Short-term changes of the mesozooplankton community and copepod gut pigment in the Chukchi Sea in autumn: Reflections of a strong wind event

4

5 K. Matsuno¹*, A. Yamaguchi², S. Nishino³, J. Inoue¹ and T. Kikuchi³

6 [1]{Arctic Environment Research Center, National Institute of Polar Research, 10-3 Midori-

7 cho, Tachikawa, Tokyo 190-8518, Japan}

- 8 [2]{Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido
- 9 University, 3–1–1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan}
- 10 [3]{Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho,
- 11 Yokosuka, Kanagawa 237-0061, Japan}
- 12

13 * Correspondence to: K. Matsuno (matsuno.kohei@nipr.ac.jp, k.matsuno@fish.hokudai.ac.jp)

14

15 Abstract

16 To evaluate the effect of atmospheric turbulence on a marine ecosystem, high-frequency 17 samplings (two to four times per day) of a mesozooplankton community and the gut pigment 18 of dominant copepods were performed at a fixed station in the Chukchi Sea from 10 to 25 19 September 2013. During the study period, a strong wind event (SWE) was observed on 18 20 September. After the SWE, the biomass of chlorophyll a (chl. a) increased, especially for 21 micro-size (> 10 μ m) fractions. The zooplankton abundance ranged from 23610 to 56809 ind. m⁻² and exhibited no clear changes as a result of the SWE. In terms of abundance, calanoid 22 23 copepods constituted the dominant taxa (mean: 57%), followed by barnacle larvae (31%). 24 Within the calanoid copepods, small-sized *Pseudocalanus* spp. (65%) and large-sized *Calanus* 25 glacialis (30%) dominated. In the population structure of C. glacialis, copepodid stage 5 (C5) 26 dominated, and the mean copepodid stage did not vary with the SWE. The dominance of accumulated lipids in C5 and C6 females with immature gonads indicated that they were 27 28 preparing for seasonal diapause. The gut pigment of C. glacialis C5 was higher at night and was correlated with ambient chl. a, and a significant increase was observed after the SWE 29

 $(2.6 \text{ vs. } 4.5 \text{ ng pigment ind.}^{-1})$. The grazing impact by C. glacialis C5 was estimated to be 1 2 4.14 mg C m⁻² dav⁻¹, which corresponded to 0.5–4.6% of the biomass of the micro-size 3 phytoplankton. Compared with the metabolic food requirement, C. glacialis feeding on phytoplankton accounted for 12.6% of their total food requirement. These facts suggest that 4 C. glacialis could not maintain their population by feeding solely on phytoplankton and that 5 other food sources (i.e., microzooplankton) must be important in autumn. As observed by the 6 7 increase in gut pigment, the temporal phytoplankton bloom, which is enhanced by the 8 atmospheric turbulence (SWE) in autumn, may have a positive effect on copepod nutrition.

9

10 **1** Introduction

11 In marine ecosystems of the western Arctic Ocean, mesozooplankton is an important food 12 resource for pelagic fishes and whales (Lowry et al., 2004; Ashjian et al., 2010). In terms of biomass, mesozooplankton in the western Arctic Ocean are dominated by Arctic copepods. 13 14 Within Arctic copepods, *Calanus glacialis* is a key species that dominates the zooplankton 15 biomass and commonly occurs in the continental shelf throughout the Arctic Ocean (Conover 16 and Huntley, 1991; Lane et al., 2008). The life cycle of C. glacialis is characterized by their 17 growth to C3–C4 at the epipelagic layer during the first summer; then, they descend to a 18 deeper layer and enter diapause, developing to C5 at the epipelagic layer in the second 19 summer before descending down to a deeper layer and moulting to the adult stage (C6) 20 utilizing stored lipids for energy (Longhurst et al., 1984; Ashjian et al., 2003; Falk-Petersen et Concerning seasonal changes, a comparison was made of the zooplankton 21 al., 2009). 22 community between summer and autumn (Llinás et al., 2009) and year-round changes based 23 on a two-week sampling interval at a drifting ice station in the Arctic basin (Ashjian et al., 24 2003). However, short-term changes in the zooplankton community based on high-frequency 25 samplings (two to four times per day) have not yet been reported.

Recently, a drastic reduction in the area of sea ice has been observed in the Arctic Ocean during summer; the sea ice reduction was greatest in the western Arctic Ocean (Stroeve et al., 2007; Comiso et al., 2008; Markus et al., 2009). Furthermore, increases in the frequency and magnitude of cyclones and a northward shift of their tracks during the summer have been reported in recent years (Serreze et al., 2000; Cabe et al., 2001; Zhang et al., 2004; Sepp and Jaagus, 2011). While the importance of such changes is clear, little information is available regarding their effect on the atmospheric turbulence in marine ecosystems in the

10 to 25 September 1 western Arctic Ocean. From 2013, high-frequency 2 samplings/observations were made at a fixed station in the Chukchi Sea and the occurrence of strong wind events (SWE), a vertical flux of nutrients and changes in the primary production 3 4 and microplankton communities were reported (Nishino et al., 2015; Yokoi et al., submitted). 5 However, no information is available regarding how the mesozooplankton community responds to such atmospheric turbulence and oceanic environmental changes. 6

In the present study, we evaluated the short-term changes of the mesozooplankton community in the Chukchi Sea during autumn based on the high-frequency samplings performed simultaneously by Nishino et al. (2015) and Yokoi et al. (submitted). We estimated the grazing impact of dominant copepods based on their gut pigments and evaluated the effect of the SWE (Nishino et al., 2015) and short-term changes of microplankton assemblages (Yokoi et al., submitted) on the mesozooplankton community in the Chukchi Sea in autumn.

14

15 2 Materials and Methods

16 **2.1 Field sampling**

17 Zooplankton samplings were obtained at a fixed station in the Chukchi Sea (72°45'N, 168°15'W, depth 56 m) from 10 to 25 September 2013 (Fig. 1) (Nishino et al., 2015). 18 19 Zooplankton samples were collected by vertical hauls with a NORPAC net (mouth diameter 45 cm, mesh size 335 µm; Motoda, 1957) and ring net (mouth diameter 80 cm, mesh size 335 20 21 μ m) from a 49 m depth to the sea surface two to four times per day (total of 47 times), including both day and night. The large mesh size of the NORPAC net (335 µm) may have 22 23 resulted in a slight underestimation of the smaller zooplankton species and early stages of larger zooplankton species. Zooplankton samples collected with the NORPAC nets were 24 25 preserved with 5% buffered formalin immediately after being brought on board. The ring net 26 samples were used for copepod gut pigment measurements. For the evaluation of the diel 27 vertical migration (DVM) of the copepods, day and night vertical stratified hauls were taken 28 with closing PCP nets (mouth diameter 45 cm, mesh size 62 µm; Kawamura, 1989) from two layers (0–20 m and 20–49 m) on 14 and 22 September. The samples from the PCP net were 29 30 preserved with 5% buffered formalin. During the sampling period, there was a horizontal advection of the water mass oscillation caused by tidal waves (Kawaguchi et al., 2015). To 31 minimize the effect of the tidal oscillation, day and night sampling times were set at 12-hour 32

intervals (day: 10:55-11:34, night: 22:27-22:40). The four-time CTD casts at each sampling
 date confirmed that the hydrography was similar for the day-night sampling period (the CTD
 data are presented as supplemental material).

