

1 **Energy partitioning and surface resistance of a poplar**
2 **plantation in northern China**

3

4 **M. Kang¹, Z. Zhang¹, A. Noormets², X. Fang¹, T. Zha¹, J. Zhou³, G. Sun⁴, S. G.**
5 **McNulty⁴, and J. Chen⁵**

6 [1]{Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry
7 of Education, College of Soil and Water Conservation, Beijing Forestry University, Beijing
8 100083, PR China}

9 [2]{Department of Forestry and Environmental Resources, North Carolina State University,
10 Raleigh, NC, USA}

11 [3]{Beijing Municipal Station of Agro-environmental Monitoring, Beijing, 100029, PR China}

12 [4]{Eastern Forest Environmental Threat Assessment Center, Southern Research Station,
13 USDA Forest Service, Raleigh, NC, USA}

14 [5]{Landscape Ecology & Ecosystem Science (LEES) Lab, Center for Global Change and
15 Earth Observations (CGCEO), and Department of Geography, Michigan State University, East
16 Lansing, MI 48823, USA}

17 Corresponding to: Zhiqiang Zhang (zhqzhang@bjfu.edu.cn)

18

19

20

21

22

23

24

25

26

27

1 **Abstract**

2 Poplar (*Populus sp.*) plantations have been, on one hand, broadly used in northern China for
3 urban greening, combating desertification, as well as for paper and wood production. On the
4 other hand, such plantations have been questioned occasionally for their possible negative
5 impacts on the water availability due to higher water use nature of poplar trees compared with
6 other tree species in water limited dryland regions. To further understand the acclimation of
7 poplar species to semiarid environment and evaluate the potential impacts of these plantations
8 on the broader context of the region's water supply, we examine the variability of bulk
9 resistance parameters and energy partitioning in a poplar (*Populus euramericana* CV. "74/76")
10 plantation located in northern China over a four-year period encompassing both dry and wet
11 conditions. The partitioning of available energy to latent heat flux (LE) decreased from 0.62 to
12 0.53 under mediated meteorological drought by irrigation applications. A concomitant increase
13 in sensible heat flux (H) resulted in the increase of a Bowen ratio from 0.83 to 1.57. Partial
14 correlation analysis indicated that surface resistance (R_s) normalized by leaf area index (LAI)
15 (R_s :LAI) increased by 50% under drought conditions and was the dominant factor controlling
16 the Bowen ratio. Furthermore, R_s was the main factor controlling LE during the growing season,
17 even in wet years, as indicated by the decoupling coefficient ($\Omega = 0.45$ and 0.39 in wet and dry
18 years, respectively). R_s was also a major regulator of the LE/LE_{eq} ratio, which decreased from
19 0.81 in wet years to 0.68 in dry years. All physiological and bioclimatological metrics indicated
20 that the water demands of the poplar plantation were greater than the amount available through
21 precipitation, highlighting the poor match of a water-intensive species like poplar for this water
22 limited region.

23

24

25

26

27

28

1 1 Introduction

2 Poplar (*Populus sp.*) plantations are the most dominant broadleaf forest ecosystems throughout
3 northern and central China, due to their rapid growth rates, high productivity and wide
4 adaptability ([Gielen and Ceulemans, 2001](#); [Wilske et al, 2009](#); [Zhang et al, 2011](#)). Since the
5 late-1970s, with the implementation of the “Three-North Shelterbelt Program” (1978), the
6 “Combating Desertification Project” (1991) and the “Grain for Grain Program” (1999) ([Wilske](#)
7 [et al, 2009](#)), poplar plantations have been playing a vital role in timber production, bioenergy,
8 urban greening, desertification control, and carbon sequestration ([Martín-García et al, 2011](#);
9 [Zhou et al, 2013](#)). By 2007, China had the largest poplar plantation area in the world (over 7.0
10 million ha, [Fang, 2008](#)). However, indiscriminate use of poplar species beyond their native
11 range and habitats may result in unanticipated consequences. For example, the use of poplars
12 in water limited regions may increase the risk of environmental degradation, soil moisture
13 deficit, hydrologic and vegetation changes ([Gao et al, 2014](#)).

14 Poplars require large quantities of water throughout the growing season, and may
15 experience water limitation even on the mesic sites ([Kim et al, 2008](#); [Stanturf and Oosten,](#)
16 [2014](#)). For example, poplar plantations could cause the transformation of wetlands into dry land
17 due to the water-pumping effect on groundwater ([Li et al, 2014](#); [Migliavacca et al, 2009](#)). Thus,
18 poplar plantations, which have higher productivity but also higher water use ([Zhou et al, 2013](#))
19 than other tree species.

20 The intensive land use practices in northern China over the past 50 years, supported by
21 irrigation, are thought to have triggered the decline in its water table, land degradation and
22 increases in surface air temperature and severe droughts ([Ding et al, 2007](#); [Qiu et al, 2012](#);
23 [Wang et al, 2008](#); [Zhang et al, 2014](#)). Therefore, understanding the contribution of current
24 land cover, including the poplar plantations on the regional water resources is essential for long-
25 term sustainability of ecosystem services and human wellbeing in this region. To date, most
26 researches have concentrated primarily on the water balance of forest ecosystems, with less
27 emphasis on the relationship of forest ecosystems to their environmental setting. Much can be
28 learned from exploring the partitioning of available energy and ecosystem response to
29 meteorological forcing such as droughts. Not only are these of central importance for
30 understanding the water and carbon balance ([Guo et al, 2010](#); [Jamiyansharav et al, 2011](#); [Sun](#)
31 [et al, 2010](#); [Takagi et al, 2009](#); [Wu et al, 2007](#)), but they also help elucidate the degree to

1 which forest water use is in balance with supply from precipitation, and hence the degree to
2 which plantations located in water limited regions are sustainable in the long-term.

3 To investigate the variations of energy partitioning and associated evapotranspiration of
4 **poplar plantation** under different **climate** conditions and **highlight the management strategies**
5 **for such** plantation forests in water limited region, we evaluated energy partitioning **at different**
6 **water availabilities** in a ten-year-old poplar (*Populus euramericana* CV. "74/76") plantation on
7 sandy soil in northern China. We hypothesized that drought would trigger significant **increase**
8 in the surface resistance and **affect** energy partitioning **via increasing the Bowen ratio**.
9 Specifically, the objectives of this study were to: (1) quantify the seasonal and inter-annual
10 variability of energy partitioning and bulk resistance parameters; (2) partition the control of
11 energy partitioning to biological and climatological components; and (3) evaluate the long-term
12 **potential impact** of poplar plantations **on the availability of water for adjacent ecosystems and**
13 **livelihoods in water-limited** region.

14 2 Materials and Methods

15 2.1. Study site

16 The study was carried out in a managed poplar (*Populus euramericana* CV. "74/76")
17 plantation at the Daxing Forest Farm, which is located in the southern suburbs of Beijing, China
18 (116°15'07"E, 39°31'50"N, 30 m a.s.l). The trees were planted in 1998 with 3 m × 2 m spacing,
19 dead or low-vigor trees were replaced with new saplings in 2001 and 2003. The stand
20 characteristics over the four years of study are provided in Table 1. At the end of 2009, the
21 average height of the trees **was** 16.2 ± 1.6 m (**mean \pm SD**), and the diameter at breast height
22 (DBH) was 14.1 ± 1.6 cm. The average leaf area index (LAI) of the stand increased over time.
23 During the growing season, **understory shrubs were kept at low density by** manual removal.
24 Perennial herbs included *Chenopodium glaucum* Linn., *Medicago sativa* L., *Melilotus*
25 *officinalis* (L.) Lam., *Salsola collina* Pall., and *Tribulus terrestris* L.

26 The local climate is classified as sub-humid warm temperate zone, with a mean (1990–
27 2009) annual temperature of 11.6°C; maximum and minimum temperature are 40.6 °C and -
28 27.4 °C, respectively. The annual precipitation ranges from 262 mm to 1058 mm (1952–2000),
29 with an average of 556 mm, of which 60%-70% falls from July to September (Daxing Weather
30 Station, 116°19' 56" E, 39°43' 24" N). The annual frost-free period lasts 209 days, and the
31 total sunshine-hour reaches 2772 h per year with $15.5 \text{ MJ m}^{-2} \text{ d}^{-1}$ of incoming solar radiation.

1 The average wind speed is 2.6 m s⁻¹ and it mostly comes from the southeast (during the growing
2 season) and the northwest (outside of the growing season).

3 The study area is on the alluvial plain of the Yongding River, and is flat with an average
4 slope of < 5 °. The top two meters of the soil is mostly composed of well-drained fluvial sand
5 with a bulk density of 1.43-1.47 g·cm⁻³, and a pH of 8.25-8.39. The soil porosity is about 40%
6 and capillary porosity is 32%. The mean groundwater depth over the past nine years (2001–
7 2009) was 16.5±0.2 m, and declined at an average rate of 0.6 m per year. The maximum pan
8 evaporation occurs from May through June, exceeding precipitation for the same period. Severe
9 drought during the beginning of the growing season (from April to June) in northern of China
10 is common. The site was irrigated using pumped groundwater, and the amount of water supplied
11 was estimated from the water meter records at the three adjacent wells on a weekly basis from
12 2006 through 2009. Other management practices have included tilling and weeding since the
13 establishment of the plantations.

14 **2.2. Eddy covariance system**

15 The micrometeorological and eddy flux measurements were conducted at a 32m tower in the
16 center of the study site, which was established in June 2005. The foot-print of the eddy flux
17 covariance system, was about 1 km x 1 km in size, with a fetch of at least 300 m in all directions.
18 Fluxes of CO₂, sensible heat and latent heat were calculated based on the eddy-covariance (EC)
19 principles. The sensors included a CO₂/H₂O infrared analyzer (Li-7500; LI-COR, Inc., Lincoln,
20 NE, USA) and a three-dimensional sonic anemometer (CSAT-3; Campbell Scientific, Inc., CSI,
21 UT, USA). The anemometer head was installed towards a predominant wind direction
22 (southeast), and the IRGA was installed at a slight vertical angle tilted northward (< 20 degree)
23 between the sonic path and anemometer body. The IRGA was calibrated every year. The EC
24 sensors were mounted initially at a height of 16 m in 2006. This was increased to about 18 m
25 before the start of the growing season in 2007, and again to 20 m in February 2009 to ensure
26 that the sensors remained well above the tree canopy.

27 Net radiation was measured with net radiometers (Q7.1, REBS, Seattle, WA, USA) and
28 (CNR-1; Kipp and Zonen, Delft, Netherlands) at 26 m above the ground. Photosynthetically
29 active radiation (PAR) was measured with a PAR quantum sensor (LI-190SB; LI-COR, Inc.)
30 mounted at 20 m. The atmospheric pressure was measured by a barometric pressure sensor
31 (CS105, CSI) at height of 21 m. Air temperatures and humidity were measured with a

1 temperature and relative humidity probe (HMP45C; Vaisala, Helsinki, Finland) at 5, 10, 15 and
2 20 m **above ground**. Precipitation was measured with a tipping bucket rain gauge (TE525-L;
3 Texas Electronics, USA) at 22.5m. Soil heat flux **and soil temperatures, respectively, were**
4 **measured with** three soil heat transducers (HFT3, CSI) **and** three thermocouples (TCAV107;
5 CSI) located at depths of 5, 10 and 20 cm below the soil surface. Soil water content was
6 measured with TDR sensors (CS616; CSI) buried at 20 and 50cm.

7 With the exception of the rain gauge, all microclimatic data were recorded with a data-
8 logger (CR23X; CSI) at 30 min intervals and the fluctuations in wind speed, sonic temperature
9 and CO₂ and H₂O concentrations were sampled at 10 Hz and recorded by a CR5000 data-logger
10 (CSI).

