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Abstract

Modeling vegetation photosynthesis is essential for understanding carbon exchanges
between terrestrial ecosystems and the atmosphere. The radiative transfer process
within plant canopies is one of the key drivers that regulate canopy photosynthesis.
Most vegetation cover consists of discrete plant crowns, of which the physical obser-5

vation departs from the underlying assumption of a homogenous and uniform medium
in classic radiative transfer theory. Here we advance the Geometric Optical Radiative
Transfer (GORT) model to simulate photosynthesis activities for discontinuous plant
canopies. We separate radiation absorption into two components that are absorbed by
sunlit and shaded leaves, and derive analytical solutions by integrating over the canopy10

layer. To model leaf-level and canopy-level photosynthesis, leaf light absorption is then
linked to the biochemical process of gas diffusion through leaf stomata. The canopy
gap probability derived from GORT differs from classic radiative transfer theory, espe-
cially when the leaf area index is high, due to leaf clumping effects. Tree characteristics
such as tree density, crown shape, and canopy length affect leaf clumping and regulate15

radiation interception. Modeled gross primary production (GPP) for two deciduous for-
est stands could explain more than 80 % of the variance of flux tower measurements at
both near hourly and daily time scales. We also demonstrate that the ambient CO2 con-
centration influences daytime vegetation photosynthesis, which needs to be considered
in state-of-the-art biogeochemical models. The proposed model is complementary to20

classic radiative transfer theory and shows promise in modeling the radiative transfer
process and photosynthetic activities over discontinuous forest canopies.

1 Introduction

Terrestrial plants assimilate atmospheric carbon dioxide through photosynthesis
(Keenan et al., 2013; Myneni et al., 1997). The climate system, in turn, affects veg-25

etation development and photosynthetic activities (Broich et al., 2014; Xia et al., 2014;
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Yi et al., 2010). Photosynthesis, accompanied by exchanges of heat, water vapor, and
trace gases within the planetary boundary layer, modifies microclimates and local en-
vironments and determines ecosystem functions and services (Peng et al., 2014; Xu
et al., 2013). The complex biosphere/atmosphere feedbacks are dynamic and interac-
tive (Bonan, 2008; Heimann and Reichstein, 2008), such that robust numerical models5

that simulate vegetation photosynthesis are required in terrestrial ecosystem models
to understand the global carbon cycle (Cramer et al., 2001; Kucharik et al., 2006).

Vegetation photosynthesis activity is regulated by environmental factors, and the light
environment within plant canopies is one of the key drivers (Law et al., 2002; Pearcy
and Sims, 1994). Biophysical models such as Production Efficiency Models assume10

linear relationships between absorbed photosynthetically active radiation (APAR) and
vegetation primary production (Field et al., 1995; Monteith, 1977; Potter et al., 1993;
Prince and Goward, 1995; Running et al., 2000). Because vegetation photosynthesis
harvests solar radiation by green chlorophyll, recent studies have attempted to quan-
tify the fractions of APAR that are absorbed by green chlorophyll (Zhang et al., 2014,15

2005). Physiologically, plants assimilate carbon dioxide via the biochemical diffusion
processes through stomata, numerous small pores on the leaf surfaces (Collatz et al.,
1991; Farquhar and Sharkey, 1982). Stomata can open and close in response to mi-
croenvironments, thereby regulating plant carbon uptake (Bonan, 2002). Field physio-
logical studies have accumulated detailed information on the behavior of stomata un-20

der certain environmental conditions (Schulze et al., 1994), in which sunlight irradiance
plays a vital role (Ball et al., 1987). In this domain, linking the physical process of radia-
tive transfer within plant canopies with the biochemical process of gas diffusion through
leaf stomata is essential for accurate representation of vegetation photosynthesis.

Radiative transfer within a plant canopy is determined by many factors such as the25

partition of incoming solar radiation, solar illumination geometry, terrain slope and as-
pects, canopy structure, leaf angle distribution, and leaf and substrate spectral proper-
ties (Baldocchi et al., 1985; Schaaf et al., 1994; Weiliang et al., 2014). Classic radiative
transfer theory assumes that plant leaves are randomly distributed in three-dimensional
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space within a homogeneous canopy layer (Goudriaan, 1977; Myneni et al., 1990). The
canopy radiative transfer process can be simply characterized by leaf area index (LAI)
and leaf angle distribution (LAD). Three-dimensional, multi-layer, and two-leaf radiative
transfer models have been developed to simulate leaf absorption of solar irradiance
and canopy photosynthesis (Myneni, 1991; Pury and Farquhar, 1997; Ryu et al., 2011;5

Sellers, 1985). Although classic radiative transfer theory holds well for dense vegetation
canopies, most vegetation canopies, especially arboreal canopies, consist of discrete
crowns in reality (Yuan et al., 2013). Leaves are clumped within individual crowns, such
that more sunlight penetrates to understory layers and the ground surfaces (He et al.,
2012; Ni-Meister et al., 2010). Tree crowns also cast shadows on one another and10

on the background, resulting in self-shadowing effects as described by the geometric-
optical theory (Li and Strahler, 1992). Given natural differences in the radiative transfer
process between homogenous and discontinuous plant canopies, it is important to un-
derstand and account for the influence of crown shape and tree structure on canopy
radiation absorption and vegetation photosynthesis.15

To address the radiative transfer process in discontinuous canopies, the Geometric-
Optical Radiative-Transfer (GORT) model conceptually combines geometric optical
principles for canopy structure and radiative transfer theory for volumetric scattering
within canopy crowns (Li et al., 1995). The geometric optical method is used to char-
acterize the process by which sunlight passes directly to the ground surface without20

reaching any canopy crowns. The radiative transfer principle is applied to model the
probability of light penetration as it travels through crowns in the canopy. GORT has
been used to model the physical aspects of discontinuous plant canopies such as gap
fraction, radiation transmission, and bi-directional reflectance (Ni et al., 1999, 1997;
Xin et al., 2012), and has been validated under a variety of environmental conditions25

(Liu et al., 2008). Recent efforts have been made to develop and evaluate a simpli-
fied GORT model for the use in coupled global dynamic terrestrial ecosystem models
(Ni-Meister et al., 2010; Yang et al., 2010). Despite these successful applications, the
current version of the GORT model does not have analytical solutions for radiation ab-
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sorption by sunlit and shaded leaves, though previous studies have tried to solve the
process of multiple scattering between canopy and background in an iterative manner
(Song et al., 2009). However, sunlit and shaded leaves must be treated separately in
photosynthesis modeling because flux densities of photosynthetically active radiation
(PAR) incident on leaf surfaces are different (He et al., 2013). It is also necessary to5

integrate vertically over the canopy to derive mean PAR absorbed by sunlit and shaded
leaves because of the non-linear light attenuation within the canopy and the non-linear
dependence of leaf stomatal conductance on light absorption (Campbell and Norman,
1998).