4 At the fixed station, the temperature, salinity and chlorophyll a (chl. a) fluorescence were measured using the CTD (Sea-Bird Electronics Inc., SBE911Plus) casts at a frequency 5 6 of two to four times per day. To evaluate the size-fractionated chl. a, water samples from the 7 sea surface and the maximum fluorescence layer (16.8–27.7 m depth) were collected using a 8 bucket and rosette multi-sampler mounted on the CTD, respectively. The water samples were 9 filtered through 20, 10 and 2-µm pore-size membranes and GF/F filters, and chl. a was extracted with N,N-dimethylformamide and measured with a fluorometer (Turner Designs, 10 11 Inc., 10-AU-005).

12 2.2 Gut pigment

For fresh samples collected using ring nets, 10% v/v soda (saturated CO₂ in water) was added 13 to avoid copepod grazing, gut evacuation and the decomposition of gut pigments. Fresh 14 15 specimens of C. glacialis copepodid stage 5 (C5) were sorted under a stereomicroscope. The sorting of all of the specimens was performed under low temperatures and dim light 16 17 conditions within one hour. Batches of fifteen specimens were immersed in 6 ml of N,Ndimethylformamide and stored in dark, cold conditions overnight to extract the chlorophyll 18 19 and phaeopigments. After the extraction of the pigment, the chlorophyll and phaeopigments were measured using a fluorometer (Turner Designs, Inc., 10-AU-005). The chlorophyll and 20 phaeopigments were summed and expressed as gut pigments (ng pigment ind.⁻¹) (cf. Mackas 21 22 and Bohrer, 1976).

The amount gut pigment of *C. glacialis* C5 was higher at night than during the day. Assuming that grazing primarily occurred at night, the grazing rate (GR_{ind} , mg pigment ind.⁻¹ day⁻¹) of *C. glacialis* C5 was calculated using the following equation:

$$26 \qquad GR_{ind.} = GP \times k \times T / 10^6, \tag{1}$$

where *GP* is the individual gut pigment at night (ng pigment ind.⁻¹), *k* is the gut evacuation rate (0.017 min⁻¹, Tande and Båmstedt, 1985), and *T* is the length of the night (mean 13 hours = 780 min during the study period). The grazing impact of *C. glacialis* C5 on micro-size (> 10 µm) chl. *a* (*GI*, % on chl. *a* biomass day⁻¹) was calculated using the following equation: 2 where *N* is the abundance of *C. glacialis* C5 (ind. m^{-2}) and *Int. chl. a* is the biomass of large-3 sized (> 10 µm) chl. *a* (mg m⁻²).

4 **2.3 Zooplankton community**

5 In the laboratory, identification and enumeration by taxa were performed on zooplankton 6 samples collected using NORPAC nets under a stereomicroscope. For the dominant taxa 7 (calanoid copepods), identification was performed at the species and copepodid stage levels. 8 For species identification of calanoid copepods, we referred mostly to Brodsky (1967) and 9 Frost (1974) for Calanus spp., Miller (1988) for Neocalanus spp. and Frost (1989) for Pseudocalanus spp. For Pseudocalanus spp., species identification was performed only for 10 11 late copepodid stage C5 females/males (C5F/M) and C6F/M, and their early copepodid stages 12 (C1–C4) were treated as *Pseudocalanus* spp.

For the evaluation of the DVM of large dominant copepods, we enumerated *C*. *glacialis* from PCP net samples. For *C. glacialis*, the lipid accumulation of C5 was classified into three categories: I (the oil droplet length (ODL) was 0–4% of the prosome length (PL)), II (ODL was 4–40% of PL) and III (ODL was > 40% of PL). The gonad maturation of *C*. *glacialis* C6F was also classified into three categories: I (immature), II (small oocytes in the ovary or oviduct) and III (large eggs or distended, opaque, filled-in oviducts). For this gonad maturation index, we cited that of *C. hyperboreus* (Hirche and Niehoff, 1996).

A species diversity index (H') in each sample was calculated using the equation:

$$H' = -\sum n / Ni \times \ln n / Ni$$

where *n* is the abundance (ind. m^{-2}) of the *ith* species and *Ni* is the abundance (ind. m^{-2}) of the total calanoid copepods in the sample (Shannon and Weaver, 1949). Pielou evenness (*J*^{$^{-1}$}) was also calculated using the equation:

25
$$J'=H'/\ln(s)$$

20

26 where *s* is the total number of observed species in the community (Pielou, 1966).

From the NORPAC net samples, the mean copepodid stage (*MCS*) of *C. glacialis* was calculated using the following equation:

1
$$MCS = \frac{\sum_{i=1}^{6} i \times Ai}{\sum_{i=1}^{6} Ai},$$
 (3)

where *i* is the number of the copepodid stage (1–6 indicates C1–C6) and Ai (ind. m⁻²) is the abundance of the *i*th copepodid stage (cf. Marin, 1987).

4 During the study period, a SWE was observed on approximately 19 to 22 September 5 (Kawaguchi et al., 2015; Nishino et al., 2015). According to Kawaguchi et al. (2015), there were meteorologically and oceanographically distinct periods between 10 and 18 September 6 7 and 19 and 26 September, represented as terms I and II, respectively. Term II was 8 characterized by longer, stronger northeasterly winds, which continued for several days 9 between 19 and 22 September, the average intensity of which was greater than 13 m s⁻¹. To evaluate the effect of the SWE, the abundances of each zooplankton taxon and species were 10 compared "before the SWE (10-18 September)" and "after the SWE (19-25 September)" 11 12 using the U-test. This statistical analysis was performed using Stat View.

13 3 Results

14 **3.1** Hydrography and chlorophyll *a*

15 During the sampling period, the temperature ranged from -1.5 to 3.3°C and a thermocline was observed at a depth of approximately 25 m (Fig. 2a). Cold water below 0°C continuously 16 17 persisted below the thermocline, whereas the temperature above the thermocline decreased 18 from 3.3 to 1.5°C during the study period (Fig. 2a). The salinity ranged from 31.1 to 32.8, 19 and a halocline was observed at approximately 25 m, which ran parallel to the thermocline 20 (Fig. 2b). The salinity below the halocline was constant (ca. > 32), whereas the salinity in the 21 upper layer increased from 31.1 to 31.6 throughout the study period. Chl. a ranged from 0.08 to 3.25 mg m⁻³ and increased after the SWE (Fig. 2c). The T-S diagram showed that the 22 23 hydrographic conditions in the upper layer changed temporally; thus, the temperature 24 decreased, whereas the salinity increased during the study period (Fig. 2d).