11 **2.3. Data processing and QA/QC**

12 The **30-minute mean fluxes were calculated from** raw 10 Hz data with an EC Processor **software**,
13 version 2.3 ([Noormets et al., 2010](#)). The program is designed for reprocessing EC flux data and
14 can calculate half-hour mean eddy covariance fluxes of carbon, water and energy. The wind
15 coordinates were rotated using the planar fit method ([Paw U et al., 2000](#); [Wilczak et al., 2001](#)).
16 Fluxes were corrected for additional sensor heating ([Burba et al., 2008](#)) and fluctuations in air
17 density ([Webb et al., 1980](#)). The data quality controls included: screening of **the** 30-min mean
18 eddy covariance fluxes based on instrument quality flag, integral turbulence characteristics
19 ([Foken and Wichura, 1996](#)), flux stationarity, atmospheric stability, and adequate turbulent
20 mixing([Goulden et al., 1996](#)). The threshold of friction velocity (μ_*) below which flux loss
21 occurred was determined from the seasonal binned relationship between nighttime turbulent
22 flux of CO₂ and friction velocity (μ_*) ([Schmid et al., 2003](#)). The threshold was consistent across
23 different seasons, but differed slightly between years: 0.18 m s⁻¹ (2006), 0.12 m s⁻¹ (2007), 0.14
24 m s⁻¹ (2008) and 0.13 m s⁻¹ (2009). **Data gaps shorter than 2 hours were filled using linear**
25 **regressions between the flux of interest and net radiation (R_n)**, gaps between 2 hours and 7 days
26 **in length were filled using mean diurnal variation (MDV) method ([Falge et al., 2001](#))**, and gaps
27 longer than 7 days were not filled.

28 The **four** year study period was classified into “wet” and “dry” **years** distinctively. **A** dry
29 year referred to **a year with annual** precipitation less than **85%** of the 20-year average according
30 to the National Standard of People's Republic of China (GB/T 20481-2006) ([China, 2006](#)) and
31 “wet” **when above it**. Years 2007 and 2008 were classified as ‘wet’ while 2006 and 2009 were

1 ‘dry’ year, respectively. We focused on the growing season when the [environmental forcing](#)
 2 (e.g., solar radiation, and temperature) for energy and water fluxes, and the physiological
 3 response of vegetation were usually strong. In this study, the strongest forcing days occurred
 4 approximately between day 100 (mid-April) and day 300 (late October). The daytime was
 5 defined as the period between the sunrise and sunset with $\text{PAR} > 4 \text{ } \mu\text{molm}^{-2}\text{s}^{-1}$. The regulation
 6 of surface [energy and gas](#) exchange are often different during nocturnal periods ([Mahrt, 1999](#)),
 7 [with](#) heat fluxes at night typically weaker and markedly less [stationary](#) than during the daytime
 8 ([Wilson et al., 2002b](#)). The midday was defined as the period from 10:00 to 15:00 [LST](#) when
 9 the [coupling](#) between vegetation and [the atmosphere](#) was the strongest.

10 **2.4. Biophysical characteristics**

11 The availability of relative extractable water (REW) content was calculated to analyze the
 12 ecosystem response on drought stress. According to [Granier et al. \(2007\)](#), soil water stress was
 13 assumed to occur when the REW dropped below the threshold of 0.4. Daily REW is calculated
 14 as,

$$15 \text{REW} = \frac{\text{VWC} - \text{VWC}_{\min}}{\text{VWC}_{\max} - \text{VWC}_{\min}} \quad (1)$$

16 where VWC_{\min} and VWC_{\max} are the minimum and maximum soil volumetric water content
 17 across the four years, respectively.

18 The Bowen ratio (β) reflects the influence of microclimate and the hydrological cycle on
 19 the energy partitioning and water use of the ecosystem ([Perez et al., 2008](#)). The midday β is
 20 calculated as Eq. (2),

$$21 \beta = \frac{H}{LE} \quad (2)$$

22 Based on the daytime half-hourly and daytime totals of turbulent energy fluxes, the energy
 23 balance ratio (EBR) is calculated as Eq. (3),

$$24 E_{BR} = \frac{\sum(H + LE)}{\sum(R_n - G - S)} \quad (3)$$

25 where S is the latent and sensible heat storage in the air-column below the EC system and is
 26 calculated as in Eq. (4) ([Dou et al., 2006](#)),

$$1 \quad S = \int_0^{hc} \rho c_p \frac{\partial T}{\partial t} dz + \int_0^{hc} \frac{\rho c_p}{\gamma} \frac{\partial e}{\partial t} dz \quad (4)$$

2 where hc is the height of eddy flux system measurement (32 m), T is air temperature in the air-
3 column below hc , and e is water vapor pressure.

4 During midday periods (10:00-15:00 LST), the *Penman-Monteith* approximation was
5 inverted to calculate the surface resistance (R_s) in Eq. (5) ([Kumagai et al., 2004](#)),

$$6 \quad R_s = \frac{\rho c_p (\delta_e / LE)}{\gamma} + \left(\frac{\Delta}{\gamma} \beta - 1 \right) R_a \quad (5)$$

7 where R_s is the surface resistance to water vapor transport ($s \text{ m}^{-1}$), representing four components:
8 bulk stomatal resistance of the canopy, bulk boundary layer resistance of the vegetation, bulk
9 ground resistance, and bulk boundary layer resistance of the ground ([Admiral et al., 2006](#); [Cho](#)
10 [et al., 2012](#); [Perez et al., 2008](#); [Wilson et al., 2002b](#)).

11 R_i is the climatological resistance ($s \text{ m}^{-1}$) indicating the atmospheric demand ([Wilson et](#)
12 [al., 2002b](#)) and is calculated as,

$$13 \quad R_i = \frac{\rho c_p \delta_e}{\gamma A} \quad (6)$$

14 where A is the available energy ($R_n - G$); ρ is air density (kg m^{-3}), c_p is the specific heat of the
15 air ($1005 \text{ J kg}^{-1} \text{ K}^{-1}$); δ_e is the atmospheric vapor pressure deficit (Pa); LE is [the](#) latent heat flux;
16 Δ is the change of saturation vapor pressure with temperature (Pa K^{-1}); γ is the psychrometric
17 constant ($\approx 67 \text{ Pa K}^{-1}$); β is the Bowen ratio.

18 R_a is the aerodynamic resistance of the air layer between the canopy and the flux
19 measurement height ($s \text{ m}^{-1}$), [that](#) reflects the aerodynamic properties of turbulent transport in
20 the near surface boundary layer ([Holwerda et al., 2012](#); [Zhang et al., 2007](#)). R_a is calculated
21 following [Hossen et al. \(2011\)](#) and [Migliavacca et al. \(2009\)](#),

$$22 \quad R_a = r_{a,m} + r_b = \frac{\mu}{\mu_*^2} + 6.2 \mu_*^{-2/3} \quad (7)$$

23 where $r_{a,m}$ is the aerodynamic resistance for momentum transfer, and r_b is the quasi-laminar
24 boundary-layer resistance, μ is the wind speed, and μ_* is the friction velocity.

25 The decoupling coefficient (Ω) explains the degree of coupling between the atmosphere
26 and the vegetation, and describes the relative control of evapotranspiration by surface resistance

1 and net radiation ([Pereira, 2004](#)). The Ω value ranges from 0 to 1, with values approaching zero
2 indicating that LE is highly sensitive to surface resistance and ambient humidity deficit. The Ω
3 value [approaching 1](#) indicates that LE or evapotranspiration is mostly controlled by net
4 radiation ([Jarvis and McNaughton, 1986](#)),

$$5 \quad \Omega = \frac{\Delta + \gamma}{\Delta + \gamma(1 + \frac{R_s}{R_a})} \quad (8)$$

6 The equilibrium evaporation (LE_{eq}) is the climatologically determined evaporation
7 (atmospheric demand) over an extensive wet surface and is dependent only on R_n and
8 temperature. It is calculated as,

$$9 \quad LE_{eq} = \frac{\Delta(R_n - G)}{\Delta + \gamma} \quad (9)$$

10 The ratio LE/LE_{eq} , which is also known as the Priestley–Taylor α , reflects the control of
11 evaporation by atmospheric and physiological factors, LE/LE_{eq} characterizes the surface
12 dryness of [an ecosystem](#), [indicating](#) whether soil water supply for evapotranspiration of an
13 ecosystem [was](#) under [limited](#). An LE/LE_{eq} of < 1 [indicates](#) water stress and [suppressed](#)
14 evapotranspiration. [Conversely](#), $LE/LE_{eq} > 1.26$ indicates unrestricted water supply, and only
15 available energy limits [evapotranspiration](#) ([Araujo et al., 2003](#)). The LE/LE_{eq} is dependent of
16 leaf area index (LAI), soil water content, meteorological conditions (e.g., wind speed, solar
17 radiation, VPD, air stratification stability, convection, advection surface resistance), vegetation
18 types, and altitude ([Guo et al., 2008](#)).

19 **2.5. Statistical analysis**

20 Repeated measurement ANOVA (SPSS) was used for quantifying the changes of all [the](#)
21 biophysical variables, energy fluxes and bulk parameters [across](#) years. The t test was used to
22 compare the differences of biophysical variables among different studies. The partial
23 correlation analysis was used to distinguish the impacts of each of the three resistance
24 parameters (R_s , R_i and R_a) on the Bowen ratios. All analyses were accessed at $\alpha = 0.05$.

1 **3 Results**

2 **3.1 Environmental conditions**

3 The annual precipitation rates in the four years of study differed from the long-term (i.e., 1990–
4 2009) average (556 mm yr⁻¹). Thus, years 2006 and 2009 were drier and 2007 and 2008 were
5 wetter than the mean (Table 1). The interannual contrast was exaggerated by the seasonality of
6 rainfall. Generally, over 90% precipitation of each year occurred in April–October, but with
7 different timing and magnitude among the years. The study site was irrigated during the dry
8 years of 2006 and 2009 to mitigate drought conditions (Fig.1). Seasonal drought stress (REW<
9 0.4) occurred during periods in the late growing season of 2006 and 2009, the spring of 2007
10 and 2009, but not at all in 2008 (Fig. 2a–d). In 2006, precipitation during the growing season
11 reached 467 mm, of which 51% had occurred by July. The amount of irrigation was 35 mm in
12 April, 21 mm in May and 30 mm in September. The two seasonal drought periods separately
13 were #1_06 (from DOY 164 to 192) and #2_06 (from DOY 231 to 300). The total rainfall in
14 2007 and 2008 was similar, but more evenly distributed throughout the year in 2008. In 2007,
15 drought stress occurred during DOY 110–143 (#1_07) and 151–200 (#2_07). A single rain event
16 in late May (57 mm) and a few large precipitation events (> 25 mm d⁻¹) in July were recorded.
17 The amount of rainfall in 2009 was the smallest among the four years, during which 195mm of
18 irrigation was applied from March to September. There were several short and scattered
19 droughts across the growing season in 2009 (Fig.2d). Despite the higher than normal rainfall in
20 the two wet years, there was no flooding or overland runoff.

21 The growing season T_a in 2008 was significantly lower than that in 2007 and 2009 (dT=
22 1.3 °C, $p < 0.05$, Fig.2 e-h). The years differed in the spring warm-up and the timing of peak
23 temperature (by up to 35.9 °C). The maximum air temperature occurred in June 2006 and 2009,
24 and in July 2007 and 2008. The warmest month was June 2006 (27.1 ± 2.4 °C).

25 The daytime average VPD of the four growing seasons (Fig.2 e-h) was 1.3 ± 0.7 kPa. The
26 mean VPD in wet years (i.e., 2007 and 2008) was 1.2 ± 0.7 kPa, which was significantly lower
27 ($F=6.093$, $p < 0.01$) than that in dry years (i.e., 2006 and 2009, 1.3 ± 0.8 kPa). The VPD of the
28 growing seasons in 2008 (i.e., 1.1 ± 0.5 kPa) was lower than those in the other years ($p < 0.05$).
29 Higher T_a and lower precipitation in May 2007 led to higher VPD compared to the same period
30 in 2006 and 2008 ($p < 0.001$). Furthermore, the VPD was the highest in June 2009 (i.e., $2.3 \pm$
31 1.1 kPa, $p < 0.05$) and the lowest in 2008 (i.e., 1.0 ± 0.5 kPa, $p < 0.01$).