The objectives of this study are to (1) advance the GORT model by providing an-10

alytical solutions to the radiation absorption of sunlit and shaded leaves and (2) link
the radiative transfer process to biochemical processes to simulate leaf and canopy
photosynthesis. We first describe the principles of our model and then perform model
validation with eddy covariance data from two flux towers situated in the New England
region of the United States.15

2 Theoretical basis

2.1 Brief description of canopy gap probability modeled using GORT

Gap probability, the probability of photons reaching a given canopy depth without being
intercepted by canopy elements, is key to characterizing the radiation distribution within
plant canopies. A detailed description for modeling the gap probability with GORT is20

described in previous studies (Li et al., 1995; Ni et al., 1999), and we summarize it
briefly here because the concept of gap probability is necessary for understanding our
subsequent work.

For homogeneous canopies, Beer’s law describes the gap probability of sunlight
penetration. For discontinuous plant canopies, leaves are clumped within individual25

canopy crowns, forming an uneven distribution of gap probabilities for beam radiation.
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GORT models tree crowns as a collection of ellipsoids (Fig. 1), of which the centers
are randomly distributed between the upper and lower boundaries of the canopy layer
(h1 and h2). Each ellipsoid, or each canopy crown, is characterized by one-half of the
vertical crown length (b) and a horizontal crown radius (R). The total gap probability
is modeled separately as the proportion of sunlight passing through the canopy layer5

without reaching any crown (hereafter referred to as between-crown gaps) and the
proportion of sunlight passing through crowns without being intercepted by canopy
leaves (hereafter referred to as within-crown gaps), such that:

Pgap (h,θi) = Pgap
(
n = 0|h,θi

)
+ Pgap

(
n > 0|h,θi

)
(1)

where Pgap (h,θi) is the gap probability for beam radiation at height h given an illumina-10

tion zenith angle θi, Pgap
(
n = 0|h,θi

)
is the between-crown gap, and Pgap

(
n > 0|h,θi

)
is the within-crown gap.

The between-crown gap is modeled based on Boolean theory as an exponential
function of crown numbers within a geometric volume that contains no crown centers:

Pgap
(
n = 0|h,θi

)
= e−λvVΓ (2)15

where λv is the tree density, and VΓ is the beam projected cylinder volume with a radius
R starting from the canopy top and extending to height h.

Assuming that leaves are randomly distributed within each individual crown, the
within-crown gap is modeled based on Beer’s law as light penetration along the travel-
ing path length, such that:20

Pgap
(
n > 0|h,θi

)
=

∞∫
0

P (s|h,θi)e
−τ(θi)sds (3)

where τ (θi,α) = kb (θi,α)·FAVD, FAVD is the foliage area volume density within a single
crown, and kb (θi,α) is the extinction coefficient for beam radiation given a specific solar
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illumination angle θi and leaf distribution angle α. For a spherical leaf angle distribution,
kb =

0.5
cos(θi)

. P (s|h,θi) is the probability distribution function associated with within-crown
path length s.

The probability distribution of within-crown paths length can be solved in a convolu-
tional manner:5

P (s|h,θi) =

h2∫
h

n=∞∑
n=1

P (s|n,z,h,θi)P (n|z,h,θi)dz (4)

where P (s|n,z,h,θi) is the probability distribution of within-crown path length given that
a solar ray enters the crown at height h and angle θi, and P (n|z,h,θi) is the probability
distribution of the numbers of crowns intercepted by the solar ray incident at angle θi,
entering crowns at height z, and then traveling to height h.10

Diffuse radiation (i.e., the hemispherically isotropic radiation) can be treated as beam
radiation from all directions in the upper hemisphere. The “openness” of discontinuous
plant canopies to diffuse radiation on a horizontal plane is defined as:

Kopen (h) = Kopen
(
n = 0|h

)
+Kopen

(
n > 0|h

)
(5)

Kopen
(
n = 0|h

)
=

1
π

2π∫
0

π
2∫

0

Pgap
(
n = 0|h,θi

)
sin(θi)cos(θi)dθidφ15

= 2

π
2∫

0

Pgap
(
n = 0|h,θi

)
sin(θi)cos(θi)dθi (6)

Kopen
(
n > 0|h

)
=

1
π

2π∫
0

π
2∫

0

Pgap
(
n > 0|h,θi

)
sin(θi)cos(θi)dθidφ
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= 2

π
2∫

0

Pgap
(
n > 0|h,θi

)
sin(θi)cos(θi)dθi (7)

where Kopen
(
n = 0|h

)
and Kopen

(
n > 0|h

)
are between-crown and within-crown open-

ness factors, respectively. θi is the solar illumination angle, and φ is the azimuth angle.

2.2 Sunlit and shaded leaf area index

The gap probability describes the probability of beam radiation being intercepted by5

plant leaves, and hence determines the proportion of leaf areas that are sunlit. For
a very thin layer, the reduction of total gap probability is due to leaf interception, of
which the process still follows Beer’s law:

Pgap (h−δh,θi) = exp(−kbδLAI(h))Pgap (h,θi) (8)

where kb is the canopy extinction coefficient for beam irradiance, δLAI(h) is the leaf10

area index within a thin layer δh at height h, and Pgap (h,θi) is the gap probability mod-
eled using GORT.

In the limit as δh becomes infinitely small, we have:

exp(−kbδLAI(h)) = 1−kbδLAI(h) (9)

Pgap (h−δh,θi) = Pgap (h,θi)− P ′gap (h,θi)δh (10)15

where P ′gap (h,θi) is the first derivative of gap probability Pgap (h,θi) with respect to height
h.

Combining Eqs. (8), (9), and (10), we obtain:

P ′gap (h,θi)

Pgap (h,θi)
δh = kbδLAI(h) (11)
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For diffuse radiation, it can be derived in a similar manner:

K ′open (h)

Kopen (h)
δh = kdδLAI(h) (12)

where kd is the extinction coefficient for diffuse irradiance, and K ′open (h) is the first
derivative of the openness factor Kopen (h) with respect to height h.

The sunlit LAI at height h is the product of the probability of beam sunlight penetration5

to height h and the probability of sunlight being intercepted by the thin layer and divided
by the ratio of leaf area projected on a horizontal surface (Campbell and Norman,
1998), such that:

δLAISun (h,θi) =
Pgap (h,θi)

[
1−exp(−kbδLAI(h))

]
kb

(13)

where δLAISun (h,θi) is the sunlit leaf area index within a thin layer δh at height h.10

Substituting Eqs. (9) and (11) into Eq. (13), we obtain:

δLAISun (θi) =
P ′gap (h,θi)

kb
δh (14)

Sunlit LAI for the entire canopy at zenith angle θ is then obtained by integrating from
the canopy top to canopy bottom, such that:

LAISun (θi) =

z2∫
z1

P ′gap (h,θi)

kb
dh =

1− Pgap
(
h = z1|θi

)
kb

(15)15

where Pgap
(
h = z2|θi

)
and Pgap

(
h = z1|θi

)
are the gap probabilities at the canopy top

z2 and canopy bottom z1, respectively, whereas the gap probability at the canopy top
is 1.
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It is worth noting that our calculation of sunlit leaf area for discontinuous canopies is
analogous to that for homogeneous canopies, which is given as:

LAI∗Sun (θi) =

LAI∫
0

exp(−kb ·L)dL =
1−exp(−kb ·LAI)

kb
(16)

where LAI∗Sun(θi) is the sunlit leaf area for homogeneous canopies.
The shaded LAI is simply the remainder of the canopy LAI:5

