1 Sediment properties and CO₂ efflux from intact and

2 cleared temperate mangrove forests

- 4 **Richard H. Bulmer**¹, Carolyn J. Lundquist^{1,2}, Luitgard Schwendenmann³
- ¹Institute of Marine Science, University of Auckland, Auckland, New Zealand,
- 6 ²National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New
- 7 Zealand,
- 8 ³School of Environment, University of Auckland, Auckland, New Zealand

Abstract

9

10 Temperate mangrove forests in New Zealand have increased in area over recent decades. 11 Expansion of temperate mangroves in New Zealand is associated with perceived loss of other 12 estuarine habitats, and decreased recreational and amenity values, resulting in clearing of 13 mangrove forests. In the tropics, changes in sediment characteristics and carbon efflux have 14 been reported following mangrove clearance. This is the first study in temperate mangrove 15 (Avicennia marina) forests investigating the impact of clearing on sediment CO₂ efflux and 16 associated biotic and abiotic factors. Sediment CO₂ efflux rates from intact (168.5 ± 45.8 mmol m⁻² d⁻¹) and cleared (133.9 ± 37.2 17 mmol m⁻² d⁻¹) mangrove forests in New Zealand are comparable to rates measured in tropical 18 19 mangrove forests. We did not find a significant difference in sediment CO₂ efflux rates 20 between intact and cleared temperate mangrove forests. Pre-shading the sediment for more 21 than 30 minutes prior to dark chamber measurements was found to have no significant effect on sediment CO₂ efflux. This suggests that the continuation of photosynthetic CO₂ uptake by 22 23 biofilm communities was not occurring at the site studied after placement of dark chambers. 24 Rather, above-ground mangrove biomass, sediment temperature and chlorophyll α concentration were the main factors explaining the variability in sediment CO₂ efflux in 25 26 intact mangrove forests. The main factors influencing sediment CO₂ efflux in cleared 27 mangrove forest sites were sediment organic carbon concentration, nitrogen concentration 28 and sediment grain size. Our results show that greater consideration should be made 29 regarding the rate of carbon released from mangrove forest following clearance and the 30 relative contribution to global carbon emissions. 31 32 Keywords: Avicennia marina, biofilm, chlorophyll α, mangrove biomass, pre-shading, 33 sediment organic carbon, New Zealand 34

1. Introduction

- 36 Mangroves are generally confined to the tropics, between latitudes 30°N and 30°S. However,
- 37 approximately 1.4% of the global mangrove forests are located outside this latitudinal range,
- 38 growing in conditions which may be broadly characterised as temperate (Morrisey et al.,
- 39 2010). Temperate mangrove forests mainly occur in Australia, New Zealand, the United
- 40 States of America and South Africa (Morrisey et al., 2010; Giri et al., 2011). These forests
- 41 are subject to colder and generally more variable climatic conditions, and are typically
- 42 associated with lower diversity of tree species and lower faunal abundance and diversity than
- 43 in the tropics (Alfaro, 2006; Morrisey et al., 2010). However, little is known about sediment
- 44 properties and the factors driving the storage and exchange of carbon (C) in temperate
- 45 mangrove sediments (Livesley and Andrusiak, 2012).
- 46 Temperate mangrove forest cover has increased significantly over the last 50-60 years
- 47 (Morrisey et al., 2010; Saintilan et al., 2014). A landward expansion of mangroves into salt
- 48 marsh has been observed in Australia and the USA (Cavanaugh et al., 2014; Saintilan et al.,
- 49 2014) while mangrove expansion into tidal flats is typically observed in New Zealand (Stokes
- et al., 2009; Lundquist et al., 2014b). The expansion of mangroves in New Zealand has been
- 51 linked to increased sedimentation leading to vertical accretion of tidal flats (Swales et al.,
- 52 2007; Stokes, 2010), increased nutrient inputs (Lovelock et al., 2007), and climatic factors
- 53 (Burns and Ogden, 1985).
- 54 The recent expansion of temperate mangrove forests has led to a push towards mangrove
- 55 removal in New Zealand, largely from local communities concerned about the loss of
- 56 diversity of estuarine habitats caused by mangrove expansion, or for human amenities such as
- 57 recreational access and water views (Harty, 2009). Numerous legal and illegal mangrove
- clearings have occurred in recent decades, ranging in scale from < 0.1 to > 100 ha (Morrisey
- 59 et al., 2010; Lundquist et al., 2014b).
- 60 Carbon cycling and storage are important ecosystem services provided by mangrove forests
- 61 (Twilley et al., 1992; Bouillon et al., 2008; Kristensen et al., 2008; Alongi, 2014). The global
- net primary productivity in mangrove forests has been estimated at 218 ± 72 Tg C a⁻¹, which
- 63 includes the rate of litterfall and above- and below-ground biomass production (Bouillon et
- 64 al., 2008). An important component of the C cycle is the efflux of carbon dioxide (CO₂) from
- 65 the sediment into the atmosphere (Raich and Schlesinger, 1992). Sediment CO₂ efflux (also
- 66 called soil/sediment respiration) is the total of CO₂ released through root/mycorrhizae

- respiration (autotrophic respiration) and microbial respiration (heterotrophic respiration)
 associated with the decomposition of organic matter (Bouillon et al., 2008). Quantifying C
 emissions and understanding the factors influencing C storage and exchange has become
- increasingly important due to the rapid rise in atmospheric CO₂ concentrations and associated
- 71 impact on global climate (IPCC, 2013).
- 72 Clearing of mangrove forests has an impact on tree and sediment C storage and fluxes
- 73 (Lovelock et al., 2011; Sidik and Lovelock, 2013; Lang'at et al., 2014). Following mangrove
- 74 clearing the accumulation of mangrove-derived C into the sediment is halted, yet the release
- of CO₂ from the sediment continues (Lovelock et al., 2011; Sidik and Lovelock, 2013). The
- rates of sediment CO₂ efflux from cleared tropical mangrove peat forests in Belize, Central
- America, have been shown to be significantly higher compared to intact mangrove forests
- 78 (Lovelock et al., 2011). However, the impact of clearing on sediment CO₂ efflux and C
- 79 content has not been investigated in temperate mangrove ecosystems.
- 80 Studies from tropical mangrove forests have shown that sediment CO₂ efflux is influenced by
- 81 abiotic and biotic sediment characteristics including sediment C and nutrient quantity and
- quality (Kristensen, 2000), sediment grain size (Chen et al., 2010), redox potential (Chen et
- al., 2010; Chen et al., 2012; Leopold et al., 2013), sediment water content (Alongi, 2009) and
- sediment temperature (Chen et al., 2012). A study by Lovelock (2008) on temperate and
- 85 tropical mangrove forests reported a positive correlation between leaf area index and
- sediment CO₂ efflux. Further, biofilm communities, which are present on the sediment
- 87 surface, may play an important role in mediating CO₂ flux from the sediment (Alongi et al.,
- 88 2012; Leopold et al., 2013; Leopold et al., 2015). Biofilm communities include a wide variety
- 89 of diatoms, bacteria, fungi, and microfauna (Decho, 2000). The autotrophic biofilm
- 90 communities contribute significantly to the primary productivity in estuarine ecosystems and
- 91 supply energy to biofilm and other primary and secondary consumers, whereas the
- 92 heterotrophic biofilm communities mineralize organic matter (Van Colen et al., 2014).
- 93 The aim of this study was to assess the effect of temperate mangrove forest clearing on
- 94 sediment CO₂ efflux and sediment characteristics. The specific objectives were to (1)
- 95 quantify the sediment CO₂ efflux from intact and cleared mangrove forest, (2) investigate the
- 96 relative contribution of abiotic and biotic factors on sediment CO₂ efflux and (3) measure the
- 97 effect of pre-shading on sediment CO₂ efflux. This was to test whether CO₂ uptake during
- dark chamber measurements can be attributed to the continuation of photosynthetic activity
- by surface biofilm communities at the onset of dark measurements (Leopold et al., (2015).

