
Response to Interactive comment on “Modeling photosynthesis of discontinuous plant canopies by linking 

Geometric Optical Radiative Transfer model with biochemical process” by Q. Xin et al. 

 

We thank the reviewer for the constructive comments. We studied the comments and revised the draft 

accordingly. Our responses to the comments follow below.  

 

General comments: This ms provided a useful study to model GPP of discontinuous plant canopies using GORT 

model. The analytical solutions are good and quite informative. The most interesting thing I think is that authors 

tries to separate the canopy into sunlit and shaded parts and integrated into GORT models. This is evidently an 

advance to current research and would be quite useful for future GPP modeling. I think the ms needs some 

moderate revision before final publication. 

 

1. It is not clear that why authors selected two deciduous sites. The reason I have is that GPP of deciduous sites 

are much “easier” to simulate than evergreen forests. Also, the GORT for evergreen sites might be quite different 

from deciduous ones. Second, even for these two sites, there are more data available in the flux database. Why 

only part of them was used? For example, for Harvard site, the data could be from 1994 - 2010. If the analytical 

solutions are the same, then I would guess the validation should be easy to implement. 

 

Reply: thank you for your advice. One reason that we chose to validate our model with two deciduous sites 

is that one of us (Q.X.) conducted fieldworks on both forest sites in the summer of 2009. In the fieldwork, 

we measured tree parameters and performed ground-based Lidar scans. We considered that tree crowns in 

both sites could be approximated by ellipsoidal shapes appropriately. It is true that the current model may 

have difficulties to model GPP for evergreen forest stands. Tree crown shapes in boreal areas are mostly 

conical rather than ellipsoidal. Needle clumping within shoot clumping may also need to be considered. We 

would like to further develop and validate models when data from evergreen sites become available. To 

address your concerns, we revised our manuscript, and it reads as “Fourth, we use ellipsoids to describe 

tree crown shapes for deciduous broadleaf forests. Because many evergreen needleleaf forests have conical 

crowns, future applications to areas with conifer forests may require different treatment on crown shapes 

in the models.” 

 

There are indeed more data available for these sites. For the Bartlett site, Level 4 data are available from 

2004 to 2006 and Level 2 data are available from 2004 to 2011. However, GPP estimates are missed in Level 

2 products; we therefore only performed analysis using Level 4 data for the years from 2004 to 2006. For 

the Harvard site, Level 4 data are available from 1992 to 2006 and Level 2 data are available from 1991 to 

2011. To model GPP on a yearly basis, we also have to know leaf area index (LAI) as obtained from MODIS 

data. Based on your suggestions, we now performed model simulations for the Harvard Forest site from 

2001 to 2011, and summarized the results in a table. These results now read as follows: 

 



Table 4 lists major statistical results for our model performance, as evaluated using all available hourly 

data at both sites. The model performance is consistent through time and is comparable to the simulation 

of 8-day data (Figure 7), despite the fact that satellite-derived LAI instead of field measurements were used 

for yearly simulation. 

 

Table 4. The model performance at two study sites as evaluated using hourly data. Units for root mean 

square error (RMSE) and mean bias error (Bias) are in µmol CO2 m
-2

 s
-1

. 

Year 
US-Bar US-Ha1 

R² RMSE Bias R² RMSE Bias 

2001    0.804 5.44 2.00 

2002    0.729 6.75 3.09 

2003    0.781 5.62 2.85 

2004 0.784 4.28 1.01 0.737 6.39 1.85 

2005 0.795 4.11 0.47 0.736 6.83 1.18 

2006 0.801 4.31 1.06 0.777 6.49 2.28 

2007    0.768 6.21 2.50 

2008    0.689 7.34 3.10 

2009    0.662 7.62 3.68 

2010    0.752 6.55 0.35 

2011    0.715 6.96 1.34 

 

 

2. The GORT model is suggested to be more accurate than empirical models in GPP simulation. Also, separating 

the whole canopy into sunlit and shaded parts is to improve the underestimation of GPP at upper ends. In figure 

11, we still see clearly that the underestimation is not solved. I think authors may give some discussion on this 

issue. 

 

Reply: thank you for your insights. Separating the whole canopy into sunlit and shaded parts is to improve 

the biased GPP estimates. It is worth noting that sunlit leaves receive full illumination while shaded leaves 

only receive scattered illumination. Because there are light saturation on leaf photosynthesis, we consider 

the biases, if uncorrected, should be overestimates rather than underestimates at upper ends, as compared 

to measured GPP values. In our study, we have corrected this effect well, but it seems that there are some 

over-corrections. One possible reason is that we only employed empirical functions here for the correction. 

To understand the details, further tests on the photosynthesis – conductance model should be implemented. 

Another possible reason is that we only used Muneer’s method to estimate diffuse radiation components for 

the US-Ha1 site, which were missing in flux tower measurements. Note that there were no apparent biases 

for the US-Bar site in our simulations.  

 

To address your concerns, we revised related sentences in our draft and now it reads, “There were slight 

GPP underestimates when measured GPP values are high at the US-Ha1 site, possibly due to empirical 

functions that we used in modeling diffuse radiation and leaf photosynthesis.” 

 

3. Figure 10 showing the daily GPP simulation, and I like to see how it works at hourly time scale as shown for 

Harvard site. 



 

Reply: we added a subplot in Figure 11 that shows hourly GPP simulation for the Bartlett site, and 

modified the related texts. It reads as follows, 

 

For the US-Bar site, the R² value is 0.801 and the RMSE value is 4.31 µmol CO2 m
-2

 s
-1

. For the US-Ha1 site, 

the correlation between modeled and measured GPP is strong with an R² value of 0.777 and an RMSE 

value of 6.49 µmol CO2 m
-2

 s
-1

. 

 

Figure 11: Regressions between modeled and measured GPP for all available hourly data at the sites of a) 

US-Bar and b) US-Ha1 in 2006. Only data from the photosynthetically active period are included in the 

regression. The solid line denotes the 1 : 1 line, and the dashed line denotes the regression line. 

 

Thank you again for your help! 

 



Response to Interactive comment on “Modeling photosynthesis of discontinuous plant canopies by linking 

Geometric Optical Radiative Transfer model with biochemical process” by Q. Xin et al. 

 

We thank the reviewer for the constructive comments. We studied the comments and revised the draft 

accordingly. Our responses to the comments follow below.  

 

This revised manuscript has incorporated most of the comments previously issued by the reviewer, and properly 

addressed reviewer’s questions. Now it is easier to follow, so I suggest it to be published with following minor 

revisions. 

 

1. This manuscript has been based on some previous work of the community, e.g., some coefficients, so I suggest 

to have a table to contain the values of the coefficients, as VPD_min in current Page 3691 Line 4, and their 

sources. 

 

Reply: thank you for your kind suggestion. We added another table in the appendix to describe used 

coefficients and their values. Now it reads as follows, 

 

Table A2. Values for model parameters.  

Symbols Value Units Reference 

𝒌𝑪  500 W / m² Ding et al. (2014) 

𝒌𝑸  150 W / m² Ding et al. (2014) 

𝑻𝒎𝒊𝒏  0 °C Kalfas et al. (2011) 

𝑻𝒎𝒂𝒙  45 °C Kalfas et al. (2011) 

𝑻𝒐𝒑𝒕  25 °C Kalfas et al. (2011) 

𝑽𝑷𝑫𝒎𝒊𝒏  0.65 kPa Heinsch et al. (2003) 

𝑽𝑷𝑫𝒎𝒂𝒙  4.6 kPa Heinsch et al. (2003) 

VPD𝟎  30 kPa Katul et al. (2000) 

𝚪  40 µmol/mol Katul et al. (2000) 

𝒎𝑳 4.0  Katul et al. (2000) 

 

2. What is the solar zenith angle for Figure 3b? 

 

Reply: we now included a definition for solar zenith angle in the texts, and it reads “Extraterrestrial solar 

radiation and solar zenith angle (i.e., the angle that the sun away from directly overhead) are 

calculated …” 

 

3. Suggest to add two scatter plots in Figure 4 to emphasize the correspondence between measured radiation and 

modeled radiation. 

 

Reply: we revised Figure 4 and the related captions. Now it reads as follows, 

 



 

Figure 4: Measured and modeled components of radiation in 8 successive days are shown for a) the 

partition of global solar radiation, b) surface radiation balance, c) modeled and measured diffuse radiation, 

and d) modeled and measured net radiation. Extraterrestrial radiation is derived following methods 

outlined in Allen et al. (1998). Muneer’s method is applied to model diffuse radiation. The GORT model is 

applied to model net radiation. Data are shown from the Day of Year 217 to 224 in 2004 for the US-Bar site. 



 

 

4. Figure caption and text relating to Figure 13 is very hard to follow, consider revising. 

 

Reply: we revised figure captions and texts related to Figure 13 as follows, 

  

 

Figure 13: Residual plots are shown for a) the partial correction between GPP and ambient CO2 

concentration (Ca) while controlling for the variable of APAR  and b) the partial correction between GPP 

and Ca-Ci while controlling for the variable of (T) (VPD)APAR f f  . 

 

5. The assertion of the last sentence in Section 5.2 has potential conflict with the statement in Ni-Meister et al., 

2001, which mentioned that not accounting for the clumping and discontinuous plant canopies will lead to 

underestimation of biomass. Suggest to revise or delete. 