25 **3.2 Zooplankton community**

The zooplankton abundance ranged from 23610 to 56809 ind. m^{-2} , and the calanoid copepods and barnacle larvae composed 57% and 31% of the community, respectively (Table 1). For the calanoid copepods, 15 species belonging to nine genera were identified. Among them,

Pseudocalanus spp. and C. glacialis dominated and composed 65% and 30% of the total 1 2 copepods, respectively. The shannon species diversity and Pielou evenness for the copepods 3 community were 1.87 ± 0.12 and 0.81 ± 0.06 , respectively. According to a comparison of 4 time periods before and after the SWE, the total zooplankton abundance, the Shannon species 5 diversity and the Pielou evenness did not change, whereas one calanoid copepod, 6 Centropages abdominalis, and the cyclopoid copepods increased after the SWE (Table 1). 7 However, one calanoid copepod, *Metridia pacifica*; appendicularians; barnacle larvae; 8 euphausiids; and gymnosomes (Clione limacina) decreased after the SWE.

9 3.3 Calanus glacialis

Throughout the study period, the biomass of *C. glacialis* ranged from 1990 to 14554 ind. m⁻² and no significant changes were detected after the SWE (Fig. 3a, Table 1). For the population structure, all of the copepodid stages (C1 to C6F/M) were present, and C5 was the most dominant stage (36%) of the population (Fig. 3). The *MCS* did not vary with the SWE (Fig. 3a). Throughout the study period, the lipid accumulation of C5 was high (Fig. 3b) and the gonad maturation of C6F was dominated by immature specimens (Fig. 3c). These parameters exhibited no significant changes with regard to the SWE (*U*-test, p = 0.285-0.303).

On both 14 and 22 September, the C1–C4 and C5 populations of *C. glacialis* were present mostly at lower layers (20–49 m) during the daytime, and they migrated to upper layers (0–20 m) at night (Fig. 4). It should be noted that approximately half of the C5 population remained in the lower layer both during the day and at night. The lipid accumulation was higher for the C5 population residing in the lower layer. C6F was present at a lower layer throughout the day.

The gut pigment of *C. glacialis* C5 ranged from 0.6 to 12.3 ng pigment ind.⁻¹ and showed a significant increase after the SWE (mean values: 2.6 vs. 4.5 ng pigment ind.⁻¹, *U*test, p < 0.01) (Fig. 5a). In a comparison between day and night samplings, most dates, except 18 and 23 September, exhibited higher gut pigment levels at night by a factor of two to five times greater than those observed during the day. In both day and night samplings, the gut pigments were correlated with the biomass of chl. a (p < 0.05) (Fig. 5b).

The population grazing rate of *C. glacialis* C5 ranged from 0.04–0.28 mg pigment m⁻² day⁻¹, peaking on 20 September (Fig. 6a) and increasing significantly after the SWE (0.11 vs. 0.18 mg pigment m⁻² day⁻¹, *U*-test, p < 0.05). During the study period, chl. *a* peaked on 18 1 September and the micro-size chl. a (> 10 µm) dominated (54% of the total chl. a), especially 2 after the SWE (66%) (Fig. 6b). The grazing impact of *C. glacialis* C5 on the micro-size chl. a3 ranged from 0.5–4.6% chl. a biomass day⁻¹ and was high before the SWE from 10 to 15 4 September (Fig. 6c).

5

6 4 Discussion

7

4.1 Zooplankton community

The zooplankton community in the Chukchi Sea is known to have large spatial and temporal 8 9 changes (Springer et al., 1989; Llinás et al., 2009; Matsuno et al., 2011). The total zooplankton abundance in this study was approximately half (mean: 34059 ind. m⁻²) the 10 abundance reported by Matsuno et al. (2012) on the Chukchi shelf (mean: 75683 ind. m⁻²), 11 12 with a low abundance of small copepods (Pseudocalanus spp. and cyclopoids) and a remarkable absence of the Arctic copepod Metridia longa. For the hydrography of this station, 13 14 Nishino et al. (2015) noted that the upper, warm and less-saline water was the Pacific summer water, which was transported to the Arctic Ocean during summer, and the cold saline water of 15 the lower layer was the remnant brine of the Pacific winter water, which was transported to 16 the Arctic Ocean during winter. Geographically, the present station is located at a primary 17 18 stream of water from the Pacific Ocean (Weingartner et al., 2005). The high abundance of the 19 Pacific copepod M. pacifica and Neocalanus spp. and the absence of the Arctic M. longa in 20 this study was thought to be a reflection of the water mass covering the station. For these 21 reasons (less small copepods and high abundance of Pacific copepods), the Shannon species 22 diversity and Pielou evenness in this study (1.87 and 0.81, respectively) are higher than the reported values for the entire Chukchi Sea (1.79 and 0.62, respectively, calculated from 23 Matsuno et al., 2012). 24

Seasonal characteristics during summer included the dominance of the meroplankton (barnacle and bivalve larvae), which composed 39% of the total zooplankton abundance (Hopcroft et al., 2010). The dominance of barnacle larvae also occurred in this study (Table 1). Benthic barnacle adults release their larvae when they meet phytoplankton blooms (Crisp, 1962; Clare and Walker, 1986), and their larvae spend two to three weeks in the water column and then settle (Herz, 1933). The abundance of barnacle larvae in this study (mean 10430 ind. m^{-2}) was 13–55% lower than that in summer (19114–79899 ind. m^{-2} , Matsuno et al., 2011). It also should be noted that the abundance of barnacle larvae decreased significantly during
 the study period (Table 1). These facts suggest that most of the barnacle larvae may have
 ended in the planktonic phase and settled to the sea bottom during the study period (autumn).

4 Concerning the effect of the SWE, a few taxa and species showed significant changes 5 in abundance (Table 1). Among the dominant species, cyclopoid copepods increased after the SWE (Table 1). The generation length of cyclopoid copepods was reported to be two to three 6 7 months in the Arctic Ocean (Dvoretsky and Dvoretsky, 2009). At ambient temperatures (-1.5 8 to 3.3°C), the egg hatching of this taxon is estimated to be 11–41 days (Nielsen et al., 2002). 9 These facts suggest that the increase of cyclopoid copepods would not be caused by their 10 reproduction within the study period (16 days). An alternative cause, the horizontal advection 11 of the water mass during the study period, which was reported by Nishino et al. (2015), 12 should be considered. These results suggest that the effect of the SWE on zooplankton abundance was relatively small because of the longer generation length of the 13 14 mesozooplankton in this region.

15 **4.2** Population structure of *C. glacialis*

Concerning the population structure, Ashjian et al. (2003) reported that C. glacialis around the 16 17 Northwind Abyssal Plain was dominated by C5 and C6F in September. In the present study, 18 the population structure of C. glacialis was dominated by C5 (Fig. 3a) and their MCS 19 (mean±sd: 3.77±0.20) was similar to the reported value for autumn in this region (3.58, 20 Matsuno et al., 2012). Most of the C6F had immature gonads, and no ovigerous C6Fs were 21 observed (Fig. 3c). These results corresponded with the year-round observation around the 22 Northwind Abyssal Plain (Ashjian et al., 2003). Calanus glacialis C6F is known to occur at the epipelagic layer in April, immediately before sea-ice melting (Kosobokova, 1999), and 23 reproduces with grazing ice algae and the ice-edge bloom (Campbell et al., 2009). Thus, 24 25 because this study period (September) greatly varied with regards to their reproduction period (April), most C6Fs were considered to have immature gonads when residing in the lower 26 27 layer (diapause).

