angular hyperspectral in situ data exists, even though it has been, and will continue to be 802 

extremely valuable for an improved understanding of the interaction between ground surface properties and 803 

radiative transfer. In this study, we have presented a unique in situ dataset of multi-angular, high temporal 804 

resolution hyperspectral HCRF (350-1800 nm) and demonstrated the applicability of hyperspectral data for 805 

estimating ground surface properties of semi-arid savanna ecosystems using NDSI. The study was conducted in 806 

spatially homogeneous savanna grassland, suggesting that the results should be commonly applicable for this 807 

biome type. However, attention should be paid to site-specific details that could affect the indices, such as 808 

species composition, soil type, biotic and abiotic stresses, and stand structure. Additionally, the biophysical 809 

mechanisms behind the NDSIs are not well understood at the moment, and further studies are needed to 810 

examine the applicability of these indices to larger regions and other ecosystems. Being a 2-band ratio 811 

approach, NDSI does not take full advantage of exploring the rich information given by the hyperspectral HCRF 812 
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measurements. In the future, this hyperspectral HCRF data-set could be fully explored using e.g. 813 

derivative techniques, multivariate methods, and creation, parameterisation and evaluation of BRDF 814 

and radiative transfer models.  815 

   Even though several other methods exists which fully exploit the information in the hyperspectral spectrum, 816 

results of the present study still indicates the strength of normalised difference indices for extrapolating 817 

seasonal dynamics in properties of savanna ecosystems. A number of wavelengths spectra that are highly 818 

correlated to seasonal dynamics in properties of semiarid savanna ecosystems have been identified. The 819 

relationships between NDSI and ecosystem properties were better determined, or at the same level, as results 820 

of previous studies exploring relationships between hyperspectral reflectance and ecosystem properties 821 

(Kumar, 2007; Cho et al., 2007; Mutanga and Skidmore, 2004; Psomas et al., 2011; Ide et al., 2010). By 822 

studying also the impact from varying viewing and illumination geometry the feasibility and applicability of 823 

using indices for up-scaling to EO data was evaluated. As such, the results presented here offer insights for 824 

assessment of ecosystem properties using EO data and this information could be used for designing future 825 

sensors for observation of ecosystem properties of the Earth.  826 
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Tables 1071 

Table 1. Information about the sensor instrumental set-up for the measured environmental variables. HCRF is hemispherical conical reflectance 1072 

factor; GPP is gross primary productivity; LUE is light use efficiency; and FAPAR is fraction of photosynthetically active radiation absorbed by the 1073 

vegetation. Min and Max are minimum and maximum values measured, respectively; DW is dry weight; C is carbon; and MJ is mega joule. The 1074 

year started is the first year with measurements. Time is in UTC. For more information about the instrumental set-up, see Tagesson et al. 1075 

(2015b).  1076 

Variable 

Year 

started Unit Sensors Sensor company 

Data 

size 

Aggregation 

method 

Data 

gaps Min  Max 

Hyperspectral 

HCRF 

2011 - Fieldspec 3 ASD Inc., Colorado, USA 371 Daily median 31% 0 1 

Herbaceous 

biomass 

2006 g DW 

m-2 

- - 12 Daily mean 

 28 plots 

- 0 223 

GPP 

2010 g C d-1 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 

Gill instruments, Hampshire, 

UK 

285 Daily sums 56% -

14.22 

-

0.22 

LUE 

2010 g C MJ-1 LI-7500, GILL R3 LI-COR Inc., Lincoln, USA; 

Gill instruments, Hampshire, 

UK 

272 Daily 

estimates 

28% 0.02 1.89 

FAPAR 
2004 - Quantum SKP 

215 

Skye instruments Ltd., 

Llandridod wells, UK 

369 Daily averages 

10:00-16:00 

1% 0.07 0.77 

  1077 

  1078 
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Table 2. Wavelengths of the hemispherical conical reflectance factors (HCRF) (ρi, j; nm)) used in the normalized difference spectral indices 
(NDSI) that generated the strongest correlations with ecosystem properties. DW is dry weight; FAPAR is the fraction of 
photosynteticallyphotosynthetically active radiation absorbed by the vegetation; AVG is average; SD is standard deviation; RMSE is root-
mean-square-error.; and RRMSE is relative RMSE. 