LAIShd = LAI−LAISun (17)

2.3 Analytical solutions for the scattering parameters of discontinuous
canopies

Canopy scattering parameters such as directional–hemispherical reflectance and
hemispherical–hemispherical reflectance (or black-sky albedo and white-sky albedo,10

respectively) can be obtained by resolving the radiative transfer process or can be
approximated using simple analytical solutions. For semi-infinite horizontally homo-
geneous media, Hapke’s solutions of the proportion of unintercepted direct beam
(t0(h,θi)), hemispherical–hemispherical reflectance (R∞ff ), directional–hemispherical
reflectance (R∞df ), hemispherical–hemispherical transmittance (T∞ff ), and directional–15

hemispherical transmittance (T∞df ) are given as (Hapke, 1981):

t0(h,θi) = e
− τ(θi )h

µi (18)

R∞ff =
1−γ
1+γ

(19)

R∞
df

(θi) =
1−γ

1+2µiγ
(20)

T∞ff (h) = e−2γτh (21)20
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T∞
df

(h,θi) =
σ
2

1+2µi

1− (2µiγ)2
[T∞ff (h)− t0(h,θi)] (22)

where σ is the single scattering albedo, τ = k(θi)
Le
H is the projected foliage area volume

density for the plant canopy, Le is the effective leaf area index, H is the depth of the
canopy, θi is the solar illumination angle, µi = cos(θi) and γ =

√
1−σ.

Starting with surface energy balances, Ni (1998) derived the scattering parameters5

for a horizontally homogeneous canopy layer with finite thickness as:

tff(h) = T∞ff (h)
1− (R∞ff )2

1− (T∞ff (h)R∞ff )2
(23)

ρff(h) = R∞ff (h)
1− (T∞ff (h))2

1− (T∞ff (h)R∞ff )2
(24)

tdf (h,θi) = T
∞
df (h,θi)−ρff(h)[t0(h,θi)R

∞
df (θi)+ T

∞
df

(h,θi)R
∞
ff ] (25)

ρdf (h,θi) = R
∞
df (h)− tff(h)[t0(h,θi)R

∞
df (θi)+ T

∞
df

(h,θi)R
∞
ff ] (26)10

where tff(h), ρff(h), tdf (h,θi), and ρdf (h,θi) are hemispherical–hemispherical transmit-
tance, hemispherical–hemispherical reflectance, directional–hemispherical transmit-
tance, and directional–hemispherical reflectance, respectively.

The scattering parameters for a discontinuous canopy can then be approximated as
combinations of a homogeneous vegetation layer and a non-vegetated layer:15

t′ff (h) = tff (h)
(
1−Kopen

(
n = 0|h

))
+Kopen

(
n = 0|h

)
(27)

ρ′ff (h) = ρff (h)
(
1−Kopen

(
n = 0|h

))
(28)

t′
df (h,θi) = tdf (h,θi)

(
1− Pgap(n = 0|h,θi)

)
+ Pgap(n = 0|h,θi) (29)

ρ′
df (h,θi) = ρdf(h,θi)

(
1− Pgap(n = 0|h,θi)

)
(30)
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where t′ff(h), ρ′ff(h), t′df (h,θi), and ρ′df (h,θi) are hemispherical–hemispherical transmit-
tance, hemispherical–hemispherical reflectance, directional–hemispherical transmit-
tance, and directional–hemispherical reflectance, respectively. Note that our equations
here are slightly different from those used by Ni et al. (1999) because between-crown
gaps, within which light attenuation obeys Beer’s law, are considered in the homoge-5

neous vegetation layer.
The analytical approximation of the canopy reflectance for beam and diffuse radi-

ation is the sum of three factors in radiative transfer: the incoming irradiance scat-
tered by the canopy elements, the first-order scattered radiation from soil background,
and the irradiance scattered back and forth between the canopy layer and back-10

ground surface (Ni et al., 1999). Taking beam radiation as an example and assum-
ing that the background surface is Lambertian, the incoming irradiance scattered by
the canopy elements is ρ′df, the first-order scattered radiance from soil background is
t′dfρst

′
ff, and the multiple scattering between the canopy elements and soil background

is t′df

(
ρsρ

′
ffρs +ρs(ρ′ffρs)2 +ρs(ρ′ffρs)3 + · · ·

)
t′ff. The canopy reflectance for beam irradi-15

ance can then be written as:

ρcb = ρ
′
df
+ t′

df

(
ρs +ρsρ

′
ffρs +ρs(ρ′ffρs)2 +ρs(ρ′ffρs)3 + · · ·

)
t′ff = ρ

′
df
+ t′

df

ρs

1−ρsρ
′
ff

t′ff (31)

The canopy reflectance for diffuse irradiance can be obtained similarly as:

ρcd = ρ
′
ff + t

′
ff

ρs

1−ρsρ
′
ff

t′ff (32)

2.4 Mean photosynthetically active radiation absorbed by sunlit and shaded20

leaves

Let I0 be the flux density of incoming solar radiation on a horizontal plane at the top of
the canopy and fb be the fraction of incident beam radiation, the unintercepted beam
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and diffuse fluxes are then:

Ib (h,θi) = Pgap (h,θi) (1−ρcb)fbI0kb (33)

Id (h) = Kopen (h) (1−ρcd) (1− fb) I0kd (34)

where ρcb and ρcd are canopy reflectance for beam and diffuse irradiance, respectively;
Ib and Id are the unintercepted beam and diffuse fluxes, respectively; and kb and kd are5

canopy extinction coefficients for beam and diffuse irradiance, respectively.
The downward beam flux Ib is derived based on the assumption of black leaves,

meaning that leaves absorb incident irradiance completely and do not transmit radia-
tion (Bonan, 2002). To account for the effects of leaf scattering, the total beam Ibt (i.e.,
unintercepted beam and down scattered beam) and total diffuse Idt (i.e., unintercepted10

diffuse and down scattered diffuse) irradiance can be modeled by introducing a factor
of
√

1−σ to extinction coefficients similar to the two-stream radiative transfer model
(Sellers, 1985). As single scattering albedo increases, the effective extinction coeffi-
cient becomes smaller and more sunlight is allowed to transmit through the canopy.
That is:15

Ibt (h,θi) = Pgap(h,θi)
√

1−σ(1−ρcb)fbI0
√

1−σkb (35)

Idt (h) = Kopen(h)
√

1−σ(1−ρcd) (1− fb) I0
√

1−σkd (36)

where σ is the single scattering albedo of leaves. σ = ρl + tl, where ρl and tl are leaf
reflectance and transmittance, respectively.