The nocturnal ascent DVM, which is related to night-time grazing on phytoplankton, was reported for *C. glacialis* in the Arctic Ocean during spring and autumn (Runge and Ingram, 1988; Conover and Huntley, 1991). In this study, the DVM was observed for C5 (*U*test, p < 0.01) (Fig. 4). At high-latitude seas, the magnitude of the *Calanus* spp. DVM is known to vary with the season and copepodid stage, and their DVM intensity is greater during

spring and autumn when the diel changes in light penetration are large (Falkenhaug et al., 1 2 1997). No DVM of Calanus spp. was reported for the lipids accumulated in C5 (Falk-Petersen et al., 2008). In the present study, approximately half of the C5 population, which 3 4 was characterized as having a large lipid accumulation, remained in the lower layer 5 throughout the day (Fig. 4). The deep C5 population may have already completed lipid accumulation and ceased DVM in the study period (September), whereas the remaining C5 6 7 population with an active DVM may have grazed on phytoplankton in the upper layer during the night and stored lipids in preparation for diapause. These results suggest that the C. 8 9 glacialis population in this study was at the seasonal phase just before entering diapause, and 10 this interpretation corresponded well with their life cycle in this region (Ashjian et al., 2003).

11 4.3 Grazing of *C. glacialis*

The of *C. glacialis* in the Arctic Ocean is known to exhibit diel changes and higher gut pigment levels at night than during the day (Conover and Huntley, 1991). Higher gut pigment levels at night were also observed in this study (*U*-test, p < 0.001) (Fig. 5a). The gut pigments of *C. glacialis* were correlated with the biomass of chl. *a* (Fig. 5b) and increased during the high chl. *a* period after the SWE (Fig. 5a). These facts suggest that *C. glacialis* feeding responded to the small phytoplankton bloom, which was enhanced by the nutrient supply and vertical mixing caused by the SWE (Nishino et al., 2015; Yokoi et al., submitted).

19 Concerning the gut pigment measurement, the underestimation by the decomposition 20 of the phytoplankton pigment through the gut passage has been reported (Conover et al., 1986; Head, 1992). This underestimation is reported to be approximately 0.1–10% of grazing 21 22 (Conover et al., 1986) and varies with light conditions, grazing behaviour and phytoplankton species (Head, 1992). To estimate the grazing impact, data on the gut evacuation rate (k, k)23 24 min^{-1}) are needed (Mauchline, 1998). The gut evacuation rate is known to have a positive 25 correlation with temperature (Dam and Petersen, 1988). From the equation for k and the 26 temperature (T: °C): k = 0.00941+0.002575T (Mauchline, 1998) and ambient temperature in this study (T: -1.5 to 3.3°C), k is estimated to be 0.0055–0.0179 min⁻¹. This range covers the 27 value applied in the present study (k = 0.017, Tande and Båmstedt, 1985). The value was also 28 in the range observed by our independent laboratory experiments in September 2010 29 (0.006–0.041, Matsuno et al., unpublished data). These facts suggest that the value applied in 30 this study (k = 0.017) was reasonable for C. glacialis in this region. 31

32 Assuming that half of the C5 population performed nocturnal ascent and grazed on

phytoplankton at night, using the C:Chl. *a* ratio (29.9, Sherr et al., 2003), the grazing impact 1 2 (mg C m^{-2} day⁻¹) of C. glacialis C5 was calculated (Table 2). The grazing impact of this study was estimated to be 4.14 mg C m⁻² day⁻¹. We also estimated the food requirement of C. 3 4 glacialis C5 to support their metabolism under ambient temperatures (Ikeda and Motoda, 5 1978; Ikeda et al., 2001). The potential contribution of phytoplankton's food-to-food requirements was 12.6% for C. glacialis C5 (Table 2). This result indicates that C. glacialis 6 7 C5 could not maintain its population solely on phytoplankton food and that other food sources 8 are important. Regarding food for C. glacialis, Campbell et al. (2009) reported that this 9 species prefers microzooplankton rather than phytoplankton in the Chukchi Sea, and Levinsen 10 et al. (2000) noted that the micro-size (> 10 μ m) ciliates and dinoflagellates are important 11 food sources during post-bloom. For the microplankton community during the study period, Yokoi et al. (submitted) noted that not only diatoms $(1.64-14.11 \text{ cells ml}^{-1})$ but also 12 dinoflagellates $(0.54-2.42 \text{ cells ml}^{-1})$ and ciliates $(0.14-2.76 \text{ cells ml}^{-1})$ were abundant. 13 14 From the fatty acid composition, C. glacialis is reported to have a strong connection with the 15 microbial food web (Stevens et al., 2004). However, the low abundance of dinoflagellates and ciliates during the study period makes it difficult to assume that they were an important 16 17 food source for C. glacialis in this study. As an alternative explanation, because most C. glacialis C5 contained an abundance of lipids in their body (Fig. 3b), they may have entered 18 19 diapause in the Chukchi Sea during autumn.

20 **5** Conclusions

21 Throughout this study, short-term changes in the mesozooplankton community and the 22 grazing impact of C. glacialis were evaluated in the Chukchi Sea during autumn. During the 23 16-day sampling/observation period, the zooplankton community exhibited no clear changes related to the SWE and the dominant copepods prepared for diapause (i.e., stored lipids in the 24 25 pre-adult stage or as adults with immature gonads). However, the feeding intensity of the 26 dominant copepods increased with the reflection of the temporal phytoplankton bloom, which 27 was enhanced by the SWE (Nishino et al., 2015). Thus, the temporal phytoplankton bloom 28 caused by the atmospheric turbulence (SWE) during autumn may have had a positive indirect 29 effect on the mesozooplankton (SWE \rightarrow nutrient supply from the deep layer \rightarrow small phytoplankton bloom \rightarrow copepod feeding) within a short period. These facts suggest that C. 30 31 glacialis may obtain a benefit from an extension of the primary production season with more 32 turbulence and a later freeze date of the Chukchi Sea.

1 Author contributions

S.N., J.I. and T.K. designed and coordinated this research project. S.N. and J.I. were the chief
scientists during the MR13-06 cruise of R.V. *Mirai*. K.M. collected the zooplankton samples,
measured copepod gut pigments during the cruise and performed species identification and
enumeration of the zooplankton samples in the laboratory. K.M. and A.Y. wrote the
manuscript, with contributions from all of the co-authors.

7 Acknowledgements

8 We are grateful to the captain, officers and crew of the R.V. *Mirai* (JAMSTEC), operated by 9 GODI, for their help in the sample collection. This study was supported by the Green 10 Network of Excellence Program's (GRENE Program) Arctic Climate Change Research 11 Project: 'Rapid Change of the Arctic Climate System and its Global Influences.' This study 12 was partially supported by a Grant-in-Aid for Scientific Research (A) (24248032) and a 13 Grant-in-Aid for Scientific Research on Innovative Areas (24110005) from the JSPS.