3.2 Seasonal changes in energy partitioning and β

The energy partitioning trends of daytime total net radiation (R_n) into latent, sensible heat fluxes (LE and H), soil heat fluxes (G) and heat storage of canopy (S) for the year 2006-2009 were presented in Fig.3. Among these years, R_n varied with solar radiation ($R > 0.95$, $\alpha = 0.01$ level), reached the maximum in July, and gradually decreased until the late October (in dry years) or November (in wet years). During the growing season, there were no significant difference in average daytime total R_n between wet and dry years. The average of daytime total G during the growing season displayed great seasonal and annual differences among these years ($p < 0.05$), with a lower value in wet years (2.1% in 2007) than in the dry years (4.9% in 2006; $p < 0.001$). Moreover, the average value of daytime total S among the four growing seasons were 0.46 MJ m⁻², 0.49 MJ m⁻², 0.51 MJ m⁻², 0.54 MJ m⁻², respectively. S/R_n varied from 6.0% in 2007 to 6.8% in 2009, showing no differences between the wet and dry years.

Partitioning of R_n into LE and H differed significantly between the wet and dry years (Table 3; $F = 17.599$, $p < 0.001$). The dominant turbulent energy flux during the early growing season was sensible heat flux (H) with or without drought stress except in 2006 when the irrigation was applied (Table 3). Then LE was the dominant driver of energy partitioning during the middle and late growing seasons under drought stress. The average daytime total LE was about 20% greater in wet years (6.77 MJ m⁻²) than in dry years (5.72 MJ m⁻², $p < 0.01$). The timing of peak LE was weakly related to drought, peaking in July in 2006, 2008 and 2009, and in August in 2007. The peak value of daytime total LE was 16.61 MJ m⁻², 17.01 MJ m⁻², 19.72 MJ m⁻² and 16.27 MJ m⁻², in 2006–2009 respectively. The daily evaporative fraction (LE/($R_n - G$)) was significantly higher in wet years (60.3% and 64.8% in 2007 and 2008, respectively) (64.8%) than in dry years (57.1% and 50.4% in 2006 and 2009, respectively; $p < 0.05$).

The seasonal variation of the midday Bowen ratio (β) displayed a rapid and significant trend across the growing season, especially at the beginning (April–June) and the end (September–October) of the growing season (Fig. 4). The Bowen ratios during the middle of the growing seasons were all smaller than 1, and approximately lasted from DOY 180–250 in the dry year and from DOY 180–290 in the wet years. The average midday β in the dry years was greater (1.57) than that in the wet years (0.83; $F=19.176$, $p < 0.001$). The Bowen ratio showed differences in response to drought stress across the four growing seasons (Table 3); with much higher values (> 1) during the drought periods in 2007 and 2009, but not in 2006. The Bowen ratio was smaller than 1 during drought stressed periods in 2008.

3.3 Biophysical controls of energy partitioning

The R_s varied widely at the beginning and the end of growing season, but changed steadily within a low range during the middle of growing season by comparison. Moreover, these lower R_s in the dry year lasted a shorter period (DOY 190–250) than in the wet year (Fig. 5a). A significantly negative relationship was found between the R_s and LAI during the wet years (Fig.6). Overall, the seasonal average of R_s normalized by leaf area index (LAI) (i.e., R_s :LAI) was lowest during the wettest year (2008, 54.1 s m^{-1} leaf area; $p < 0.05$). The R_s :LAI in the dry years (106.8 s m^{-1} leaf area) was 50% higher than in the wet years (71.2 s m^{-1} leaf area) ($p < 0.001$). The R_s :LAI in the seasonal drought stressed periods in 2006, 2007 and 2009 were much higher than those during unstressed periods ($p < 0.001$, Table 3).

The average midday R_i peaked in June and decreased in July/August before reaching a second peak in October (Fig. 5b). The seasonal average R_i during the growing season ranged from 68.3 s m^{-1} to 77.9 s m^{-1} , with a mean value of 74.4 s m^{-1} , and showed no difference among the four growing seasons ($p > 0.05$). Figure 5c presents the seasonal and annual variations of midday R_a . The average R_a for the four growing seasons was $23.2 \pm 8.5 \text{ s m}^{-1}$, ranging from 10.6 s m^{-1} to 43.5 s m^{-1} , 9.7 s m^{-1} to 52.5 s m^{-1} , 6.5 s m^{-1} to 43.1 s m^{-1} , and 9.7 s m^{-1} to 74.5 s m^{-1} , from 2006 to 2009, respectively. R_a in 2007 was significantly higher than in the dry years ($p < 0.01$), while R_a in 2008 was smaller than in the dry years ($p < 0.001$). However, there were no significant differences between dry and wet years R_a ($p > 0.05$).

The seasonal changes of LE/LE_{eq} value varied between 0.4 and 1.0 during most of the growing seasons (Fig. 5d). The average LE/LE_{eq} of the four years were 0.76, 0.73, 0.89 and 0.63, respectively. The mean LE/LE_{eq} of the dry years (0.68) was lower than that of wet years (0.81; $p < 0.001$). Specifically, the value of LE/LE_{eq} in drought periods of 2007 and 2009 were much smaller. A significantly exponential relationship existed between the LE/LE_{eq} and R_s during the growing season (Fig.7).

The decoupling coefficient (Ω) across the growing season peaked in mid-July in 2008 and in early August in the other years (Fig. 5e). The mean Ω for the four years was 0.41, 0.46, 0.43 and 0.39 (Table 3), respectively, and was significantly higher in wet year (0.45) than that in dry year (0.40; $F=9.460$, $p < 0.01$). Compared to the value during unstressed periods, the decoupling coefficient during the seasonal drought periods (#1_06, #2_06; #1_07, #2_07 and #1_09, #2_09, #3_09) was much lower in value.

1 **4 Discussion**

2 **4.1 Energy partitioning and Bowen ratio**

3 . The energy balance ratio (E_{BR}) at the current study was 0.88 based on daytime 30-minute
4 fluxes and > 0.96 based on daytime totals (Table 2). The annual mean E_{BR} at our site was similar
5 to the values of eight ChinaFlux sites, which averaged 0.83 and ranged from 0.58 to 1.00 (Li et
6 al., 2005). The energy budget is also consistent with the 50 site-years of flux data from 22 in
7 FLUXNET sites, which had energy closure of 0.34–1.69 (Mean = 0.84, Wilson et al., 2002a).
8 A recent analysis of 173 FLUXNET sites also found an average closure of 0.84 (Stoy et al.,
9 2013), although the authors also detected consistent differences among the biomes and based
10 on metrics of landscape heterogeneity. In addition to the known reasons for decreasing energy
11 balance closure (Hernandez-Ramirez et al., 2010; Li et al., 2005; Nakai et al., 2006; Stoy et al.,
12 2013), management operations at our site (e.g., irrigation, tilling and partial felling) may also
13 affect the energy balance. Although the causes of surface energy balance closure continues to
14 be debated (Stoy et al., 2013) and will not be conclusively answered in the current study, the
15 results reported here are similar to other FLUXNET sites.

16 The surface energy partitioning to sensible and latent heat depends on water potential
17 gradient and surface resistance (Araujo et al., 2003; Baldocchi et al., 2000; Chen et al., 2009).
18 Canopy development (Guo et al., 2010), rainfall dynamics and irrigation (Ozdogan et al., 2010)
19 affect these properties to some extent and could directly lead to a change in soil moisture and
20 the evaporation component of LE, thereby impacting energy partitioning and β (Chen et al.,
21 2009; Ozdogan et al., 2010). However, the impact of precipitation on the Bowen ratio may vary
22 by even at any site (Tang et al., 2014). In our study, detectable responses of $LE/(R_n-G)$ and the
23 Bowen ratio to drought stress and non-stress periods were observed in response to soil water
24 supply (Table 3) with a 50 mm threshold on average (Fig 8). The variability of energy
25 partitioning during the growing season was highly sensitive to water availability from
26 precipitation and irrigation. On an annual scale, the Bowen ratio appeared linearly related to
27 the total growing season precipitation ($R^2=0.89$, $p < 0.05$). Thus, the Bowen ratio is very
28 responsive to the site water supply; a similar finding was reported in Grünwald and Bernhofer
29 (2007) in a temperate spruce forest.

30 By contrast, β varied from 0.18 to 0.71, with a mean of 0.35 ± 0.15 during most of the
31 growing season in 2008 and in the non-stressed periods of the other 3 years. This variation was

1 close to 0.42 for deciduous forests ([Wilson et al., 2002b](#)) and 0.55 in a temperate Douglas-fir
2 ([Humphreys et al., 2003](#)), which is also similar to the variations in a ponderosa pine forest in
3 the western United States ([Goldstein et al., 2000](#)) and a deciduous broadleaved forest in the
4 southern United States ([Wilson and Baldocchi, 2000](#)). Seasonal drought stress had a discernible
5 impact on the Bowen ratio of this poplar plantation. However, compared to the reported β values
6 such as 0.74 in a temperate mixed forest ([Wu et al., 2007](#)), 0.81 in a boreal Scots pine forest
7 ([Launiainen, 2010](#)) and 0.89 in a loblolly pine plantation ([Sun et al., 2010](#)), the average β in wet
8 years were close to the above values. β was higher in seasonal drought periods and dry years
9 than most temperate coniferous forests (Mean = 1.07, ([Wilson et al., 2002b](#)), which typically
10 had [higher](#) β values. The high β value in this study reflects the semi-arid conditions, and
11 suggests a low tree water supply which might be resulted from the combination of low rainfall,
12 [the sandy soil's](#) low water holding capacity and [the](#) high plant and atmospheric water demand.
13 It has been suggested that the large-scale establishment of poplar plantation in sandy semi-arid
14 regions of northern China could have an adverse impact on the region's groundwater reserves
15 ([Li et al., 2014](#); [Petzold et al., 2011](#)). Our findings corroborate the hypothesis that drought
16 would trigger significant changes in [the](#) energy partitioning of water-demanding poplar species
17 in a water-stressed region.

18 **4.2 Biophysical control on Bowen ratio**

19 The Bowen ratio is dependent [on](#) the interactions of climatic and biological factors ([Perez et al.,
20 2008](#); [Wilson and Baldocchi, 2000](#)). R_i quantifies the climatic control on energy partitioning
21 and tends to decrease the Bowen ratio. A higher R_i implies a warm and dry climate in continental
22 regions ([Raupach, 2000](#); [Wilson et al., 2002b](#)). R_s reflects the physiological control on surface
23 energy exchange of an ecosystem ([Costa et al., 2010](#); [Launiainen, 2010](#); [Zhou et al., 2010](#)) and
24 generally increases the Bowen ratio.

25 In this study, R_s [similarly](#) varied seasonally with plant phenology and showed similar
26 seasonal characteristics to other deciduous forests during the course of the growing season
27 ([Cabral et al., 2010](#); [Kutsch et al., 2008](#); [Li et al., 2012](#)). As reported by [Tchekabakova et al.,
28 2002](#), R_s in seasonal drought stressed periods was much higher than that in non-stressed
29 periods. [It has been shown that](#) drought stress during the canopy development [affects leaf area](#)
30 [and may have lasting effects on canopy gas exchange through the entire growing season, even](#)
31 [after the moisture limitation is removed](#) ([Noormets et al., 2008](#)), which may explain significant
32 difference in R_s between wet year 2007 and 2008 (Fig.9). Compared with the R_s in other [studies](#),

1 the R_s :LAI in dry years [in the current study](#) was close to that of the Euphrates Poplar (*Populus*
2 *euphratica* Oliv.) (130.2 $s\ m^{-1}$ LAI^{-1}) and smaller than that of the Gansu Poplar (*Populus*
3 *gansuensis* Wang et Yang) (189.4 $s\ m^{-1}$ LAI^{-1}) in semiarid regions([Chen et al., 2004](#)). In wet
4 years it was similar to that of poplar (58.6 $s\ m^{-1}$ LAI^{-1}) ([Wilson et al., 2002b](#)) and boreal aspen
5 during the full-leaf period (51.8 $s\ m^{-1}$ LAI^{-1}) ([Blanken et al., 1997](#)) in mesic temperate regions.
6 R_s is primarily driven by solar radiation, moisture availability and VPD ([Fernández et al., 2009](#);
7 [Li et al., 2012](#)) and modulated by leaf area and stomatal resistance, which in turn changes as a
8 function of the above factors ([Wilson and Baldocchi, 2000](#)). Compared to the strong correlation
9 between R_s and LAI in wet years, the increased scatter in the R_s -LAI relationship during dry
10 years (Fig.6) suggests that R_s in dry years was also influenced by other physiological and non-
11 physiological (e.g., soil evaporation, canopy structure and turbulence) factors ([Wilson et al.,](#)
12 [2002b](#)). The mean R_i in [the current study](#) was higher than the mean R_i reported for temperate
13 forests in [Wilson et al. \(2002b\)](#) ($t=5.91$, $df=741$, $p < 0.001$), but was $\sim 50\%$ lower than the value
14 reported by [Li et al \(2009\)](#) in a vineyard in Gansu Province in China ($t= -29.87$, $df=741$, $p <$
15 0.001), as might be expected given the predominant climatic conditions.

