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Abstract 7	

Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and 8	

abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., 9	

nitrogen, phosphorus). This competition is ecologically significant, since it regulates the 10	

dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, 11	

calibrate, and test a nutrient competition model that accounts for multiple soil nutrients 12	

interacting with multiple biotic and abiotic consumers. As applied here for tropical 13	

forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients 14	

(NH4
+, NO3

-, and POx (representing the sum of PO4
3-, HPO4

2-, and H2PO4
-)) and five 15	

potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and 16	

mineral surfaces). The competition is formulated with a quasi-steady-state chemical 17	

equilibrium approximation to account for substrate (multiple substrates share one 18	

consumer) and consumer (multiple consumers compete for one substrate) effects. N-19	

COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, 20	

free phosphorus, sorbed phosphorus, and NH4
+ pools at a tropical forest site (Tapajos). 21	

The overall model posterior uncertainty was moderately well constrained. Our sensitivity 22	

analysis revealed that soil nutrient competition was primarily regulated by consumer-23	



substrate affinity rather than environmental factors such as soil temperature or soil 24	

moisture. Our results also imply that under strong nutrient limitation, relative 25	

competitiveness depends strongly on the competitor functional traits (affinity and nutrient 26	

carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen 27	

and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and 28	

Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen 29	

and phosphorus elevated conditions, the model accurately replicated the experimentally 30	

observed competition among nutrient consumers. Although we used as many 31	

observations as we could obtain, more nutrient addition experiments in tropical systems 32	

would greatly benefit model testing and calibration. In summary, the N-COM model 33	

provides an ecologically consistent representation of nutrient competition appropriate for 34	

land BGC models integrated in Earth System Models.  35	



1 Introduction 36	

Atmospheric CO2 concentrations have risen sharply since the pre-industrial era, 37	

primarily due to anthropogenic fossil fuel combustion and land use and land cover 38	

change [Houghton, 2003; Le Quéré et al., 2013; Marland et al., 2003]. Terrestrial 39	

ecosystems mitigate the increasing atmospheric CO2 trend by absorbing roughly a quarter 40	

of anthropogenic CO2 emissions [Le Quéré et al., 2009]. However, it is still an open 41	

question whether the terrestrial CO2 sink can be sustained [Sokolov et al., 2008; Zaehle et 42	

al., 2010], given that plant productivity is generally limited by soil nutrients [Elser et al., 43	

2007; LeBauer and Treseder, 2008; Vitousek and Howarth, 1991] and soil nutrients could 44	

be quickly depleted through biogeochemical [Chauhan et al., 1981; Nordin et al., 2001; 45	

Shen et al., 2011] and hydrological [Dise and Wright, 1995; Perakis and Hedin, 2002] 46	

processes. Therefore, a holistic representation of soil nutrient dynamics is critically 47	

important to model the responses of terrestrial ecosystem CO2 uptake to climate change. 48	

Until recently, land models integrated in Earth System Models (ESMs) have 49	

largely ignored the close coupling between soil nutrient dynamics and the carbon cycle, 50	

although the impacts of soil nutrients (primarily Nitrogen and Phosphorus) regulating 51	

carbon-climate feedback are clearly required in ecosystem biogeochemistry and land 52	

models [Zaehle and Dalmonech, 2011; Zhang et al., 2011]. For example, none of the land 53	

models in C4MIP (Coupled Climate Carbon Cycle Model Intercomparison Project phase 54	

4) had coupled Carbon and Nitrogen dynamics [Friedlingstein et al., 2006]. The current 55	

generation of CMIP5 [Anav et al., 2013] models used for the recent IPCC 56	

(Intergovernmental Panel on Climate Change) assessment had only two members 57	

(CLM4CN: Thornton et al. [2007]; and BNU-ESM: [Ji et al., 2014]) that considered 58	



nitrogen regulation of terrestrial carbon dynamics. However, as discussed below, several 59	

recent studies have shown that these models had large biases in most of the individual 60	

processes important for simulating nutrient dynamics. We therefore believe that, at the 61	

global scale, no credible representation of nutrient constraints on terrestrial carbon 62	

cycling yet exists in ESMs. 63	

Further, none of the CMIP5 ESMs included a phosphorus cycle, which is likely 64	

important for tropical forest carbon budgets [Vitousek and Sanford, 1986]. The recent 65	