 

Reply: thank you for your insights. We deleted relevant sentences to avoid possible conflictions. 
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Abstract 18 

Modeling vegetation photosynthesis is essential for understanding carbon exchanges between terrestrial 19 

ecosystems and the atmosphere. The radiative transfer process within plant canopies is one of the key 20 

drivers that regulate canopy photosynthesis. Most vegetation cover consists of discrete plant crowns, of 21 

which the physical observation departs from the underlying assumption of a homogenous and uniform 22 

medium in classic radiative transfer theory. Here we advance the Geometric Optical Radiative Transfer 23 

(GORT) model to simulate photosynthesis activities for discontinuous plant canopies. We separate radiation 24 

absorption into two components that are absorbed by sunlit and shaded leaves, and derive analytical 25 

solutions by integrating over the canopy layer. To model leaf-level and canopy-level photosynthesis, leaf 26 

light absorption is then linked to the biochemical process of gas diffusion through leaf stomata. The canopy 27 

gap probability derived from GORT differs from classic radiative transfer theory, especially when the leaf 28 

area index is high, due to leaf clumping effects. Tree characteristics such as tree density, crown shape, and 29 

canopy length affect leaf clumping and regulate radiation interception. Modeled gross primary production 30 

(GPP) for two deciduous forest stands could explain more than 80% of the variance of flux tower 31 

measurements at both near hourly and daily time scales. We also demonstrate that the ambient CO2 32 

concentration influences daytime vegetation photosynthesis, which needs to be considered in state-of-the-art 33 

biogeochemical models. We demonstrate that ambient CO2 concentrations influence daytime vegetation 34 

photosynthesis, which needs to be considered in biogeochemical models. The proposed model is 35 

complementary to classic radiative transfer theory and shows promise in modeling the radiative transfer 36 

process and photosynthetic activities over discontinuous forest canopies. 37 

 38 

Key words: gross primary production; flux tower; carbon cycle; radiative transfer; carbon assimilation  39 
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1. Introduction 40 

Terrestrial plants assimilate atmospheric carbon dioxide through photosynthesis (Keenan et al., 2013; 41 

Myneni et al., 1997). The climate system, in turn, affects vegetation development and photosynthetic 42 

activities (Broich et al., 2014; Xia et al., 2014; Yi et al., 2010). Photosynthesis, accompanied by exchanges 43 

of heat, water vapor, and trace gases within the planetary boundary layer, modifies microclimates and local 44 

environments and determines ecosystem functions and services (Peng et al., 2014; Xu et al., 2013). The 45 

complex biosphere/atmosphere feedbacks are dynamic and interactive (Bonan, 2008; Heimann and 46 

Reichstein, 2008), such that robust numerical models that simulate vegetation photosynthesis are required in 47 

terrestrial ecosystem models to understand the global carbon cycle (Cramer et al., 2001; Kucharik et al., 48 

2006). 49 

 50 

Vegetation photosynthesis activity is regulated by environmental factors, and the light environment within 51 

plant canopies is one of the key drivers (Law et al., 2002; Pearcy and Sims, 1994). Biophysical models such 52 

as Production Efficiency Models assume linear relationships between absorbed photosynthetically active 53 

radiation (APAR) and vegetation primary production (Field et al., 1995; Monteith, 1977; Potter et al., 1993; 54 

Prince and Goward, 1995; Running et al., 2000). Because vegetation photosynthesis harvests solar radiation 55 

by green chlorophyll, recent studies have attempted to quantify the fractions of APAR that are absorbed by 56 

green chlorophyll (Zhang et al., 2014; Zhang et al., 2005). Physiologically, plants assimilate carbon dioxide 57 

via the biochemical diffusion processes through stomata, numerous small pores on the leaf surfaces (Collatz 58 

et al., 1991; Farquhar and Sharkey, 1982). Stomata can open and close in response to microenvironments, 59 

thereby regulating plant carbon uptake (Bonan, 2002). Field physiological studies have accumulated 60 

detailed information on the behavior of stomata under certain environmental conditions (Schulze et al., 61 

1994), in which sunlight irradiance plays a vital role (Ball et al., 1987). In this domain, linking the physical 62 

process of radiative transfer within plant canopies with the biochemical process of gas diffusion through leaf 63 

stomata is essential for accurate representation of vegetation photosynthesis. 64 
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 65 

Radiative transfer within a plant canopy is determined by many factors such as the partition of incoming 66 

solar radiation, solar illumination geometry, terrain slope and aspects, canopy structure, leaf angle 67 

distribution, and leaf and substrate spectral properties (Baldocchi et al., 1985; Fan et al., 2014; Schaaf et al., 68 

1994). Classic radiative transfer theory assumes that plant leaves are randomly distributed in three-69 

dimensional space within a homogeneous canopy layer (Goudriaan, 1977; Myneni et al., 1990). The canopy 70 

radiative transfer process can be simply characterized by leaf area index (LAI) and leaf angle distribution 71 

(LAD). Three-dimensional, multi-layer, and two-leaf radiative transfer models have been developed to 72 

simulate leaf absorption of solar irradiance and canopy photosynthesis (Myneni, 1991; Pury and Farquhar, 73 

1997; Ryu et al., 2011; Sellers, 1985). Although classic radiative transfer theory holds well for dense 74 

vegetation canopies, most vegetation canopies, especially arboreal canopies, consist of discrete crowns in 75 

reality (Yuan et al., 2013). Leaves are clumped within individual crowns, such that more sunlight penetrates 76 

to understory layers and the ground surfaces (He et al., 2012; Ni-Meister et al., 2010). Tree crowns also cast 77 

shadows on one another and on the background, resulting in self-shadowing effects as described by the 78 

geometric-optical theory (Li and Strahler, 1992). Given natural differences in the radiative transfer process 79 

between homogenous and discontinuous plant canopies, it is important to understand and account for the 80 

influence of crown shape and tree structure on canopy radiation absorption and vegetation photosynthesis. 81 

 82 

To address the radiative transfer process in discontinuous canopies, the Geometric-Optical Radiative-83 

Transfer (GORT) model conceptually combines geometric optical principles for canopy structure and 84 

radiative transfer theory for volumetric scattering within canopy crowns (Li et al., 1995). The geometric 85 

optical method is used to characterize the process by which sunlight passes directly to the ground surface 86 

without reaching any canopy crowns. The radiative transfer principle is applied to model the probability of 87 

light penetration as it travels through crowns in the canopy. GORT has been used to model the physical 88 

aspects of discontinuous plant canopies such as gap fraction, radiation transmission, and bi-directional 89 
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reflectance (Ni et al., 1999; Ni et al., 1997; Xin et al., 2012), and has been validated under a variety of 90 

environmental conditions (Liu et al., 2008). Recent efforts have been made to develop and evaluate a 91 

simplified GORT model for the use in coupled global dynamic terrestrial ecosystem models (Ni-Meister et 92 

al., 2010; Yang et al., 2010). Despite these successful applications, the current version of the GORT model 93 

does not have analytical solutions for radiation absorption by sunlit and shaded leaves, though previous 94 

studies have tried to solve the process of multiple scattering between canopy and background in an iterative 95 

manner (Song et al., 2009). However, sunlit and shaded leaves must be treated separately in photosynthesis 96 

modeling because flux densities of photosynthetically active radiation (PAR) incident on leaf surfaces are 97 

different (He et al., 2013). It is also necessary to integrate vertically over the canopy to derive mean PAR 98 

absorbed by sunlit and shaded leaves because of the non-linear light attenuation within the canopy and the 99 

non-linear dependence of leaf stomatal conductance on light absorption (Campbell and Norman, 1998). 100 

 101 

The objectives of this study are to 1) advance the GORT model by providing analytical solutions to the 102 

radiation absorption of sunlit and shaded leaves and 2) link the radiative transfer process to biochemical 103 

processes to simulate leaf and canopy photosynthesis. We first describe the principles of our model and then 104 

perform model validation with eddy covariance data from two flux towers situated in the New England 105 

region of the United States. 106 

 107 

2. Theoretical Basis 108 

2.1 Brief description of canopy gap probability modeled using GORT 109 

Gap probability, the probability of photons reaching a given canopy depth without being intercepted by 110 

canopy elements, is key to characterizing the radiation distribution within plant canopies. A detailed 111 

description for modeling the gap probability with GORT is described in previous studies (Li et al., 1995; Ni 112 

et al., 1999), and we summarize it briefly here because the concept of gap probability is necessary for 113 

understanding our subsequent work. 114 
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 115 

Figure 1: A scheme of the canopy structure in the Geometric Optical Radiative Transfer model as modified 116 

from Ni (1998). 117 

 118 

For homogeneous canopies, Beer’s law describes the gap probability of sunlight penetration. For 119 

discontinuous plant canopies, leaves are clumped within individual canopy crowns, forming an uneven 120 

distribution of gap probabilities for beam radiation. GORT models tree crowns as a collection of ellipsoids 121 

(Figure 1), of which the centers are randomly distributed between the upper and lower boundaries of the 122 

canopy layer (ℎ1 and ℎ2). Each ellipsoid, or each canopy crown, is characterized by one-half of the vertical 123 

crown length (b ) and a horizontal crown radius ( R ). The total gap probability is modeled separately as the 124 

proportion of sunlight passing through the canopy layer without reaching any crown (hereafter referred to as 125 

between-crown gaps) and the proportion of sunlight passing through crowns without being intercepted by 126 

canopy leaves (hereafter referred to as within-crown gaps), such that: 127 

 𝑃gap(ℎ, 𝜃𝑖) = 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖) + 𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖) (1) 
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where 𝑃gap(ℎ, 𝜃𝑖) is the gap probability for beam radiation at height ℎ given an illumination zenith angle 𝜃𝑖 , 128 

𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖) is the between-crown gap, and 𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖) is the within-crown gap. 129 

 130 

The between-crown gap is modeled based on Boolean theory as an exponential function of crown numbers 131 

within a geometric volume that contains no crown centers: 132 

 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖) = 𝑒−𝜆v𝑉Γ (2) 

where 𝜆v is the tree density, and 𝑉Γ is the beam projected cylinder volume with a radius R  starting from the 133 

canopy top and extending to height ℎ. 134 

 135 

Assuming that leaves are randomly distributed within each individual crown, the within-crown gap is 136 

modeled based on Beer’s law as light penetration along the traveling path length, such that: 137 

 𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖) = ∫ 𝑃(𝑠|ℎ, 𝜃𝑖)𝑒
−𝜏(𝜃𝑖)𝑠𝑑𝑠

∞

0

 (3) 

where 𝜏(𝜃𝑖, 𝛼) = 𝑘𝑏(𝜃𝑖, 𝛼) ∙ 𝐹𝐴𝑉𝐷, 𝐹𝐴𝑉𝐷 is the foliage area volume density within a single crown, and 138 

𝑘𝑏(𝜃𝑖, 𝛼) is the extinction coefficient for beam radiation given a specific solar illumination angle 𝜃𝑖 and leaf 139 

distribution angle 𝛼 . For a spherical leaf angle distribution, 𝑘𝑏 =
0.5

cos(𝜃𝑖)
. 𝑃(𝑠|ℎ, 𝜃𝑖)  is the probability 140 

distribution function associated with within-crown path length 𝑠. 141 

 142 

The probability distribution of within-crown paths length can be solved in a convolutional manner: 143 

 𝑃(𝑠|ℎ, 𝜃𝑖) = ∫ ∑ 𝑃(𝑠|𝑛, 𝑧, ℎ, 𝜃𝑖)𝑃(𝑛|𝑧, ℎ, 𝜃𝑖)

𝑛=∞

𝑛=1

𝑑𝑧
ℎ2

ℎ

 (4) 

where 𝑃(𝑠|𝑛, 𝑧, ℎ, 𝜃𝑖) is the probability distribution of within-crown path length given that a solar ray enters 144 

the crown at height ℎ and angle 𝜃𝑖, and 𝑃(𝑛|𝑧, ℎ, 𝜃𝑖) is the probability distribution of the numbers of crowns 145 

intercepted by the solar ray incident at angle 𝜃𝑖, entering crowns at height 𝑧, and then traveling to height ℎ. 146 
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 147 

Diffuse radiation (i.e., the hemispherically isotropic radiation) can be treated as beam radiation from all 148 

directions in the upper hemisphere. The “openness” of discontinuous plant canopies to diffuse radiation on a 149 

horizontal plane is defined as: 150 

 Kopen(ℎ) = Kopen(𝑛 = 0|ℎ) + Kopen(𝑛 > 0|ℎ) (5) 