16 On the seasonal [scale](#), the Bowen ratio and R_s of this poplar plantation were correlated and
17 consistent with [Wilson et al. \(2002b\)](#) and [Li et al. \(2009\)](#), but differed in wet and dry years (Fig
18 10). The water limitation during the dry years manifested in disproportional increase in R_s than
19 the Bowen ratio; this response may serve as an indicator when water reserves are being
20 depleted. At the extremes, the relationship converges, but as water becomes limiting, stomatal
21 closure and increased R_s do not appear to be able to affect the seasonal dynamics of the Bowen
22 ratio. The partial correlation analysis indicated that R_s and R_i had strong positive and negative
23 effects, respectively, on β in both wet and dry years (Table 4), which could not be detected
24 through correlation analysis (e.g., the impact of R_i and R_a on β). Furthermore, the regulation of
25 the Bowen ratio by R_s and R_i seemed stronger in dry than in wet years. R_a had a significant
26 negative impact on the Bowen ratio in wet years, but not in dry years.

27 The average LE/LE_{eq} in the growing season was 0.74 at our site, which is similar to
28 deciduous forests (0.72) ([Wilson et al., 2002b](#)), but smaller than at a temperate broad-leaved
29 forest (0.82) ([Komatsu, 2005](#)). The average Ω value of 0.42 ± 0.22 (0.39-0.46) was close to the
30 other forests (0.26-0.4, [Wilson and Baldocchi, 2000](#); 0.25-0.43, [Motzer et al., 2005](#)). As
31 essentially implied by the *Penman-Monteith* equation, LE/LE_{eq} exponentially related to R_s
32 during the growing season (Fig.7), which is equivalent to the logarithmic relationship between

1 LE/LE_{eq} and G_s (surface conductance) reported by other studies ([Chen et al., 2009](#); [Hossen et](#)
2 [al., 2011](#); [Zhu et al., 2014](#)). The asymptotic value of LE/LE_{eq} in dry years (0.89) and wet years
3 (0.96) were both lower than the [1.1–1.4 range typical in temperate deciduous forest](#) reported by
4 [Monteith \(1995\)](#), indicating that our study site was [drier than these reference sites](#) during both
5 dry and wet years. The low LE/LE_{eq} values under dry surface conditions of the ecosystem in
6 this study may also be related to the high porosity of [the](#) sandy soil and [the](#) low ground water
7 table ([Zhao et al., 2013](#)). Overall, as indicated by the lower Ω values and the significant
8 correlation coefficients between LE/LE_{eq} and R_s , the R_s was the major factor controlling the LE
9 during [the](#) growing season, which was consistent with the relations between R_s and the Bowen
10 ratio. In addition, LE was more coupled to the atmosphere during the dry years and seasonal
11 drought periods across [the](#) growing season, [as](#) reported in other studies ([Bagayoko et al., 2007](#);
12 [Bracho et al., 2008](#); [Zha et al., 2013](#)).

13 **4.3 Implications for poplar plantation establishments**

14 As forestry is a long-term endeavor, with the economic payback decades from stand
15 establishment, the availability of resources for the stand to prosper should come naturally to
16 natural resource managers. Supplementing limiting resources directly (fertilization, irrigation)
17 or indirectly (competition control, site preparation, thinning) is commonplace in commercial
18 forestry, but it has to be sustainable in the broader context of the region's ecosystems and
19 livelihoods. Earlier, we reported that the water needs of poplar plantation exceed the annual
20 precipitation in the region and plant survival during dry years depends on irrigation from
21 groundwater ([Zhang et al., 2014](#)). In the current study, energy partitioning to latent and sensible
22 heat and surface resistance was [sensitive](#) to climatological drought—[even under the irrigation](#)—
23 as indicated by low LE/LE_{eq} (< 1) and low values of [the](#) decoupling coefficient (Ω) ([Zhu et al.,](#)
24 [2014](#)); the dry surface [conditions](#) dominated the poplar plantation [in both wet and dry years](#). In
25 wet years, the plantation itself is [in hydrologic balance](#) with the water that arrives as
26 precipitation, with evapotranspiration consuming nearly all of the precipitation. The same is
27 true in dry years, but irrigation increases ET even further by depleting groundwater. Even if the
28 plantations were [in hydrologic balance](#) with water delivered as precipitation, their existence and
29 operation could be a threat to adjacent ecosystems and livelihoods if those rely on runoff or
30 groundwater recharge from the areas where the plantation has been sited. In the absence of the
31 plantations it is likely that groundwater recharge would increase, especially given the sandy
32 textured soil that tends to allow rapid infiltration and percolation as well as limits moisture

1 delivery to the atmosphere directly from the soil surface itself. While poplar plantation growth
2 in this water-limited location might be sustained by the modest precipitation in the region, it
3 could still be unsustainable for the broader context of the region's ecosystems and livelihoods.
4 However, further study to truly access these effects is needed by comparing the surface water
5 balance and /or spatial and temporal variations of groundwater levels at an adjacent, similar site
6 without a plantation.

7

8 **5 Conclusions**

9 The seasonal drought stress affected the dynamics of individual turbulent energy fluxes and the
10 surface resistances in the poplar plantation during the growing seasons. Partitioning of available
11 energy into latent (LE) and sensible heat (H) flux responded to meteorological drought and
12 resulted in higher β in dry years (1.57) than that in wet years (0.83). Similar to the response of
13 the Bowen ratio on drought conditions, the LAI normalized surface resistance (R_s :LAI) was 33%
14 higher in dry than in wet years. Correspondingly, the contrasting effects of R_s and R_i on the
15 Bowen ratio were stronger in dry years than in wet years, while the effect of R_a was stronger in
16 wet years. R_s was the major factor in controlling energy partitioning during the growing season,
17 as indicated by the relatively low decoupling coefficient (Ω) values. Furthermore, the low
18 LE/LE_{eq} (< 1) of poplar plantations indicated that the permanent limitation of plant water use
19 and surface energy partitioning by water availability. Even at mean long-term precipitation, the
20 water demand of poplar plantation may consume nearly all of it and leave little for run-off and
21 groundwater recharge in this semi-arid region, potentially compromising the region's
22 ecosystems and livelihoods.

23

24

25 *Acknowledgements.* This study was financially supported by the National Special Research
26 Program for Forestry entitled "Forest Management Affecting the Coupling of Ecosystem
27 Carbon and Water Exchange with Atmosphere" (Grant No. 201204102). First author also
28 thanks the financial support by Beijing Municipality Educational Committee under the graduate
29 student training program. Partially supported by the US-China Carbon Consortium (USCCC)
30 is acknowledged as well. Authors thank Dr. Christopher A. Williams (Associate Editor) and

1 anonymous reviewers for their insightful comments which helped to improve our original
2 manuscript greatly.

3

4

5 **References**

6 Admiral, S. W., Lafleur, P. M., and Roulet, N. T.: Controls on latent heat flux and energy partitioning at a peat bog
7 in eastern Canada, *Agr Forest Meteorol*, 140, 308-321, 2006.

8 Arain, M. A., Black, T. A., Barr, A. G., Griffis, T. J., Morgenstern, K., and Nesic, Z.: Year-round observations of the
9 energy and water vapour fluxes above a boreal black spruce forest, *Hydrol Process*, 17, 3581-3600, 2003.

10 Bagayoko, F., Yonkeu, S., Elbers, J., and de Giesen, N. V.: Energy partitioning over the west African savanna: Multi-
11 year evaporation and surface conductance measurements in Eastern Burkina Faso, *J Hydrol*, 334, 545-559, 2007.

12 Baldocchi, D., Kelliher, F. M., Black, T. A., and Jarvis, P.: Climate and vegetation controls on boreal zone energy
13 exchange, *Global Change Biol*, 6, 69-83, 2000.

14 Blanken, P. D., Black, T. A., Yang, P. C., Neumann, H. H., Nesic, Z., Staebler, R., den Hartog, G., Novak, M. D., and
15 Lee, X.: Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory
16 components, *Journal of Geophysical Research: Atmospheres*, 102, 28915-28927, 1997.

17 Bracho, R., Powell, T. L., Dore, S., Li, J. H., Hinkle, C. R., and Drake, B. G.: Environmental and biological controls on
18 water and energy exchange in Florida scrub oak and pine flatwoods ecosystems, *J Geophys Res-Biogeo*, 113,
19 G02004, doi:10.1029/2007JG000469, 2008.

20 Burba, G. G., McDermitt, D. K., Grelle, A., Anderson, D. J., and Xu, L.: Addressing the influence of instrument
21 surface heat exchange on the measurements of CO₂ flux from open-path gas analyzers, *Global Change Biol*, 14,
22 1854-1876, 2008.

23 Cabral, O. M. R., Rocha, H. R., Gash, J. H. C., Ligo, M. A. V., Freitas, H. C., and Tatsch, J. D.: The energy and water
24 balance of a Eucalyptus plantation in southeast Brazil, *J Hydrol*, 388, 208-216, 2010.

25 Chen, R., Kang, E., Zhang, Z., Zhao, W., Song, K., Zhang, J., and Lan, Y.: Estimation of tree transpiration and
26 response of tree conductance to meteorological variables in desert-oasis system of Northwest China, *Science in
27 China Series D: Earth Sciences*, 47, 9-20, 2004.

28 Chen, S. P., Chen, J. Q., Lin, G. H., Zhang, W. L., Miao, H. X., Wei, L., Huang, J. H., and Han, X. G.: Energy balance
29 and partition in Inner Mongolia steppe ecosystems with different land use types, *Agr Forest Meteorol*, 149, 1800-
30 1809, 2009.

31 China, S. A. o. t. P. s. R. o.: Classification of meteorological drought. In: *National Standard of People's Republic of
32 China GB/T 20481-2006*, China Standard Press, Beijing, 2006.

33 Costa, M. H., Biajoli, M. C., Sanches, L., Malhado, A. C. M., Hutyra, L. R., da Rocha, H. R., Aguiar, R. G., and de
34 Araujo, A. C.: Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are
35 the wet and seasonally dry rain forests any different?, *J Geophys Res-Biogeo*, 115, G04021, doi:
36 10.1029/2009JG001179, 2010.

37 Ding, Y. H., Ren, G. Y., Zhao, Z. C., Xu, Y., Luo, Y., Li, Q. P., and Zhang, J.: Detection, causes and projection of climate
38 change over China: An overview of recent progress, *Adv Atmos Sci*, 24, 954-971, 2007.

39 Dou, J. X., Zhang, Y. P., Yu, G. R., Zhao, S. J., Wang, X., and Song, Q. H.: A preliminary study on the heat storage
40 fluxes of a tropical seasonal rain forest in Xishuangbanna, *Sci China Ser D*, 49, 163-173, 2006.

41 Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R.,
42 Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai,
43 C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker,

1 A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual
2 sums of net ecosystem exchange, *Agr Forest Meteorol*, 107, 43-69, 2001.

3 Fang, S.: Silviculture of poplar plantation in China: A review, *Yingyong Shengtai Xuebao*, 19, 2308-2316, 2008.

4 Fernández, M. E., Gyenge, J., and Schlichter, T.: Water flux and canopy conductance of natural versus planted
5 forests in Patagonia, South America, *Trees*, 23, 415-427, 2009.