2. Materials and methods

100

101 2.1 Study species 102 The only mangrove species in New Zealand, Avicennia marina subsp. australasica. occurs 103 from the top to the central North Island (Morrisey et al., 2010). The southernmost limit (38°) 104 is most likely due to low temperatures (Duke, 1990), lack of suitable conditions for propagule 105 dispersal, and lack of suitable habitat (Lange and Lange, 1994). The height of mature 106 mangrove trees in New Zealand range from less than 1 m to over 6 m, with smaller trees 107 often occurring towards the southern range limit (Morrisey et al., 2010). 108 2.2 Study area and selection of study sites 109 This study was conducted at 23 sites covering a large proportion of the geographic range of 110 mangroves (35°43' S to 37° 41' S) in New Zealand (Figure 1). We investigated cleared (n = 23) and, where possible, adjacent intact mangrove forest sites (n = 13). The time since 111 112 mangrove removal ranged from 1 month to over 8 years. Cleared mangrove sites ranged in 113 size from < 0.1 ha to > 13 ha. Besides the difference in size and time since clearing, the sites 114 differed in shape of cleared area, hydrodynamic conditions (sheltered: protected from direct 115 wind and wave action, generally located in the upper reaches of the estuary; exposed: 116 exposed to wind and wave action, generally located in the lower reaches of the estuary), and 117 method of mangrove removal (Supplementary table 1). Mean air temperature ranges from 118 19°C during summer to 11°C during winter. Mean monthly rainfall varies from 77 to 152 119 mm, respectively (NIWA, 2014). Tides for the sites are semi diurnal with a range of 1.3 - 4.1120 m (LINZ, 2014). 121 Field measurements and sampling were undertaken during late spring and summer 122 (November 2013 - January 2014). Weather conditions during sampling were sunny or 123 overcast, with no rainfall. Additional measurements were undertaken during winter (May-124 June 2015) within intact mangrove forest at one site (Hatea 1) (Figure 1).

125 2.3 Sediment CO₂ efflux measurements

- 126 2.3.1 Pre-shading the sediment
- 127 The effect of pre-shading the sediment prior to dark chamber measurements was investigated
- at site Hatea 1. Three frames (0.5 m²) were deployed throughout the mangrove forest, at least
- 129 10 m from each other and the mangrove edge. Frames were located approximately 20 cm
- above the sediment surface. The frame was completely covered by layered cloth to exclude
- light penetration. After 30 minutes of shading, two CO₂ efflux measurements using a dark

- respiration chamber were conducted at different locations within the 0.5 m² area, before and
- after the removal of the surface biofilm. The biofilm (top ~2 mm of surface sediment) was
- scraped off using a spatula. Biofilm removal measurements were collected immediately
- following biofilm intact measurements in the identical location. Corresponding dark CO₂
- efflux measurements were also conducted at locations that had not been pre-shaded (control)
- adjacent to each shaded measurement, as well as corresponding biofilm removal
- measurements to account for heterogeneity in sediment conditions.
- 2.3.2 Sediment CO₂ efflux from intact and cleared temperate mangrove
- 140 Sediment CO₂ efflux was measured in the centre of the cleared sites at three randomly
- selected locations. Locations in the intact mangrove forest were > 10 m from the cleared
- areas. No pre-shading of the sediment was undertaken prior to measurements.
- 143 The sediment CO₂ efflux was measured at low tide, between 8 am and 6 pm local time, using
- an infrared CO₂ analyser (Environmental Gas Monitor (EGM-4) with a dark sediment
- respiration chamber (SRC-1, PP Systems Ltd., Amesbury, MA, USA). Using a dark chamber
- prevents the photosynthetic activity of biofilm communities which results in the uptake of
- 147 CO₂. A PVC collar (10 cm height) was attached to the base of the respiration chamber to
- protect the chamber from potential flooding. The collar was inserted approximately 5 mm
- into the sediment, avoiding damage to surface roots. Sediment within the chamber included
- crab burrows and pneumatophores < 7 cm which fit within the respiration chamber. The
- sediment area covered by each chamber was 0.00785 m². Chamber height was measured
- during each measurement as collar insertion varied based on sediment characteristics. Total
- 153 chamber volume varied between 1.72 and 1.98 l depending on the depth of collar insertion.
- The CO₂ concentration in the chamber was measured at 5 second intervals over a 90 second
- period. Air and sediment temperature (Novel Ways temperature probe) and moisture (CS620,
- 156 Campbell Scientific, Logan, UT, USA) at a depth of 12 cm was measured with each CO₂
- 157 efflux measurement.
- In addition to measuring CO₂ efflux in intact (undisturbed) sediment, sediment CO₂ efflux
- was re-measured at the same location after the removal of the surface biofilm. Measurements
- were made within 30 seconds following the removal of the surface biofilm.
- 161 Sediment CO₂ efflux was calculated from linear regression of the CO₂ concentration within
- the chamber over time. Only regressions with r^2 values ≥ 0.8 were used for flux calculations.
- The sediment CO_2 efflux rate (μ mol m⁻² s⁻¹) was calculated as follows.

Sediment CO_2 efflux = $(\Delta CO_2 / \Delta t) \times ((P \times V) / (R \times T) / A)$ (1) Where $\Delta CO_2 / \Delta t$ is the change in CO_2 concentration over time, based on the slope of the linear regression (μ mol mol⁻¹ s⁻¹ = ppm s⁻¹), t is time (s), P is the atmospheric pressure (mbar), V is

the volume of the chamber including collar (L), A is the surface area covered by each

- 168 chamber (m²), T is the temperature (K), R is the ideal gas constant (83.144621 L mbar
- 169 K⁻¹ mol⁻¹). Daily sediment CO₂ efflux (mmol CO₂ m⁻² d⁻¹) were estimated by multiplying the
- measured efflux rates, assuming constant efflux rates.

171

- 2.4 Sediment characteristics
- 173 At each site three sediment samples, next to the location of the sediment CO₂ efflux
- measurements, were collected using two small sediment cores (2 cm deep, 2 cm in diameter).
- After collection the samples were immediately frozen and stored in the dark before analysis.
- 176 Sediment carbon and nitrogen concentration: Samples were dried (60°C for 48 hours) and
- then pulverised using mortar and pestle. Total carbon (C and nitrogen (N) concentration was
- determined using an elemental analyser (TruSpec LECO CNS, Leco Corporation, St. Joseph,
- MI). A subset of samples (14% of samples, ranging from 0.17 to 12.63% total C) were
- acidified to remove the inorganic C (Brodie et al., 2011). Briefly, 300 mg sediment was
- mixed with 0.5 ml distilled water and 1.5 ml of 20% HCl and then dried on a hot plate at
- 182 60°C. Organic C concentration was then determined using the elemental analyser. A linear
- regression function between total C and organic C ($r^2 = 0.98$, p < 0.001) was used to calculate
- organic C concentrations of non-treated samples.
- 185 Grain size: One sediment sample per site was analysed for grain size. The samples were
- 186 homogenised and a subsample of approximately 5 g of sediment was taken and digested in ~
- 187 9% hydrogen peroxide until bubbling ceased (Day, 1965). The sediment sample was then wet
- sieved through 2000 µm and 63 µm mesh sieves. Pipette analysis was used to separate the <
- 189 63 μ m fraction into > 3.9 μ m and \leq 3.9 μ m. All fractions were then dried at 60°C until a
- 190 constant weight was achieved (fractions were weighed at ~ 40 h and then again at 48 h).
- 191 Grain size fractions were calculated as percentage weight of gravel/shell hash (>2000 μm),
- 192 sand $(63 2000 \,\mu\text{m})$, silt $(3.9 62.9 \,\mu\text{m})$ and clay $(\le 3.9 \,\mu\text{m})$.
- 193 Chlorophyll α : One sediment sample per site was analysed for chlorophyll α . The samples
- were freeze dried within a month of sampling, weighed, then homogenised and a subsample
- 195 (~5 g) was taken for extraction. Chlorophyll α was extracted by boiling the sediment in 90%