 

𝐾open(𝑛 = 0|ℎ) =
1

𝜋
∫ ∫ 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖)sin⁡(𝜃𝑖)cos⁡(𝜃𝑖)𝑑𝜃𝑖𝑑𝜙

𝜋
2

0

2𝜋

0

= 2∫ 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖)sin⁡(𝜃𝑖)cos⁡(𝜃𝑖)𝑑𝜃𝑖

𝜋
2

0

 

(6) 

 

𝐾open(𝑛 > 0|ℎ) =
1

𝜋
∫ ∫ 𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖)sin⁡(𝜃𝑖)cos⁡(𝜃𝑖)𝑑𝜃𝑖𝑑𝜙

𝜋
2

0

2𝜋

0

= 2∫ 𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖)sin⁡(𝜃𝑖)cos⁡(𝜃𝑖)𝑑𝜃𝑖

𝜋
2

0

 

(7) 

where 𝐾open(𝑛 = 0|ℎ)  and 𝐾open(𝑛 > 0|ℎ)  are between-crown and within-crown openness factors, 151 

respectively. 𝜃𝑖 is the solar illumination angle, and 𝜙 is the azimuth angle. 152 

 153 

2.2 Sunlit and shaded leaf area index 154 

The gap probability describes the probability of beam radiation being intercepted by plant leaves, and hence 155 

determines the proportion of leaf areas that are sunlit. For a very thin layer, the reduction of total gap 156 

probability is due to leaf interception, of which the process still follows Beer’s law: 157 

 𝑃gap(ℎ − 𝛿ℎ, 𝜃𝑖) = exp(−𝑘𝑏𝛿𝐿𝐴𝐼(ℎ)) 𝑃gap(ℎ, 𝜃𝑖) (8) 

where 𝑘𝑏 is the canopy extinction coefficient for beam irradiance, 𝛿𝐿𝐴𝐼(ℎ) is the leaf area index within a 158 

thin layer 𝛿ℎ at height ℎ, and 𝑃gap(ℎ, 𝜃𝑖) is the gap probability modeled using GORT. 159 

 160 
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In the limit as 𝛿ℎ becomes infinitely small, we have: 161 

 exp(−𝑘𝑏𝛿𝐿𝐴𝐼(ℎ)) = 1 − 𝑘𝑏𝛿𝐿𝐴𝐼(ℎ) (9) 

 𝑃gap(ℎ − 𝛿ℎ, 𝜃𝑖) = 𝑃gap(ℎ, 𝜃𝑖) − 𝑃gap
′ (ℎ, 𝜃𝑖)𝛿ℎ (10) 

where 𝑃gap
′ (ℎ, 𝜃𝑖) is the first derivative of gap probability 𝑃gap(ℎ, 𝜃𝑖) with respect to height ℎ. 162 

 163 

Combining Equations (8), (9), and (10), we obtain: 164 

 
⁡𝑃gap

′ (ℎ, 𝜃𝑖)

𝑃gap(ℎ, 𝜃𝑖)
𝛿ℎ = 𝑘𝑏𝛿𝐿𝐴𝐼(ℎ) (11) 

 165 

For diffuse radiation, it can be derived in a similar manner: 166 

 
𝐾open
′ (ℎ)

𝐾open(ℎ)
𝛿ℎ = 𝑘𝑑𝛿𝐿𝐴𝐼(ℎ) (12) 

where 𝑘𝑑  is the extinction coefficient for diffuse irradiance, and 𝐾open
′ (ℎ) is the first derivative of the 167 

openness factor 𝐾open(ℎ) with respect to height ℎ. 168 

 169 

The sunlit LAI at height ℎ is the product of the probability of beam sunlight penetration to height ℎ and the 170 

probability of sunlight being intercepted by the thin layer and divided by the ratio of leaf area projected on a 171 

horizontal surface (Campbell and Norman, 1998), such that: 172 

 𝛿𝐿𝐴𝐼𝑆𝑢𝑛(ℎ, 𝜃𝑖) =
𝑃gap(ℎ, 𝜃𝑖)[1 − exp(−𝑘𝑏𝛿𝐿𝐴𝐼(ℎ))]

𝑘𝑏
 (13) 

where 𝛿𝐿𝐴𝐼𝑆𝑢𝑛(ℎ, 𝜃𝑖) is the sunlit leaf area index within a thin layer 𝛿ℎ at height ℎ. 173 

 174 

Substituting Equations (9) and (11) into Equation (13), we obtain: 175 
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 𝛿𝐿𝐴𝐼𝑆𝑢𝑛(𝜃𝑖) =
𝑃gap
′ (ℎ, 𝜃𝑖)

𝑘𝑏
𝛿ℎ (14) 

 176 

Sunlit LAI for the entire canopy at zenith angle 𝜃 is then obtained by integrating from the canopy top to 177 

canopy bottom, such that: 178 

 𝐿𝐴𝐼𝑆𝑢𝑛(𝜃𝑖) = ∫
𝑃gap
′ (ℎ, 𝜃𝑖)

𝑘𝑏
𝑑ℎ

𝑧2

𝑧1

=
1 − 𝑃gap(ℎ = 𝑧1|⁡𝜃𝑖)

𝑘𝑏
 (15) 

where 𝑃gap(ℎ = 𝑧2|⁡𝜃𝑖)  and 𝑃gap(ℎ = 𝑧1|⁡𝜃𝑖)  are the gap probabilities at the canopy top 𝑧2  and canopy 179 

bottom 𝑧1 , respectively, whereas the gap probability at the canopy top is 1. 180 

 181 

It is worth noting that our calculation of sunlit leaf area for discontinuous canopies is analogous to that for 182 

homogeneous canopies, which is given as: 183 

 𝐿𝐴𝐼𝑆𝑢𝑛
∗ (𝜃𝑖) = ∫ exp(−𝑘𝑏 ∙ 𝐿) 𝑑𝐿

𝐿𝐴𝐼

0

=
1 − exp(−𝑘𝑏 ∙ 𝐿𝐴𝐼)

𝑘𝑏
 (16) 

where 𝐿𝐴𝐼𝑆𝑢𝑛
∗ (𝜃𝑖) is the sunlit leaf area for homogeneous canopies. 184 

 185 

The shaded LAI is simply the remainder of the canopy LAI: 186 

 𝐿𝐴𝐼𝑆ℎ𝑑 = 𝐿𝐴𝐼 − 𝐿𝐴𝐼𝑆𝑢𝑛 (17) 

 187 

2.3 Analytical solutions for the scattering parameters of discontinuous canopies 188 

Canopy scattering parameters such as directional-hemispherical reflectance and hemispherical-189 

hemispherical reflectance (or black-sky albedo and white-sky albedo, respectively) can be obtained by 190 

resolving the radiative transfer process or can be approximated using simple analytical solutions. For semi-191 

infinite horizontally homogeneous media, Hapke’s solutions of the proportion of unintercepted direct beam 192 

(𝑡0(ℎ, 𝜃𝑖) ), hemispherical-hemispherical reflectance (𝑅𝑓𝑓
∞ ), directional-hemispherical reflectance (𝑅𝑑𝑓

∞ ), 193 
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hemispherical-hemispherical transmittance (𝑇𝑓𝑓
∞ ), and directional-hemispherical transmittance (𝑇𝑑𝑓

∞ ) are 194 

given as (Hapke, 1981): 195 

 𝑡0(ℎ, 𝜃𝑖) = 𝑒
−
𝜏(𝜃𝑖)ℎ
𝜇𝑖  (18) 

 𝑅𝑓𝑓
∞ =

1 − 𝛾

1 + 𝛾
 (19) 

 𝑅𝑑𝑓
∞ (𝜃𝑖) =

1 − 𝛾

1 + 2𝜇𝑖𝛾
 (20) 

 𝑇𝑓𝑓
∞(ℎ) = 𝑒−2𝛾𝜏ℎ (21) 

 𝑇𝑑𝑓
∞ (ℎ, 𝜃𝑖) =

𝜎

2

1 + 2𝜇𝑖
1 − (2𝜇𝑖𝛾)

2
[𝑇𝑓𝑓

∞(ℎ) − 𝑡0(ℎ, 𝜃𝑖)] (22) 

where 𝜎 is the single scattering albedo, 𝜏 = 𝑘(𝜃𝑖)
𝐿𝑒

𝐻
 is the projected foliage area volume density for the 196 

plant canopy, 𝐿𝑒 is the effective leaf area index, 𝐻 is the depth of the canopy, 𝜃𝑖 is the solar illumination 197 

angle, 𝜇𝑖 = cos⁡(𝜃𝑖) and 𝛾 = √1 − 𝜎. 198 

 199 

Starting with surface energy balances, Ni (1998) derived the scattering parameters for a horizontally 200 

homogeneous canopy layer with finite thickness as: 201 

 𝑡𝑓𝑓(ℎ) = 𝑇𝑓𝑓
∞(ℎ)

1 − (𝑅𝑓𝑓
∞ )2

1 − (𝑇𝑓𝑓
∞(ℎ)𝑅𝑓𝑓

∞ )2
 (23) 

 𝜌𝑓𝑓(ℎ) = 𝑅𝑓𝑓
∞ (ℎ)

1 − (𝑇𝑓𝑓
∞(ℎ))2

1 − (𝑇𝑓𝑓
∞(ℎ)𝑅𝑓𝑓

∞ )2
 (24) 

 𝑡𝑑𝑓(ℎ, 𝜃𝑖) = 𝑇𝑑𝑓
∞ (ℎ, 𝜃𝑖) − 𝜌𝑓𝑓(ℎ)[𝑡0(ℎ, 𝜃𝑖)𝑅𝑑𝑓

∞ (𝜃𝑖) + 𝑇𝑑𝑓
∞(ℎ, 𝜃𝑖)𝑅𝑓𝑓

∞ ] (25) 

 𝜌𝑑𝑓(ℎ, 𝜃𝑖) = 𝑅𝑑𝑓
∞ (ℎ) − 𝑡𝑓𝑓(ℎ)[𝑡0(ℎ, 𝜃𝑖)𝑅𝑑𝑓

∞ (𝜃𝑖) + 𝑇𝑑𝑓
∞(ℎ, 𝜃𝑖)𝑅𝑓𝑓

∞ ] (26) 
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where 𝑡𝑓𝑓(ℎ) , 𝜌𝑓𝑓(ℎ) , 𝑡𝑑𝑓(ℎ, 𝜃𝑖) , and 𝜌𝑑𝑓(ℎ, 𝜃𝑖)  are hemispherical-hemispherical transmittance, 202 

hemispherical-hemispherical reflectance, directional-hemispherical transmittance, and directional-203 

hemispherical reflectance, respectively. 204 

 205 

The scattering parameters for a discontinuous canopy can then be approximated as combinations of a 206 

homogeneous vegetation layer and a non-vegetated layer: 207 

 𝑡𝑓𝑓
′ (ℎ) = 𝑡𝑓𝑓(ℎ) (1 − 𝐾open(𝑛 = 0|ℎ)) + 𝐾open(𝑛 = 0|ℎ) (27) 