6 Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, *Agr Forest Meteorol*,
7 78, 83-105, 1996.

8 Gao, Y., Zhu, X., Yu, G., He, N., Wang, Q., and Tian, J.: Water use efficiency threshold for terrestrial ecosystem
9 carbon sequestration in China under afforestation, *Agr Forest Meteorol*, 195-196, 32-37, 2014.

10 Gielen, B. and Ceulemans, R.: The likely impact of rising atmospheric CO₂ on natural and managed *Populus*: a
11 literature review, *Environ Pollut*, 115, 335-358, 2001.

12 Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M. R., Panek, J. A., Xu, M., Qi, Y., Guenther, A. B., and
13 Baugh, W.: Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa
14 pine plantation in the Sierra Nevada (CA), *Agr Forest Meteorol*, 101, 113-129, 2000.

15 Goulden, M. L., Munger, J. W., Fan, S.-M., Daube, B. C., and Wofsy, S. C.: Measurements of carbon sequestration
16 by long-term eddy covariance: methods and a critical evaluation of accuracy, *Global Change Biol*, 2, 169-182,
17 1996.

18 Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux measurements of an old spruce forest
19 at the Anchor Station Tharandt, *Tellus B*, 59, 387-396, 2007.

20 Granier, A., Reichstein, M., Breda, N., Janssens, I. A., Falge, E., Ciais, P., Grunwald, T., Aubinet, M., Berbigier, P.,
21 Bernhofer, C., Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen, P., Knohl, A., Kostner, B.,
22 Lagergren, F., Lindroth, A., Longdoz, B., Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D.,
23 Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C., Rodrigues, A., Seufert, G., Tenhunen, J.,
24 Vesala, I., and Wang, Q.: Evidence for soil water control on carbon and water dynamics in European forests during
25 the extremely dry year: 2003, *Agr Forest Meteorol*, 143, 123-145, 2007.

26 Guo, H. Q., Zhao, B., Chen, J. Q., Yan, Y. E., Li, B., and Chen, J. K.: Seasonal Changes of Energy Fluxes in an Estuarine
27 Wetland of Shanghai, China, *Chinese Geogr Sci*, 20, 23-29, 2010.

28 Guo, I., Li, Q., Yan, C., Mei, X., and Li, Y.: Effects of small area irrigation on water and heat transport of winter
29 wheat field under drought condition[J], *Transactions of the Chinese Society of Agricultural Engineering*, 24, 20-
30 24, 2008.

31 Hernandez-Ramirez, G., Hatfield, J. L., Prueger, J. H., and Sauer, T. J.: Energy balance and turbulent flux partitioning
32 in a corn-soybean rotation in the Midwestern US, *Theor Appl Climatol*, 100, 79-92, 2010.

33 Holwerda, F., Bruijnzeel, L. A., Scatena, F. N., Vugts, H. F., and Meesters, A. G. C. A.: Wet canopy evaporation from
34 a Puerto Rican lower montane rain forest: The importance of realistically estimated aerodynamic conductance, *J Hydrol*, 414, 1-15, 2012.

36 Hossen, M. S., Mano, M., Miyata, A., Baten, M. A., and Hiyama, T.: Surface energy partitioning and
37 evapotranspiration over a double-cropping paddy field in Bangladesh, *Hydrol Process*, 26, 1311-1320, doi:
38 10.1002/hyp.8232, 2011.

39 Humphreys, E. R., Black, T. A., Ethier, G. J., Drewitt, G. B., Spittlehouse, D. L., Jork, E. M., Nesic, Z., and Livingston,
40 N. J.: Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British
41 Columbia, Canada, *Agr Forest Meteorol*, 115, 109-125, 2003.

42 Jamiyansharav, K., Ojima, D., Pielke, R. A., Parton, W., Morgan, J., Beltrán-Przekurat, A., LeCain, D., and Smith, D.:
43 Seasonal and interannual variability in surface energy partitioning and vegetation cover with grazing at shortgrass
44 steppe, *J Arid Environ*, 75, 360-370, 2011.

45 Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration: Scaling Up from Leaf to Region. In:
46 Advances in Ecological Research, MacFadyen, A. and Ford, E. D. (Eds.), Academic Press, London NW1 7BY, UK,
47 1986.

1 Kim, H.-S., Oren, R., and Hinckley, T. M.: Actual and potential transpiration and carbon assimilation in an irrigated
2 poplar plantation, *Tree Physiol*, 28, 559-577, 2008.

3 Komatsu, H.: Forest categorization according to dry-canopy evaporation rates in the growing season: comparison
4 of the Priestley-Taylor coefficient values from various observation sites, *Hydrol Process*, 19, 3873-3896, 2005.

5 Kumagai, T. o., Saitoh, T. M., Sato, Y., Morooka, T., Manfroi, O. J., Kuraji, K., and Suzuki, M.: Transpiration, canopy
6 conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell
7 effects, *J Hydrol*, 287, 237-251, 2004.

8 Kutsch, W. L., Hanan, N., Scholes, B., McHugh, I., Kubheka, W., Eckhardt, H., and Williams, C.: Response of carbon
9 fluxes to water relations in a savanna ecosystem in South Africa, *Biogeosciences*, 5, 1797-1808, doi:10.5194/bg-
10 5-1797-2008, 2008.

11 Launiainen, S.: Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest,
12 *Biogeosciences*, 7, 3921-3940, doi:10.5194/bg-7-3921-2010, 2010.

13 Li, S., Tong, L., Li, F. S., Zhang, L., Zhang, B. Z., and Kang, S. Z.: Variability in energy partitioning and resistance
14 parameters for a vineyard in northwest China, *Agr Water Manage*, 96, 955-962, 2009.

15 Li, Y. Z., Qin, H. Y., Xie, Y. H., Wang, W., Chen, X. S., and Zhang, C. M.: Physiological mechanism for the reduction
16 in soil water in poplar (*Populus deltoides*) plantations in Dongting Lake wetlands, *Wetl Ecol Manag*, 22, 25-33,
17 2014.

18 Li, Z., Niu, L., Yuan, F., Guan, D., Wang, A., Jin, C., and Wu, J.: Canopy conductance characteristics of poplar in
19 agroforestry system in west Liaoning Province of Northeast China ., *Chinese Journal of Applied Ecology*, 23, 2975-
20 2982, 2012.

21 Li, Z., Yu, G., Wen, X., Zhang, L., Ren, C., and Fu, Y.: Energy balance closure at ChinaFLUX sites, *Sci China Ser D*, 48,
22 12, 51-62, 2005.

23 Mahrt, L.: Stratified Atmospheric Boundary Layers, *Bound-Lay Meteorol*, 90, 375-396, 1999.

24 Martín-García, J., Jactel, H., and Diez, J. J.: Patterns and monitoring of Sesia apiformis infestations in poplar
25 plantations at different spatial scales, *Journal of Applied Entomology*, 135, 382-392, 2011.

26 Migliavacca, M., Meroni, M., Manca, G., Matteucci, G., Montagnani, L., Grassi, G., Zenone, T., Teobaldelli, M.,
27 Goded, I., Colombo, R., and Seufert, G.: Seasonal and interannual patterns of carbon and water fluxes of a poplar
28 plantation under peculiar eco-climatic conditions, *Agr Forest Meteorol*, 149, 1460-1476, 2009.

29 Monteith, J.: A reinterpretation of stomatal responses to humidity, *Plant, Cell & Environment*, 18, 357-364, 1995.

30 Motzer, T., Munz, N., Küppers, M., Schmitt, D., and Anhuf, D.: Stomatal conductance, transpiration and sap flow
31 of tropical montane rain forest trees in the southern Ecuadorian Andes, *Tree Physiol*, 25, 1283-1293, 2005.

32 Nakai, T., Van Der Molen, M., Gash, J., and Kodama, Y.: Correction of sonic anemometer angle of attack errors,
33 *Agr Forest Meteorol*, 136, 19-30, 2006.

34 Noormets, A., McNulty, S. G., DeForest, J. L., Sun, G., Li, Q., and Chen, J.: Drought during canopy development has
35 lasting effect on annual carbon balance in a deciduous temperate forest, *New Phytol*, 179, 818-828, 2008.

36 Noormets, A., Zhou, R., Chen, J., and Billesbach, D.: EC_Processor page :
37 <http://www4.ncsu.edu/~anoorme/ECP/index.html>, (last access: 20 September 2014), 2010.

38 Ozdogan, M., Rodell, M., Beaudoin, H. K., and Toll, D. L.: Simulating the Effects of Irrigation over the United States
39 in a Land Surface Model Based on Satellite-Derived Agricultural Data, *J Hydrometeorol*, 11, 171-184, 2010.

40 Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B.: Correction Of Eddy-Covariance Measurements
41 Incorporating Both Advection Effects And Density Fluxes, *Bound-Lay Meteorol*, 97, 487-511, 2000.

42 Pereira, A. R.: The Priestley-Taylor parameter and the decoupling factor for estimating reference
43 evapotranspiration, *Agr Forest Meteorol*, 125, 305-313, 2004.

44 Perez, P. J., Castellvi, F., and Martínez-Cob, A.: A simple model for estimating the Bowen ratio from climatic factors
45 for determining latent and sensible heat flux, *Agr Forest Meteorol*, 148, 25-37, 2008.

1 Petzold, R., Schwarzel, K., and Feger, K. H.: Transpiration of a hybrid poplar plantation in Saxony (Germany) in
2 response to climate and soil conditions, *Eur J Forest Res*, 130, 695-706, 2011.

3 Qiu, G., Yin, J., and Geng, S.: Impact of Climate and Land-Use Changes on Water Security for Agriculture in
4 Northern China, *Journal of Integrative Agriculture*, 11, 144-150, 2012.

5 Raupach, M.: Equilibrium evaporation and the convective boundary layer, *Bound-Lay Meteorol*, 96, 107-142, 2000.

6 Schmid, H. P., Su, H. B., Vogel, C. S., and Curtis, P. S.: Ecosystem-atmosphere exchange of carbon dioxide over a
7 mixed hardwood forest in northern lower Michigan, *J Geophys Res-Atmos*, 108, 4417, doi:
8 10.1029/2002JD003011, 2003.

9 Stanturf, J. A. and Oosten, C. v.: Operational Poplar and Willow Culture. In: *Poplars and willows: trees for society*
10 and the environment, Isebrands, J. G. and Richardson, J. (Eds.), The Food and Agriculture Organization of the
11 United Nations and CABI, Available from: <http://www.fao.org/forestry/ipc/69946@158687/en/> (last access: April
12 3, 2015), 2014.

13 Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M. A., Arneth, A., Aurela, M., Bernhofer,
14 C., Cescatti, A., Dellwik, E., Duce, P., Ganelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis, H., McCaughey, H.,
15 Merbold, L., Montagnani, L., Papale, D., Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano,
16 D., Vaccari, F., and Varlagin, A.: A data-driven analysis of energy balance closure across FLUXNET research sites:
17 The role of landscape scale heterogeneity, *Agr Forest Meteorol*, 171-172, 137-152, 2013.

18 Sun, G., Noormets, A., Gavazzi, M., McNulty, S., Chen, J., Domec, J.-C., King, J., Amatya, D., and Skaggs, R.: Energy
19 and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina, USA,
20 *Forest Ecol Manag*, 259, 1299-1310, 2010.

21 Takagi, K., Kimura, R., and Saylan, L.: Variability of surface characteristics and energy flux patterns of sunn hemp
22 (*Crotalaria juncea* L.) under well-watered conditions, *Theor Appl Climatol*, 96, 261-273, 2009.

23 Tang, Y., Wen, X., Sun, X., and Wang, H.: Interannual Variation of the Bowen Ratio in a Subtropical Coniferous
24 Plantation in Southeast China, 2003-2012, *PLoS One*, 9, e88267, doi: 10.1371/journal.pone.0088267, 2014.

25 Tchebakova, N. M., Kolle, O., Zolotoukhine, D., Arneth, A., Styles, J. M., Vygodskaya, N. N., Schluze, E.-D.,
26 Shibistova, O., and Lloyd, J.: Inter-annual and seasonal variations of energy and water vapour fluxes above
27 a *Pinus sylvestris* forest in the Siberian middle taiga, *Tellus B*, 54, 537-551, 2002.