The total irradiance absorbed by the entire canopy per unit ground area consists of20

leaf absorption for both beam and diffuse irradiance:

Ic = Icb + Icd =

LAI∫
0

Ibt (h,θi)dL+

LAI∫
0

Idt (h,θi)dL (37)
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Substituting Eqs. (11), (12), (35), and (36) into Eq. (37), we have:

Icb =

z2∫
z1

Pgap(h,θi)
√

1−σ (1−ρcb) fbI0
√

1−σ
P ′gap (h,θi)

Pgap (h,θi)
dh

=
(

1− Pgap
(
h = z1|θi

)√1−σ
)

(1−ρcb) fbI0 (38)

Icd =

z2∫
z1

Kopen(h)
√

1−σ (1−ρcd) (1− fb) I0
√

1−σ
K ′open (h)

Kopen (h)
dh

=
(

1−Kopen(h = z1)
√

1−σ
)

(1−ρcd) (1− fb) I0 (39)5

Irradiance absorbed by sunlit leaves per unit ground area is obtained as the sum of
direct beam, downward scattered beam, and diffuse components:

ISun = ISunb + ISunbs + ISund (40)

Combining Eqs. (33), (35), (36), and (40), we have:

ISunb =

z2∫
z1

(1−σ)fbI0 · P ′gap (h,θi)dh = (1−σ)
(
1− Pgap

(
h = z1|θi

))
fbI0 (41)10

ISunbs =

z2∫
z1

[
Pgap(h,θi)

√
1−σ (1−ρcb)

√
1−σ − Pgap (h,θi) (1−σ)

]
fbI0 · P ′gap (h,θi)dh

=

[ √
1−σ

1+
√

1−σ

(
1− Pgap

(
h = z1|θi

)1+√1−σ
)

(1−ρcb)−
(1−σ)

2(
1− Pgap

(
h = z1|θi

)2)] fbI0 (42)
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ISund =

z2∫
z1

Kopen(h)
√

1−σ (1−ρcd) (1− fb) I0
√

1−σ ·K ′open (h)dh

=

√
1−σ

1+
√

1−σ

(
1−Kopen(h = z1)1+

√
1−σ
)

(1−ρcd) (1− fb) I0 (43)

Note that σ is used instead of ρcd for the beam irradiance of sunlit leaves because
sunlit leaves scatter direct beam sunlight only once.

The irradiance absorbed by shaded leaves per unit ground area is simply the differ-5

ence between the total irradiance absorbed by the canopy and the irradiance absorbed
by sunlit leaves:

IShd = Ic − ISun (44)

The mean absorbed irradiance for sunlit and shaded canopy per leaf hemi-surface
area is then:10

QSun =
ISun

LAISun
(45)

QShd =
IShd

LAIShd
(46)

2.5 Modeling leaf photosynthesis and scaling up to canopy photosynthesis

The biochemical process of carbon dioxide assimilation by leaves can be considered
as a gas diffusion process through stomata. According to Fick’s law, the process is15

described as:

A = gc · (Ca −Ci) (47)

where A is the CO2 assimilation rate, gc is the stomatal conductance, and Ca and Ci
are ambient and intercellular CO2 concentrations, respectively.
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Field studies have firmly established the relationship between leaf stomatal con-
ductance and environmental conditions. Jarvis and McNaughton (1986) successfully
synthesize the response functions in a multiple-constraint model:

gc = gcmax

∏
f (xi) (48)

where gcmax is the maximum leaf stomatal conductance when environmental factors do5

not limit carbon uptake and f (xi) are scalars that account for the influences of various
environmental stresses on leaf stomatal conductance.

Different formulas have been developed to describe the response functions of pho-
tosynthesis to environmental factors. Here, we consider three main limiting factors im-
posed by radiation, temperature, and water on vegetation photosynthesis. The equa-10

tions developed for the dual-source dual-leaf (DSDL) model (Ding et al., 2014), Terres-
trial Ecosystem Model (Raich et al., 1991), and Biome-BGC models (Running et al.,
2004) are used to account for the influences of radiation, temperature, and vapor pres-
sure deficit (VPD), respectively:∏
f (xi) = f (Q) · f (T ) · f (VPD) (49)15

f (Q) =
kC +kQ

kQ
· Q
kQ +Q

(50)

f (T ) =
(T − Tmin)(T − Tmax)

(T − Tmin) (T − Tmax)− (T − Topt)2
(51)

f (VPD) =
VPDmax −VPD

VPDmax −VPDmin
(52)

where kC and kQ are the stress coefficients of PAR absorbed by plant leaves; Q is the
mean APAR for sunlit or shaded leaves per leaf hemi-surface area; Tmin, Topt, and Tmax20

are the minimum, optimum, and maximum temperature for photosynthetic activities,
respectively; and VPDmin and VPDmax are the minimum and maximum vapor pressure
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deficit, respectively. In the DSDL model, kC and kQ are 500 and 150 Wm−1, respec-
tively. Tmin, Topt, and Tmax are determined as 10, 28 and 48 ◦C for C4 crops (Kalfas et al.,
2011), and here we slightly lower their values to 0, 25, and 45 ◦C, respectively, for C3
plants. VPDmin and VPDmax are 0.65 and 4.6 kPa for deciduous forests, respectively, in
the Biome-BGC model (Heinsch et al., 2003).5

Due to different PAR absorption by sunlit and shaded leaves, the stomatal conduc-
tance for sunlit and shaded leaves need to be calculated separately as:

gcSun = gcmax · f (QSun) · f (T ) · f (VPD) (53)

gcShd = gcmax · f (QShd) · f (T ) · f (VPD) (54)

where gcSun and gcShd are the stomatal conductance for sunlit and shaded leaves,10

respectively, and QSun and QShd are the mean PAR absorbed by sunlit and shaded
leaves, respectively.

Given measured ambient CO2 concentrations, the closure of the formulation Eq. (47)
now requires the quantity of intercellular CO2 concentrations. Katul et al. (2000) com-
pared eight models and concluded that all reproduced the measured carbon assimi-15

lation rates well. Here, we employ Leuning’s method (Leuning, 1995) to estimate the
ratio of intercellular to ambient CO2 concentrations as:

Ci

Ca
= 1−

1− Γ
Ca

mL

(
1+

VPD
VPD0

)
(55)

where VPD is the ambient vapor pressure deficit; VPD0 is an empirical constant
describing the species sensitivity to ambient vapor pressure deficit; Γ is the leaf20

CO2 compensation point; Ca and Ci are ambient and intercellular CO2 concentra-
tions, respectively; and mL represents linear regression coefficients related to tree
species. Calibrated values for model parameters are mL = 4.0, Γ = 40µmolmol−1, and
VPD0 = 30kPa, respectively (Katul et al., 2000).
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Given modeled carbon assimilation rates at the leaf level, the total rate of carbon
assimilation at the canopy level can be scaled up as:

GPP = ASun ·LAISun +AShd ·LAIShd (56)

where GPP is canopy gross primary production, ASun and AShd are leaf-level carbon
assimilation rates for sunlit and shaded leaves, respectively, and LAISun and LAIShd are5

the sunlit and shaded leaf area index.

3 Study materials and model parameterization

We studied two deciduous forest sites: Harvard Forest (US-Ha1) in Massachusetts and
Bartlett Experimental Forest (US-Bar) in New Hampshire (Richardson et al., 2012).
Basic information is briefly summarized in Table 1 for each site. Although plot layouts10

set up for the fieldwork did not match the exact footprints of flux towers (Yang et al.,
2013), the measured tree structural attributes, such as tree density, are assumed to be
representative of the two study sites.