- 196 ethanol. The absorption of the extract was measured at 665 and 750 nm using a
- 197 spectrophotometer (Spectrophotometer UV-1800, Shimadzu, Kyoto, Japan). Immediately
- after the absorbance reading 0.05 mL 1 mol HCl were added to separate degradation products
- 199 from chlorophyll α. The absorption of the acidified extract was re-measured after 30 seconds
- 200 (Hansson, 1988; Moed and Hallegraeff, 1978). Chlorophyll α concentration was calculated
- based on the following equation:
- 202 Chlorophyll α (µg g⁻¹ sediment) = ((750a 665a) (750 665) x Abs x (ethanol in extraction
- 203 (l)/Sediment analysed (μg)) (2)
- Where 750 and 665 are the absorptions at wavelengths 750 and 665 nm, 750a and 665a are
- 205 the absorptions at wavelengths 750 and 665 nm after acidification, and Abs is the absorbance
- 206 correction factor for chlorophyll α in ethanol (28.66)
- 207 **2.5 Tree and root biomass**
- Within intact mangrove forests the tree height of the closest 5 mangrove trees to each
- measurement/sampling point and the density (number of mangroves within a 2 m x 2 m area)
- 210 was recorded. Above-ground biomass was estimated using the allometric equations
- developed for Avicennia marina in New Zealand (Woodroffe, 1985):
- Total above-ground biomass^{-1/3} (g dry weight) = -4.215 + 0.121 x Height (cm) (3)
- 213 At two sites, Mangere 1 (Auckland) and Hatea 1 (Northland) mangrove height exceeded the
- 214 range the allometric equation was designed for (determined from trees ranging in height from
- 40 to 248 cm). Here, trunk diameter (at 30 cm height) of the closest 5 mangrove trees to each
- sampling point was used to estimate biomass for all trees at Mangere 1 and Hatea 1:
- Total above-ground biomass $^{-1/3}$ (g dry weight) = 0.264 + 2.597 x Diameter (cm) (4)
- 218 At each cleared site a quadrat (0.5 m x 0.5 m) was sampled at three haphazardly placed
- 219 locations (within a 10 m radius). The following characteristics were recorded within each
- 220 quadrat: the proportion of surface covered by mangrove leaf litter, proportion of surface
- covered by macroalgae, number of mangrove seeds and seedlings, and number of
- pneumatophores. Further, three randomly located root biomass cores (13 cm diameter, 15 cm
- depth) were collected at each clearing site. After sorting, all vegetative material was air dried
- for one week on aluminium trays, and then oven dried at 70 °C for approximately 4 days until
- dry weight stabilised. Surface characteristics and root biomass were not measured at intact
- 226 mangrove forest sites.

227 2.6 Data analysis 228 Replicates per site were averaged to provide mean site values. Mean site values were used in 229 subsequent data analysis. Coefficients of variation (CV) values were determined (standard 230 deviation/mean) to compare variation within and among sites. 231 Data were tested for normality using the Shapiro-Wilk test. The Mann-Whitney Rank Sum 232 Test was used to determine differences in sediment CO₂ efflux and other site characterises 233 between shaded and control measurements and between intact and cleared mangrove sites as 234 data did not conform to normality. 235 Backward multiple linear regression analysis was used to identify the sediment and 236 ecosystem characteristics that predicted CO₂ efflux. Levene's test was used to verify the 237 homogeneity of variance. Sediment CO₂ efflux values from intact mangrove forest site Matua 238 and cleared mangrove forest site Waiuku 2 were considered outliers (mean values were > 3 239 fold the overall mean and > 2 fold the next highest value) and not included in the regression 240 analysis. A significance level of p < 0.05 was used for the linear models and the individual 241 coefficients. 242 Statistical analyses were conducted using SigmaPlot Version 12.5 (Systat Software Inc., San Jose, CA, USA) and SPSS statistics software version 17 (SPSS Inc. Chicago, IL, USA). 243 244

- **3. Results**
- 246 Shading experiment
- No significant difference was detected in mean CO₂ efflux between shaded ($\frac{103.6 \pm 17.8}{100.000}$)
- 248 mmol m⁻² d⁻¹) and control (51.1 ± 5.5 mmol m⁻² d⁻¹) treatments (p > 0.05) (Figure 2).
- 249 Removing the surface biofilm resulted in significantly higher CO₂ efflux for both shaded
- 250 (391.5 \pm 53.1 mmol m⁻² d⁻¹) and control (278.0 \pm 29.9 mmol m⁻² d⁻¹) treatments (p < 0.01)
- 251 (Figure 2).
- 252 Sediment CO₂ efflux and sediment characteristics from intact and cleared mangrove forest
- 253 sites
- No significant difference in sediment CO₂ efflux was found between intact ($\frac{168.5 \pm 45.8}{100}$)
- 255 mmol m⁻² d⁻¹, n = 13) and cleared mangrove ($\frac{133.9 \pm 37.2 \text{ mmol m}^{-2} \text{ d}^{-1}}{133.9 \pm 37.2 \text{ mmol m}^{-2}}$ sites (p >
- 256 0.05) (Figure 3). Removing the surface biofilm resulted in significantly higher CO₂ efflux at
- intact (2.34 fold increase) and cleared (1.66 fold increase) mangrove forest sites (p < 0.01)
- 258 (Figure 3).
- 259 Mangrove above-ground biomass ranged from 0.5 to 13.5 kg dry weight m⁻² with an average
- value of 4.5 kg dry weight m⁻² (Table 1). Sediment characteristics varied considerably among
- sites and no significant differences (p > 0.05) were detected in sediment characteristics
- between intact and cleared mangrove forest sites (Table 1).
- 263 Sediment CO₂ efflux varied considerably within and among sites. However, the mean
- variability within individual sites (CV = 0.55 for intact mangrove and CV = 1.1 for cleared
- 265 mangroves) was lower than mean variability among sites (CV = 0.99 for intact mangroves
- and CV = 1.34 for cleared mangroves).
- 267 Individual sites were grouped based on whether CO₂ efflux exceeded ('high efflux group') or
- was below ('low efflux group') the mean CO_2 efflux rate for intact mangrove forests (168.5 \pm
- 269 45.8 mmol m⁻² d⁻¹), to determine whether site characteristics were significantly different
- between high and low efflux groups. Mean sediment CO₂ efflux of the 'high efflux group'
- ¹, significantly higher (p < 0.05) than 80.1 ± 23.4 mmol m⁻² d⁻¹ measured in the 'low efflux
- 273 group'. Chlorophyll α concentration was significantly higher in the 'high efflux group' (53.3)
- $\pm 7.0 \,\mu g^{-1} \,g^{-1}$ sediment) than in the 'low efflux group' ($26.6 \pm 7.0 \,\mu g^{-1} \,g^{-1}$ sediment) (p <
- 275 0.05). In addition, sediment temperature (°C) was significantly higher in the 'high efflux