28 Wang, E., Yu, Q., Wu, D., and Xia, J.: Climate, agricultural production and hydrological balance in the North China
29 Plain, *Int J Climatol*, 28, 1959-1970, 2008.

30 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and
31 water vapour transfer, *Q J Roy Meteor Soc*, 106, 85-100, 1980.

32 Wilczak, J., Oncley, S., and Stage, S.: Sonic Anemometer Tilt Correction Algorithms, *Bound-Lay Meteorol*, 99, 127-
33 150, 2001.

34 Wilske, B., Lu, N., Wei, L., Chen, S. P., Zha, T. G., Liu, C. F., Xu, W. T., Noormets, A., Huang, J. H., Wei, Y. F., Chen, J.,
35 Zhang, Z. Q., Ni, J., Sun, G., Guo, K., McNulty, S., John, R., Han, X. G., Lin, G. H., and Chen, J. Q.: Poplar plantation
36 has the potential to alter the water balance in semiarid Inner Mongolia, *J Environ Manage*, 90, 2762-2770, 2009.

37 Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman,
38 H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W.,
39 Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, *Agr Forest Meteorol*, 113,
40 223-243, 2002a.

41 Wilson, K. B. and Baldocchi, D. D.: Seasonal and interannual variability of energy fluxes over a broadleaved
42 temperate deciduous forest in North America, *Agr Forest Meteorol*, 100, 1-18, 2000.

43 Wilson, K. B., Baldocchi, D. D., Aubinet, M., Berbigier, P., Bernhofer, C., Dolman, H., Falge, E., Field, C., Goldstein,
44 A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B. E., Lindroth, A., Meyers, T., Moncrieff, J.,
45 Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., Vesala, T., and Wofsy, S.: Energy partitioning
46 between latent and sensible heat flux during the warm season at FLUXNET sites, *Water Resour Res*, 38, 1294,
47 doi:10.1029/2001WR000989, 2002b.

1 Wu, J. B., Guan, D. X., Han, S. J., Shi, T. L., Jin, C. J., Pell, T. F., and Yu, G. R.: Energy budget above a temperate mixed
2 forest in northeastern China, *Hydrol Process*, 21, 2425-2434, 2007.

3 Zha, T. S., Li, C. Y., Kellomaki, S., Peltola, H., Wang, K. Y., and Zhang, Y. Q.: Controls of Evapotranspiration and CO₂
4 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors, *Plos One*, 8, e69027, doi:
5 10.1371/journal.pone.0069027, 2013.

6 Zhang, J. B., Shangguan, T., and Meng, Z. Q.: Changes in soil carbon flux and carbon stock over a rotation of poplar
7 plantations in northwest China, *Ecol Res*, 26, 153-161, 2011.

8 Zhang, Y., Kadota, T., Ohata, T., and Oyunbaatar, D.: Environmental controls on evapotranspiration from sparse
9 grassland in Mongolia, *Hydrol Process*, 21, 2016-2027, 2007.

10 Zhang, Y., Zhang, Z., Sun, G., Fang, X., Zha, T., Noormets, A., McNulty, S., Chen, J., Liu, c., and Chen, L.: Water
11 Balances of a Poplar Plantation Forest in Suburban Beijing, China In: *J Environ Manage*, 2014 (in review).

12 Zhao, Q., Guo, W., Ling, X., Liu, Y., Wang, G., and Xie, J.: Analysis of Evapotranspiration and Water Budget for
13 Various Land Use in Semi-Arid Areas of Tongyu, China, *Climatic and Environmental Research*, 18, 415-426, 2013
14 (in Chinese).

15 Zhou, J., Zhang, Z., Sun, G., Fang, X., Zha, T., McNulty, S., Chen, J., Jin, Y., and Noormets, A.: Response of ecosystem
16 carbon fluxes to drought events in a poplar plantation in Northern China, *Forest Ecol Manag*, 300, 33-42, 2013.

17 Zhou, L., Zhou, G. S., Liu, S. H., and Sui, X. H.: Seasonal contribution and interannual variation of
18 evapotranspiration over a reed marsh (*Phragmites australis*) in Northeast China from 3-year eddy covariance data,
19 *Hydrol Process*, 24, 1039-1047, 2010.

20 Zhu, G., Lu, L., Su, Y., Wang, X., Cui, X., Ma, J., He, J., Zhang, K., and Li, C.: Energy flux partitioning and
21 evapotranspiration in a sub-alpine spruce forest ecosystem, *Hydrol Process*, 28, 5093-5104, 2014.

22

23

24

25

26

27

28

29

30

31

32

1
2
3
4

5 Table 1. The stand characteristics of four years from 2006 to 2009, including the minimum,
6 maximum and mean temperature (T), the annual precipitation (P), evapotranspiration (ET),
7 irrigation (I), canopy height (H), breast height diameter (DBH), leaf area index (LAI). The error
8 estimates are standard deviation (SD).

9	Tmin	Tmax	Tmean	P	ET	I	H	DBH	LAI
		(°C)		(mm)	(mm)	(mm)	(m)	(cm)	(m ² m ⁻²)
2006	-10.6	29.7	12.5±0.73	482	599	86	11.5±1.1	10.8±1.5	1.6±0.3
2007	-9.8	29.5	13.0±0.55	667	560	-	13.0±1.3	12.2±1.8	2.1±0.4
2008	-7.4	28.8	13.3±0.54	662	653	-	14.8±1.2	13.8±1.8	2.2±0.7
2009	-10.2	30.5	12.5±0.60	428	511	195	16.2±1.6	14.5±1.6	2.9±0.4

1
2
3
4
5
6
7
8
9
10 Table 2. Energy balance closure [statistics](#) using half-hourly and daytime totals during growing
11 season from 2006 to 2009

	daytime				Daytime sum			
	2006	2007	2008	2009	2006	2007	2008	2009
Slope	0.92	0.87	0.92	0.82	1.07	0.91	1.04	0.84
Intercept	20.50	17.24	10.72	13.08	-0.63	-0.09	-0.79	-0.30
R^2	0.81	0.80	0.81	0.82	0.88	0.81	0.92	0.82

Daytime was defined as the period between the sunrise and sunset with $PAR > 4 \text{ umol m}^{-2} \text{ s}^{-1}$;

The unit of Intercept for Half-hourly value and Daytime sum value were $\text{W} \cdot \text{m}^{-2}$ and $\text{MJ} \cdot \text{m}^{-2}$, respectively.

12
13
14
15
16
17
18

1 Table 3.The value of the soil water supply (WS), energy partitioning ratios and biophysical variables in the different periods of the growing
 2 season during 2006-2009

Year	Periods(DOY)	WS (mm)	LE/(R _n -G)(%)	H/(R _n -G)(%)	β	R _s (s m ⁻¹)	R _i (s m ⁻¹)	R _a (s m ⁻¹)	α	Ω
2006	100-163	76.2+56	50.5(23.4)	45.9(19.7)	3.48(6.37)	418.7(528.7)	87.8(30.2)	20.0(6.3)	0.64(0.35)	0.25(0.13)
	164-192 ^d	127.8	68.0(13.3)	33.2(11.1)	0.66(0.35)	184.0(94.7)	94.9(45.2)	23.8(5.1)	0.79(0.19)	0.42(0.14)
	193-230	219.6	77.7(11.9)	13.8(6.7)	0.19(0.13)	50.4(29.9)	51.5(16.4)	27.8(8.6)	1.01(0.24)	0.70(0.12)
	231-300 ^d	43	51.9(12.7)	31.7(11.6)	0.94(0.52)	178.5(68.8)	77.4(27.5)	25.6(6.8)	0.69(0.23)	0.36(0.14)
2007	100-143 ^d	61.8	35.2(6.4)	57.8(8.3)	2.37(0.66)	426.9(148.8)	96.1(29.4)	18.1(5.4)	0.41(0.13)	0.16(0.07)
	151-200 ^d	146.8	49.5(18.2)	37.0(17.7)	1.41(1.06)	314.1(225.6)	91.7(42.8)	25.3(7.1)	0.58(0.23)	0.35(0.16)
	200-300	396.8	66.0(16.3)	15.5(8.5)	0.35(0.32)	74.1(27.3)	61.1(22.7)	30.4(9.2)	0.87(0.20)	0.60(0.15)
2008	100-117	53.4	16.3(14.1)	71.8(9.7)	1.86(1.12)	206.9(102.0)	60.7(22.9)	13.6(4.1)	0.59(0.35)	0.21(0.14)
	118-155 ^d	15.6	58.8(12.3)	39.5(10.7)	0.71(0.36)	130.8(48.6)	81.1(32.3)	14.7(4.2)	0.81(0.23)	0.31(0.11)
	156-188	212.7	68.1(14.6)	33.3(10.7)	0.35(0.23)	70.2(33.4)	56.1(20.6)	19.3(5.9)	0.94(0.23)	0.53(0.14)
	189-212 ^d	26	73.5(12.7)	20.4(7.5)	0.18(0.15)	59.3(27.1)	67.4(41.1)	27.8(6.8)	1.07(0.25)	0.68(0.11)
	213-239	173.4	74.8(11.9)	11.8(6.2)	0.24(0.16)	61.5(23.7)	55.8(14.3)	19.3(5.2)	0.92(0.14)	0.57(0.10)
	240-251 ^d	19.2	60.4(12.6)	23.4(9.9)	0.42(0.22)	88.7(34.6)	60.4(15.3)	18.0(4.1)	0.87(0.21)	0.46(0.10)
	252-300	116.2	47.2(5.7)	39.2(3.6)	0.41(0.22)	72.1(17.8)	57.3(28.9)	18.4(4.4)	0.85(0.23)	0.48(0.10)
2009	100-158 ^d	37.6+52	36.0(16.5)	48.8(13.4)	1.90(0.83)	298.9(150.8)	84.2(39.3)	18.2(3.8)	0.43(0.19)	0.21(0.08)

	165-186 ^d	1.2	47.8(15.6)	38.1(14.8)	1.32(0.78)	360.5(139.8)	137.4(43.8)	21.2(5.9)	0.53(0.28)	0.24(0.10)
	187-235	265+32	65.9(12.8)	12.4(6.7)	0.28(0.18)	61.2(30.9)	53.0(22.8)	27.4(6.6)	0.82(0.18)	0.66(0.13)
	236-300 ^d	20.4+20	50.4(20.5)	33.1(18.4)	1.28(1.31)	208.3(194.3)	72.3(26.5)	26.9(10.7)	0.64(0.28)	0.39(0.21)
2006	Growing season	466+86	59.1(18.9)	31.8(16.4)	1.60(3.94)	231.4(338.3)	77.9(33.6)	24.0(7.4)	0.76(0.30)	0.41(0.21)
2007	Growing season	630	56.6(19.5)	28.7(19.6)	0.93(0.98)	192.2(190.7)	75.4(34.0)	26.9(9.3)	0.73(0.44)	0.46(0.22)
2008	Growing season	630	66.1(15.2)	22.1(13.4)	0.73(1.04)	118.1(115.3)	68.3(44.9)	18.5(6.3)	0.89(0.59)	0.43(0.19)
2009	Growing season	400+195	48.5(21.9)	34.6(18.5)	1.54(2.19)	248.9(273.3)	77.1(39.1)	23.8(8.5)	0.63(0.38)	0.39(0.24)
dry years										
(2006, 2009)	Growing season	-	52.6(22.3)	33.0(18.4)	1.57(3.17)	240.3(306.9)	77.5(36.5)	23.9(8.0)	0.68(0.31)	0.40(0.22)
wet years										
(2007, 2008)	Growing season	-	61.5(18.1)	25.1(17.0)	0.83(1.01)	153.1(159.7)	71.6(40.3)	22.5(8.9)	0.81(0.29)	0.45(0.20)

WS: soil water supply of period (sum of precipitation and irrigation); β : Bowen ratio; R_s , the surface resistance; R_i , the climatological resistance; R_a , the aerodynamic resistance; α , the Priestley-Taylor coefficient; Ω , the decoupling coefficient;

^d indicate the drought stressed periods.