 𝜌𝑓𝑓
′ (ℎ) = 𝜌𝑓𝑓(ℎ) (1 − 𝐾open(𝑛 = 0|ℎ)) (28) 

 𝑡𝑑𝑓
′ (ℎ, 𝜃𝑖) = 𝑡𝑑𝑓(ℎ, 𝜃𝑖)(1 − 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖)) + 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖) (29) 

 𝜌𝑑𝑓
′ (ℎ, 𝜃𝑖) = 𝜌𝑑𝑓(ℎ, 𝜃𝑖)(1 − 𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖)) (30) 

where 𝑡𝑓𝑓
′ (ℎ) , 𝜌𝑓𝑓

′ (ℎ) , 𝑡𝑑𝑓
′ (ℎ, 𝜃𝑖) , and 𝜌𝑑𝑓

′ (ℎ, 𝜃𝑖)  are hemispherical-hemispherical transmittance, 208 

hemispherical-hemispherical reflectance, directional-hemispherical transmittance, and directional-209 

hemispherical reflectance, respectively. Note that our equations here are slightly different from those used 210 

by Ni et al. (1999) because between-crown gaps, within which light attenuation obeys Beer’s law, are 211 

considered in the homogeneous vegetation layer. 212 

 213 

The analytical approximation of the canopy reflectance for beam and diffuse radiation is the sum of three 214 

factors in radiative transfer: the incoming irradiance scattered by the canopy elements, the first-order 215 

scattered radiation from soil background, and the irradiance scattered back and forth between the canopy 216 

layer and background surface (Ni et al., 1999). Taking beam radiation as an example and assuming that the 217 

background surface is Lambertian, the incoming irradiance scattered by the canopy elements is 𝜌𝑑𝑓
′ , the 218 

first-order scattered radiance from soil background is 𝑡𝑑𝑓
′ 𝜌𝑠𝑡𝑓𝑓

′ , and the multiple scattering between the 219 
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canopy elements and soil background is 𝑡𝑑𝑓
′ (𝜌𝑠𝜌𝑓𝑓

′ 𝜌𝑠 + 𝜌𝑠(𝜌𝑓𝑓
′ 𝜌𝑠)

2 + 𝜌𝑠(𝜌𝑓𝑓
′ 𝜌𝑠)

3 +⋯)⁡𝑡𝑓𝑓
′ . The canopy 220 

reflectance for beam irradiance can then be written as: 221 

 

𝜌𝑐𝑏 = 𝜌𝑑𝑓
′ + 𝑡𝑑𝑓

′ (𝜌𝑠 + 𝜌𝑠𝜌𝑓𝑓
′ 𝜌𝑠 + 𝜌𝑠(𝜌𝑓𝑓

′ 𝜌𝑠)
2 + 𝜌𝑠(𝜌𝑓𝑓

′ 𝜌𝑠)
3 +⋯)𝑡𝑓𝑓

′

= 𝜌𝑑𝑓
′ + 𝑡𝑑𝑓

′
𝜌𝑠

1 − 𝜌𝑠𝜌𝑓𝑓
′ 𝑡𝑓𝑓

′  
(31) 

 222 

The canopy reflectance for diffuse irradiance can be obtained similarly as: 223 

 𝜌𝑐𝑑 = 𝜌𝑓𝑓
′ + 𝑡𝑓𝑓

′
𝜌𝑠

1 − 𝜌𝑠𝜌𝑓𝑓
′ 𝑡𝑓𝑓

′  (32) 

 224 

2.4 Mean photosynthetically active radiation absorbed by sunlit and shaded leaves 225 

Let 𝐼0 be the flux density of incoming solar radiation on a horizontal plane at the top of the canopy and 𝑓𝑏 be 226 

the fraction of incident beam radiation, the unintercepted beam and diffuse fluxes are then: 227 

 𝐼𝑏(ℎ, 𝜃𝑖) = 𝑃gap(ℎ, 𝜃𝑖)(1 − 𝜌𝑐𝑏)𝑓𝑏𝐼0𝑘𝑏 (33) 

 𝐼𝑑(ℎ) = 𝐾open(ℎ)(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0𝑘𝑑 (34) 

where 𝜌𝑐𝑏 and 𝜌𝑐𝑑  are canopy reflectance for beam and diffuse irradiance, respectively; 𝐼𝑏 and 𝐼𝑑  are the 228 

unintercepted beam and diffuse fluxes, respectively; and 𝑘𝑏 and 𝑘𝑑 are canopy extinction coefficients for 229 

beam and diffuse irradiance, respectively. 230 

 231 

The downward beam flux 𝐼𝑏 is derived based on the assumption of black leaves, meaning that leaves absorb 232 

incident irradiance completely and do not transmit radiation (Bonan, 2002). To account for the effects of 233 

leaf scattering, the total beam 𝐼𝑏𝑡 (i.e., unintercepted beam and down scattered beam) and total diffuse 𝐼𝑑𝑡 234 

(i.e., unintercepted diffuse and down scattered diffuse) irradiance can be modeled by introducing a factor of 235 

√1 − 𝜎  to extinction coefficients similar to the two-stream radiative transfer model (Sellers, 1985). As 236 
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single scattering albedo increases, the effective extinction coefficient becomes smaller and more sunlight is 237 

allowed to transmit through the canopy. That is: 238 

 𝐼𝑏𝑡(ℎ, 𝜃𝑖) = 𝑃gap(ℎ, 𝜃𝑖)
√1−𝜎(1 − 𝜌𝑐𝑏)𝑓𝑏𝐼0√1 − 𝜎𝑘𝑏 (35) 

 𝐼𝑑𝑡(ℎ) = 𝐾open(ℎ)
√1−𝜎(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0√1 − 𝜎𝑘𝑑 (36) 

where 𝜎  is the single scattering albedo of leaves. 𝜎 = 𝜌𝑙 + 𝑡𝑙 , where 𝜌𝑙  and 𝑡𝑙  are leaf reflectance and 239 

transmittance, respectively. 240 

  241 

The total irradiance absorbed by the entire canopy per unit ground area consists of leaf absorption for both 242 

beam and diffuse irradiance: 243 

 𝐼𝑐 = 𝐼𝑐𝑏 + 𝐼𝑐𝑑 = ∫ 𝐼𝑏𝑡(ℎ, 𝜃𝑖)𝑑𝐿
𝐿𝐴𝐼

0

+∫ 𝐼𝑑𝑡(ℎ, 𝜃𝑖)𝑑𝐿
𝐿𝐴𝐼

0

 (37) 

 244 

Substituting Equations (11), (12), (35), and (36) into Equation (37), we have: 245 

 

𝐼𝑐𝑏 = ∫ 𝑃gap(ℎ, 𝜃𝑖)
√1−𝜎(1 − 𝜌𝑐𝑏)𝑓𝑏𝐼0√1 − 𝜎

𝑃gap
′ (ℎ, 𝜃𝑖)

𝑃gap(ℎ, 𝜃𝑖)
𝑑ℎ

𝑧2

𝑧1

= (1 − 𝑃gap(ℎ = 𝑧1|⁡𝜃𝑖)
√1−𝜎)(1 − 𝜌𝑐𝑏)𝑓𝑏𝐼0 

(38) 

 

𝐼𝑐𝑑 = ∫ 𝐾open(ℎ)
√1−𝜎(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0√1 − 𝜎

𝐾open
′ (ℎ)

Kopen(ℎ)
𝑑ℎ

𝑧2

𝑧1

= (1 − 𝐾open(ℎ = 𝑧1)
√1−𝜎)(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0 

(39) 

 246 

Irradiance absorbed by sunlit leaves per unit ground area is obtained as the sum of direct beam, downward 247 

scattered beam, and diffuse components: 248 

 𝐼𝑆𝑢𝑛 = 𝐼𝑆𝑢𝑛𝑏 + 𝐼𝑆𝑢𝑛𝑏𝑠 + 𝐼𝑆𝑢𝑛𝑑 (40) 

 249 
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Combining Equations (33), (35), (36), and (40), we have: 250 

 𝐼𝑆𝑢𝑛𝑏 = ∫ (1 − 𝜎)𝑓𝑏𝐼0 ∙ 𝑃gap
′ (ℎ, 𝜃𝑖)𝑑ℎ

𝑧2

𝑧1

= (1 − 𝜎) (1 − 𝑃gap(ℎ = 𝑧1|𝜃𝑖)) 𝑓𝑏𝐼0 (41) 

 

𝐼𝑆𝑢𝑛𝑏𝑠 = ∫ [𝑃gap(ℎ, 𝜃𝑖)
√1−𝜎(1 − 𝜌𝑐𝑏)√1 − 𝜎 − 𝑃gap(ℎ, 𝜃𝑖)(1 − 𝜎)]𝑓𝑏𝐼0 ∙ 𝑃gap

′ (ℎ, 𝜃𝑖)𝑑ℎ
𝑧2

𝑧1

= [
√1 − 𝜎

1 + √1 − 𝜎
(1 − 𝑃gap(ℎ = 𝑧1|𝜃𝑖)

1+√1−𝜎)(1 − 𝜌𝑐𝑏)

−
(1 − 𝜎)

2
(1 − 𝑃gap(ℎ = 𝑧1|⁡𝜃𝑖)

2)] 𝑓𝑏𝐼0 

(42) 

 

𝐼𝑆𝑢𝑛𝑑 = ∫ 𝐾open(ℎ)
√1−𝜎(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0√1 − 𝜎 ∙ 𝐾open

′ (ℎ)𝑑ℎ
𝑧2

𝑧1

=
√1 − 𝜎

1 + √1 − 𝜎
(1 − 𝐾open(ℎ = 𝑧1)

1+√1−𝜎)(1 − 𝜌𝑐𝑑)(1 − 𝑓𝑏)𝐼0 

(43) 

Note that 𝜎 is used instead of 𝜌𝑐𝑑 for the beam irradiance of sunlit leaves because sunlit leaves scatter direct 251 

beam sunlight only once. 252 

 253 

The irradiance absorbed by shaded leaves per unit ground area is simply the difference between the total 254 

irradiance absorbed by the canopy and the irradiance absorbed by sunlit leaves: 255 

 𝐼𝑆ℎ𝑑 = 𝐼𝑐 − 𝐼𝑆𝑢𝑛 (44) 

 256 

The mean absorbed irradiance for sunlit and shaded canopy per leaf hemi-surface area is then: 257 

 𝑄𝑆𝑢𝑛 =
𝐼𝑆𝑢𝑛

𝐿𝐴𝐼𝑆𝑢𝑛
 (45) 