Flux towers measure energy and material fluxes between ecosystem and the atmo-
sphere continuously (Baldocchi et al., 2001). Measured data are provided as standard15

Level 2 products in the AmeriFlux database (http://ameriflux.ornl.gov/). The time steps
of available data are half-hourly for US-Bar and hourly for US-Ha1. The measurements
we used include estimates of gross primary production (GPP) derived with the eddy co-
variance technique (Baldocchi, 2003), and meteorological variables such as shortwave
solar radiation, temperature, vapor pressure deficit, and canopy-scale CO2 concentra-20

tion. Raw measurements of meteorological variables were used for analysis and miss-
ing values due to instrument malfunction or unsuitable micrometeorological conditions
were screened. However, we obtained GPP estimates from AmeriFlux Level 4 products
if they were not delivered in Level 2 products. Extraterrestrial solar radiation and solar
zenith angle are calculated as a function of geolocation (i.e., latitude and longitude),25

the day of year (DOY), and solar time of the day (Allen et al., 1998). If diffuse radiation
3692
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is missing from the measurements, we implement Muneer’s method to partition global
solar radiation into beam and diffuse components (Muneer, 2007):

(1− fb) = 1.006−0.317Kt +3.1241K 2
t −12.7616K 3

t +9.7166K 4
t (57)

where fb is the proportion of beam radiation in global incoming radiation, and Kt is the
hourly clearness index. Kt = I0/Ie, where I0 is global solar radiation on the canopy top5

and Ie is the extraterrestrial solar radiation.
We use typical parameter values from the literature for model parameterization. Be-

cause the spectral signatures of vegetation leaves and soil background differ in the
spectral bands of PAR and near infrared (Table 2), we perform model simulations for
these two discrete bands separately. Incident PAR is estimated to account for 47.5 %10

of incoming shortwave solar radiation, and the rest is attributed to the near infrared
band (Zhao et al., 2005). Maximum leaf stomatal conductance to H2O is estimated as
5.5 mms−1 for US-Bar and 7.2 mms−1 for US-Ha1 (Bonan, 2002; Ding et al., 2014),
and they are translated to maximum leaf stomatal conductance to CO2 assuming
that the temperature is 20 ◦C and the atmospheric pressure is 101.32 kPa (Pearcy15

et al., 1989). Heights for canopy top (z2) were measured to be 23.0 m for US-Ha1
and 19.0 m for US-Bar (Table 1), and heights for canopy bottom (z1) were estimated
as z1 = 0.15zz. Canopy structure in GORT is modeled with the ratios H/b = 2.0 and
b/R = 3.0 (Strahler et al., 1999). Parameter values defined for canopy structure are
somewhat arbitrary but are identical to our previous modeling efforts (Liu et al., 2008;20

Xin et al., 2012). The effects of tree structural parameters on model simulations are
further explored in our study by varying their values.

Model validation for vegetation photosynthesis is performed with time series data for
8 successive days and for entire years. Based on AmeriFlux biological data, measured
LAI were 4.7±0.2 on DOY 211 in 2004 at the US-Bar site and 4.84±0.78 on DOY25

234 in 2006 at the US-Ha1 site. Because field-measured LAI data were insufficient
to support model simulation for an entire calendar year, we obtained satellite-derived
LAI from the state-of-the-art MODIS (Moderate Resolution Imaging Spectroradiometer)
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products (Myneni et al., 2002). The standard MODIS products (MOD15A2) provide
8 day LAI estimates at 1000 m spatial resolution, and we derived 8 day mean LAI for
a 3pixel ·3 pixel window centered at each site. We screened cloudy observations based
on the Quality Control data in MOD15A2 and applied double logistic equations to fit
time series of cloud-free LAI observations (Li et al., 2014; Zhang et al., 2003).5

4 Results

4.1 Gap probability

The gap probabilities derived from the GORT model are shown in Fig. 2. As the il-
lumination zenith angle increases, more beams of sunlight are intercepted by leaves
and tree crowns, resulting in decreased gap probabilities for both between- and within-10

crown gaps. As LAI increases, within-crown gaps decrease but between-crown gaps
remain the same. The physical explanation underlying is simple: tree leaves are
clumped within each individual crown such that variations in LAI would not affect
between-crown gaps, which are only a function of crown shape, canopy structure, and
illumination geometry.15

Figure 3 further compares the gap probabilities modeled using GORT and Beer’s law.
For both models, gap probabilities decrease as solar zenith angle increases (Fig. 3a).
Modeled gap probabilities are close when canopy LAI is low. However, at high LAI, the
total gap derived from GORT is considerably greater than that modeled using Beer’s
law due to strong clumping effects. With an LAI of 4.0, the differences in gap probabili-20

ties are as much as 0.3 at the nadir, and in this case, more sunlight is allowed to trans-
mit to the ground surface in GORT than in classic radiative transfer models. Modeled
vertical structures of sunlight penetration are also shown to be different between GORT
and Beer’s law (Fig. 3b). The gap probability modeled using Beer’s law decreases ex-
ponentially as canopy depth increases, whereas the decrease in the GORT-modeled25

gap probability follows an inverse sigmoidal curve. The reason behind this can be ex-
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plained by the geometric factor: classic radiative transfer models assume that leaves
are randomly distributed within the canopy layer, but the GORT model assumes that
leaves are randomly distributed within individual crowns. Due to the ellipsoidal shape
of tree crowns, there are simply more leaves in the canopy center than near the canopy
top and canopy bottom, where the gap probability decreases more slowly.5

4.2 Model simulations over 8 day time periods

Figure 4 shows each component of the radiation regime at the US-Bar site. The dif-
fuse radiation modeled using Muneer’s method matches flux tower measurements and
accounts for 83.5 % of the variances (Fig. 4a). Because diffuse radiation was not mea-
sured at the US-Ha1 site, Muneer’s method was implemented to partition global radi-10

ation into diffuse and beam components for US-Ha1. Using the measured beam and
diffuse radiation, we simulate net radiation with GORT as a linear combination of two
discrete bands at PAR and near infrared. Modeled net radiation is highly correlated with
measured values (R2 = 0.998), demonstrating the ability of GORT to model radiation
absorption at the US-Bar site.15

Time series of each component for modeling canopy photosynthesis are shown in
Fig. 5. Given that total LAI remains the same over the course of several days, mod-
eled sunlit and shaded LAI have little day-to-day variability and only vary as a function
of solar zenith angle (Fig. 5a). As solar zenith angle decreases, sunlit LAI increases
but shaded LAI decreases. Because sunlit leaves receive more illumination, they have20

less radiation limitations on photosynthesis than shaded leaves (Fig. 5b). Tempera-
ture limitation generally decreases from morning until noon, while VPD limitation in-
creases. Although the chemical process of photosynthesis favors higher temperatures,
leaf stomata tend to close to reduce water loss when atmospheric dryness is high (Bo-
nan, 2002). Because short-term canopy CO2 concentrations vary with winds and con-25

vection between the ecosystem and the atmosphere, the ambient CO2 concentrations
exhibit the greatest variation from day to day (Fig. 5b), so do the modeled differences
between ambient and intercellular CO2 concentrations.
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Figure 6 shows time series of measured and modeled GPP for two sites over
eight successive days. GPP estimates match flux tower measurements well in terms
of the phase and amplitude. Daily peak GPP from tower measurements are over
30.0 µmolCO2 m−2 s−1 for both sites. It is also evident that modeled results can cap-
ture some subtle variations in GPP at the hourly time scale. However, GPP estimates5

are slightly higher on DOY 242 but lower on DOY 243 for US-Ha1. Note that we used
Muneer’s method for estimating the diffuse radiation in US-Ha1 because measure-
ments were not available. Considering uncertainties from the partition of global solar
radiation, results for both sites perform well in general.