IPCC report highlights the importance of nitrogen and phosphorus availability on land 66	

carbon storage, even though the phosphorus limitation effect is uncertain [Stocker et al., 67	

2013]. Since the next generation of ESMs participating in the CMIP6 synthesis will 68	

continue to focus on the impacts of a changing climate on terrestrial CO2 and abiotic 69	

exchanges with the atmosphere [Provides, 2014], developing ecologically realistic and 70	

observationally-constrained representations of soil nutrient dynamics and carbon-nutrient 71	

interactions in ESMs is critical. 72	

The importance of nutrient limitations in terrestrial ecosystems has been widely 73	

demonstrated by nitrogen and phosphorus fertilization experiments [Elser et al., 2007]. 74	

For instance, plant Net Primary Production (NPP) is enhanced in plots with nutrient 75	

addition [LeBauer and Treseder, 2008]. Similarly, plant growth can be stimulated due to 76	

atmospheric nitrogen deposition [Matson et al., 2002]. Boreal forests are strongly limited 77	

by nitrogen availability [Vitousek and Howarth, 1991], because low temperatures reduce 78	

nitrogen mineralization [Bonan and Cleve, 1992] and N2 fixation [DeLuca et al., 2008; 79	

DeLuca et al., 2002]. In contrast, tropical forests are often phosphorus limited [Vitousek 80	

et al., 2010], since tropical soils are old and phosphorus derived from parent material 81	



weathering has been depleted through long-term pedogenesis processes [Vitousek and 82	

Farrington, 1997; Walker and Syers, 1976]. In natural ecosystems without external 83	

nutrients inputs (e.g., N deposition), soil nitrogen or phosphorus (or both) are likely 84	

insufficient to satisfy both plant and microorganism demands [Vitousek and Farrington, 85	

1997]. Plants have to compete with microorganisms and mineral surfaces [Kaye and 86	

Hart, 1997; Schimel et al., 1989] to obtain sufficient nutrients to sustain their biological 87	

processes (e.g., photosynthesis, respiration). Therefore, it is critical to improve the 88	

representation of nutrient competition to accurately model how terrestrial ecosystems will 89	

respond to perturbations in soil nutrient dynamics (e.g., from elevated nitrogen deposition 90	

or CO2 fertilization-induced nutrient requirements). 91	

Intense competition between plants and microorganisms is a well-observed 92	

phenomenon in nutrient-limited systems [Hodge et al., 2000a; Johnson, 1992; Kaye and 93	

Hart, 1997]. Previously, plants were thought to be initial losers in nutrient competition, 94	

due to the fact that microbes are more intimately associated with substrates [Woodmansee 95	

et al., 1981]. However, increasing observational evidence indicates that plants compete 96	

effectively with soil microorganisms [Schimel and Bennett, 2004] under certain 97	

circumstances; sometime even outcompeting them and suppressing microbial growth [Hu 98	

et al., 2001; J Wang and Lars, 1997]. 15N isotope studies have also demonstrated that 99	

plants can capture a large fraction of added nitrogen [Hodge et al., 2000b; Marion et al., 100	

1982]. In the short term (days to months), plants maintain their competitiveness mainly 101	

through (1) establishing mycorrhizal fungi associations [Drake et al., 2011; Rillig et al., 102	

1998], which help plants acquire organic and inorganic forms of nitrogen [Hobbie and 103	

Hobbie, 2006; Hodge and Fitter, 2010] and (2) root exudation of extracellular enzymes 104	



that decompose rhizosphere soil organic matter [Phillips et al., 2011]. In the relatively 105	

longer term (months to years), morphological adjustment occurs; for example, plants 106	

allocate more carbon to fine roots to explore laterally and deeper [Iversen et al., 2011; 107	

Jackson et al., 2009]. Finally, over the course of years to decades, plant succession can 108	

occur [Medvigy et al., 2009; Moorcroft et al., 2001] and the new plant demography will 109	

need to be considered to represent nutrient controls on this time scale. 110	

Given these patterns from the observational literature, nutrient competition is 111	

either absent or over-simplified in existing Earth System Models (ESMs). One common 112	

representation of plant-microbe competition is that plants compete poorly against 113	

microbes in resource acquisition. For example, the O-CN land model [Zaehle and Friend, 114	