1 References

- Ashjian, C. J., Campbell, R. G., Welch, H. E., Butler, M., and Keuren, D. V.: Annual cycle in
 abundance, distribution, and size in relation to hydrography of important copepod
 species in the western Arctic Ocean, Deep-Sea Res. I, 50, 1235–1261, 2003.
- Ashjian, C. J., Braund, S. R., Campbell, R. G., George, J. C. C., Kruse, J., Maslowski, W.,
 Moore, S. E., Nicolson, C. R., Okkonen, S. R., Sherr, B. F., Sherr, E. B., and Spitz, Y.
 H.: Climate variability, oceanography, bowhead whale distribution, and Iñupiat
 subsistence whaling near Barrow, Alaska, Arctic, 63, 179–194, 2010.
- Brodsky, K. A.: Calanoida of the far-eastern seas and polar basin of the USSR. Israel Program
 Scientific Translation, Jerusalem, 1967.
- Cabe, G. J., Clark, M. P., and Serreze, M. C.: Trends in northern hemisphere surface cyclone
 frequency and intensity, J. Climate, 14, 2763–2768, 2001.
- Campbell, R. G., Sherr, E. B., Ashjian, C. J., Plourde, S., Sherr, B. F., Hill, V., and Stockwell,
 D. A.: Mesozooplankton prey preference and grazing impact in the western Arctic
 Ocean, Deep-Sea Res. II, 56, 1274–1289, 2009.
- Clare, A. S. and Walker, G.: Further studies on the control of the hatching process in *Balanus balanoides* (L), J. Exp. Mar. Biol. Ecol., 97, 295–304, 1986.
- Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic
 sea ice cover, Geophys. Res. Lett., 35, L01703. doi: 10.1029/2007GL031972, 2008.
- Conover, R. J. and Huntley, M.: Copepods in ice-covered seas-distribution, adaptations to
 seasonally limited food, metabolism, growth patterns and life cycle strategies in polar
 seas, J. Mar. Syst., 2, 1–41, 1991.
- Conover, R. J., Durvasula, R., Roy, S., and Wang, R.: Probable loss of chlorophyll-derived
 pigments during passage through the gut of zooplankton, and some of the
 consequences, Limnol. Oceanogr., 31, 878–887, 1986.
- Crisp, D. J.: Release of larvae by barnacles in response to the available food supply, Anim.
 Behav., 10, 382–383, 1962.
- Dam, H. G. and Peterson, W. T.: The effect of temperature on the gut clearance rate constant
 of planktonic copepods, J. Exp. Mar. Biol. Ecol., 123, 1–14, 1988.

1	Dvoretsky, V. G. and Dvoretsky, A. G.: Life cycle of Oithona similis (Copepoda:
2	Cyclopoida) in Kola Bay (Barents Sea), Mar. Biol., 156, 1433-1446, 2009.
3	Falkenhaug, T., Tande, K. S., and Semenova, T.: Diel, seasonal and ontogenetic variations in
4	the vertical distributions of four marine copepods, Mar. Ecol. Prog. Ser., 149,
5	105–119, 1997.
6	Falk-Petersen, S., Leu, E., Berge, J., Kwasniewski, S., Nygård, H., Røstad, A., Keskinen, E.,
7 8	Thormar, J., von Quillfeldt, C., Wold, A., and Gulliksen, B.: Vertical migration in high Arctic waters during autumn 2004, Deep-Sea Res. II, 55, 2275–2284, 2008.
9 10	Falk-Petersen, S., Mayzaud, P., Kattner, G., and Sargent, J. R.: Lipids and life strategy of Arctic <i>Calanus</i> , Mar. Biol. Res., 5, 18–39, 2009.
11 12	Frost, B. W.: <i>Calanus marshallae</i> , a new species of calanoid copepod closely allied to the sibling species <i>C. finmarchicus</i> and <i>C. glacialis</i> , Mar. Biol., 26, 77–99, 1974.
13 14	Frost, B. W.: A taxonomy of the marine calanoid copepod genus <i>Pseudocalanus</i> , Can. J. Zool., 67, 525–551, 1989.
15 16 17	 Gnaiger, E.: Calculation of energetic and biochemical equivalents of respiratory oxygen consumption, in: Polarographic oxygen sensors, edited by: Gnaiger, E., and Horstner, H., Springer-Verlag, Berlin, 337–345, 1983.
18 19	Grebmeier, J. M.: Shifting patterns of life in the pacific Arctic and sub-Arctic Seas, Annu. Rev. Mar. Sci., 4, 63–78, 2012.
20 21	Head, E. J. H.: Gut pigment accumulation and destruction by arctic copepods <i>in vitro</i> and <i>in situ</i> , Mar. Biol., 112, 583–592, 1992.
22 23	Herz, L. E.: The morphology of the later stages of <i>Balanus crenatus</i> Bruguiere, Biol. Bull., 64, 432–442, 1933.
24 25	Hirche, HJ. and Niehoff, B.: Reproduction of the Arctic copepods <i>Calanus hyperboreus</i> in the Greenland sea-field and laboratory observations, Polar Biol., 16, 209–219, 1996.
26 27 28	Hirche, HJ., Baumann, M. E. M., Kattner, G., and Gradinger, R.: Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea, J. Mar. Syst., 2, 477–494, 1991.

1 2	Hopcroft, R. T., Kosobokova, K. N., and Pinchuk, A. I.: Zooplankton community patterns in the Chukchi Sea during summer 2004, Deep-Sea Res. II, 57, 27–39, 2010.
3 4	Ikeda, T. and Motoda, S.: Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas, Fish. Bull., 76, 357–367, 1978.
5	Ikeda, T., Kanno, Y., Ozaki, K., and Shinada, A.: Metabolic rates of epipelagic marine
6 7	copepods as a function of body mass and temperature, Mar. Biol., 139, 587-596, 2001.
8	Kawaguchi, Y., Nishino, S., and Inoue, J.: Fixed-point observation of mixed layer evolution
9 10	in the seasonally ice-free Chukchi Sea: turbulent mixing due to gale winds and internal gravity waves. J. Phys. Oceanogr., 45, 836–853, 2015.
11 12	Kawamura, A.: Fast sinking mouth ring for closing Norpac net, Bull. Japan. Soc. Sci. Fish., 55, 1121, 1989.
13 14	Kosobokova, K. N.: The reproduction cycle and life history of the Arctic copepod <i>Calanus glacialis</i> in the White Sea, Polar Biol., 22, 254–263, 1999.
15	Lane, P. V. Z., Llinás, L., Smith, S. L., and Pilz, D.: Zooplankton distribution in the western
16 17	Arctic during summer 2002: Hydrographic habitats and implications for food chain dynamics, J. Mar. Syst., 70, 97–133, 2008.
18	
19 20	Levinsen, H., Turner, J. T., Nielsen, T. G., and Hansen, B. W.: On the trophic coupling between protists and copepods in arctic marine ecosystem, Mar. Ecol. Prog. Ser., 204, 65–77, 2000.
21 22	Llinás, L., Pickart, R. S., Mathis, J. T., and Smith, S. L.: Zooplankton inside an Arctic Ocean cold-core eddy: probable origin and fate, Deep-Sea Res. II, 56, 1290–1304, 2009.
23 24	Longhurst, A., Sameoto, D., and Herman, A.: Vertical distribution of Arctic zooplankton in summer: eastern Canadian archipelago, J. Plankton Res., 6, 137–168, 1984.
25 26	Lowry, L. F., Sheffield, G., and George, C.: Bowhead whale feeding in the Alaskan Beaufort Sea, based on stomach contents analyses. J. Cetacean Res. Manage., 6, 215–223,
27	2004.
28 29	Mackas, D. and Bohrer, R.: Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J. Exp. Mar. Biol. Ecol., 25, 77–85, 1976.