 𝑄𝑆ℎ𝑑 =
𝐼𝑆ℎ𝑑

𝐿𝐴𝐼𝑆ℎ𝑑
 (46) 

 258 
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2.5 Modeling leaf photosynthesis and scaling up to canopy photosynthesis 259 

The biochemical process of carbon dioxide assimilation by leaves can be considered as a gas diffusion 260 

process through stomata. According to Fick’s law, the process is described as: 261 

 𝐴 = 𝑔𝑐 ∙ (𝐶𝑎 − 𝐶𝑖) (47) 

where 𝐴  is the 𝐶𝑂2  assimilation rate, 𝑔𝑐  is the stomatal conductance, and 𝐶𝑎  and 𝐶𝑖  are ambient and 262 

intercellular 𝐶𝑂2 concentrations, respectively. 263 

 264 

Field studies have firmly established the relationship between leaf stomatal conductance and environmental 265 

conditions. Jarvis and McNaughton (1986) successfully synthesize the response functions in a multiple-266 

constraint model: 267 

 𝑔𝑐 = 𝑔𝑐𝑚𝑎𝑥∏𝑓(𝑥𝑖) (48) 

where 𝑔𝑐𝑚𝑎𝑥 is the maximum leaf stomatal conductance when environmental factors do not limit carbon 268 

uptake and 𝑓(𝑥𝑖)  are scalars that account for the influences of various environmental stresses on leaf 269 

stomatal conductance. 270 

 271 

Different formulas have been developed to describe the response functions of photosynthesis to 272 

environmental factors. Here, we consider three main limiting factors imposed by radiation, temperature, and 273 

water on vegetation photosynthesis. The equations developed for the dual-source dual-leaf (DSDL) model 274 

(Ding et al., 2014), Terrestrial Ecosystem Model (Raich et al., 1991), and Biome-BGC models (Running et 275 

al., 2004) are used to account for the influences of radiation, temperature, and vapor pressure deficit (VPD), 276 

respectively: 277 

 ∏𝑓(𝑥𝑖) = 𝑓(𝑄) ∙ 𝑓(𝑇) ∙ 𝑓(𝑉𝑃𝐷) (49) 
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 𝑓(𝑄) =
𝑘𝐶 + 𝑘𝑄
𝑘𝑄

∙
𝑄

𝑘𝑄 + 𝑄
 (50) 

 𝑓(𝑇) =
(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥)

(𝑇 − 𝑇𝑚𝑖𝑛)(𝑇 − 𝑇𝑚𝑎𝑥) − (𝑇 − 𝑇𝑜𝑝𝑡)
2
 (51) 

 𝑓(𝑉𝑃𝐷) =
𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷

𝑉𝑃𝐷𝑚𝑎𝑥 − 𝑉𝑃𝐷𝑚𝑖𝑛
 (52) 

where 𝑘𝐶 and 𝑘𝑄 are the stress coefficients of PAR absorbed by plant leaves; 𝑄 is the mean APAR for sunlit 278 

or shaded leaves per leaf hemi-surface area; 𝑇𝑚𝑖𝑛 , 𝑇𝑜𝑝𝑡 , and 𝑇𝑚𝑎𝑥  are the minimum, optimum, and 279 

maximum temperature for photosynthetic activities, respectively; and 𝑉𝑃𝐷𝑚𝑖𝑛  and 𝑉𝑃𝐷𝑚𝑎𝑥  are the 280 

minimum and maximum vapor pressure deficit, respectively. In the DSDL model, 𝑘𝐶 and 𝑘𝑄 are 500 W/m²281 

and 150 W/m², respectively. 𝑇𝑚𝑖𝑛, 𝑇𝑜𝑝𝑡, and 𝑇𝑚𝑎𝑥 are determined as 10 °C, 28 °C and 48 °C for C4 crops 282 

(Kalfas et al., 2011), and here we slightly lower their values to 0 °C, 25 °C, and 45 °C, respectively, for C3 283 

plants. 𝑉𝑃𝐷𝑚𝑖𝑛 and 𝑉𝑃𝐷𝑚𝑎𝑥 are 0.65 kPa and 4.6 kPa for deciduous forests, respectively, in the Biome-284 

BGC model (Heinsch et al., 2003). 285 

 286 

Due to different PAR absorption by sunlit and shaded leaves, the stomatal conductance for sunlit and shaded 287 

leaves need to be calculated separately as: 288 

 𝑔𝑐𝑆𝑢𝑛 = 𝑔𝑐𝑚𝑎𝑥 ∙ 𝑓(𝑄𝑆𝑢𝑛) ∙ 𝑓(𝑇) ∙ 𝑓(𝑉𝑃𝐷) (53) 

 𝑔𝑐𝑆ℎ𝑑 = 𝑔𝑐𝑚𝑎𝑥 ∙ 𝑓(𝑄𝑆ℎ𝑑) ∙ 𝑓(𝑇) ∙ 𝑓(𝑉𝑃𝐷) (54) 

where 𝑔𝑐𝑆𝑢𝑛 and 𝑔𝑐𝑆ℎ𝑑  are the stomatal conductance for sunlit and shaded leaves, respectively, and 𝑄𝑆𝑢𝑛 289 

and 𝑄𝑆ℎ𝑑 are the mean PAR absorbed by sunlit and shaded leaves, respectively. 290 

 291 

Given measured ambient 𝐶𝑂2 concentrations, the closure of the formulation (47) now requires the quantity 292 

of intercellular 𝐶𝑂2  concentrations. Katul et al. (2000) compared eight models and concluded that all 293 
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reproduced the measured carbon assimilation rates well. Here, we employ Leuning’s method (Leuning, 294 

1995) to estimate the ratio of intercellular to ambient 𝐶𝑂2 concentrations as: 295 

 𝐶𝑖
𝐶𝑎

= 1 −
1 −

Γ
𝐶𝑎

𝑚𝐿
(1 +

VPD

VPD0
) (55) 

where VPD is the ambient vapor pressure deficit; VPD0  is an empirical constant describing the species 296 

sensitivity to ambient vapor pressure deficit; Γ is the leaf 𝐶𝑂2 compensation point; 𝐶𝑎 and 𝐶𝑖 are ambient 297 

and intercellular CO2 concentrations, respectively; and 𝑚𝐿 represents linear regression coefficients related 298 

to tree species. Calibrated values for model parameters are 𝑚𝐿 = 4.0, Γ = 40⁡μmol/mol , and VPD0 =299 

30⁡kPa, respectively (Katul et al., 2000). 300 

 301 

Given modeled carbon assimilation rates at the leaf level, the total rate of carbon assimilation at the canopy 302 

level can be scaled up as: 303 

 𝐺𝑃𝑃 = 𝐴𝑆𝑢𝑛 ∙ 𝐿𝐴𝐼𝑆𝑢𝑛 + 𝐴𝑆ℎ𝑑 ∙ 𝐿𝐴𝐼𝑆ℎ𝑑 (56) 

where 𝐺𝑃𝑃 is canopy gross primary production, 𝐴𝑆𝑢𝑛 and 𝐴𝑆ℎ𝑑 are leaf-level carbon assimilation rates for 304 

sunlit and shaded leaves, respectively, and 𝐿𝐴𝐼𝑆𝑢𝑛 and 𝐿𝐴𝐼𝑆ℎ𝑑 are the sunlit and shaded leaf area index. 305 

 306 

3. Study materials and model parameterization 307 

We studied two deciduous forest sites: Harvard Forest (US-Ha1) in Massachusetts and Bartlett Experimental 308 

Forest (US-Bar) in New Hampshire (Richardson et al., 2012). Basic information is briefly summarized in 309 

Table 1 for each site. Although plot layouts set up for the fieldwork did not match the exact footprints of 310 

flux towers (Yang et al., 2013), the measured tree structural attributes, such as tree density, are assumed to 311 

be representative of the two study sites. 312 

 313 

 314 
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Table 1. Site information as obtained from the AmeriFlux website unless notified. 315 
Site 

code 

Site name Lat 

(°N) 

Lon 

(°W) 

Elevation 

(m) 

Canopy 

height (m) 

Tree density 

(trees/ha)a 

Dominant species 

US-

Ha1 

Harvard Forest 42.5378 72.1715 340 23.0 1020±72 red oak, red maple 

US-

Bar 

Bartlett Experimental 

Forest 

44.0646 71.2881 272 19.0 1432±67 American beech, red 

maple 
a
 data from Yao et al. (2011) 316 

 317 

Flux towers measure energy and material fluxes between ecosystem and the atmosphere continuously 318 

(Baldocchi et al., 2001). Measured data are provided as standard Level 2 products in the AmeriFlux 319 

database (http://ameriflux.ornl.gov/). The time steps of available data are half-hourly for US-Bar and hourly 320 

for US-Ha1. The measurements we used include estimates of gross primary production (GPP) derived with 321 

the eddy covariance technique (Baldocchi, 2003), and meteorological variables such as shortwave solar 322 

radiation, temperature, vapor pressure deficit, and canopy-scale CO2 concentration. Raw measurements of 323 

meteorological variables were used for analysis and missing values due to instrument malfunction or 324 

unsuitable micrometeorological conditions were screened. However, we obtained GPP estimates from 325 

AmeriFlux Level 4 products if they were not delivered in Level 2 products. Extraterrestrial solar radiation 326 

and solar zenith angle (i.e., the angle that the sun away from directly overhead) are calculated as a function 327 

of geolocation (i.e., latitude and longitude), the day of year (DOY), and solar time of the day (Allen et al., 328 

1998). If diffuse radiation is missing from the measurements, we implement Muneer’s method to partition 329 

global solar radiation into beam and diffuse components (Muneer, 2007): 330 

 (1 − 𝑓𝑏) = ⁡1.006 − ⁡0.317𝐾𝑡 + 3.1241𝐾𝑡
2 − 12.7616𝐾𝑡

3 + 9.7166𝐾𝑡
4 (57) 

where 𝑓𝑏 is the proportion of beam radiation in global incoming radiation, and 𝐾𝑡 is the hourly clearness 331 

index. 𝐾𝑡 = 𝐼0/𝐼𝑒 , where 𝐼0 is global solar radiation on the canopy top and 𝐼𝑒 is the extraterrestrial solar 332 

radiation. 333 

 334 

We use typical parameter values from the literature for model parameterization. Because the spectral 335 

signatures of vegetation leaves and soil background differ in the spectral bands of PAR and near infrared 336 
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(Table 2), we perform model simulations for these two discrete bands separately. Incident PAR is estimated 337 

to account for 47.5% of incoming shortwave solar radiation, and the rest is attributed to the near infrared 338 

band (Zhao et al., 2005). Maximum leaf stomatal conductance to H2O is estimated as 5.5 mm/s for US-Bar 339 

and 7.2 mm/s for US-Ha1 (Bonan, 2002; Ding et al., 2014), and they are translated to maximum leaf 340 

stomatal conductance to CO2 assuming that the temperature is 20°C and the atmospheric pressure is 101.32 341 

kPa (Pearcy et al., 1989). Heights for canopy top (𝑧2) were measured to be 23.0 m for US-Ha1 and 19.0 m 342 

for US-Bar (Table 1), and heights for canopy bottom (𝑧1) were estimated as 𝑧1 = 0.15⁡𝑧𝑧. Canopy structure 343 

in GORT is modeled with the ratios 𝐻/𝑏 = 2.0⁡and 𝑏/𝑅 = 3.0 (Strahler et al., 1999). Parameter values 344 

defined for canopy structure are somewhat arbitrary but are identical to our previous modeling efforts (Liu 345 

et al., 2008; Xin et al., 2012). The effects of tree structural parameters on model simulations are further 346 

explored in our study by varying their values. 347 

 348 

Table 2. The spectral signature of leaf and soil background. 349 

Spectral bands Leaf reflectance a Leaf transmittance a Soil reflectance b 

Photosynthetic active radiation 0.10 0.05 0.23 

Near infrared 0.45 0.25 0.32 
a data from Bonan (2002) 350 
b data from Myneni et al. (1995) 351 