2010] assumes that soil decomposing microbes have the priority to immobilize soil 115	

mineral nitrogen. After microbes meet their demands, the remaining nitrogen is then 116	

available for plant uptake.  117	

Another treatment in ESM land models is that microbial and plant nutrient 118	

acquisition competitiveness is based on their relative demands. For example, CLM4CN 119	

[Thornton et al., 2007] assumes that the plant and microbial nitrogen demands are 120	

satisfied simultaneously. Under nitrogen infertile conditions, all nitrogen demands in the 121	

system are down-regulated proportional to the individual demands and subject to 122	

available soil mineral nitrogen. This approach led to unrealistic diurnal cycles of gross 123	

primary production (GPP), with midday depressions in GPP occurring because of 124	

predicted diurnal depletion of the soil mineral nitrogen pool. Emergent impacts of this 125	

conceptualization of nutrient constraints on GPP resulted in poor predictions compared to 126	

observations, with smaller than observed plant C growth responses to N deposition 127	



[Thomas et al., 2013a] and larger than observed responses to N fertilization [Thomas et 128	

al., 2013b]. Further, most biogeochemistry models not integrated in ESMs also adopt one 129	

of these approaches. For instance, Biome-BGC [Running and Coughlan, 1988], 130	

CENTURY [Parton et al., 1988], CASA (Carnegie-Ames-Stanford Approach; [Potter et 131	

al., 1993]) and the Terrestrial Ecosystem Model - TEM [McGuire et al., 1992] assume 132	

that available nutrients preferentially satisfy the soil microbial immobilization demand.  133	

We believe the two conceptualizations of competition used in ESMs substantially 134	

over-simplify competitive interactions between plants and microbes and lead to biases in 135	

carbon cycle predictions. To begin to address the problems with these simplified 136	

approaches, Tang and Riley (2013) showed that complex consumer-substrate networks 137	

can be represented with an approach (called Equilibrium Chemical Approximation (ECA) 138	

kinetics) that simultaneously resolves multiple demands for multiple substrates, and 139	

demonstrated that the approach was consistent with observed litter decomposition 140	

observations. ECA kinetics has also recently been applied to analyze the emergent 141	

temperature response of SOM decomposition, considering equilibrium, non-equilibrium, 142	

and enzyme temperature sensitivities and abiotic interactions with mineral surfaces [Tang 143	

and Riley, 2014]. We extend on that work here by presenting an implementation of ECA 144	

kinetics to represent competition for multiple soil nutrients in a multiple consumer 145	

environment. We note that this paper demonstrates a method to handle instantaneous 146	

competition in the complex soil-plant network, but a robust competition representation 147	

for climate-scale models will require representation of dynamic changes in plant 148	

allocation and plant composition. 149	



The aim of this study is to provide a reliable nutrient competition approach 150	

applicable for land models integrated in ESMs. However, before integration into an ESM, 151	

the competition model needs to be carefully calibrated and independently tested against 152	

observational data. This paper will therefore focus on model development and evaluation 153	

at several tropical forest sites where observations are available. Our objectives are to: (1) 154	

develop a soil biogeochemistry model with multiple nutrients (i.e., NH4
+, NO3

-, and POx 155	

(represented as the sum of PO4
3-, HPO4

2-, and H2PO4
-)) and multiple nutrient consumers 156	

(i.e., decomposing microbes, plants, nitrifiers, denitrifiers, and mineral surfaces) 157	

competition using ECA kinetics [Tang and Riley, 2013; Zhu and Riley, 2015]; (2) 158	

constrain the model with in situ observational datasets of soil carbon, nitrogen, and 159	

phosphorus dynamics using a Markov Chain Monte Carlo (MCMC) approach; and (3) 160	

test model performance against nitrogen and phosphorus fertilization studies.  161	