1	Marin, V.: The oceanographic structure of eastern Scotia Sea-IV. Distribution of copepod
2	species in relation to hydrography in 1981, Deep-Sea Res. A, 34, 105–121, 1987.
3	Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice melt onset,
4	freezeup, and melt season length. J. Geophys. Res., 114, C12024. doi:
5	10.1029/2009JC005436, 2009.
6	Matsuno, K., Yamaguchi, A., Hirawake, T., and Imai, I.: Year-toyear changes of the
7	mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and
8	2007, 2008. Polar Biol., 34, 1349–1360, 2011.
9	Matsuno, K., Yamaguchi, A., Shimada, K., and Imai, I.: Horizontal distribution of calanoid
10	copepods in the western Arctic Ocean during the summer of 2008. Polar Sci., 6,
11	105–119, 2012.
12	Mauchline, J.: The biology of calanoid copepods, Adv. Mar. Biol., 33, 1–660, 1998.
13	Miller, C. B.: Neocalanus flemingeri, a new species of calanidae (copepoda: calanoida) from
14	the subarctic Pacific Ocean, with a comparative redescription of Neocalanus
15	plumchrus (Marukawa) 1921, Prog. Oceanog., 20, 223-273, 1988.
16	Motoda, S.: North Pacific standard plankton net, Inf. Bull. Planktol. Jpn., 4, 13–15, 1957.
17	Nielsen, T. G., Møller, E. F., Satapoomin, S., Ringuette, M., and Hopcroft, R. R.: Egg
18	hatching rate of the cyclopoid copepod Oithona similis in arctic and temperate waters,
19	Mar. Ecol. Prog. Ser., 236, 301–306, 2002.
20	Nishino, S., Kawaguchi, Y., Inoue, J., Hirawake, T., Fujiwara, A., Futsuki, R., Onodera, J.,
21	and Aoyama, M.: Nutrient supply and biological response to wind-induced mixing,
22	inertial motion, internal waves, and currents in the northern Chukchi Sea, J. Geophys.
23	Res. C, 120, 1975–1992, 2015.
24	Pielou, E. C.: The measurement of diversity in different types of biological collections. J.
25	Theor. Biol., 13, 131–144, 1966.
26	
20	Runge, J. A. and Ingram, R. G.: Underice grazing by planktonic, calanoid copepods in
27	Runge, J. A. and Ingram, R. G.: Underice grazing by planktonic, calanoid copepods in relation to a bloom of ice microalgae in southeastern Hudson Bay, Limnol.
27	relation to a bloom of ice microalgae in southeastern Hudson Bay, Limnol.

1	Serreze, M. C., Walsh, J. E., Chapin III, F. S., Osterkamp, T., Dyurgerov, M., Romanovsky,
2	V., Oechel, W. C., Morison, J., Zhang, T., and Barry, R. G. Observational evidence
3	of recent change in the northern high-latitude environment, Climate Change, 46,
4	159–207, 2000.
5	Shannon, C. E., and Weaver, W.: The Mathematical Theory of Communication. The
6	University of Illinois Press, Urbana, 1949.
7	Sherr, E. B., Sherr, B. F., Wheeler, P. A., and Thompson, K.: Temporal and spatial variation
8	in stocks of autotrophic and heterotrophic microbes in the upper water column of the
9	central Arctic Ocean, Deep-Sea Res. I, 50, 557-571, 2003.
10	Springer, A. M., McRoy, C. P., and Turco, K. R.: The paradox of pelagic food web in the
11	northern Bering Sea-II. Zooplankton communities. Cont. Shelf Res., 9, 359-386,
12	1989.
13	Stevens, C. J., Deibel, D, and Parrish, C. C.: Copepod omnivory in the North Water Polynya
14	(Baffin Bay) during autumn: spatial patterns in lipid composition. Deep-Sea Res. I,
15	51, 1637–1658, 2004.
16	Stroeve, J., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline:
17	Faster than forecast. Geophys. Res. Lett., 34, L09501. doi: 10.1029/2007GL029703,
18	2007.
19	Tande, K. S. and Bámstedt, U.: Grazing rates of the copepods Calanus glacialis and C.
20	finmarchicus in arctic waters of the Barents Sea, Mar. Biol., 87, 251-258, 1985.
21	Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y., and Cavalieri, D.:
22	Circulation on the north central Chukchi Sea shelf, Deep-Sea Res. II, 52, 3150-3174,
23	2005.
24	Yokoi, N., Matsuno, K., Ichinomiya, M., Yamaguchi, A., Nishino, S., Onodera, J., Inoue, J.,
25	and Kikuchi, T.: Short-term changes of microplankton community in the Chukchi
26	Sea during autumn: Consequence of strong wind event, Biogeosciences, submitted.
27	Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S., and Ikeda, M.: Climatology and interannual
28	variability of Arctic cyclone activity: 1948-2002, J. Climate, 17, 2300-2317, 2004.
29	

1 Figure captions

2	Figure 1. Location of the sampling station in the Chukchi Sea from 10 to 25 September 2013.
3	Arrows indicate the major current flows in this region (cf. Grebmeier, 2012).
4	Figure 2. Temporal changes in the temperature (a), salinity (b), chlorophyll a (c) and T-S
5	diagram (d) at a fixed-station in the Chukchi Sea from 10 to 25 September 2013.
6	Figure 3. Temporal changes in the population structure (a), lipid accumulation of C5 (b) and
7	gonad maturation of C6F (c) of Calanus glacialis at a fixed station in the Chukchi
8	Sea from 10 to 25 September 2013.
9	Figure 4. Diel vertical distribution of Calanus glacialis at a fixed-station in the Chukchi Sea,
10	14 and 22 September 2013. For C5, the mean lipid accumulation score $(1-3)$ is also
11	shown. Note that no C6Ms were collected.
12	Figure 5. Temporal and diel changes in the gut pigment of <i>Calanus glacialis</i> C5 (a), and the
12 13	Figure 5. Temporal and diel changes in the gut pigment of <i>Calanus glacialis</i> C5 (a), and the relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed
13	relationship between the gut pigment of C5 and chlorophyll a biomass (b) at a fixed
13 14	relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines
13 14 15	relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines indicate regressions for day and night, respectively. The whole regression line is
13 14 15 16	relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines indicate regressions for day and night, respectively. The whole regression line is drawn with all of the data from both day and night in panel b. **: $p < 0.01$, *: $p <$
13 14 15 16 17	relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines indicate regressions for day and night, respectively. The whole regression line is drawn with all of the data from both day and night in panel b. **: $p < 0.01$, *: $p < 0.05$.
13 14 15 16 17 18	 relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines indicate regressions for day and night, respectively. The whole regression line is drawn with all of the data from both day and night in panel b. **: <i>p</i> < 0.01, *: <i>p</i> < 0.05. Figure 6. Temporal changes in the grazing rate of <i>Calanus glacialis</i> C5 (a), integrated size-
 13 14 15 16 17 18 19 	 relationship between the gut pigment of C5 and chlorophyll <i>a</i> biomass (b) at a fixed station in the Chukchi Sea from 10 to 25 September 2013. Dotted and dashed lines indicate regressions for day and night, respectively. The whole regression line is drawn with all of the data from both day and night in panel b. **: <i>p</i> < 0.01, *: <i>p</i> < 0.05. Figure 6. Temporal changes in the grazing rate of <i>Calanus glacialis</i> C5 (a), integrated size-fractionated chlorophyll <i>a</i> (b) and grazing impact of <i>C. glacialis</i> C5 on micro-