- group' (21.3 \pm 1.0) than in the 'low efflux group' (17.9 \pm 0.8) (p < 0.05) (Supplementary
- 277 table 2).
- 278 Similarly, cleared mangrove sites were grouped based on whether CO₂ efflux exceeded
- 279 ('high efflux group') or was below ('low efflux group') the mean CO₂ efflux rate for cleared
- mangrove (133.9 \pm 37.2 mmol m⁻² d⁻¹). Mean sediment CO₂ efflux of the 'high efflux group'
- 281 (Mangere 1, Pahurehure 4, Waiuku 1, 2 and 3, Welcome Bay 1, Whangamata E) was 338.0 ±
- 71.3 mmol m⁻² d⁻¹, significantly higher (p < 0.05) than 45.2 ± 18.3 mmol m⁻² d⁻¹ measured in
- the 'low efflux group'. Sediment organic C concentration $(4.2 \pm 0.8\% \text{ vs. } 2.1 \pm 0.4\%)$, N
- 284 concentration (0.5 \pm 0.1% vs. 0.3 \pm 0.1%), sediment sand content (15.5 \pm 9.9% vs. 43.0 \pm
- 8.0%), and sediment clay content (28.2 \pm 4.3% vs. 15.1 \pm 2.6%) were significantly higher in
- 286 the 'high efflux group' than in the 'low efflux group' for cleared mangrove forest sites (p <
- 287 0.05) (Supplementary table 3).
- 288 Regression analysis

- 289 Backward multiple linear regression analysis revealed that mangrove biomass was the only
- significant predictor of sediment CO_2 efflux within intact mangrove forest sites ($r^2 = 0.49$, F
- = 9.43, p = 0.01) (Figure 3.A). Within the cleared sites, backward multiple linear regression
- analysis revealed that sediment organic C concentration was the only significant predictor of
- 293 CO₂ efflux ($r^2 = 0.32$, F = 9.23, p < 0.01) (Figure 3.B). No other significant relationships
- were observed (p > 0.05 for individual coefficients).

4. Discussion

297	4.1 Sediment CO_2 efflux and sediment characteristics from intact temperate mangrove
298	forest
299	The magnitude of dark sediment CO ₂ efflux in intact Avicennia marina forests measured in
300	this study ($168.5 \pm 45.8 \text{ mmol m}^{-2} \text{ d}^{-1}$) is similar to values reported for intact <i>Avicennia</i>
301	marina forests in New Zealand (Lovelock, 2008; Lovelock et al., 2014), Australia (Livesley
302	and Andrusiak, 2012) and tropical locations (New Caledonia: Leopold et al. (2013), 2015)
303	(Table 2). However, our values are higher than the global estimates of sediment CO ₂ efflux
304	from intact tropical mangrove forests (75 mmol m ⁻² d ⁻¹ , Kristensen et al., 2008; 61 ± 56 mmo
305	$m^{-2} d^{-1}$, Bouillon et al., 2008; $69 \pm 8 \text{ mmol m}^{-2} d^{-1}$, Alongi, 2014; Table 2). The differences in
306	CO ₂ efflux may be related to the methods applied. The global estimates were primarily
307	determined in the laboratory by incubating sediment cores extracted from the field
308	(Kristensen et al., 2008). CO ₂ efflux is generally lower in these studies than that observed in
309	studies using chamber based techniques where CO2 is measured continuously over a short
310	period of time in the field (this study; Lovelock, 2008; Lovelock et al., 2014; Livesley and
311	Andrusiak, 2012; Leopold et al., 2013; Leopold et al., 2015). Higher sediment CO ₂ efflux
312	observed in our study may also be explained by the inclusion of crab burrows and short
313	pneumatophores in the flux measurements. The omission of crab burrows and
314	pneumatophores has previously been proposed as a potential explanation of why global
315	estimates may be underestimated (Bouillon et al., 2008). Crab burrows have been shown to
316	increase CO ₂ efflux by increasing the surface area for sediment-air exchange of CO ₂
317	(Kristensen et al., 2008) and enhancing organic matter decomposition (Pülmanns et al.,
318	2014). Pneumatophores have been associated with increased CO ₂ emissions by efficient
319	translocation of CO ₂ exchange from deeper sediments (Bouillon et al., 2008; Kristensen et
320	al., 2008).
321	Sediment organic C concentrations in the intact mangrove sites (3.6 \pm 0.7%) are comparable
322	to the sediment organic C concentration measured in mangrove forests in New Zealand
323	(Auckland, Yang et al., 2013; Firth of Thames, Lovelock et al., 2010) and Avicennia marina
324	forests south of Melbourne, Australia (Livesley and Andrusiak, 2012). The mean sediment
325	organic C concentration in mangrove sediments collected across the globe is 2.2%
326	(Kristensen et al., 2008). The main sources of organic C in intact mangrove sediments are
327	litter and root material and suspended matter from other terrestrial and estuarine sources

328 (Bouillon et al., 2003). The relative contribution of each source has been shown to vary considerably depending on site characteristics and histories (Bouillon et al., 2003). 329 330 The above-ground biomass across the investigated Avicennia marina forests (5 - 135 t dry 331 weight ha⁻¹) is lower than the above-ground biomass in many tropical mangrove forests (35 -400 t dry weight ha⁻¹). This is in line with previous findings reporting a decrease in mangrove 332 333 biomass with increasing latitude (Saenger and Snedaker, 1993; Komiyama et al., 2008). We 334 found a negative relationship between mangrove above-ground biomass and sediment CO₂ 335 efflux across the 13 intact mangrove forests. Lower tree biomass associated with lower forest 336 cover may result in increased light availability and sediment temperature (Lovelock, 2008). 337 Higher sediment temperature may in turn lead to a higher abundance and activity of the 338 sediment microbial decomposer community (Zogg et al., 1997) and higher sediment CO₂ 339 efflux. 340 Respiration from heterotrophic biofilm communities also contribute a considerable 341 proportion to total CO₂ efflux from mangrove sediments, as shown in a New Caledonian 342 Avicennia marina forest (Leopold et al., 2013). High sediment chlorophyll α concentrations 343 and the presence of algal mats characterising the intact 'high efflux sites" suggests that 344 respiration by heterotrophic biofilm communities may be a significant contributor to CO₂ 345 efflux (Decho, 2000). Further, higher sediment temperature resulting in higher sediment CO₂ 346 efflux in the 'high efflux sites' is in line with findings from other mangrove forests (e.g. 347 Leopold et al., 2015) and many terrestrial systems (e.g. Davidson and Janssens, 2006). Soil 348 temperature is one of the key abiotic factors influencing both the autotrophic and 349 heterotrophic activity (Raich and Schlesinger, 1992). 350 We note that all sediment CO₂ efflux measurements in this study were made at low to mid-351 tide while surface sediments were exposed to air, and likely over-estimate maximum efflux rates across a tidal cycle. Mangrove sediment CO₂ efflux during low tide can be up to 40% 352 353 greater than during tidal immersion as molecular diffusion of CO₂ is faster when sediments 354 are aerated and the surface area for aerobic respiration and chemical oxidation increases 355 (Alongi, 2009). Further, benthic light availability is also reduced during tidal immersion, 356 which may result in increased respiration by heterotrophic biofilm communities (Billerbeck 357 et al., 2007).