2 Method 162	

2.1 Model development 163	

The Nutrient COMpetition model (N-COM) is designed as a soil biogeochemistry 164	

model (Figure 1) to simulate soil carbon decomposition, nitrogen and phosphorus 165	

transformations, abiotic interactions, and plant demands. Although our ultimate goal is to 166	

incorporate N-COM into a decomposition model that represents active microbial activity 167	

as the primary driver of decomposition, we start here by presenting the N-COM approach 168	

using a Century-like [Koven et al., 2013; Parton et al., 1988] structure, with additions to 169	

account for phosphorus dynamics. In our approach, we calculate potential immobilization 170	

using literature-derived parameters (e.g., VMAX, KM) in a Michaelis-Menten (MM) 171	

kinetics framework. The potential immobilization is subsequently modified using the 172	

ECA competition method.  173	

Five pools of soil organic Carbon (C), Nitrogen (N), and Phosphorus (P) are 174	

considered: Coarse Wood Debris (CWD), litter, fast Soil Organic Matter (SOM) pool, 175	

medium SOM pool, and slow SOM pool. Litter is further divided into three sub-groups: 176	

metabolic, cellulose, and lignin. The soil organic C, N, and P decomposition (
  
FC , j

dec , 
  
FN , j

dec , 177	

  
FP, j

dec ) follow first-order decay: 178	

  
FC , j

dec = k jC jrθrT 	         (1) 179	

  
FN , j

dec = k j N jrθrT          (2) 180	

  
FP, j

dec = k j PjrθrT 	 	        (3) 181	

where  
k j  is the rate constant of soil organic matter decay (s-1);  

C j ,  
N j , and  

Pj  are pool 182	

sizes (g m-2) of carbon, nitrogen, and phosphorus, respectively (j from 1 to 7 represents 183	

the soil organic matter pools: CWD, metabolic litter, cellulose litter, lignin litter, fast 184	



SOC, median SOC, slow SOC);  rT  and  rθ  (dimensionless) are soil temperature and 185	

moisture environmental regulators. 186	

Decomposed carbon (
  
FC ,i

dec ) (upstream ith pool) either (1) enters a downstream 187	

pool (jth) or (2) is lost as CO2. Soil organic carbon (downstream jth pool) temporal change 188	

is calculated as: 189	

  

dC j

dt
= −FC , j

dec + FC ,ij
move

i=1

N

∑ 	 	 	 	     (4) 190	

where 
  

FC ,ij
move

i=1

N

∑  is the summation of carbon fluxes that move from the upstream pool (i) 191	

to the downstream pool (j) due to the decomposition of upstream SOC. For each 192	

upstream carbon pool (i = 1, 2, …, 7), the fractions integrated into downstream pools (j = 193	

1, 2, …, 7) is summarized in a 7×7 matrix fij (Table 2). The percentage of decomposed 194	

carbon that is respired as CO2 is represented by gi (Table 2). Simultaneously, soil organic 195	

N and P changes follow C decomposition: 196	

  

dN j

dt
= −FN , j

dec + FN ,ij
move

i=1

N

∑ + FNH 4,ij
immob

i=1

N

∑ + FNO3,ij
immob

i=1

N

∑      (5)	197	

  

dPj

dt
= −FP, j

dec + FP,ij
move

i=1

N

∑ + FP,ij
immob

i=1

N

∑ 	       (6) 198	

where 
  
FN ,ij

move  and 
  
FP,ij

move  are fluxes of nitrogen and phosphorus moving from the upstream 199	

(i) to downstream (j) pools. 
  
FNH 4,ij

immob , 
  
FNO3,ij

immob , and 
  
FP.ij

immob  are immobilization fluxes of soil 200	

mineral nitrogen and phosphorus. 
  
FN , j

dec and	
  
FP, j

dec 	represent	soil	organic	matter	201	

decomposition	losses. 202	



Equations (5) and (6) state that changes in the jth organic N or P pool are the 203	

summation of three terms: (1) organic N and P lost during soil organic matter 204	

mineralization (
  
−FN , j

dec and 
  
−FP, j

dec ); (2) a fraction of the ith organic N or P pool (upstream) 205	

enters into the jth pool (downstream) (
  
FN ,ij

move  and 
  
FP,ij

move ); and (3) soil microbial 206	

immobilization (
  
FNH 4,ij

immob , 
  
FNO3,ij

immob , and 
  
FP,ij

immob ). Immobilization occurs only when the newly 207	

entering organic N is insufficient to sustain the soil C:N (or C:P) ratio (more details 208	