Table 1. List of mesozooplankton taxa and calanoid copepod species and their mean abundances (ind. m⁻²) at a fixed station in the Chukchi Sea from 10 to 18 September, before the strong wind event (SWE), and 19–25 September (after the SWE), 2013.
Values are mean±1sd. For calanoid copepods, Shannon species diversity and Pielou evenness were calculated. Differences between the two periods (before vs. after the SWE) were tested with the *U*-test. *: p < 0.05, **: p < 0.01, ***: p < 0.0001, NS: not significant.

nov organizednik				
Species/taxa	Before SWE	After SWE		
Population parameters	(10-18 Sep., n = 22) $(19-25 Sep., n = 25)$		U-test	
Calanoid copepods				
Acartia longiremis	604±281	542±279	NS	
Calanus glacialis	6714±2679	5658±3061	NS	
Calanus hyperboreus	0	5±17	NS	
Centropages abdominalis	9±23	29±38	*	
Eucalanus bungii	6±20	6±19	NS	
Eurytemora herdmani	0	2±12	NS	
Metridia pacifica	251±150	154±139	*	
Microcalanus pygmaeus	6±19	3±14	NS	
Neocalanus cristatus	6±19	5±19	NS	
Neocalanus flemingeri	46±44	65±79	NS	
Neocalanus plumchrus	12±26	15±32	NS	
Pseudocalanus acuspes	3393±1239	3254±1651	NS	
Pseudocalanus mimus	1194±728	1296±837	NS	
Pseudocalanus minutus	2178±768	2387±864	NS	
Pseudocalanus newmani	2805±949	2774±1448	NS	
Pseudocalanus spp. (C1-C4)	2758±1114	2980±1196	NS	
Cyclopoid copepods	511±263	1153±974	**	
Poecilostomatoid copepods	0	3±14	NS	
Amphipoda	9±24	5±19	NS	

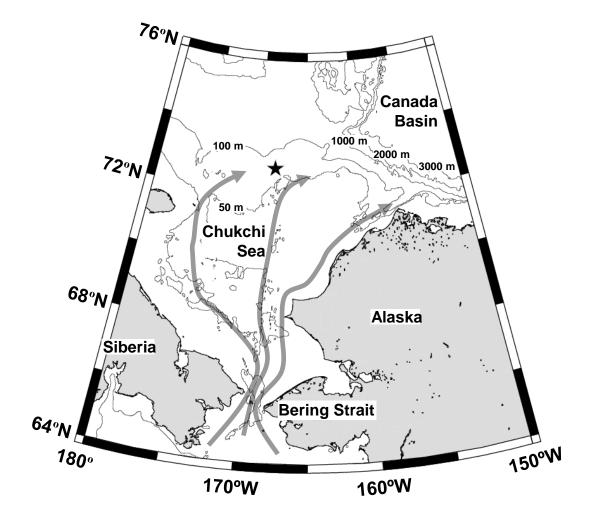
Appendicularia	707±413 442±337		*
Barnacle larva	12118±2399	8945±2341	***
Chaetognatha	1281±531	1039±504	NS
Echinodermata larva	31±45	61±79	NS
Eubrachyura zoea	41±60	26±52	NS
Euphausiacea	18±31	3±14	*
Gymnosomata	172±133 84±88		**
Hydrozoa	209±127	205±119	NS
Isopoda	3±14	3±14	NS
Polychaeta	1124±311	1005±435	NS
Thecosomata	16±43	8±30	NS
Total zooplankton	36223±5984	32154±7716	NS
Shannon species diversity	1.85±0.11 1.90±0.11		NS
Pielou evenness	0.80±0.05	0.05 0.82±0.06	

Table 2. *Calanus glacialis*: Comparison of food requirements (ingestion) and grazing rate on
phytoplankton and the proportion of phytoplankton food in the Chukchi Sea from 10
to 25 September 2013. Food requirements were calculated from the metabolism,
which was estimated by the body mass, temperature (Ikeda et al., 2001), respiratory
quotient (Gnaiger, 1983) and individual carbon budget (Ikeda and Motoda, 1978).
For details on the values used in this calculation, see the footnotes.

Day/night	Flux (mg C $m^{-2} day^{-1}$)			Droportion of phytoplankton
Day/night (depth, temp.: <i>T</i> , period)	Metabolism	Food requirement (ingestion) (A)	Grazing rate on phytoplankton (B)	- Proportion of phytoplankton food (%: B/A)
Day-lower layer	5.64	14.11	_	-
(20–49 m, –0.74°C, 11 h)				
Night-upper layer	4.12	10.29	_	-
(0–20 m, 2.31°C, 13 h)				
Night-lower layer	3.34	8.34	_	-
(20–49 m, –0.74°C, 13 h)				
Daily-water column	13.10	32.74	4.14	12.6

7 Dry mass (*DM*: mg ind.⁻¹) of *C. glacialis* C5 was 0.654 (Matsuno et al., unpublished data).

8 Oxygen consumption (μ L O₂ ind.⁻¹ h⁻¹) = exp(-0.399+0.801×Ln(*DM*)+0.069×*T*)) (Ikeda et al.,


9 2001).