Ecosystem property 
Sample 

size 
ρi ρj R2 

Observation 

(AVG±SD) 
RMSE RRMSE (%) 

Biomass (g DW m-2) 12 587 705 0.88±0.07 153±59 28.4±8.7 18.6±5.7  

Gross primary productivity  

(g C m-2 d-1) 

285 518 556 0.86±0.02 -4.3±4.0 1.5±0.1 34.9±2.3 

Light use efficiency (g C MJ-1) 272 688 436 0.81±0.02 0.53±0.65 0.26±0.02 52.8±3.8 

FAPAR 369 399 1295 0.81±0.02 0.41±0.16 0.06±0.003 14.6±0.7 
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Figures 

 

Figure 1. Map and photos of the Dahra field site and measured areas. The map shows the location of Dahra 

within the Sahel (orange area). a) Photo of the footprint of the eddy covariance (EC) tower; b) photo of the 

EC tower; c) photo of the meteorological tower with the spectroradiometers; d) photo of the instantaneous 

field of view (IFOV) of the spectroradiometers during the rainy season; e) photo of the IFOV of the 
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spectroradiometer during the beginning of the dry season; and f) Quickbird image from the Dahra field site 

from 11 September 2011 showing the location of the meteorological tower, the EC tower, the biomass 

sampling plots and the footprint of the EC measurements. The EC footprint area is the median 70% 

cummulativecumulative flux distance from the eddy covariance tower. The photos of the EC tower and its 

footprint are taken during the rainy season whereas the photo of the meteorological tower shows the late 

dry season. 
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Figure 2. Time series of the measured variables: a) daily averaged air temperature (black line), and 
soil temperature at 0.05 m depth (grey line), b) daily sums of rainfall, c) daily average of soil 
moisture at 0.05 m depth, d) hyperspectral hemispherical conical reflectance factor (HCRF) 
normalized  by calculating the ratio between daily median HCRF for each wavelength (350-1800 
nm) and the average HCRF for the entire measurement period, e) gross primary productivity (GPP) 
(black dots) and ecosystem respiration (grey dots), f) the light use efficiency (LUE), and g) the 
fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR). The black 
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vertical lines are the start and end of the rainy seasons (first and final day of rainfall). The gaps are 
caused by technical issues due to loss of power supply, broken sensors or filtering of data due to 
bad weather conditions. 
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Figure 3. The coefficient of variation (COV), i.e. the ratio between daily standard deviation and the daily 

mean (measurements taken between 8:00 and 18:00 (UTC)), for different normalised difference spectral 

index (NDSI) wavelength (i, j) combinations for 12 days at the peak of the growing season 2011 (day of year 

237-251; n=576). The COV indicates how strongly the NDSI are affected by variable sun angles. The upper 

right half of the chart shows the unfiltered R2 values, whereas the lower left half shows filtered R2, based on 

the filtering criteria described under Subsect. 2.6. 
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Figure 4. The anisotropy factor (ANIF) for different normalised difference spectral index (NDSI) wavelength 

(i, j) combinations for 15 days at the peak of the growing season 2011 (day of year 237-251) for the different 

sensor viewing angles: a) 15°E, b) 15°W, c) 30E°, d) 30°W, e) 45°E, and cf) 45W°. The sensor is pointing east 

and west in the lower left and upper right corners of each plot, respectively. In order not to include effects 

of solar zenith angles in the analysis, only data measured between 12:00 and 14:00 (UTC) were used in the 

ANIF calculations (n=48). The upper right half of each chart shows the unfiltered R2 values, whereas the 

lower left half shows filtered R2, based on the filtering criteria described under Subsect. 2.6. 
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Figure 5. Median correlation coefficient (±1 standard deviation) between seasonal dynamics in 

hyperspectral hemispherical conical reflectance factors (HCRF) 2011-2012 and a) dry weight biomass (n=12; 

g m-2), b)  gross primary productivity (GPP) (n=285; g C day-1), c) light use efficiency (LUE) (n=272; g C MJ-1), 

and d) fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR) (n=369). The 

water absorption band (1300-1500 nm) was removed as it is strongly sensitive to atmospheric water 

content, and wavelengths between 350 and 390 nm were removed owing to low signal to noise ratio in the 

ASD sensors. 
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Figure 6. Coefficient of determination (R2) between normalised difference spectral index (NDSI) and a) dry 

weight biomass (n=12; g m-2), b) gross primary productivity (GPP) (n=285; g C day-1), c) light use efficiency 

(LUE) (n=272; g C MJ -1), and d) fraction of photosynthetically active radiation absorbed by the vegetation 

(FAPAR) (n=369). The upper right half of each image chart shows the unfiltered R2 values, whereas the 

lower left half shows filtered R2, based on the filtering criteria described under Subsect. 2.6. 

 



57 
 

 

Figure 7. The least square linear regressions with the strongest relationships between the normalised 

difference spectral index (NDSI) and a) dry weight biomass, b) gross primary productivity (GPP), c) light use 

efficiency (LUE), and d) fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR). 

In the equations, the slope and intercepts (±1 standard deviation) is given. 

 