described in Appendix A).  209	

The inorganic nitrogen pools (NH4
+ and NO3

- (Eqn. 7 -8)) are altered by 210	

production (organic N mobilized by microbes), consumption (uptake by plants and 211	

microbes, gaseous or aqueous losses), and transformation (nitrification and 212	

denitrification). Inorganic P (POx) is assumed to be either taken up by plants and 213	

decomposing microbes or adsorbed to mineral surfaces (Eqn. 9). Plants utilize all forms 214	

of phosphate (e.g., PO4
3-, HPO4

2-, and H2PO4
-), but for simplicity we use the symbol POx 215	

to represent the sum of all possible phosphate forms throughout the paper. 216	

  

d[NH 4]
dt

= FNH 4,ij
mob

i=1

N

∑
j=1

N

∑ − FNH 4
nit − FNH 4

plant − FNH 4
immob + F BNF + FNH 4

dep 	   (7)	217	

  
d[NO3]

dt
= −FNO3

den + (1− f N 2O )FNH 4
nit − FNO3

plant − FNO3
immob − FNO3

leach + FNO3
dep 	   (8) 218	

  

d[POx ]
dt

= FP,ij
mob

i=1

N

∑
j=1

N

∑ − FP
plant − FP

immob − FP
surf − FP

leach + F weather    (9)	219	

where 
  
FNH 4,ij

mob  and 
  
FP,ij

mob  are gross mineralization rates for nitrogen and phosphorus.   FNH 4
nit  220	

is the nitrification flux, part of which is lost through a gaseous pathway (  f
N 2O ) and the 221	

rest is incorporated into the NO3
- pool.   FNO3

den  is the denitrification flux, which transforms 222	

nitrate to N2O and N2 which then leave the soil system. Plant uptake of soil NH4
+, NO3

-, 223	



and POx are represented as   FNH 4
plant ,   FNO3

plant , and  FP
plant , respectively. Soil decomposing 224	

microbial immobilization of soil NH4
+, NO3

-, and POx are represented as   FNH 4
immob ,   FNO3

immob , 225	

and  FP
immob .   FNO3

leach  , and  FP
leach  are leaching losses of soil NO3

- and POx. External inputs 226	

into soil inorganic N pools include atmospheric ammonia deposition (  FNH 4
dep ), atmospheric 227	

nitrate deposition (  FNO3
dep ), and biological nitrogen fixation ( F BNF ). External sources of 228	

phosphate come from parent material weathering ( F weather ).  229	

Finally, the dynamics of sorbed P ( PS ), occluded P ( PO ), and parent material P (230	

 PP ) are modeled as: 231	

  

d[PS ]
dt

= FP
surf − FP

occl          (10) 232	

  

d[PO ]
dt

= FP
occl           (11) 233	

  

d[PP]
dt

= −F weather + FP
dep         (12) 234	

where the pool of sorbed P is balanced by the adsorption flux ( FP
surf ) and occlusion flux (235	

 FP
occl ). Parent material is lost by weathering ( F weather ) and is slowly replenished by 236	

external atmospheric phosphorus inputs ( FP
dep , such as dust). More detailed information 237	

on the modeled C, N, and P fluxes is documented in Appendix A. 238	

2.2 Multiple-consumer-multiple-resource competition network 239	

The soil biogeochemistry model presented in section 2.1 has multiple potential 240	

nutrient consumers (plants, SOM decomposing microbes, nitrifiers, denitrifiers, mineral 241	

surfaces) and multiple soil nutrients (NH4
+, NO3

-, POx). The consumer-resource network 242	

is summarized in Table 1. As in many land BGC models (CLM, Century, etc.), we have 243	



not explicitly included the mineral surface adsorptions of NH4
+ and NO3

-, since we 244	

assume ammonia is quickly protected by mineral surfaces from leaching (no leaching 245	

term in Eqn. 7) but then released for plant and microbial uptake when the biotic demand 246	

arises. An improved treatment of these dynamics would necessitate a prognostic model 247	

for pH, which is beyond the scope of this analysis. Unlike sorbed P (which can be 248	

occluded), there is no further abiotic loss of sorbed ammonia. Therefore, the free 249	

ammonia pool is interpreted in the current model structure as a potential free ammonia 250	

pool (free + sorbed).  251	

Competition between different consumers in acquiring different resources is 252	

summarized in Table 1. Each consumer-substrate competition reaction is represented by: 253	