Figure 7 statistically compares measured and modeled GPP. Our model is able to10

explain 84.0 and 88.3 % of the GPP variances for the US-Bar and US-Ha1 sites, re-
spectively. The regression lines are close to the 1 : 1 lines, and GPP is only slightly
overestimated for US-Bar and underestimated for US-Ha1. The root mean squared er-
rors (RMSE) are 3.71 and 3.08 µmolCO2 m−2 s−1 for US-Bar and US-Ha1, respectively.
The overall model performance is high considering that we did not attempt to perform15

model calibrations.

4.3 Model simulation over entire years

LAI derived from satellite observations (Fig. 8) are used as inputs to model daily GPP
over an entire year in addition to the 8 day model simulations. The double logistic fit-
ting lines are shown to reduce noises in time series of MODIS LAI due to the effects20

of clouds and solar and viewing geometry. Fitted LAI time series are slightly higher
from June to August and lower from September to December in 2006 at the US-Ha1
sites, but match with field measurements in general. The differences are likely to be
introduced by mismatched observation footprints and uncertainties in satellite retrieval
algorithms. The fitted time series of MODIS LAI are used for subsequent model simu-25

lations.
Figure 9 presents time series of measured and modeled GPP at the US-Bar site.

Modeled results capture the trend and subtle variations of measured GPP on a daily
3696
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basis. Most of the dips in the GPP time series occur on cloudy days when radiation is
the main limiting factor for vegetation photosynthesis. GPP values at US-Bar are slightly
overestimated from DOY 100–150 in 2004 possibly due to overestimation of the LAI.
Statistically, modeled results can explain 79.5, 89.7, and 89.3 % of the variance in daily
GPP for the years 2004, 2005, and 2006, respectively (Fig. 10). Regression slopes are5

close to the 1 : 1 lines except in the year 2004 due to overestimated GPP in the early
growing season. The RMSEs are 1.64, 1.31, and 1.56 gCm−2 day−1 for 2004, 2005,
and 2006, respectively.

Because measurements of atmospheric CO2 concentrations within the canopy are
largely unavailable for US-Ha1 (only approximately 41.4 % of the measurements are10

valid for use), we do not aggregate hourly results to daily sums but perform regres-
sion analysis using all available hourly data in Fig. 11. Correlations between mod-
eled and measured GPP are strong with an R2 value of 0.772 and an RMSE value
of 6.50 µmolCO2 m−2 s−1. The model performance is comparable to the simulation of
8 day data (Fig. 7), despite the fact that satellite-derived LAI instead of field measure-15

ments were used for yearly simulation.

5 Discussion

5.1 Influence of CO2 concentration on canopy photosynthesis

One important question is whether it is necessary to link radiative transfer with leaf
stomatal conductance for modeling photosynthesis, since some state-of-the-art bio-20

geochemical models such as Production Efficiency Models simply assume that veg-
etation GPP/NPP is linearly related to canopy radiation absorption (Xin et al., 2013).
To understand the performance of Production Efficiency Models, we conduct linear re-
gressions between modeled APAR and measured GPP as shown in Fig. 12. Indeed,
canopy APAR is positively related to flux tower GPP and explains 70.3 % of its variance.25

The R2 value increases slightly to 0.710 after accounting for the influences of temper-

3697

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/3675/2015/bgd-12-3675-2015-print.pdf
http://www.biogeosciences-discuss.net/12/3675/2015/bgd-12-3675-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 3675–3729, 2015

Modeling
photosynthesis by

linking GORT model
with biochemical

processes

Q. Xin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ature and vapor pressure. The model performance here is comparable to results from
other studies that evaluate Production Efficiency Models (Chen et al., 2011; Sjöström
et al., 2013; Xin et al., 2015).

However, there are strong partial correlations between canopy CO2 concentrations
and GPP even after accounting for radiation absorption. Figure 13a shows the residual5

plot of GPP vs. ambient CO2 concentrations when controlling on APAR. The slope is
negative because the ambient CO2 concentration, as regulated by vegetation photo-
synthesis and respiration activities, is normally high during the nighttime but low during
the daytime. The correlation coefficient is only −0.279, but it is statistically significant
(p value < 0.001) under a one-tailed partial correlation test. The data clearly allow re-10

jection of the null hypothesis that ambient CO2 concentration has no effects on canopy
photosynthesis. This relationship holds even after considering the factors of tempera-
ture and vapor pressure deficit (Fig. 13b). We therefore conclude that accounting for
the influence of ambient CO2 concentrations is essential for modeling daytime GPP at
the half-hourly time scale.15

5.2 Clumping effects in the GORT model

The clumping effects of leaves modeled using GORT influence canopy radiative trans-
fer processes and are worthy of further examination. Chen et al. (1997) demonstrated
that the net effects of leaf clumping could be modeled by introducing a clumping index.
We derive the clumping index by inverting their functions (Zhao et al., 2011) as follows:20

Ω= ln
(
Pgap
)
/ ln(PBeer) = − ln(Pgap)/kbLAI (58)

where Ω is the clumping index, Pgap is the gap probability modeled using GORT,
PBeer = exp(−kbLAI) is the gap probability modeled using Beer’s Law, kb is the extinc-
tion coefficient, and LAI is the leaf area index.

The behavior of the derived clumping index shown in Fig. 14 is intuitively inter-25

pretable. Leaves are more clumped when LAI is larger given constant tree structures.
However, when LAI is constant but tree density increases, leaves are distributed in
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a larger three-dimensional space, resulting in an increased clumping index. Similarly, if
the H/b ratio or b/R ratio decreases while other parameters are unchanged, the total
crown volume increases and leaves are less clumped. The sensitivity of the clumping
index to the illumination zenith angle varies when using different parameter sets. Our
simulated results are in line with the measured and modeled results in previous studies5

(Leblanc and Chen, 2001; Leblanc et al., 2002): the clumping indexes are insensitive
to zenith angles in some forest stands and increase with zenith angles in others. We do
not attempt to derive clumping indexes at solar zenith angle greater than 85◦ when gap
fractions typically approach zeros. These results have important biogeochemical impli-
cations: tree structure strongly influences radiation absorption and photosynthesis. In10

areas where canopy crowns should be treated as discrete objects, more sunlight can
reach the understory and ground surface, and vegetation GPP may not be as large as
that in continuous forests even if the LAIs are the same.