 352 

Model validation for vegetation photosynthesis is performed with time series data for 8 successive days and 353 

for entire years. Based on AmeriFlux biological data, measured LAI were 4.7 ± 0.2 on DOY 211 in 2004 at 354 

the US-Bar site and 4.84 ± 0.78 on DOY 234 in 2006 at the US-Ha1 site. Because field-measured LAI data 355 

were insufficient to support model simulation for an entire calendar year, we obtained satellite-derived LAI 356 

from the state-of-the-art MODIS (Moderate Resolution Imaging Spectroradiometer) products (Myneni et al., 357 

2002). The standard MODIS products (MOD15A2) provide 8-day LAI estimates at 1000 m spatial 358 

resolution, and we derived 8-day mean LAI for a 3 × 3 pixel window centered at each site. We screened 359 

cloudy observations based on the Quality Control data in MOD15A2 and applied double logistic equations 360 

to fit time series of cloud-free LAI observations (Li et al., 2014; Zhang et al., 2003). 361 
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 362 

4. Results 363 

4.1 Gap probability 364 

The gap probabilities derived from the GORT model are shown in Figure 2. As the illumination solar zenith 365 

angle increases, more beams of sunlight are intercepted by leaves and tree crowns, resulting in decreased 366 

gap probabilities for both between- and within-crown gaps. As LAI increases, within-crown gaps decrease 367 

but between-crown gaps remain the same. The physical explanation underlying is simple: tree leaves are 368 

clumped within each individual crown such that variations in LAI would not affect between-crown gaps, 369 

which are only a function of crown shape, canopy structure, and illumination geometry.  370 

 371 

 372 

Figure 2: Canopy gap probabilities modeled using GORT with varied leaf area index. The total gaps are 373 

between-crown gaps plus within-crown gaps. Tree structure parameters for the US-Bar site are used in 374 

model simulation. 375 

 376 

Figure 3 further compares the gap probabilities modeled using GORT and Beer’s law. For both models, gap 377 

probabilities decrease as solar zenith angle increases (Figure 3a). Modeled gap probabilities are close when 378 
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canopy LAI is low. However, at high LAI, the total gap derived from GORT is considerably greater than 379 

that modeled using Beer’s law due to strong clumping effects. With an LAI of 4.0, the differences in gap 380 

probabilities are as much as 0.3 at the nadir, and in this case, more sunlight is allowed to transmit to the 381 

ground surface in GORT than in classic radiative transfer models. Modeled vertical structures of sunlight 382 

penetration are also shown to be different between GORT and Beer’s law (Figure 3b). The gap probability 383 

modeled using Beer’s law decreases exponentially as canopy depth increases, whereas the decrease in the 384 

GORT-modeled gap probability follows an inverse sigmoidal curve. The reason behind this can be 385 

explained by the geometric factor: classic radiative transfer models assume that leaves are randomly 386 

distributed within the canopy layer, but the GORT model assumes that leaves are randomly distributed 387 

within individual crowns. Due to the ellipsoidal shape of tree crowns, there are simply more leaves in the 388 

canopy center than near the canopy top and canopy bottom, where the gap probability decreases more 389 

slowly. 390 

 391 
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 392 

Figure 3: Comparisons between canopy gap probabilities modeled using GORT and Beer’s law as a 393 

function of a) solar zenith angle and b) canopy depth. The canopy depth is defined as the distance from 394 

canopy top to a canopy height (ℎ). Tree structure parameters for the US-Bar site are used in GORT 395 

simulation. 396 

 397 

4.2 Model simulations over 8-day time periods 398 
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Figure 4 shows each component of the radiation regime at the US-Bar site. The diffuse radiation modeled 399 

using Muneer’s method matches flux tower measurements and accounts for 83.5% 69.1% of the variances 400 

(Figure 4a). Because diffuse radiation was not measured at the US-Ha1 site, Muneer’s method was 401 

implemented to partition global radiation into diffuse and beam components for US-Ha1. Using the 402 

measured beam and diffuse radiation, we simulate net radiation with GORT as a linear combination of two 403 

discrete bands at PAR and near infrared. Modeled net radiation is highly correlated with measured values 404 

(R²=0.9980.981), demonstrating the ability of GORT to model radiation absorption at the US-Bar site. 405 

 406 
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 407 

Figure 4: Time series of measured and modeled components of a) the partition of global solar radiation and 408 

b) surface radiation balance are shown for 8 successive days Measured and modeled components of 409 

radiation in 8 successive days are shown for a) the partition of global solar radiation, b) surface radiation 410 
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balance, c) modeled and measured diffuse radiation, and d) modeled and measured net radiation. 411 

Extraterrestrial radiation is derived following methods outlined in Allen et al. (1998). Muneer’s method is 412 

applied to model diffuse radiation. The GORT model is applied to model net radiation. Data are shown from 413 

the Day of Year 217 to 224 in 2004 for the US-Bar site. 414 

 415 

Time series of each component for modeling canopy photosynthesis are shown in Figure 5. Given that total 416 

LAI remains the same over the course of several days, modeled sunlit and shaded LAI have little day-to-day 417 

variability and only vary as a function of solar zenith angle (Figure 5a). As solar zenith angle decreases, 418 

sunlit LAI increases but shaded LAI decreases. Because sunlit leaves receive more illumination, they have 419 

less radiation limitations on photosynthesis than shaded leaves (Figure 5b). Temperature limitation generally 420 

decreases from morning until noon, while VPD limitation increases. Although the chemical process of 421 

photosynthesis favors higher temperatures, leaf stomata tend to close to reduce water loss when atmospheric 422 

dryness is high (Bonan, 2002). Because short-term canopy CO2 concentrations vary with winds and 423 

convection between the ecosystem and the atmosphere, the ambient CO2 concentrations exhibit the greatest 424 

variation from day to day (Figure 5b), so do the modeled differences between ambient and intercellular CO2 425 

concentrations. 426 

 427 
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 428 

Figure 5: Time series of components of the photosynthesis calculation shown for a) sunlit and shaded leaf 429 

area index, b) environmental limiting factors imposed by radiation absorption, temperature, and vapor 430 

pressure deficit, and c) CO2 concentration. Data are shown from the Day of Year 217 to 224 in 2004 for the 431 

US-Bar site. 432 

 433 
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Figure 6 shows time series of measured and modeled GPP for two sites over eight successive days. GPP 434 

estimates match flux tower measurements well in terms of the phase and amplitude. Daily peak GPP from 435 

tower measurements are over 30.0 µmol CO2 m
-2

 s
-1

 for both sites. It is also evident that modeled results can 436 

capture some subtle variations in GPP at the hourly time scale. However, GPP estimates are slightly higher 437 

on DOY 242 but lower on DOY 243 for US-Ha1. Note that we used Muneer’s method for estimating the 438 

diffuse radiation in US-Ha1 because measurements were not available. Considering uncertainties from the 439 

partition of global solar radiation, results for both sites perform well in general. 440 

 441 
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Figure 6: Time series of modeled and measured GPP for 8 consecutive days at the sites (a) US-Bar and (b) 442 

US-Ha1. Data are half-hourly at the US-Bar site and hourly at the US-Ha1 site. Data are shown from DOY 443 

217 to 224 in 2004 for US-Bar, and from DOY 241 to 224 in 2006 for US-Ha1. Negative GPP 444 

measurements are set to zero. Missing points in modeled GPP at the US-Ha1 site are due to missing 445 

measurement of canopy CO2 concentrations or other meteorological variables. 446 

 447 

Figure 7 statistically compares measured and modeled GPP. Our model is able to explain 84.0% and 88.3% 448 

of the GPP variances for the US-Bar and US-Ha1 sites, respectively. The regression lines are close to the 1 : 449 

1 lines, and GPP is only slightly overestimated for US-Bar and underestimated for US-Ha1. The root mean 450 

squared errors (RMSE) are 3.71 and 3.08 µmol CO2 m
-2

 s
-1

 for US-Bar and US-Ha1, respectively. The 451 

overall model performance is high considering that we did not attempt to perform model calibrations. 452 

 453 

 454 

Figure 7: Regressions between modeled and measured GPP for 8 consecutive days at the sites (a) US-Bar 455 

and (b) US-Ha1. Data are from DOY 217 – 224 in 2004 for US-Bar and from DOY 241 to 224 in 2006 for 456 

US-Ha1. Only data during the photosynthetically active period (flux tower GPP > 0.5 µmol CO2 m
-2

 s
-1

) are 457 

included in the regression. The solid lines denote the 1 : 1 lines, and the dashed lines denote the regression 458 

lines. 459 

 460 

4.3 Model simulation over entire years 461 

LAI derived from satellite observations (Figure 8) are used as inputs to model daily GPP over an entire year 462 

in addition to the 8-day model simulations. The double logistic fitting lines are shown to reduce noises in 463 

time series of MODIS LAI due to the effects of clouds and solar and viewing geometry. Fitted LAI time 464 
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series are slightly higher from June to August and lower from September to December in 2006 at the US-465 

Ha1 sites, but match with field measurements in general. The differences are likely to be introduced by 466 

mismatched observation footprints and uncertainties in satellite retrieval algorithms. The fitted time series of 467 

MODIS LAI are used for subsequent model simulations. 468 

 469 

 470 
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Figure 8: Comparisons of field-measured and satellite-derived leaf area indexes (LAI) for the sites a) US-471 

Bar in 2004 and b) US-Ha1 in 2006. The solid grey lines denote MODIS LAI as obtained from standard 472 

MODIS FPAR/LAI products (MOD15A2). The solid black lines denote double logistic fitting lines that are 473 

applied to MODIS LAI. The solid points denote the measured LAI as obtained from biological datasets 474 

from AmeriFlux website. 475 

 476 

Figure 9 presents time series of measured and modeled GPP at the US-Bar site. Modeled results capture the 477 

trend and subtle variations of measured GPP on a daily basis. Most of the dips in the GPP time series occur 478 

on cloudy days when radiation is the main limiting factor for vegetation photosynthesis. GPP values at US-479 