   
S + E k1

+

k1
−

! ⇀!!↽ !!! C k2
+

⎯ →⎯ P + E 	        (13) 254	

The enzyme (E: e.g., nutrient carrier enzyme produced by plants and microbes) 255	

and substrate (S: e.g., NH4
+, NO3

-) reaction (reversible reaction) forms a substrate-256	

enzyme complex (C). The following irreversible reaction leads to product (P: meaning 257	

the nutrients has been taken up) and releases enzyme (E) back into soil media. For the 258	

whole complex reaction network, nutrient uptakes are formulated as: 259	

  

FNH 4
plant = kNH 4

plant ⋅
[NH 4]⋅[EN

plant ]

KM NH 4
plant (1+ [NH 4]

KM NH 4
plant

(1)

+ [NO3]
KM NO3

plant

(2)

+
[EN

plant ]
KM NH 4

plant

(3)

+
[EN

mic ]
KM NH 4

mic

(4)

+
[EN

nit ]
KM NH 4

nit

(5)

)
 (14) 260	

  

FNH 4
immob = kNH 4

immob ⋅
[NH 4]⋅[EN

mic]

KM NH 4
mic (1+ [NH 4]

KM NH 4
mic + [NO3]

KM NO3
mic +

[EN
plant ]

KM NH 4
plant +

[EN
mic]

KM NH 4
mic +

[EN
nit ]

KM NH 4
nit )

 (15) 261	

  

FNH 4
nit = kNH 4

nit ⋅
[NH 4]⋅[ENH 4

nit ]

KM NH 4
nit (1+ [NH 4]

KM NH 4
nit +

[EN
plant ]

KM NH 4
plant +

[EN
mic]

KM NH 4
mic +

[EN
nit ]

KM NH 4
nit )

   (16) 262	



  

FNO3
plant = kNO3

plant ⋅
[NO3]⋅[EN

plant ]

KM NO3
plant (1+ [NH 4]

KM NH 4
plant +

[NO3]
KM NO3

plant +
[EN

plant ]
KM NO3

plant +
[EN

mic]
KM NO3

mic +
[EN

den]
KM NO3

den )
 (17) 263	

  

FNO3
immob = kNO3

immob ⋅
[NO3]⋅[EN

mic]

KM NO3
mic (1+ [NH 4]

KM NH 4
mic + [NO3]

KM NO3
mic +

[EN
plant ]

KM NO3
plant +

[EN
mic]

KM NO3
mic +

[EN
den]

KM NO3
den )

 (18) 264	

  

FNO3
den = kNO3

den ⋅
[NO3]⋅[ENO3

den ]

KM NL3
den (1+ [NO3]

KM NO3
den +

[EN
plant ]

KM NO3
plant +

[EN
mic]

KM NO3
mic +

[EN
den]

KM NO3
den )

   (19) 265	

  

FP
plant = kP

plant ⋅
[POx ]⋅[EP

plant ]

KM P
plant (1+

[POx ]
KM P

plant +
[EP

plant ]
KM P

plant +
[EP

mic]
KM P

mic +
[EP

surf ]
KM P

surf )
   (20)	266	

  

FP
mic = kP

mic ⋅
[POx ]⋅[EP

mic]

KM P
mic(1+

[POx ]
KM P

mic +
[EP

plant ]
KM P

plant +
[EP

mic]
KM P

mic +
[EP

surf ]
KM P

surf )
   (21) 267	

  

FP
surf = kP

surf ⋅
[POx ]⋅[EP

mic ]

KM P
surf (1+

[POx ]
KM P

surf +
[EP

plant ]
KM P

plant +
[EP

mic ]
KM P

mic +
[EP

surf ]
KM P

surf )
    (22) 268	

where F represent the nutrient uptake fluxes and k is the base reaction rate that enzyme-269	

substrate complex forms product (  k2
+  in Eqn. 13). [E] and KM denote enzyme abundance 270	

and half saturation constants (substrate-enzyme affinity). Superscripts and subscripts 271	

refer to consumers and substrates, respectively. These equations account for the effect of 272	