5.3 Assumptions and future improvements

It is also necessary to review our model assumptions and identify possible avenues15

for future improvements. First, we assume a spherical leaf angle distribution in the
model simulations. However, most deciduous forests have semi-horizontal leaf orien-
tation (Bonan, 2002) and an assumption of planophile or plagiophile LAD is likely to
be more appropriate for temperate and boreal broadleaf forests (Pisek et al., 2013).
Because LAD influences the proportions of sunlit and shaded leaf areas, the way in20

which modeled canopy GPP varies with LAD requires further exploration. Second, the
substrate under the canopy layer is assumed to be a Lambertian surface. Field studies
have observed the effects of bi-directional reflectance distribution function (BRDF) for
soils (Liang and Townshend, 1996), and coupled soil and vegetation model (Ni and
Li, 2000; Verhoef and Bach, 2007) should be tested to understand the effects of soil25

BRDF on canopy photosynthesis. Third, we assume maximum constant leaf stomatal
conductance over the growing season. It is worth examining how optimal leaf stomatal
conductance may evolve with leaf development stages and long-term environmental

3699

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/3675/2015/bgd-12-3675-2015-print.pdf
http://www.biogeosciences-discuss.net/12/3675/2015/bgd-12-3675-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 3675–3729, 2015

Modeling
photosynthesis by

linking GORT model
with biochemical

processes

Q. Xin et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

changes (Keenan et al., 2013; Lammertsma et al., 2011). Finally, our linkage between
radiative transfer and biochemical processes is still empirical. We may need to test
other mechanisms, for example, the biochemical model based on the enzyme kinetics
of rubisco and the regeneration of RuBP in response to light absorption (Farquhar and
Sharkey, 1982), in future studies.5

6 Conclusions

We propose and validate a new model that links GORT with biochemical processes
for modeling canopy photosynthesis. Several main conclusions can be drawn from this
study. First, the radiative transfer process within the canopy is one of the key factors in
modeling vegetation photosynthesis, and our proposed model simulates canopy photo-10

synthesis well. Modeled GPP robustly explained approximately 80 % or more variance
in GPP measurements at both half-hourly and daily time scales. Second, tree struc-
tures influence canopy gap probabilities and vegetation photosynthesis. Leaf clumping
could vary as a function of tree density, canopy depth, and crown shapes and affect
canopy sunlight interception. Finally, ambient CO2 concentration controls vegetation15

photosynthesis activities and should be included in state-of-the-art biogeochemical
models.

Accurate modeling of vegetation photosynthesis is essential for improving our under-
standing of the global carbon cycle. The model we developed is complementary to clas-
sic radiative transfer models, especially in sparse and intermediate forest stands. Al-20

though more validation efforts are required, the GORT-photosynthesis model is promis-
ing in terms of simulating photosynthesis for discontinuous plant canopies.

Author contributions. Qinchuan Xin developed the model code and performed the simulations.
Qinchuan Xin designed the experiments and Wenyu Li contributed to data analysis. Qinchuan
Xin and Peng Gong prepared the manuscript with contributions from all co-authors.25
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Table 1. Site information as obtained from the AmeriFlux website unless notified.

Site Site name Lat Lon Elevation Canopy Tree density Dominant species
code (◦ N) (◦W) (m) height (m) (treesha−1)∗

US-Ha1 Harvard Forest 42.5378 72.1715 340 23.0 1020±72 red oak, red maple
US-Bar Bartlett Experimental Forest 44.0646 71.2881 272 19.0 1432±67 American beech, red maple

∗ Data from Yao et al. (2011).
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Table 2. The spectral signature of leaf and soil background.

Spectral bands Leaf reflectancea Leaf transmittancea Soil reflectanceb

Photosynthetic active radiation 0.10 0.05 0.23
Near infrared 0.45 0.25 0.32

a Data from Bonan (2002).
b Data from Myneni et al. (1995).
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Table A1. Nomenclature.

Symbols Definition

Pgap (h,θi) total gap probability for beam light passing through the canopy
Pgap

(
n = 0|h,θi

)
gap probability for beam light passing through the canopy with-
out reaching any crowns

Pgap

(
n > 0|h,θi

)
gap probability for beam light passing through crowns without
being intercepted by leaves

P (s|h,θi) probability distribution function associated with within-crown
path length

P (s|n,z,h,θi) probability distribution of within-crown path length given that
a solar ray enters the crown at height h and angle θi

P (n|z,h,θi) probability distribution of the numbers of crowns intercepted by
the solar ray incident at angle θi, entering crowns at height z,
and then traveling to height h

λv tree density (m−2)
VΓ projected cylinder volume starting from the canopy top and ex-

tending to certain height
τ (θi,α) projected foliage area volume density (m−1)
kb (θi,α) extinction coefficient for beam radiation
kd extinction coefficient for diffuse radiation
Kopen (h) canopy openness factor to diffuse radiation
Kopen

(
n = 0|h

)
between-crown openness factor

Kopen

(
n > 0|h

)
within-crown openness factor

P ′gap (h,θi) the first derivative of gap probability Pgap (h,θi) with respect to
height

K ′open (h) the first derivative of the openness factor Kopen (h) with respect
to height

t0(h,θi) the proportion of unintercepted direct beam for semi-infinite ho-
mogeneous canopies
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Table A1. Continued.

Symbols Definition

R∞ff hemispherical–hemispherical reflectance for semi-infinite
homogeneous canopies

R∞df directional–hemispherical reflectance for semi-infinite ho-
mogeneous canopies

T∞ff hemispherical–hemispherical transmittance for semi-
infinite homogeneous canopies

T∞df directional–hemispherical transmittance for semi-infinite
homogeneous canopies

ρff(h) hemispherical–hemispherical reflectance for homogeneous
canopies with finite thickness

ρdf (h,θi) directional–hemispherical reflectance for homogeneous
canopies with finite thickness

tff(h) hemispherical–hemispherical transmittance for homoge-
neous canopies with finite thickness

tdf (h,θi) directional–hemispherical transmittance for homogeneous
canopies with finite thickness

ρ′ff(h) hemispherical–hemispherical reflectance for discontinuous
canopies

ρ′df (h,θi) directional–hemispherical reflectance for discontinuous
canopies

t′ff(h) hemispherical–hemispherical transmittance for discontinu-
ous canopies

t′df (h,θi) directional–hemispherical transmittance for discontinuous
canopies

δLAI(h) leaf area index within a thin layer δh at height h
LAI total leaf area index of the canopy
LAISun (θi) sunlit leaf area index given a solar illumination angle θi
LAIShd (θi) shaded leaf area index given a solar illumination angle θi
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Table A1. Continued.

Symbols Definition

LAI∗Sun(θi) sunlit leaf area for homogeneous canopies given a solar illumi-
nation angle θi

θi solar illumination angle
φ azimuth angle
σ leaf single scattering albedo
γ

√
1−σ

µi cos(θi)
ρl leaf reflectance
τl leaf transmittance
ρs soil reflectance
ρcb canopy reflection coefficient for beam irradiance
ρcd canopy reflection coefficient for diffuse irradiance
fb the fraction of incident beam radiation in total or global incoming

solar radiation
Ib (h,θi) unintercepted beam fluxes at canopy height h given a solar illu-

mination angle θi
Id (h) unintercepted diffuse fluxes at canopy height h
Ibt (h,θi) unintercepted and down scattered beam fluxes
Idt (h) unintercepted and down scattered diffuse fluxes
Ic total radiation absorbed by canopy elements
Icb beam radiation absorbed by canopy elements
Icd diffuse radiation absorbed by canopy elements
ISun total radiation absorbed by sunlit leaves
ISunb beam radiation directly absorbed by sunlit leaves
ISunbs down scattered beam radiation absorbed by sunlit leaves
ISund diffuse radiation absorbed by sunlit leaves
ISun total radiation absorbed by shaded leaves
QSun total radiation absorbed by sunlit leaves per leaf hemi-surface

area
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Table A1. Continued.