Bar are slightly overestimated from DOY 100 to 150 in 2004 possibly due to overestimation of the LAI. 480 

Statistically, modeled results can explain 79.5%, 89.7%, and 89.3% of the variance in daily GPP for the 481 

years 2004, 2005, and 2006, respectively (Figure 10). Regression slopes are close to the 1 : 1 lines except in 482 

the year 2004 due to overestimated GPP in the early growing season. The RMSEs are 1.64, 1.31, and 1.56 483 

gC m
-2

 day
-1

 for 2004, 2005, and 2006, respectively. 484 
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 485 

Figure 9: Time series of modeled and measured daily GPP shown for (a) 2004, (b) 2005, and (c) 2006 at the 486 

US-Bar site. Model simulation is performed at a half-hourly time step. Measured and modeled half-hourly 487 

GPP are aggregated to generate daily time series with units converted from µmol CO2 m
-2

 s
-1

 to gC m
-2

 day
-

488 
1
. Occational negative GPP measurements are set to zeros. Missing points in modeled GPP time series are 489 
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due to missing measurements of meteorological variables during the daytime photosynthetically active 490 

period (flux tower GPP > 0.5 µmol CO2 m
-2

 s
-1

). 491 

 492 

 493 

Figure 10: Regressions between modeled and measured daily GPP shown for (a) 2004, (b) 2005, and (c) 494 

2006 at the US-Bar site. Only data during the photosynthetically active period (flux tower GPP > 0.5 gC m
-2

 495 

day
-1

) are included in the regressions. The solid line denote the 1 : 1 lines, and the dashed lines denote the 496 

regression lines.  497 

 498 

Because measurements of atmospheric CO2 concentrations within the canopy are largely unavailable for 499 

US-Ha1 (only approximately 41.4% of the measurements are valid for use), we do not aggregate hourly 500 

results to daily sums but perform regression analysis using all available hourly data in Figure 11. For the 501 

US-Bar site, the R² value is 0.801 and the RMSE value is 4.31 µmol CO2 m
-2

 s
-1

. For the US-Ha1 site, 502 

Correlations the correlation between modeled and measured GPP are is strong with an R² value of 0.777 and 503 

an RMSE value of 6.49 µmol CO2 m
-2

 s
-1

. There were slight GPP underestimates when measured GPP 504 

values are high at the US-Ha1 site, possibly due to empirical functions that we used in modeling diffuse 505 

radiation and leaf photosynthesis. Table 3 lists major statistical results for our model performance, as 506 

evaluated using all available hourly data at both sites. The model performance is consistent through time 507 

and is comparable to the simulation of 8-day data (Figure 7), despite the fact that satellite-derived LAI 508 

instead of field measurements were used for yearly simulation.  509 

 510 
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 511 

Figure 11: Regressions between modeled and measured GPP for all available hourly data at the sites of a) 512 

US-Bar and b) US-Ha1 site in 2006. Only data from the photosynthetically active period are included in the 513 

regression. The solid line denotes the 1 : 1 line, and the dashed line denotes the regression line. 514 

 515 

Table 3. The model performance at two study sites as evaluated using hourly data. Units for root mean 516 

square error (RMSE) and mean bias error (Bias) are in µmol CO2 m
-2

 s
-1

. 517 

Year 
US-Bar US-Ha1 

R² RMSE Bias R² RMSE Bias 

2001    0.804 5.44 2.00 

2002    0.729 6.75 3.09 

2003    0.781 5.62 2.85 

2004 0.784 4.28 1.01 0.737 6.39 1.85 

2005 0.795 4.11 0.47 0.736 6.83 1.18 

2006 0.801 4.31 1.06 0.777 6.49 2.28 

2007    0.768 6.21 2.50 

2008    0.689 7.34 3.10 

2009    0.662 7.62 3.68 

2010    0.752 6.55 0.35 

2011    0.715 6.96 1.34 

 518 

 519 

5. Discussion 520 

5.1 Influence of CO2 concentration on canopy photosynthesis 521 

One important question is whether it is necessary to link radiative transfer with leaf stomatal conductance 522 

for modeling photosynthesis, since some state-of-the-art biogeochemical models such as Production 523 
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Efficiency Models simply assume that vegetation GPP/NPP is linearly related to canopy radiation 524 

absorption (Xin et al., 2013). To understand the performance of Production Efficiency Models, we conduct 525 

linear regressions between modeled APAR and measured GPP as shown in Figure 12. Indeed, canopy APAR 526 

is positively related to flux tower GPP and explains 70.3% of its variance. The R² value increases slightly to 527 

0.710 after accounting for the influences of temperature and vapor pressure. The model performance here is 528 

comparable to results from other studies that evaluate Production Efficiency Models (Chen et al., 2011; 529 

Sjöström et al., 2013; Xin et al., 2015). 530 

 531 

 532 

Figure 12: Regressions between modeled absorbed photosynthetic active radiation (APAR) and measured 533 

GPP. Half-hourly data are shown from DOY 217 – 224 in 2004 for US-Bar. The influences of temperature 534 

and vapor pressure deficit are modeled based on Equations (51) and (52). Only data during the 535 

photosynthetically active period are included in the regression. The dashed lines denote the regression lines.  536 

 537 

However, there are strong partial correlations between canopy CO2 concentrations and GPP even after 538 

accounting for radiation absorption. Figure 13a shows the residual plot of GPP versus ambient CO2 539 

concentrations when controlling on APAR. The slope is negative because the ambient CO2 concentration, as 540 

regulated by vegetation photosynthesis and respiration activities, is normally high during the nighttime but 541 
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low during the daytime. The correlation coefficient is only -0.279, but it is statistically significant (p-value < 542 

0.001) under a one-tailed partial correlation test. The data clearly allow rejection of the null hypothesis that 543 

ambient CO2 concentration has no effects on canopy photosynthesis. This relationship holds even after 544 

considering the factors of temperature and vapor pressure deficit (Figure 13b). We therefore conclude that 545 

accounting for the influence of ambient CO2 concentrations is essential for modeling daytime GPP at the 546 

half-hourly time scale.  547 

 548 

 549 

Figure 13: Residual plots are shown for a) the partial correction between GPP and measured ambient CO2 550 

concentration (Ca) while controlling for the variable of and modeled differences between ambient and 551 

intercelluar CO2 concentrations after controlling on the effects of modeled a) APAR  and b) the partial 552 

correction between GPP and Ca - Ci while controlling for the variable of (T) (VPD)APAR f f  .  553 

 554 

5.2 Clumping effects in the GORT model 555 

The clumping effects of leaves modeled using GORT influence canopy radiative transfer processes and are 556 

worthy of further examination. Chen et al. (1997) demonstrated that the net effects of leaf clumping could 557 

be modeled by introducing a clumping index. We derive the clumping index by inverting their functions 558 

(Zhao et al., 2011) as follows: 559 
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 Ω = ln(𝑃gap) /ln⁡(𝑃Beer) = −ln⁡(𝑃gap)/𝑘𝑏𝐿𝐴𝐼 (58) 

where Ω is the clumping index, 𝑃gap is the gap probability modeled using GORT, 𝑃Beer = exp⁡(−𝑘𝑏𝐿𝐴𝐼) is 560 

the gap probability modeled using Beer’s Law, 𝑘𝑏  is the extinction coefficient, and 𝐿𝐴𝐼 is the leaf area 561 

index. 562 

 563 

The behavior of the derived clumping index shown in Figure 14 is intuitively interpretable. Leaves are more 564 

clumped when LAI is larger given constant tree structures. However, when LAI is constant but tree density 565 

increases, leaves are distributed in a larger three-dimensional space, resulting in an increased clumping 566 

index. Similarly, if the H/b ratio or b/R ratio decreases while other parameters are unchanged, the total 567 

crown volume increases and leaves are less clumped. The sensitivity of the clumping index to the 568 

illumination zenith angle varies when using different parameter sets. Our simulated results are in line with 569 

the measured and modeled results in previous studies (Leblanc and Chen, 2001; Leblanc et al., 2002): the 570 

clumping indexes are insensitive to zenith angles in some forest stands and increase with zenith angles in 571 

others. We do not attempt to derive clumping indexes at solar zenith angle greater than 85° when gap 572 

fractions typically approach zeros. These results have important biogeochemical implications:imply that tree 573 

structure strongly influences radiation absorption and photosynthesis of canopies. In areas where canopy 574 

crowns should be treated as discrete objects, more sunlight can reach the understory and ground surface, and 575 

vegetation GPP may not be as large as that in continuous forests even if the LAIs are the same.  576 

 577 
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 578 

Figure 14: Derived clumping index as a function of solar zenith angle for varied canopy parameters. Tree 579 

parameters for US-Bar are used for GORT simulations. The default simulation is for a canopy composed of 580 

𝐻/𝑏 = 2.0, 𝑏/𝑅 = 3.0, 𝜆 = 1432⁡trees/ha, and 𝐿𝐴𝐼 = 2.0, and labeled curves are for the same case with 581 

only the labeled parameters varied. 582 

 583 

5.3 Assumptions and future improvements 584 

It is also necessary to review our model assumptions and identify possible avenues for future improvements. 585 

First, we assume a spherical leaf angle distribution in the model simulations. However, most deciduous 586 

forests have semi-horizontal leaf orientation (Bonan, 2002) and an assumption of planophile or plagiophile 587 

LAD is likely to be more appropriate for temperate and boreal broadleaf forests (Pisek et al., 2013). Because 588 

LAD influences the proportions of sunlit and shaded leaf areas, the way in which modeled canopy GPP 589 

varies with LAD requires further exploration. Second, the substrate under the canopy layer is assumed to be 590 

a Lambertian surface. Field studies have observed the effects of bi-directional reflectance distribution 591 

function (BRDF) for soils (Liang and Townshend, 1996; Wang et al., 2010), and coupled soil and vegetation 592 

model (Ni and Li, 2000; Verhoef and Bach, 2007) should be tested to understand the effects of soil BRDF 593 

on canopy photosynthesis. Third, we assume maximum constant leaf stomatal conductance over the 594 
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growing season. It is worth examining how optimal leaf stomatal conductance may evolve with leaf 595 

development stages and long-term environmental changes (Keenan et al., 2013; Lammertsma et al., 2011). 596 