(1) multiple substrates (e.g., NH4
+ and NO3

-) sharing one consumer, which inhibits the 273	

effective binding between any specific substrate and the consumer (terms (1) and (2) in 274	

Eqn. 14) and (2) multiple consumers (e.g., plants, decomposing microbes, and nitrifiers) 275	



sharing one substrate (e.g., NH4
+), which lowers the probability of effective binding 276	

between any consumer and NH4
+ (terms (3), (4), and (5) in Eqn. 14). 277	

For our reaction network (Eqn. 13 – 22), we assume that: (1) plant roots and 278	

decomposing microbes possess two types of nutrient carrier enzymes (nutrient 279	

transporters). One is for nitrogen (NH4
+ and NO3

-;   EN
plant , EN

mic ), and the other is for 280	

phosphorus, including different forms of phosphate (  EP
plant , EP

mic ).  (2) Nutrient carrier 281	

enzyme abundance is scaled with biomass (fine root or microbial biomass). Scaling 282	

factors are 0.0000125 (for plants) and 0.05 (for decomposing microbes) (Table 2). (3) 283	

Mineral surface “effective enzyme” abundance ( EP
surf ) is approximated by the available 284	

sorption surface area (  VMAX P
surf − [SP] ). (4) Nitrifiers and denitrifiers are not explicitly 285	

simulated, therefore we assume that their biomass and associated nutrient transporter 286	

abundance are fixed (  EN
nit , EN

denit ). 287	

For simplicity, we group the “decomposing microbes/nitrifier/denitrifier/mineral 288	

surface nutrient carrier enzyme [E]” and their “base reaction rate k” into one single 289	

variable “VMAX” (see Appendix B for full derivation). Furthermore, we defined 290	

“potential rates (potential immoblizaiton, nitrification, denitrification, adsorption rates)” 291	

and used them as proxies of “VMAX”. Therefore, Eqn. 15, 16, 18, 19, 21, 22 become: 292	

  

FNH 4
immob = FNH 4

immob,pot ⋅ [NH 4]

KM NH 4
mic (1+ [NH 4]

KM NH 4
mic + [NO3]

KM NO3
mic +

[EN
plant ]

KM NH 4
plant +

[EN
mic]

KM NH 4
mic +

[EN
nit ]

KM NH 4
nit )

 (23) 293	

  

FNH 4
nit = FNH 4

nit ,pot ⋅ [NH 4]

KM NH 4
nit (1+ [NH 4]

KM NH 4
nit +

[EN
plant ]

KM NH 4
plant +

[EN
mic]

KM NH 4
mic +

[EN
nit ]

KM NH 4
nit )

   (24) 294	



  

FNO3
immob = FNO3

immob,pot ⋅ [NO3]

KM NO3
mic (1+ [NH 4]

KM NH 4
mic + [NO3]
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   (28) 298	

In this case, the potential rates are treated as maximum reaction rates (VMAX), 299	

because they are calculated without nutrient constraints or biotic and abiotic interactions. 300	

For example, potential P immobilization rate (  FP
immob,pot ) is based on the total phosphorus 301	

demand that can perfectly maintain the soil CP stoichiometry during soil organic matter 302	

decomposition (Eqn. A9). This potential immobilization rate represents the maximum 303	

phosphorus influx that the soil could take up at that moment. The maximum adsorption 304	

rate (  FP
surf ,pot ) is the time derivative of the Langmuir equation (Eqn. A12), which is a 305	

theoretically maximal adsorption rate excluding all other biotic and abiotic interactions. 306	

The potential rates (VMAX) are updated by the model rather than calibrated, except for 307	

 VMAX P
surf .  VMAX P

surf  denotes the maximum adsorption capacity (not maximum 308	

adsorption rate), which affects the potential adsorption rate (  FP
surf ,pot ). 309	

The model is run on an hourly time step, initialized with state variables and 310	

critical parameters (Table 2). Since the model is designed to be a component of the 311	