Symbols Definition

QShd total radiation absorbed by shaded leaves per leaf hemi-surface
area

QShd total radiation absorbed by shaded leaves per leaf hemi-surface
area

A leaf-level CO2 assimilation rate
gc stomatal conductance
Ca ambient CO2 concentrations
Ci intercellular CO2 concentrations
gcSun stomatal conductance for sunlit leaves
gcShd stomatal conductance for shaded leaves
gcmax maximum leaf stomatal conductance when environmental fac-

tors do not limit carbon uptake
f (xi) scalars that account for the influences of environmental

stresses on leaf stomatal conductance
f (Q) scalars that account for the influences of solar radiation on leaf

stomatal conductance
f (T ) scalars that account for the influences of temperature on leaf

stomatal conductance
f (VPD) scalars that account for the influences of vapor pressure deficit

on leaf stomatal conductance
kC stress coefficients of PAR absorbed by plant leaves for the tem-

perature scalar
kQ stress coefficients of PAR absorbed by plant leaves for the tem-

perature scalar
Tmin minimum temperature for photosynthetic activities
Tmax maximum temperature for photosynthetic activities
Topt optimum temperature for photosynthetic activities
VPD ambient vapor pressure deficit
VPDmin minimum vapor pressure deficit
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Table A1. Continued.

Symbols Definition

VPDmax maximum vapor pressure deficit
VPD0 an empirical constant describing the species sensitivity to am-

bient vapor pressure deficit
Γ leaf CO2 compensation point
mL regression coefficient for ambient and intercellular CO2 concen-

trations related to tree species
ASun leaf-level CO2 assimilation rate for sunlit leaves
AShd leaf-level CO2 assimilation rate for shaded leaves
Kt hourly clearness index
I0 total or global incoming solar radiation on a horizontal plane at

the canopy top
Ie extraterrestrial solar radiation
Ω foliage clumping index
PBeer gap probability for beam light passing through the canopy as

modeled using Beer’s Law
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Figure 1. A scheme of the canopy structure in the Geometric Optical Radiative Transfer model
as modified from Ni (1998).
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Figure 2. Canopy gap probabilities modeled using GORT with varied leaf area index. The total
gaps are between-crown gaps plus within-crown gaps. Tree structure parameters for the US-
Bar site are used in model simulation.
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Figure 3. Comparisons between canopy gap probabilities modeled using GORT and Beer’s law
as a function of (a) solar zenith angle and (b) canopy depth. The canopy depth is defined as
the distance from canopy top to a canopy height (h). Tree structure parameters for the US-Bar
site are used in GORT simulation.
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Figure 4. Time series of measured and modeled components of (a) the partition of global solar
radiation and (b) surface radiation balance are shown for 8 successive days. Extraterrestrial
radiation is derived following methods outlined in Allen et al. (1998). Muneer’s method is applied
to model diffuse radiation. The GORT model is applied to model net radiation. Data are shown
from the Day of Year 217 to 224 in 2004 for the US-Bar site.
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Figure 5. Time series of components of the photosynthesis calculation shown for (a) sunlit
and shaded leaf area index, (b) environmental limiting factors imposed by radiation absorption,
temperature, and vapor pressure deficit, and (c) CO2 concentration. Data are shown from the
Day of Year 217 to 224 in 2004 for the US-Bar site.
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Figure 6. Time series of modeled and measured GPP for 8 consecutive days at the sites
(a) US-Bar and (b) US-Ha1. Data are half-hourly at the US-Bar site and hourly at the US-Ha1
site. Data are shown from DOY 217 to 224 in 2004 for US-Bar, and from DOY 241 to 224 in
2006 for US-Ha1. Negative GPP measurements are set to zero. Missing points in modeled
GPP at the US-Ha1 site are due to missing measurement of canopy CO2 concentrations or
other meteorological variables.
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Figure 7. Regressions between modeled and measured GPP for 8 consecutive days at the
sites (a) US-Bar and (b) US-Ha1. Data are from DOY 217–224 in 2004 for US-Bar and from
DOY 241 to 224 in 2006 for US-Ha1. Only data during the photosynthetically active period (flux
tower GPP> 0.5 µmolCO2 m−2 s−1) are included in the regression. The solid lines denote the
1 : 1 lines, and the dashed lines denote the regression lines.
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Figure 8. Comparisons of field-measured and satellite-derived leaf area indexes (LAI) for the
sites (a) US-Bar in 2004 and (b) US-Ha1 in 2006. The solid grey lines denote MODIS LAI as
obtained from standard MODIS FPAR/LAI products (MOD15A2). The solid black lines denote
double logistic fitting lines that are applied to MODIS LAI. The solid points denote the measured
LAI as obtained from biological datasets from AmeriFlux website.
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Figure 9. Time series of modeled and measured daily GPP shown for (a) 2004, (b) 2005,
and (c) 2006 at the US-Bar site. Model simulation is performed at a half-hourly time step.
Measured and modeled half-hourly GPP are aggregated to generate daily time series with
units converted from µmolCO2 m−2 s−1 to gCm−2 day−1. Occational negative GPP measure-
ments are set to zeros. Missing points in modeled GPP time series are due to missing mea-
surements of meteorological variables during the daytime photosynthetically active period (flux
tower GPP> 0.5 µmolCO2 m−2 s−1).
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Figure 10. Regressions between modeled and measured daily GPP shown for (a) 2004,
(b) 2005, and (c) 2006 at the US-Bar site. Only data during the photosynthetically active period
(flux tower GPP> 0.5 gCm−2 day−1) are included in the regressions. The solid line denote the
1 : 1 lines, and the dashed lines denote the regression lines.
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Figure 11. Regressions between modeled and measured GPP for all available hourly data at
the US-Ha1 site in 2006. Only data from the photosynthetically active period are included in
the regression. The solid line denotes the 1 : 1 line, and the dashed line denotes the regression
line.
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Figure 12. Regressions between modeled absorbed photosynthetic active radiation (APAR)
and measured GPP. Half-hourly data are shown from DOY 217–224 in 2004 for US-Bar. The
influences of temperature and vapor pressure deficit are modeled based on Eqs. (51) and
(52). Only data during the photosynthetically active period are included in the regression. The
dashed lines denote the regression lines.
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Figure 13. Residual plots between GPP and measured ambient CO2 concentration and mod-
eled differences between ambient and intercelluar CO2 concentrations after controlling on the
effects of modeled (a) APAR and (b) APAR · f (T ) · f (VPD).
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Figure 14. Derived clumping index as a function of solar zenith angle for varied canopy param-
eters. Tree parameters for US-Bar are used for GORT simulations. The default simulation is for
a canopy composed of H/b = 2.0, b/R = 3.0, λ = 1432treesha−1, and LAI = 2.0, and labeled
curves are for the same case with only the labeled parameters varied.
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