10 Respiratory quotient ([CO₂/O₂]) was assumed to be 0.97 (Gnaiger, 1983).

11 Metabolism was assumed to be 0.4 (40%) of ingestion (Ikeda and Motoda, 1978).

12 Mean abundance of C. glacialis C5 was 2176 ind. m^{-2} during this study period.

13 C:Chl ratio was 29.9 for September in this region (Sherr et al., 2003).

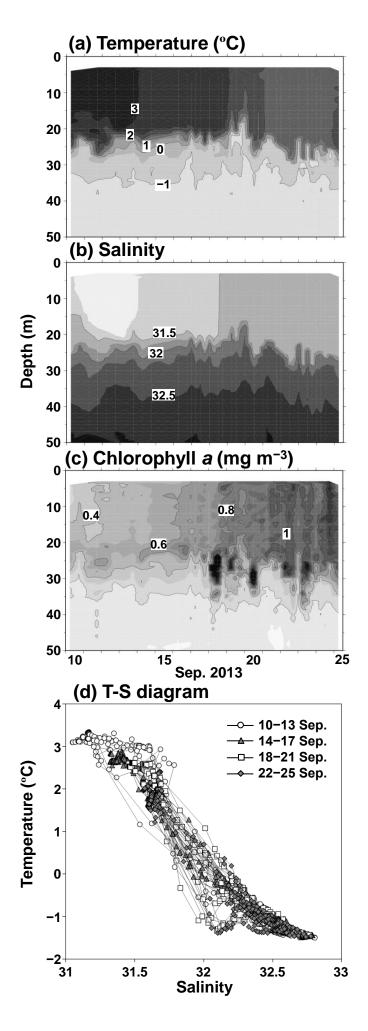
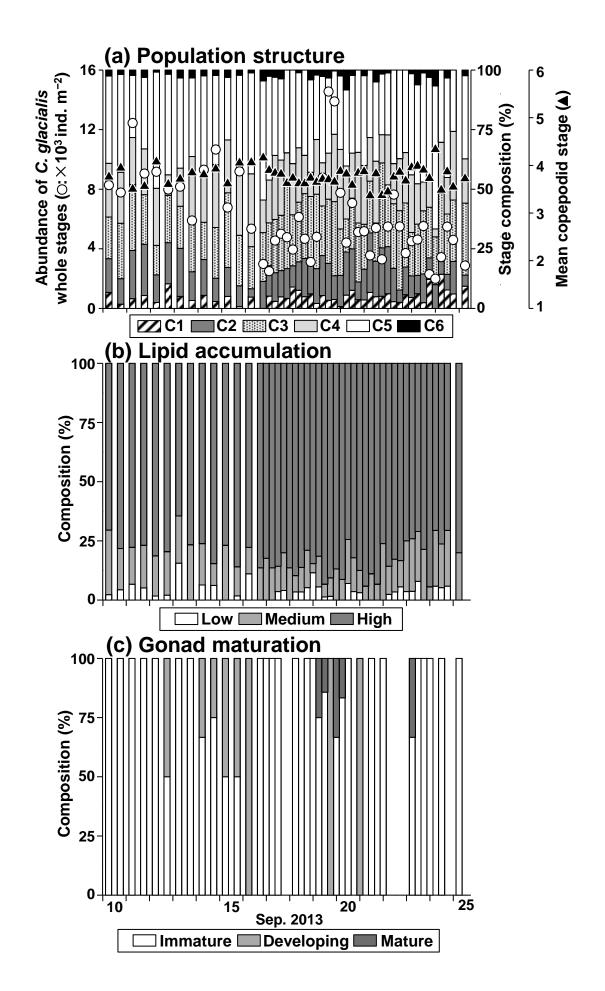
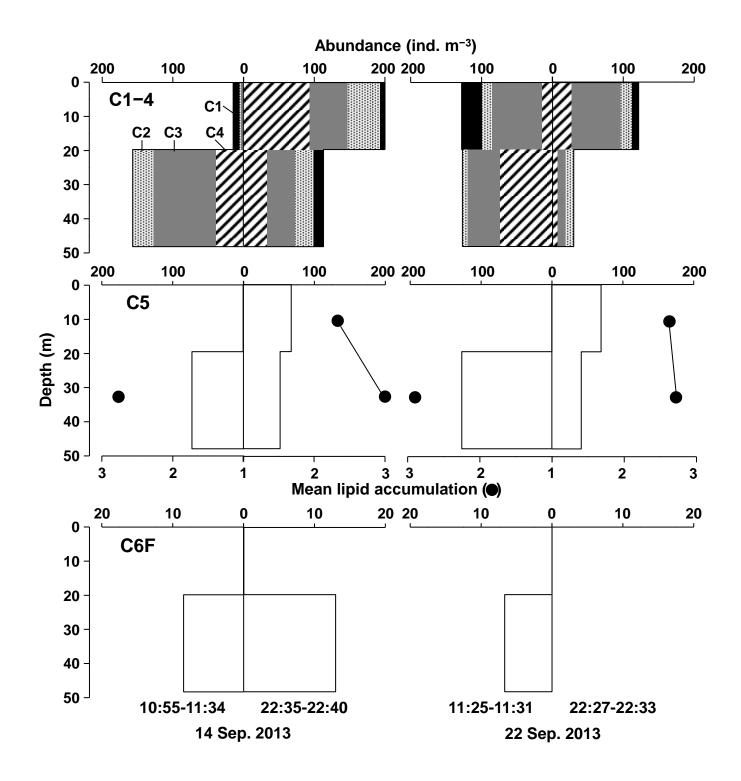
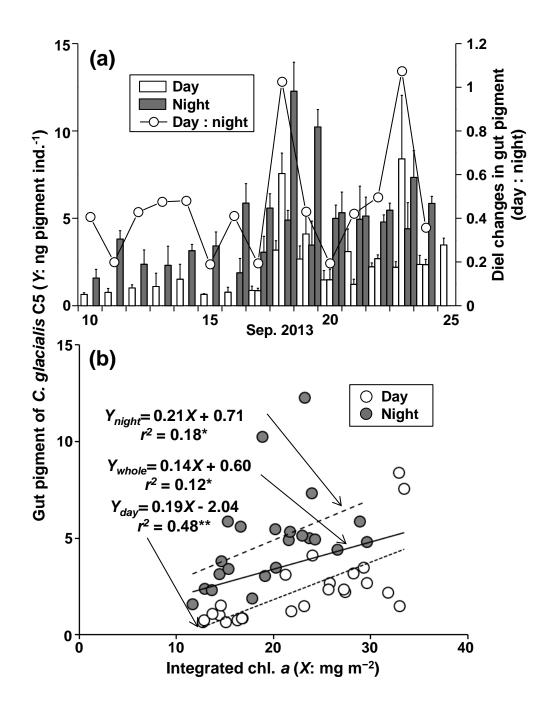





Fig. 2. (Matsuno et al.)

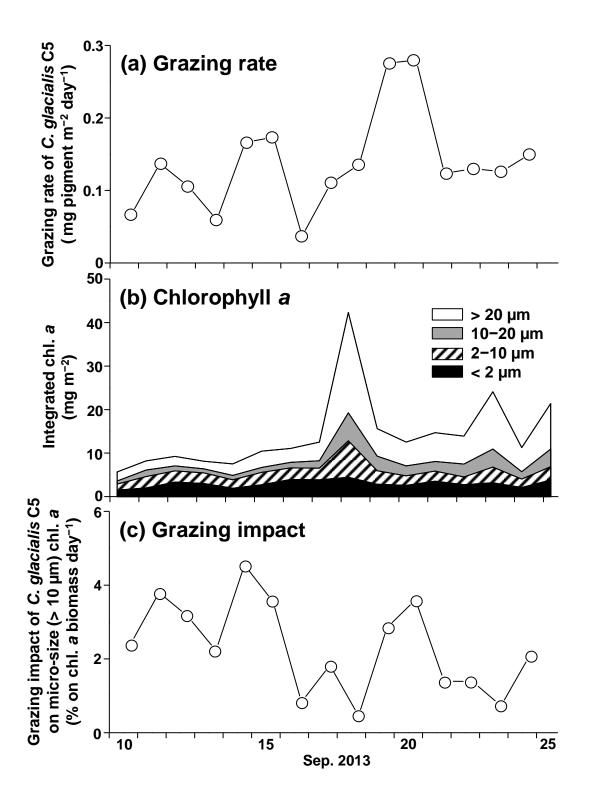


Fig. 6. (Matsuno et al.)