358	4.2 Sediment CO2 efflux and sediment characteristics of cleared mangrove forest
359	Our results show that dark sediment CO ₂ efflux rates from cleared Avicennia marina forests
360	$(133.9 \pm 37.2 \text{ mmol CO}_2 \text{ m}^{-2} \text{ d}^{-1})$ are similar to sediment CO ₂ efflux following mangrove
361	clearing in the tropics (Lovelock et al., 2011; Sidik and Lovelock, 2013; Lang'at et al., 2014).
362	Higher sediment CO ₂ efflux rates (181.4 to 656.6 mmol m ⁻² d ⁻¹ depending on the time since
363	clearing) were measured in cleared peat mangrove forests in Belize, Central America
364	(Lovelock et al., 2011). The mangroves in New Zealand grow on mineral sediments which
365	may explain lower CO2 emissions compared to the Belize study where mangroves are
366	growing on carbon rich peat soils (Lovelock, 2008).
367	We did not find a significant difference in sediment CO ₂ efflux between intact and cleared
368	mangrove forest sites. Further, there was no relationship to be found between time since
369	clearing and sediment CO_2 efflux. It is likely that a number of factors (such as differences in
370	site sediment characteristics, size, hydrodynamic conditions, and method of clearing) are
371	concealing the effect of time since clearing on sediment CO ₂ efflux in our study. In contrast,
372	sediment CO ₂ efflux from cleared peat mangrove forests in Belize declined logarithmically
373	over a 20 year period (Lovelock et al., 2011). In Kenya, two months after mangrove removal,
374	sediment CO2 efflux increased approximately two fold compared to intact mangroves.
375	However, five months after clearing, sediment CO ₂ efflux rates returned to levels similar to
376	adjacent intact mangrove forests (Lang'at et al., 2014).
377	Sediment CO ₂ efflux in cleared sites was positively related to sediment organic C
378	concentration. This was also observed following the clearing of peat mangroves in Belize,
379	where the rate of CO ₂ efflux was related to the microbial degradation of organic matter in the
380	sediments (Lovelock et al., 2011). While no significant regression coefficient was found
381	between CO2 efflux and mangrove root biomass in our study, increased CO2 efflux following
382	mangrove clearing has previously been attributed to the rapid decomposition of fine root
383	material related to increased sediment temperatures following the loss of canopy cover
384	(Lang'at et al., 2014).
385	The highest sediment CO ₂ efflux rates were measured at sites where large areas were cleared
386	(>1 ha) using mechanical diggers and the tree mulch was left in place. Increased sediment
387	organic C and N concentrations resulting from the mulch input may explain higher sediment
388	CO ₂ efflux at these locations. Decomposition and thus sediment CO ₂ efflux rates are not only
389	controlled by the amount of C and N but also by the quality of the substrate and activity of
390	the decomposer community (Kristensen, 2000). As C quality was not measured in this study

391 392	concentration and sediment CO ₂ efflux is driven by C quality or quantity.
393	High clay content and sediment organic C concentration characterised the 'high efflux sites'.
394	Spatial covariation of clay and organic C has been found in terrestrial soils (Davidson, 1995)
395	but also applies to coastal sediments (Hu et al., 2006). For example, both clay and organic C
396	settle out on the sediment surface in areas where there is low current velocity. Clay content
397	has been shown to be associated with higher CO ₂ efflux in tropical mangrove forests
398	(Leopold et al., 2013; Chen et al., 2010; Chen et al., 2012; Chen et al., 2014).
399	The mangrove clearance process typically includes considerable sediment disturbance,
400	particularly when mechanical diggers are used (Lundquist et al., 2014b). The tracking and
401	raking of the sediment creates areas where deeper anoxic sediment is brought to the surface
402	(personal observation). Elsewhere, increased sediment CO2 efflux has been observed within
403	intact mangrove forests following disturbance of the top 30 cm of the sediment; however the
404	effect was transitory, returning to pre disturbed levels within two days (Lovelock et al.,
405	2011).
406	Hydrodynamic conditions and the area and shape of clearings may also influence CO ₂ efflux
407	as these factors influence site recovery. For example, smaller more exposed cleared sites at
408	the edge of mangrove forests may transition towards tidal flat characteristics (i.e. coarser
409	sediment grain size, lower organic C and chlorophyll α concentration) than larger, less
410	exposed sites where limited sediment mobilisation occurs (Lundquist et al., 2014a). Higher
411	sediment organic C concentrations have been measured in older mangrove forests, growing
412	further inland compared to younger mangrove forests, growing at the expanding seaward
413	edge (Lovelock et al., 2010).
414	4.3 Sediment CO ₂ uptake
415	Sediment CO ₂ uptake (negative flux) was observed at one intact (Hatea 1) and three cleared
416	(Tairua 3, Whangamata 1, Hatea 1) mangrove forest sites. CO ₂ uptake has also been reported
417	in other mangrove CO ₂ efflux studies (Lovelock, 2008; Leopold et al., 2015; Lovelock et al.,
418	2014). CO ₂ uptake has been explained by the presence of autotrophic biofilm communities,
419	as net CO ₂ uptake changed to net CO ₂ loss through efflux following biofilm removal
420	(Leopold et al., (2015).
421	Autotrophic biofilm communities have been shown to be significant contributors to CO ₂
422	uptake and thus benthic primary productivity (Oakes and Eyre, 2014; Kristensen and Alongi,

423	2006; Bouillon et al., 2008). CO ₂ uptake may occur at the onset of dark measurements as
424	photosynthetic activity by autotrophic biofilm communities continues until coenzymes are
425	depleted (NADPH, ATP) (Leopold et al., (2015). Due to the short duration of our
426	measurements (90 seconds) the proportion of CO2 uptake versus loss may be higher
427	compared the studies where the dark chamber is left in place for longer. However, the results
428	from our shading experiment suggest that this was not the case, as we did not see
429	significantly higher sediment CO ₂ efflux rates after pre-shading compared to control. We
430	note that spatial variation in sediment CO ₂ efflux may partly explain the lack of a pre-shading
431	effect. Further, our shading experiment was restricted to an intact mangrove forest site. A
432	study by Granek and Ruttenberg (2008) investigating the effect of mangrove clearing on
433	abiotic and biotic fators in Panama showed that cleared mangrove sediments are exposed to
434	higher light levels. Thus the activity and the response of photosynthesising biofilm
435	communities to pre-shading may differ in cleared mangrove forests.
436	Other processes for CO ₂ uptake include drawdown of CO ₂ into the sediment during large
437	ebbing or very low tides (Krauss and Whitbeck, 2012). In terrestrial shrub ecosystems,
438	sediment CO ₂ uptake has been attributed to sediment effusion-dissolution processes driven by
439	sediment pH and moisture (Ma et al., 2013). Chemoautotrophs have also been shown to fix C
440	in intertidal sediment under dark conditions (Boschker et al., 2014; Lenk et al., 2011) and
441	may contribute to the decrease in CO2 concentration measured in the dark chamber. In
442	particular at the interface of aerobic and anaerobic zones where large amounts of reduced
443	compounds, such as sulphur, accumulate (Santoro et al., 2013; Boschker et al., 2014;
444	Thomsen and Kristensen, 1997; Lenk et al., 2011). This is consistent with what is observed in
445	mangrove sediments, where aerobic to anaerobic transitions typically occur close to the
446	sediment surface, with sulphur driven processes likely to dominate in anaerobic conditions
447	(Kristensen et al., 2008).
448	4.3 Biofilm removal
449	Sediment CO ₂ efflux was consistently higher across both intact and cleared mangrove sites
450	following the removal of the top 2 mm of sediment. Other studies have suggested that the
451	surface biofilm may act as a barrier to the flow of CO ₂ from deeper sediment, which when
452	removed results in a rapid increase in CO ₂ efflux (Leopold et al., 2015; Leopold et al., 2013).
453	It is also possible that the increase in CO ₂ efflux following biofilm removal is related to the
454	modification of sediment profiles, changing the oxygen distribution and anoxic/oxic
455	interface, and resulting in increasing diffusion gradients (Kristensen, 2000). Our findings

demonstrate that relatively small disturbances to the sediment column such as biofilm removal have significant impacts on sediment CO₂ efflux. This illustrates the complexity of processes influencing sediment CO₂ efflux in coastal wetlands and generates further questions (for example, what is the duration of this effect? Does the magnitude of the effect change depending on the clearance method? What effect does wind or wave disturbance have on efflux rates?). **4.4 Conclusions** Rates of mangrove clearing is are increasing in temperature forests, and the impacts on C cycling and sediment properties are of potential environmental concern. This is the first study

cycling and sediment properties are of potential environmental concern. This is the first study investigating the effect of clearing on sediment CO₂ efflux in temperate *Avicennia marina* forests grown on mineral sediments. We found that rates of sediment CO₂ efflux from cleared and intact temperate *Avicennia marina* forests are comparable to rates observed in other temperate and tropical forests. No significant differences were found in sediment CO₂ efflux due to high spatial variability in sediment characteristics and environmental factors. However, mangrove forest clearing resulted in a long term modification of the sediment carbon cycle. Our results show that greater consideration should be made regarding the rate of carbon released from mangrove forest following clearance and the relative contribution to global carbon emissions.