The value in table represents Mean (SD), the superscript uppercase letters (A, B, C) and lowercase letters (a, b, c) respectively indicate the significance at the 0.01 level and the 0.05 level.

Table 4. The correlation analysis between the Bowen ratio (β) and R_s , R_i and R_a .

		Partial correlation analysis*			Correlation analysis		
		SOCC	p	df	Pearson	p	df
dry year	$\beta & R_s$	0.965	<0.001		0.939	<0.001	
	$\beta & R_i$	-0.667	<0.001	347	-0.042	=0.436	349
	$\beta & R_a$	0.037	=0.496		-0.221	<0.001	
wet year	$\beta & R_s$	0.905	<0.001		0.85	<0.001	
	$\beta & R_i$	-0.614	<0.001	383	0.64	=0.006	385
	$\beta & R_a$	-0.217	<0.001		-0.286	<0.001	

*Partial correlation analysis was proceeded between Bowen ratio and each of three resistance parameters (R_s , R_i and R_a) with the other two as controlling variables.

SOCC: The abbreviation of *Second-order correlation coefficient*.

5

10

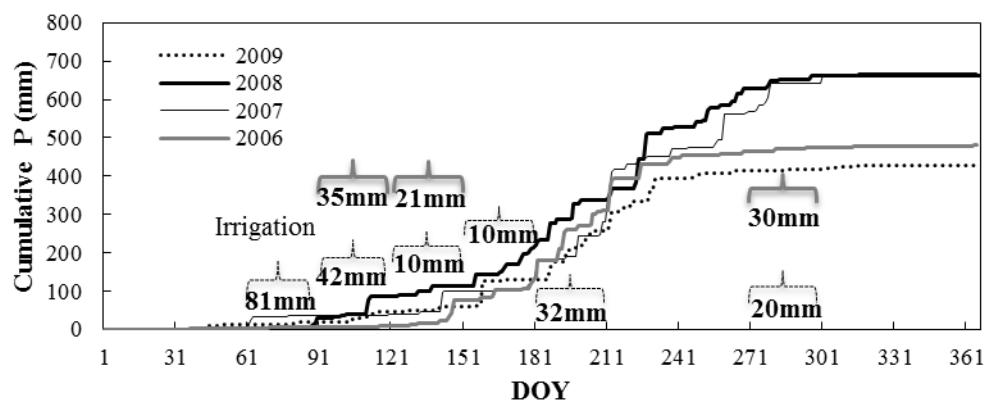


Figure 1. The cumulative precipitation (P) and periodic irrigation during 2006-2009, irrigation in 2006 and 2009 were separately represented by the solid and dotted brackets, respectively.

15

20

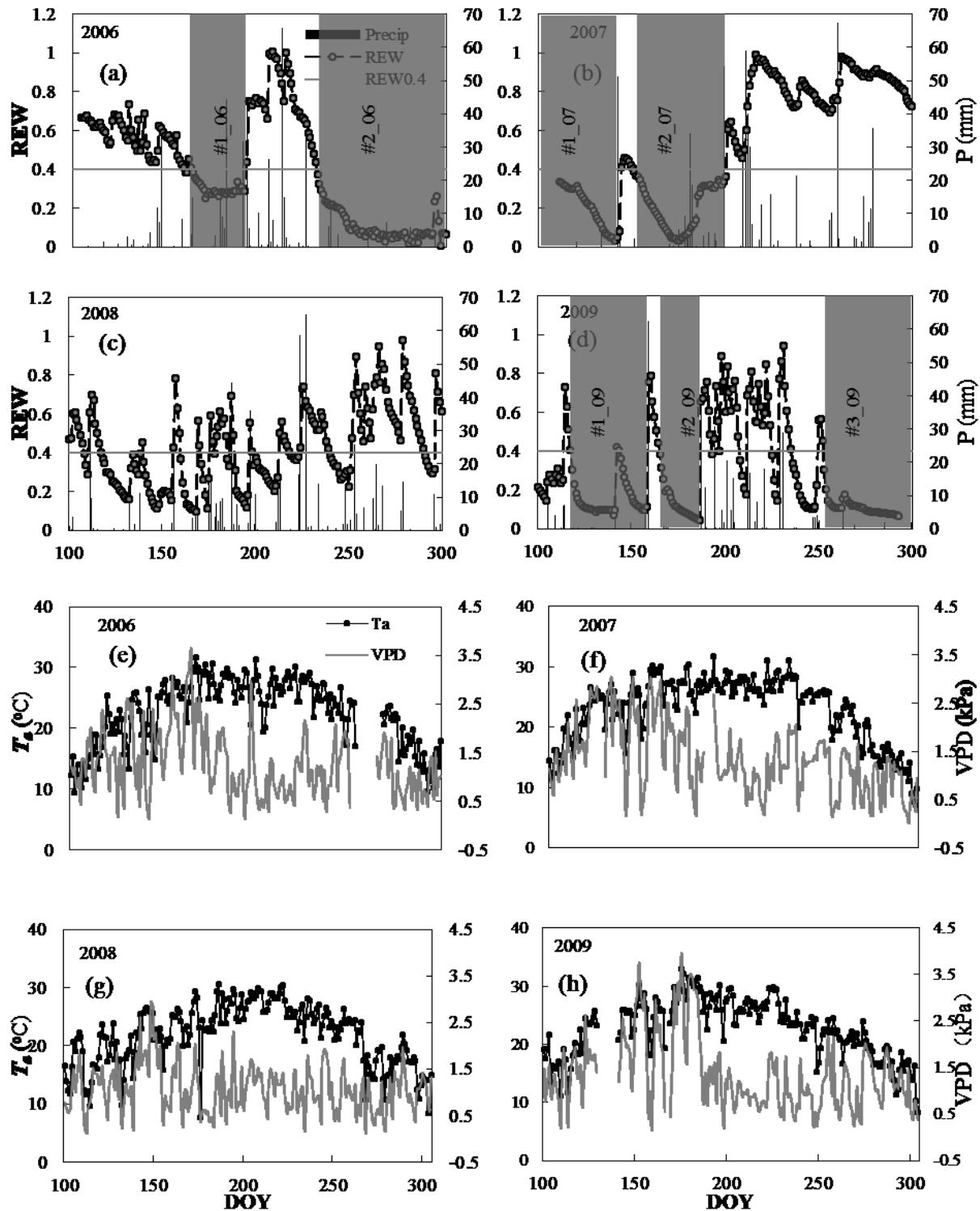


Figure 2. The seasonal variation of environmental conditions during 2006-2009, a-d: the relative extractable water (REW) (drought periods longer than 20 days are shaded), daily sum of precipitation (P); e-h: daytime mean air temperature (T_a), daytime mean air vapor deficit (VPD).

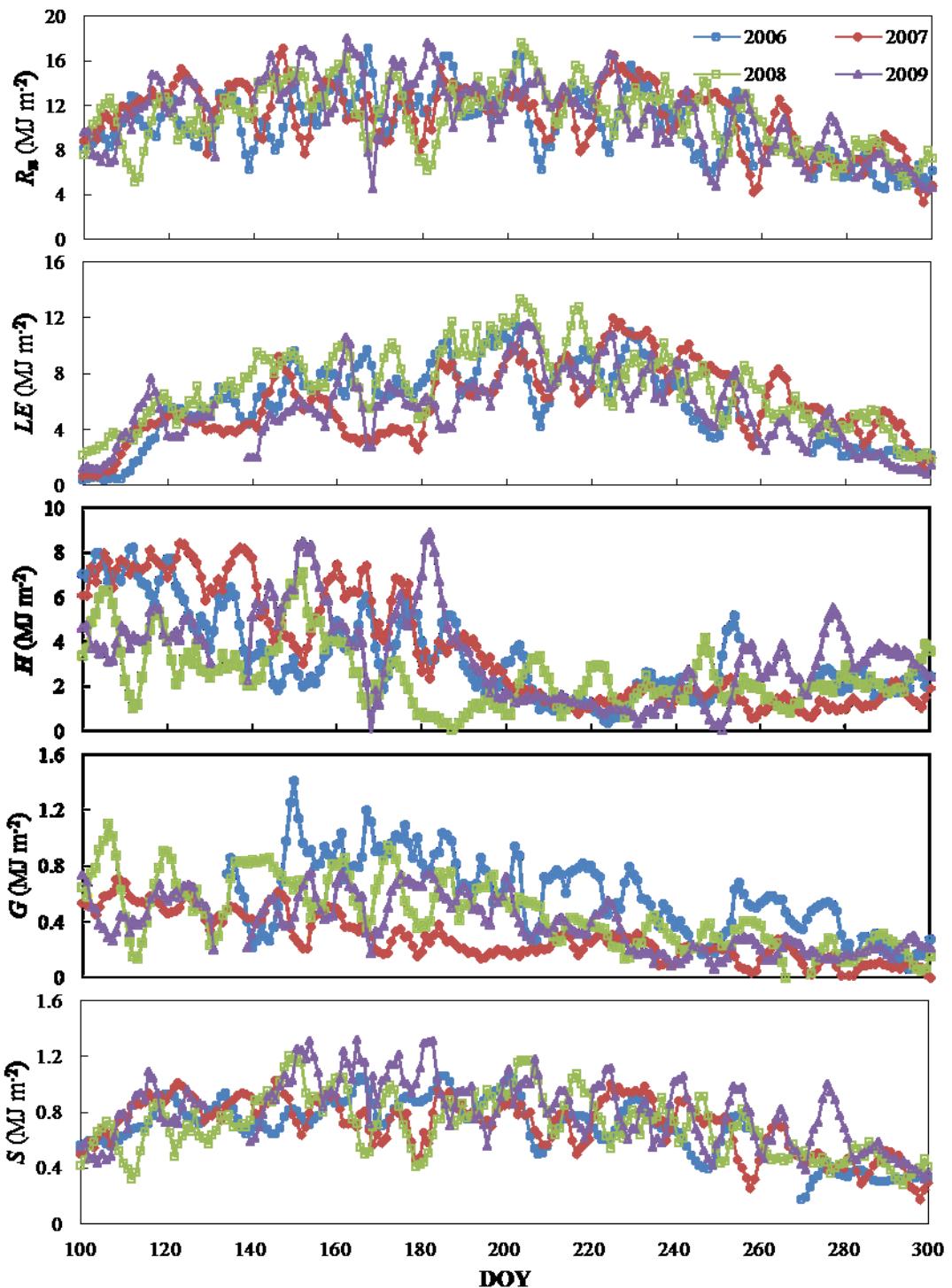


Figure 3. Seasonal patterns of daytime energy components (5-day running average) during the growing season from 2006 to 2009, including net radiation (R_n), latent heat (LE), sensible heat (H) and soil heat flux (G) and heat storage term (S).

5

10

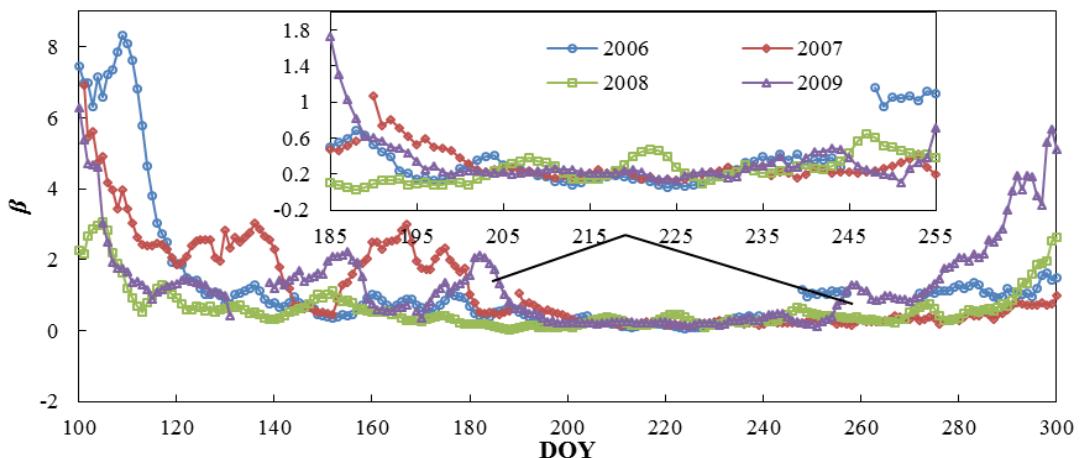


Figure 4. Seasonal and inter-annual variability of the midday (10:00-15:00 LST) mean Bowen ratio (β) (5-day running average) across the growing season, with detailed β during DOY 185-255 representing in small pane.