Fourth, we use ellipsoids to describe tree crown shapes for deciduous broadleaf forests. Because many 597 

evergreen needleleaf forests have conical crowns, future applications to areas with conifer forests may 598 

require different treatment on crown shapes in the models. Finally, our linkage between radiative transfer 599 

and biochemical processes is still empirical. We may need to test other mechanisms, for example, the 600 

biochemical model based on the enzyme kinetics of rubisco and the regeneration of RuBP in response to 601 

light absorption (Farquhar and Sharkey, 1982), in future studies.  602 

 603 

6. Conclusion 604 

We propose and validate a new model that links GORT with biochemical processes for modeling canopy 605 

photosynthesis. Several main conclusions can be drawn from this study. First, the radiative transfer process 606 

within the canopy is one of the key factors in modeling vegetation photosynthesis, and our proposed model 607 

simulates canopy photosynthesis well. Modeled GPP robustly explained approximately 80% or more 608 

variance in GPP measurements at both half-hourly and daily time scales. Second, tree structures influence 609 

canopy gap probabilities and vegetation photosynthesis. Leaf clumping could vary as a function of tree 610 

density, canopy depth, and crown shapes and affect canopy sunlight interception. Finally, ambient CO2 611 

concentration controls vegetation photosynthesis activities and should be included in state-of-the-art 612 

biogeochemical models. Finally, ambient CO2 concentrations influence vegetation photosynthesis activities 613 

and should be included in biogeochemical models. 614 

 615 

Accurate modeling of vegetation photosynthesis is essential for improving our understanding of the global 616 

carbon cycle. The model we developed is complementary to classic radiative transfer models, especially in 617 

sparse and intermediate forest stands. Although more validation efforts are required, the GORT-618 

photosynthesis model is promising in terms of simulating photosynthesis for discontinuous plant canopies. 619 
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 620 

Appendix A: 621 

Table A1. Nomenclature 622 

Symbols Definition 

𝑃gap(ℎ, 𝜃𝑖)  total gap probability for beam light passing through the canopy 

𝑃gap(𝑛 = 0|ℎ, 𝜃𝑖)  gap probability for beam light passing through the canopy without reaching any crowns 

𝑃gap(𝑛 > 0|ℎ, 𝜃𝑖)  gap probability for beam light passing through crowns without being intercepted by leaves 

𝑃(𝑠|ℎ, 𝜃𝑖)  probability distribution function associated with within-crown path length 

𝑃(𝑠|𝑛, 𝑧, ℎ, 𝜃𝑖)  probability distribution of within-crown path length given that a solar ray enters the crown at 

height ℎ and angle 𝜃𝑖 
𝑃(𝑛|𝑧, ℎ, 𝜃𝑖)  probability distribution of the numbers of crowns intercepted by the solar ray incident at angle 

𝜃𝑖, entering crowns at height 𝑧, and then traveling to height ℎ 

𝜆v  tree density (m-2) 

𝑉Γ  projected cylinder volume starting from the canopy top and extending to certain height 

𝜏(𝜃𝑖 , 𝛼)  projected foliage area volume density (m-1) 

𝑘𝑏(𝜃𝑖 , 𝛼)  extinction coefficient for beam radiation 

𝑘𝑑  extinction coefficient for diffuse radiation 

𝐾open(ℎ)  canopy openness factor to diffuse radiation 

𝐾open(𝑛 = 0|ℎ)  between-crown openness factor 

𝐾open(𝑛 > 0|ℎ)  within-crown openness factor 

𝑃gap
′ (ℎ, 𝜃𝑖)  the first derivative of gap probability 𝑃gap(ℎ, 𝜃𝑖) with respect to height 

𝐾open
′ (ℎ)  the first derivative of the openness factor 𝐾open(ℎ) with respect to height 

𝑡0(ℎ, 𝜃𝑖)  the proportion of unintercepted direct beam for semi-infinite homogeneous canopies 

𝑅𝑓𝑓
∞   hemispherical-hemispherical reflectance for semi-infinite homogeneous canopies 

𝑅𝑑𝑓
∞   directional-hemispherical reflectance for semi-infinite homogeneous canopies 

𝑇𝑓𝑓
∞  hemispherical-hemispherical transmittance for semi-infinite homogeneous canopies 

𝑇𝑑𝑓
∞   directional-hemispherical transmittance for semi-infinite homogeneous canopies 

𝜌𝑓𝑓(ℎ)  hemispherical-hemispherical reflectance for homogeneous canopies with finite thickness 

𝜌𝑑𝑓(ℎ, 𝜃𝑖)  directional-hemispherical reflectance for homogeneous canopies with finite thickness 

𝑡𝑓𝑓(ℎ)  hemispherical-hemispherical transmittance for homogeneous canopies with finite thickness 

𝑡𝑑𝑓(ℎ, 𝜃𝑖)  directional-hemispherical transmittance for homogeneous canopies with finite thickness 

𝜌𝑓𝑓
′ (ℎ)  hemispherical-hemispherical reflectance for discontinuous canopies 

𝜌𝑑𝑓
′ (ℎ, 𝜃𝑖)  directional-hemispherical reflectance for discontinuous canopies 

𝑡𝑓𝑓
′ (ℎ)  hemispherical-hemispherical transmittance for discontinuous canopies 

𝑡𝑑𝑓
′ (ℎ, 𝜃𝑖)  directional-hemispherical transmittance for discontinuous canopies 

𝛿𝐿𝐴𝐼(ℎ)  leaf area index within a thin layer 𝛿ℎ at height ℎ 

𝐿𝐴𝐼  total leaf area index of the canopy 

𝐿𝐴𝐼𝑆𝑢𝑛(𝜃𝑖)  sunlit leaf area index given a solar illumination angle 𝜃𝑖  
𝐿𝐴𝐼𝑆ℎ𝑑(𝜃𝑖)  shaded leaf area index given a solar illumination angle 𝜃𝑖 
𝐿𝐴𝐼𝑆𝑢𝑛

∗ (𝜃𝑖)  sunlit leaf area for homogeneous canopies given a solar illumination angle 𝜃𝑖 
𝜃𝑖  solar illumination angle 

𝜙  azimuth angle 

𝜎  leaf single scattering albedo 

𝛾  √1 − 𝜎  

𝜇𝑖  cos⁡(𝜃𝑖)  
𝜌𝑙  leaf reflectance 

𝜏𝑙  leaf transmittance 

𝜌𝑠  soil reflectance 
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𝜌𝑐𝑏  canopy reflection coefficient for beam irradiance 

𝜌𝑐𝑑  canopy reflection coefficient for diffuse irradiance 

𝑓𝑏  the fraction of incident beam radiation in total or global incoming solar radiation 

𝐼𝑏(ℎ, 𝜃𝑖)  unintercepted beam fluxes at canopy height ℎ given a solar illumination angle 𝜃𝑖 
𝐼𝑑(ℎ)  unintercepted diffuse fluxes at canopy height ℎ 

𝐼𝑏𝑡(ℎ, 𝜃𝑖)  unintercepted and down scattered beam fluxes  

𝐼𝑑𝑡(ℎ)  unintercepted and down scattered diffuse fluxes 

𝐼𝑐  total radiation absorbed by canopy elements 

𝐼𝑐𝑏  beam radiation absorbed by canopy elements 

𝐼𝑐𝑑  diffuse radiation absorbed by canopy elements 

𝐼𝑆𝑢𝑛  total radiation absorbed by sunlit leaves  

𝐼𝑆𝑢𝑛𝑏  beam radiation directly absorbed by sunlit leaves 

𝐼𝑆𝑢𝑛𝑏𝑠  down scattered beam radiation absorbed by sunlit leaves 

𝐼𝑆𝑢𝑛𝑑  diffuse radiation absorbed by sunlit leaves 

𝐼𝑆𝑢𝑛  total radiation absorbed by shaded leaves  

𝑄𝑆𝑢𝑛  total radiation absorbed by sunlit leaves per leaf hemi-surface area 

𝑄𝑆ℎ𝑑  total radiation absorbed by shaded leaves per leaf hemi-surface area 

𝐴  leaf-level CO2 assimilation rate 

𝑔𝑐  stomatal conductance 

𝐶𝑎  ambient CO2 concentrations 

𝐶𝑖  intercellular CO2 concentrations 

𝑔𝑐𝑆𝑢𝑛  stomatal conductance for sunlit leaves 

𝑔𝑐𝑆ℎ𝑑  stomatal conductance for shaded leaves 

𝑔𝑐𝑚𝑎𝑥  maximum leaf stomatal conductance when environmental factors do not limit carbon uptake 

𝑓(𝑥𝑖)  scalars that account for the influences of environmental stresses on leaf stomatal conductance  

𝑓(𝑄)  scalars that account for the influences of solar radiation on leaf stomatal conductance 

𝑓(𝑇)  scalars that account for the influences of temperature on leaf stomatal conductance 

𝑓(𝑉𝑃𝐷)  scalars that account for the influences of vapor pressure deficit on leaf stomatal conductance 

𝑘𝐶  stress coefficients of PAR absorbed by plant leaves for the temperature scalar 

𝑘𝑄  stress coefficients of PAR absorbed by plant leaves for the temperature scalar 

𝑇𝑚𝑖𝑛  minimum temperature for photosynthetic activities 

𝑇𝑚𝑎𝑥  maximum temperature for photosynthetic activities 

𝑇𝑜𝑝𝑡  optimum temperature for photosynthetic activities 

VPD  ambient vapor pressure deficit 

𝑉𝑃𝐷𝑚𝑖𝑛  minimum vapor pressure deficit  

𝑉𝑃𝐷𝑚𝑎𝑥  maximum vapor pressure deficit 

VPD0  an empirical constant describing the species sensitivity to ambient vapor pressure deficit 

Γ  leaf CO2 compensation point 

𝑚𝐿  regression coefficient for ambient and intercellular CO2 concentrations related to tree species  

𝐴𝑆𝑢𝑛  leaf-level CO2 assimilation rate for sunlit leaves 

𝐴𝑆ℎ𝑑   leaf-level CO2 assimilation rate for shaded leaves 

𝐾𝑡  hourly clearness index 

𝐼0  total or global incoming solar radiation on a horizontal plane at the canopy top 

𝐼𝑒  extraterrestrial solar radiation 

Ω  foliage clumping index 

𝑃Beer  gap probability for beam light passing through the canopy as modeled using Beer’s Law 

 623 

Table A2. Values for model parameters  624 

Symbols Value Units Reference 

𝑘𝐶  500 W / m² Ding et al. (2014) 

𝑘𝑄  150 W / m² Ding et al. (2014) 
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𝑇𝑚𝑖𝑛  0 °C Kalfas et al. (2011) 

𝑇𝑚𝑎𝑥  45 °C Kalfas et al. (2011) 

𝑇𝑜𝑝𝑡  25 °C Kalfas et al. (2011) 

𝑉𝑃𝐷𝑚𝑖𝑛  0.65 kPa Heinsch et al. (2003) 

𝑉𝑃𝐷𝑚𝑎𝑥  4.6 kPa Heinsch et al. (2003) 

VPD0  30 kPa Katul et al. (2000) 

Γ  40 µmol/mol Katul et al. (2000) 

𝑚𝐿 4.0  Katul et al. (2000) 

 625 
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