474 **Acknowledgements**

- We thank the NIWA Hamilton benthic ecology group for field and laboratory assistance. We
- 476 would also like to acknowledge NIWA Freshwater and Estuaries Centre core funding for this
- 477 project (project #FWEH1402 and FWEH1502, "Mangrove ecosystem services").

478 **References**

- 479 Alfaro, A. C.: Benthic macro-invertebrate community composition within a mangrove/seagrass
- 480 estuary in northern New Zealand, Estuar. Coast Shelf Sci., 66, 97-110,
- 481 http://dx.doi.org/10.1016/j.ecss.2005.07.024, 2006.
- 482 Alongi, D., de Carvalho, N., Amaral, A., Costa, A., Trott, L., and Tirendi, F.: Uncoupled surface and
- below-ground soil respiration in mangroves: implications for estimates of dissolved inorganic carbon
- 484 export, Biogeochemistry, 109, 151-162, 10.1007/s10533-011-9616-9, 2012.
- 485 Alongi, D. M.: The energetics of mangrove forests, Springer, 2009.
- 486 Alongi, D. M.: Carbon Cycling and Storage in Mangrove Forests, Annu. Rev. Marine. Sci., 6, 195-219,
- 487 doi:10.1146/annurev-marine-010213-135020, 2014.
- 488 Billerbeck, M., Røy, H., Bosselmann, K., and Huettel, M.: Benthic photosynthesis in submerged
- Wadden Sea intertidal flats, Estuar. Coast Shelf Sci., 71, 704-716,
- 490 http://dx.doi.org/10.1016/j.ecss.2006.09.019, 2007.
- Boschker, H. T. S., Vasquez-Cardenas, D., Bolhuis, H., Moerdijk-Poortvliet, T. W. C., and Moodley, L.:
- 492 Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine
- 493 sediments, PLoS ONE, 9, 1-12, 10.1371/journal.pone.0101443, 2014.
- 494 Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., and Dehairs, F.: Sources of organic
- carbon in mangrove sediments: variability and possible ecological implications, Hydrobiologia, 495,
- 496 33-39, 10.1023/A:1025411506526, 2003.
- 497 Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee,
- 498 S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith Iii, T. J., and Twilley, R. R.:
- 499 Mangrove production and carbon sinks: A revision of global budget estimates, Global Biogeochem.
- 500 Cy., 22, 10.1029/2007GB003052, 2008.
- Brodie, C. R., Leng, M. J., Casford, J. S. L., Kendrick, C. P., Lloyd, J. M., Yongqiang, Z., and Bird, M. I.:
- 502 Evidence for bias in C and N concentrations and δ^{13} C composition of terrestrial and aquatic organic
- materials due to pre-analysis acid preparation methods, Chem. Geol., 282, 67-83,
- 504 http://dx.doi.org/10.1016/j.chemgeo.2011.01.007, 2011.
- Burns, B. R., and Ogden, J.: The demography of the temperate mangrove *Avicennia marina* at its
- 506 southern limit in New Zealand, Aust. J. Ecol., 10, 125-133, 10.1111/j.1442-9993.1985.tb00874.x,
- 507 1985.
- 508 Chen, G. C., Tam, N. F. Y., and Ye, Y.: Summer fluxes of atmospheric greenhouse gases N_2O , CH_4 and
- 509 CO₂ from mangrove soil in South China, Sci. Total Environ., 408, 2761-2767,
- 510 10.1016/j.scitotenv.2010.03.007, 2010.
- 511 Chen, G. C., Tam, N. F. Y., and Ye, Y.: Spatial and seasonal variations of atmospheric N₂O and CO₂
- fluxes from a subtropical mangrove swamp and their relationships with soil characteristics, Soil Biol.
- 513 Biochem., 48, 175-181, http://dx.doi.org/10.1016/j.soilbio.2012.01.029, 2012.
- 514 Chen, G. C., Ulumuddin, Y. I., Pramudji, S., Chen, S. Y., Chen, B., Ye, Y., Ou, D. Y., Ma, Z. Y., Huang, H.,
- and Wang, J. K.: Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from
- 516 North Sulawesi mangrove swamps in Indonesia, Sci. Total Environ., 487, 91-96,
- 517 http://dx.doi.org/10.1016/j.scitotenv.2014.03.140, 2014.

- 518 Davidson, E.: Spatial covariation of soil organic carbon, clay content, and drainage class at a regional
- scale, Landscape Ecol, 10, 349-362, 10.1007/BF00130212, 1995.
- 520 Day, P. R.: Particle fractionation and particle-size analysis, in: Methods of soil analysis. Part 1.
- 521 Physical and mineralogical properties, including statistics of measurement and sampling, edited by:
- 522 Black, C. A., Agronomy Monograph, American Society of Agronomy, Soil Science Society of America,
- 523 545-567, 1965.
- 524 Decho, A. W.: Microbial biofilms in intertidal systems: an overview, Cont. Shelf Res., 20, 1257-1273,
- 525 http://dx.doi.org/10.1016/S0278-4343(00)00022-4, 2000.
- 526 Duke, N. C.: Phenological trends with latitude in the mangrove tree Avicennia marina, J. Ecol., 78,
- 527 113-133, 10.2307/2261040, 1990.
- 528 Hansson, L.-A.: Chlorophyll *α* determination of periphyton on sediments: identification of problems
- and recommendation of method, Freshwater Biol., 20, 347-352, 10.1111/j.1365-
- 530 2427.1988.tb00460.x, 1988.
- Harty, C.: Mangrove planning and management in New Zealand and South East Australia A
- reflection on approaches, Ocean Coast. Manage., 52, 278-286,
- 533 http://dx.doi.org/10.1016/j.ocecoaman.2009.03.001, 2009.
- Hu, J., Peng, P. a., Jia, G., Mai, B., and Zhang, G.: Distribution and sources of organic carbon, nitrogen
- and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern
- 536 China, Marine Chemistry, 98, 274-285, http://dx.doi.org/10.1016/j.marchem.2005.03.008, 2006.
- 537 IPCC: Climate Change 2013: The physical science basis. Contribution of working group I to the first
- assessment report of the intergovernmental panel on climate change [Stocker, T. F., D. Qin, G. -K.
- Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds)],
- 540 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535, 2013.
- Krauss, K., and Whitbeck, J.: Soil greenhouse gas fluxes during wetland forest retreat along the lower
- 542 Savannah river, Georgia (USA), Wetlands, 32, 73-81, 10.1007/s13157-011-0246-8, 2012.
- Kristensen, E.: Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments,
- with emphasis on the role of burrowing animals, Hydrobiologia, 426, 1-24,
- 545 10.1023/A:1003980226194, 2000.
- 546 Kristensen, E., and Alongi, D. M.: Control by fiddler crabs (*Uca vocans*) and plant roots (*Avicennia*
- 547 marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment, Limnol. Oceanog., 51,
- 548 1557-1571, 10.4319/lo.2006.51.4.1557, 2006.
- Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon dynamics in mangrove
- ecosystems: A review, Aquat. Bot., 89, 201-219, http://dx.doi.org/10.1016/j.aquabot.2007.12.005,
- 551 2008.
- Lang'at, J. K. S., Kairo, J. G., Mencuccini, M., Bouillon, S., Skov, M. W., Waldron, S., and Huxham, M.:
- Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves, PLoS ONE,
- 9, e107868, 10.1371/journal.pone.0107868, 2014.
- Lange, W. P. d., and Lange, P. J. d.: An appraisal of factors controlling the latitudinal distribution of
- mangrove (Avicannia marina var. resinifera) in New Zealand, J. Coastal Res., 10, 539-548,
- 557 10.2307/4298251, 1994.