15

20

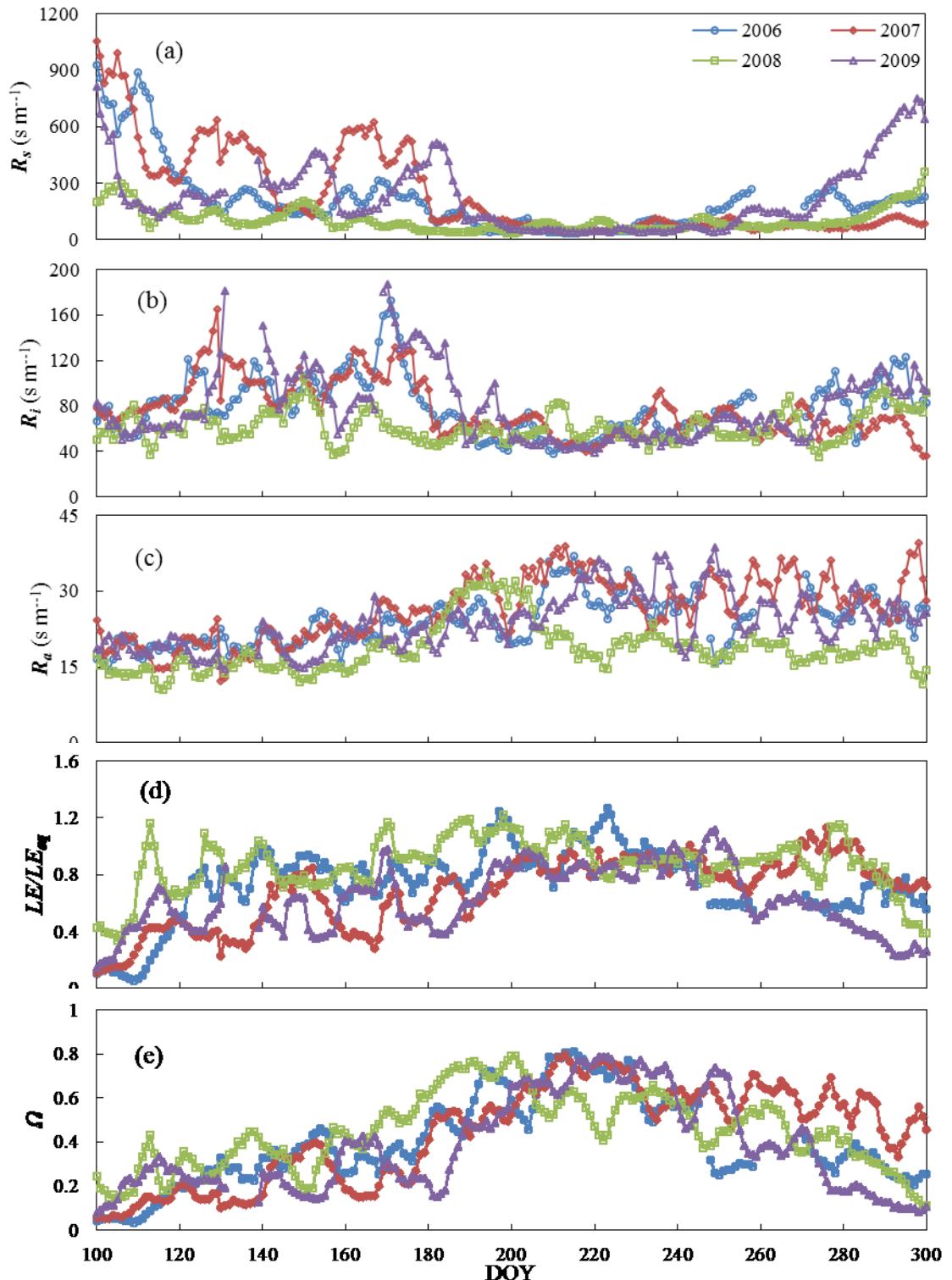


Figure 5. Seasonal dynamics of the midday (10:00-15:00 LST) mean surface resistance (R_s), climatological resistance (R_i), aerodynamic resistance (R_a), LE/LE_{eq} and decoupling coefficient (Ω) (5-day running average) across the growing season from 2006 to 2009.

5

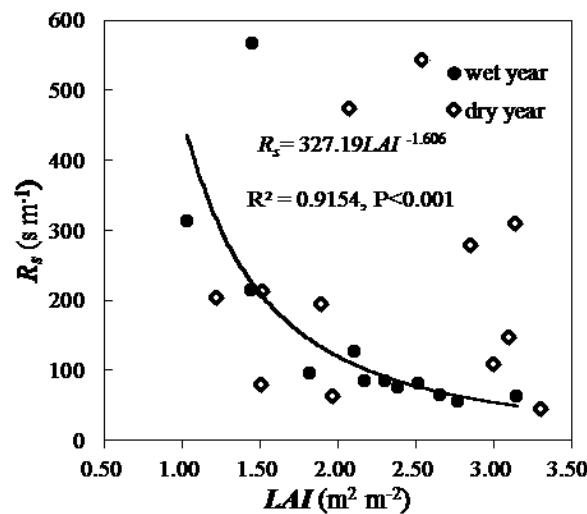


Figure 6. The relationship between leaf area index (LAI) and surface resistance (R_s) during growing season of the wet and dry year.

10

15

5

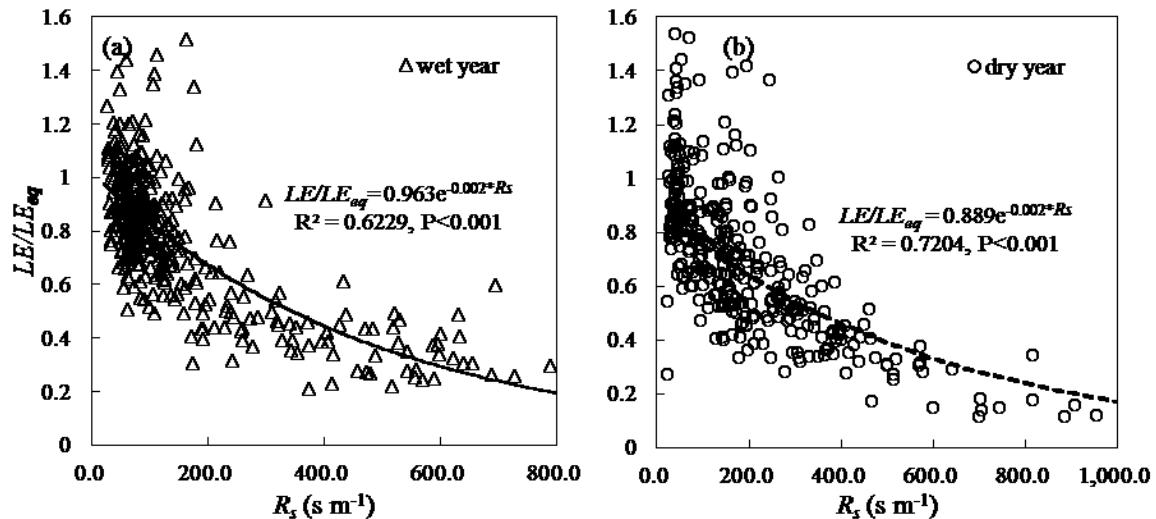
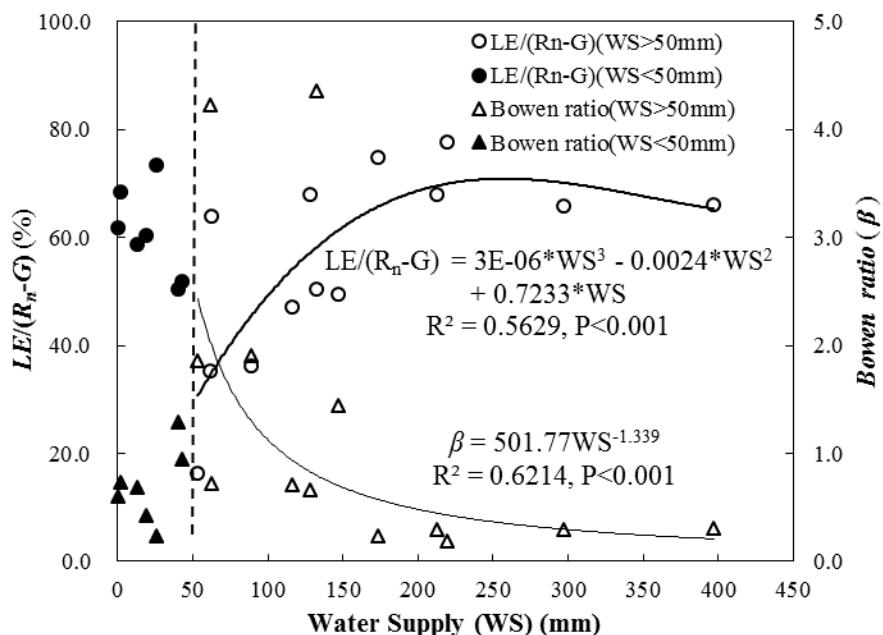



Figure 7. The relationships between surface resistance (R_s) and LE/LE_{eq} (Priestley-Taylor coefficient) during growing season of the wet (a) and dry (b) year.

10

15

20

5

Figure 8. The response of Bowen ratio and $LE/(R_n-G)$ on Water Supply (WS) (including precipitation (P) and irrigation (I) during individual period) of the different periods across the four growing seasons.

10

15

5

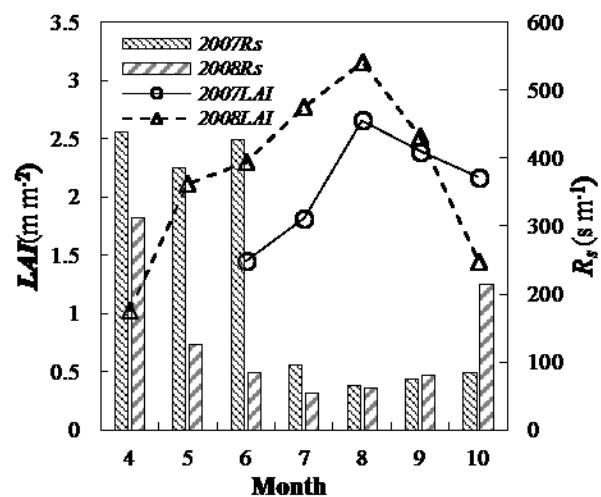


Figure 9. Seasonal variations of monthly average LAI and R_s during the growing season in wet year 2007 and 2008.

10

15

20

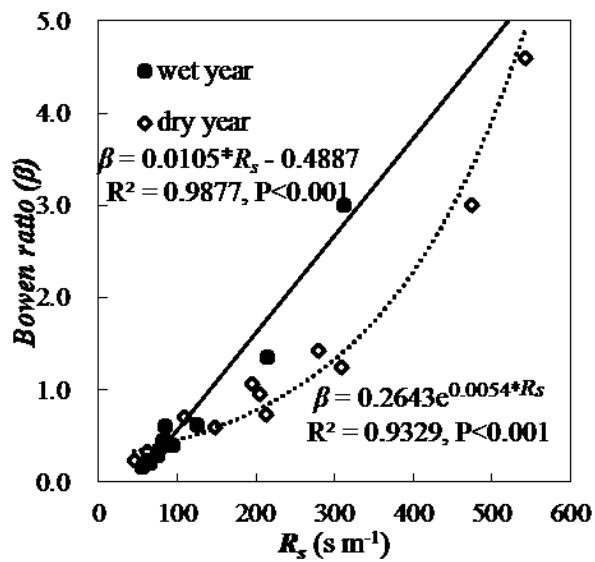


Figure 10. Response of monthly average Bowen ratio (β) on surface resistance (R_s) in the wet and dry year.