- Lenk, S., Arnds, J., Zerjatke, K., Musat, N., Amann, R., and Mußmann, M.: Novel groups of
- 559 Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment,
- 560 Environ. Microbiol., 13, 758-774, 10.1111/j.1462-2920.2010.02380.x, 2011.
- Leopold, A., Marchand, C., Deborde, J., Chaduteau, C., and Allenbach, M.: Influence of mangrove
- zonation on CO₂ fluxes at the sediment-air interface (New Caledonia), Geoderma, 202-203, 62-70,
- 563 10.1016/j.geoderma.2013.03.008, 2013.
- Leopold, A., Marchand, C., Deborde, J., and Allenbach, M.: Temporal variability of CO₂ fluxes at the
- sediment-air interface in mangroves (New Caledonia), Sci. Total Environ., 502, 617-626,
- 566 10.1016/j.geoderma.2013.03.008, 2015.
- 567 LINZ (Land Information New Zealand Tide predictions): http://www.linz.govt.nz/hydro/tidal-
- 568 <u>info/tide-tables</u>, access: 17/10/14, 2014.
- 569 Livesley, S. J., and Andrusiak, S. M.: Temperate mangrove and salt marsh sediments are a small
- methane and nitrous oxide source but important carbon store, Estuar. Coast. Shelf. S., 97, 19-27,
- 571 http://dx.doi.org/10.1016/j.ecss.2011.11.002, 2012.
- Lovelock, C. E., Feller, I. C., Ellis, J., Schwarz, A. M., Hancock, N., Nichols, P., and Sorrell, B.: Mangrove
- growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of
- 574 sedimentation, Oecologia, 153, 633-641, 10.1007/s00442-007-0750-y, 2007.
- 575 Lovelock, C. E.: Soil respiration and belowground carbon allocation in mangrove forests, Ecosystems,
- 576 11, 342-354, 10.1007/s10021-008-9125-4, 2008.
- 577 Lovelock, C. E., Sorrell, B. K., Hancock, N., Hua, Q., and Swales, A.: Mangrove forest and soil
- development on a rapidly accreting shore in New Zealand, Ecosystems, 13, 437-451,
- 579 10.1007/s10021-010-9329-2, 2010.
- Lovelock, C. E., Ruess, R. W., and Feller, I. C.: CO₂ efflux from cleared mangrove peat, PLoS ONE, 6,
- 581 10.1371/journal.pone.0021279, 2011.
- Lovelock, C. E., Feller, I. C., Reef, R., and Ruess, R. W.: Variable effects of nutrient enrichment on soil
- respiration in mangrove forests, Plant Soil, 379, 135-148, 10.1007/s11104-014-2036-6, 2014.
- Lundquist, C. J., Hailes, S. F., Carter, K. R., and Burgess, T. C.: Ecological status of mangrove removal
- sites in the Auckland region, Prepared by the National Institute of Water and Atmospheric Research
- for the Auckland Council. Auckland Council Technical Report 2014, 2014a.
- Lundquist, C. J., Morrisey, D. J., Gladstone-Gallagher, R. V., and Swales, A.: Managing mangrove
- habitat expansion in New Zealand, in: Mangrove Ecosystems of Asia, edited by: Faridah-Hanum, I.,
- Latiff, A., Hakeem, K. R., and Ozturk, M., Springer New York, 415-438, 2014b.
- Ma, J., Wang, Z.-Y., Stevenson, B. A., Zheng, X.-J., and Li, Y.: An inorganic CO₂ diffusion and
- dissolution process explains negative CO₂ fluxes in saline/alkaline soils, Scientific Reports, 3, 2025,
- 592 10.1038/srep02025, 2013.
- Moed, J. R., and Hallegraeff, G. M.: Some problems in the estimation of chlorophyll-a and
- 594 phaeopigments from pre- and post-acidification spectrophotometrie measurements, Int. Rev. Ges.
- 595 Hydrobio., 63, 787-800, 10.1002/iroh.19780630610, 1978.

- Morrisey, D. J., Swales, A., Dittmann, S., Morrison, M., Lovelock, C., and Beard, C.: The ecology and
- management of temperate mangroves, in: Oceanogr. Mar. Biol., Oceanography and Marine Biology -
- 598 An Annual Review, CRC Press, 43-160, 2010.
- 599 NIWA (National Institute of Water and Atmospheric Research climate data):
- 600 https://www.niwa.co.nz/education-and-training/schools/resources/climate, 2014.
- Oakes, J. M., and Eyre, B. D.: Transformation and fate of microphytobenthos carbon in subtropical,
- intertidal sediments: potential for long-term carbon retention revealed by 13C-labeling,
- 603 Biogeosciences, 11, 1927-1940, 10.5194/bg-11-1927-2014, 2014.
- Santoro, A. L., Bastviken, D., Gudasz, C., Tranvik, L., and Enrich-Prast, A.: Dark carbon fixation: An
- important process in lake sediments, PLoS ONE, 8, e65813, 10.1371/journal.pone.0065813, 2013.
- 606 Sidik, F., and Lovelock, C. E.: CO₂ efflux from shrimp ponds in Indonesia, PLoS ONE, 8, e66329,
- 607 10.1371/journal.pone.0066329, 2013.
- Stokes, D. J., Healy, T. R., and Cooke, P. J.: Surface elevation changes and sediment characteristics of
- intertidal surfaces undergoing mangrove expansion and mangrove removal, Waikaraka Estuary,
- 610 Tauranga Harbour, New Zealand, International Journal of Ecology and Development, 12, 88-106,
- 611 2009.
- Stokes, D. J.: The physical and ecological impacts of mangrove expansion and mangrove removal:
- Tauranga Harbour, New Zealand, PhD Thesis. University of Waikato, 2010.
- Swales, A., Bentley, S. J., Lovelock, C., and Bell, R. G.: Sediment processes and mangrove-habitat
- expansion on a rapidly-prograding Muddy Coast, New Zealand, Coastal Sediments,
- 616 10.1061/40926(239)111, 2007.
- Thomsen, U., and Kristensen, E.: Dynamics of sigma CO₂ in a surficial sandy marine sediment: the
- of chemoautotrophy, Aquat. Microb. Ecol., 12, 165-176, 10.3354/ame012165, 1997.
- Van Colen, C., Underwood, G. J. C., Serôdio, J., and Paterson, D. M.: Ecology of intertidal microbial
- biofilms: Mechanisms, patterns and future research needs, Journal of Sea Research, 92, 2-5,
- 621 http://dx.doi.org/10.1016/j.seares.2014.07.003, 2014.
- Woodroffe, C. D.: Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and
- 623 production of detritus, Estuar. Coast Shelf. S., 20, 265-280, http://dx.doi.org/10.1016/0272-
- 624 <u>7714(85)90042-3</u>, 1985.

- Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W., and Pregitzer, K. S.:
- 626 Compositional and Functional Shifts in Microbial Communities Due to Soil Warming, Soil Science
- 627 Society of America Journal, 61, 475-481, 10.2136/sssaj1997.03615995006100020015x, 1997.

Tables and figures

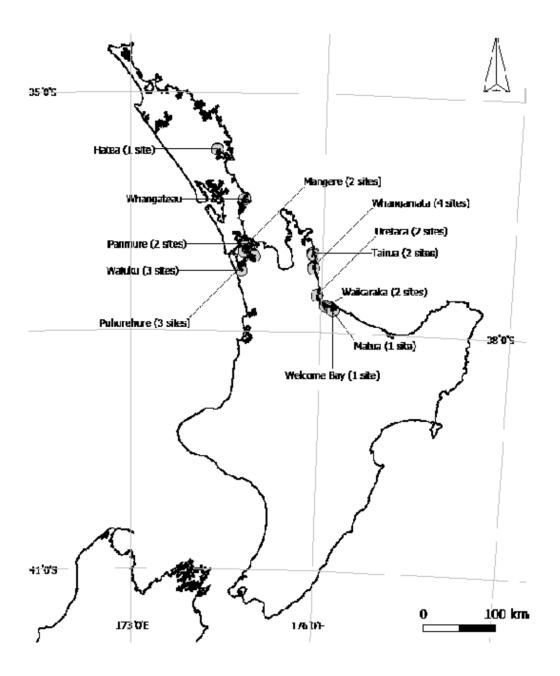


Figure 1: Location of the cleared mangrove sites (*) and estuary locations, throughout North Island, New Zealand.

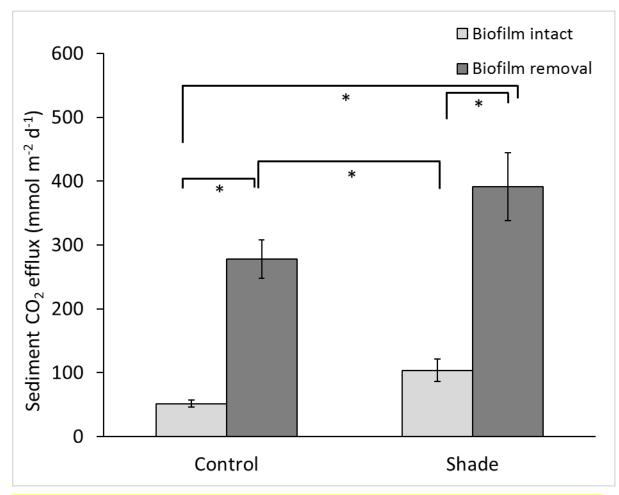


Figure 2: Mean sediment (\pm SE) CO₂ efflux (mmol m⁻² d⁻¹) before and after surface biofilm removal, from control (n = 6), and pre-shaded sediment (n = 6) at intact mangrove site Hatea 1. *significant difference (p < 0.01)

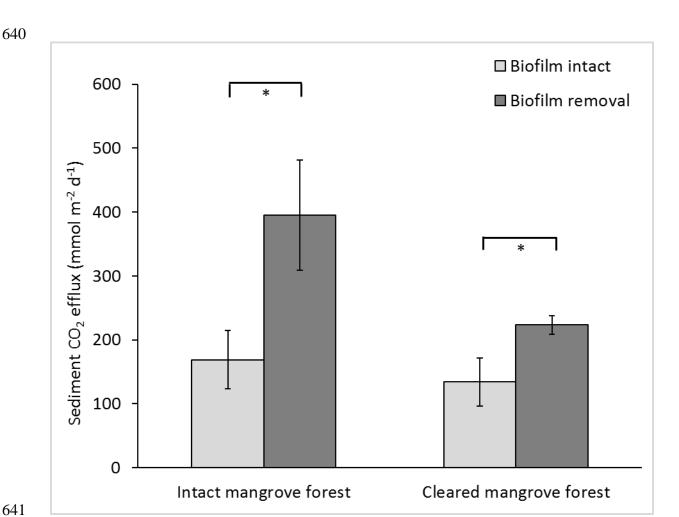


Figure 3: Mean sediment (\pm SE) CO₂ efflux (mmol m⁻² d⁻¹) before and after surface biofilm removal, from intact mangrove forest (13 sites), and cleared mangrove forest (23 sites). *significant difference (p < 0.01).

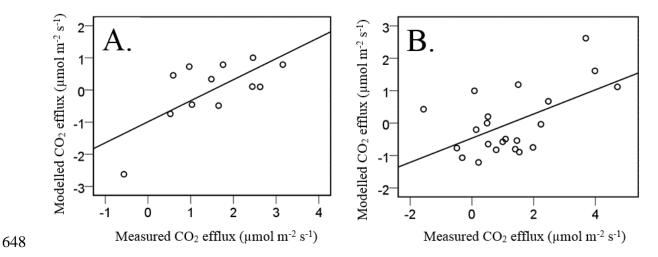


Figure 3: Model A. Modelled values of mangrove forest CO_2 efflux compared to measured CO_2 efflux (Modelled CO_2 efflux (μ mol m⁻² s⁻¹) = 2.454 - 0.215 x mangrove biomass, r² = 0.49, p < 0.05). Model B. Modelled values of cleared mangrove forest CO_2 efflux compared to measured CO_2 efflux (Modelled CO_2 efflux (μ mol m⁻² s⁻¹) = 0.0713 + (0.430 x sediment organic carbon concentration, r² = 0.32, p < 0.05).

Table 1: Tree and sediment characteristics from intact and cleared mangrove sites. Values are means \pm SE.

	Intact	Cleared
	(n = 13)	(n = 23)
Tree characteristics		
Aboveground biomass (kg dry weight m ⁻²)	4.35 ± 0.9	0
Mangrove root mass (kg dry weight m ⁻³)	no data	9.5 ± 1.0
Mangrove pneumatophore abundance (n m ⁻²)	no data	257.3 ± 86.7
Time since clearance (yr ⁻¹)	-	2.9 ± 0.4
Sediment characteristics		
Organic carbon (%)	3.6 ± 0.7	2.7 ± 0.4
Nitrogen (%)	0.5 ± 0.1	0.3 ± 0.1
Gravel (%)	3.7 ± 2.3	1.5 ± 0.9
Sand (%)	29.4 ± 10.6	34.6 ± 6.8
Silt (%)	47.5 ± 7.8	44.8 ± 5.2
Clay (%)	16.6 ± 2.7	19.1 ± 2.6
Chlorophyll α ($\mu g^{-1} g^{-1}$ sediment)	36.9 ± 6.2	26.8 ± 4.4
Sediment temperature (°C)	19.2 ± 0.2	20.2 ± 0.5

Table 2: Comparison of mean estimates of sediment CO_2 efflux in intact and cleared mangrove forests. Values are means \pm SE.

Species	Location, number of sites	Sediment CO ₂ efflux (mmol CO ₂ m ⁻² d ⁻¹)	Reference
Intact Mangrove Forests			
Avicennia marina	New Zealand, 13	168.5 ± 45.8	This study
Avicennia marina	New Zealand, 4	114.0 ± 19.9	Lovelock et al. 2014
Avicennia marina	South and North Australia, 4	107.1 ± 45.8	Lovelock et al. 2014
Avicennia marina	New Caledonia, 1	88.2 ± 23.7	Leopold et al. 2013
Avicennia marina	New Caledonia, 1	*Ranging from -17.3 to 212.4 throughout the year	Leopold et al. 2013
Avicennia marina	South Australia, 3	*Ranging from 73.7 to 117.9 throughout the year	Livesley and Andrusiak (2012)
Mixed species	Global estimate, 16	75	Kristensen et al. 2008
Mixed species	Global estimate, 82	61 ± 56	Bouillon et al. 2008
Mixed species	Global estimate, 140	69 ± 8	Alongi 2014
Cleared Mangrove Forests			
Avicennia marina	New Zealand, 23	$133.9 \pm 37.2; 0 - 8 \text{ years since clearing}$	This study
Rhizophora mangle – peat soils	Twin Cays, Belize, 5	*Declining from 658.3 to 181.4 over 20 years	Lovelock et al. 2011
Tropical mangrove	Bali, Indonesia, 1	*Shrimp pond floors: 99.4; Shrimp pond walls: 272.2	Sidik and Lovelock 2013
Tropical mangrove	Gazi Bay, Mombasa, Kenya	88.6, 343 days since clearing	Lang'at et al. 2014

^{*} no overall mean values provided