Community and ACME Land Models (CLM, ALM; which are essentially currently 312	

equivalent), we used CLM4.5 site-level simulations to acquire temporally-resolved: (1) 313	

soil temperature factors on decomposition ( rT ); (2) soil moisture factors on 314	

decomposition ( rθ ); (3) the anoxic fraction of soil pores ( f
anox in Appendix Eqn. A10-315	

11); (4) annual NPP ( NPPannual  in Appendix Eqn. A13); (5) NH4
+ deposition (  FNH 4

dep ); (6) 316	

NO3
- deposition (  FNO3

dep ); and (7) hydrologic discharge ( Qdis  in Appendix Eqn. A14). 317	

External inputs of mineral phosphorus are derived from Mahowald et al., [2005, 2008]. 318	

2.3 Model parameterization and sensitivity analysis 319	

We constrained model parameters and performed sensitivity analyses using a suite 320	

of observations distinct from the observations we used subsequently to test the model 321	

against the N and P manipulation experiments. Because tropical systems can be either 322	

nitrogen or phosphorous limited (or both) [Elser et al., 2007; Vitousek et al., 2010], we 323	

chose observations from a tropical forest site to constrain the N and P competition in our 324	

model (Tapajos National Forest, Para, Brazil (Table 3)).  325	

In the parameter estimation procedure, several data streams are assimilated into 326	

the N-COM model, including measurements of soil NH4
+ concentrations, soil free 327	

phosphate concentrations, sorbed phosphate concentrations, and N2O and CO2 flux 328	

measurements. The datasets are summarized in Table 3 and cover a wide range of N and 329	

P biogeochemistry dynamics. A set of model parameters is selected for calibration (Table 330	

4), which comprise nutrient competition kinetics parameters (k and KM) as well as the 331	

fast soil carbon turnover time (TURNSOM). Because we had only a short-term CO2 332	

respiration flux record, we were unable to calibrate the longer turnover time parameters. 333	

However, since we test the posterior model against short-term fertilization responses, this 334	



omission will not affect our evaluation. Longer records from eddy covariance flux towers 335	

and 14C soil measurements are required to constrain the longer turnover time pool values.  336	

We employed the Markov Chain Monte Carlo (MCMC) approach [Ricciuto et al., 337	

2008] to assimilate the observations into N-COM. MCMC directly draws samples from a 338	

pre-defined parameter space and tries to minimize a pre-defined cost function: 339	

  J = ( M (θ )− D)T R−1( M (θ )− D)        (29) 340	

where M(θ) and D are vectors of model outputs and observations including time series of 341	

different simulated variables (e.g., soil CO2 and N2O effluxes and soil concentrations of 342	

NH4
+, free POx, and sorbed POx); θ is a vector of model parameters (θi); and i from 1 to 343	

20 represents the parameters that are calibrated (Table 4). R-1 is the inverse of data error 344	

covariance matrix. We assumed that diagonal elements are 40% of observed values and 345	

off-diagonal elements are zeros. We further assumed that the prior parameter follows a 346	

lognormal distribution. µ and σ were 0.91 and 0.95 of their initial values, respectively 347	

(Table 4). We then ran MCMC to sample 50,000 parameter pairs (Fig. A1). The second 348	

half of the samples was used to calculate the posterior parameter space by fitting to a 349	

Gaussian distribution. We also employed the Gelman-Rubin criterion to quantitatively 350	

show whether or not the MCMC chain converged. The posterior model parameters are 351	

reported in term of means and standard deviations. Uncertainty Reduction (UR) is 352	

calculated based on (1) variance (Eqn. 30a) and (2) 25% and 75% quantile (Eqn. 30b): 353	

  
URσ = (1−

σ posterior

σ prior

) ⋅100%         (30a) 354	

  
URQ = (1−

Qposterior
75 −Qposterior

25

Qprior
75 −Qprior

25 ) ⋅100%        (30b) 355	



where 
 
σ prior  is prior parameter uncertainty, which is 95% of the parameter initial value. 356	

 
σ posterior  is posterior parameter uncertainty, which is calculated by fitting the posterior 357	

model parameters to a Gaussian distribution.   Q
75 and   Q

25  are 75% and 25% percentage 358	

quantile of each parameter. Uncertainty Reduction is a useful metric [Zhu and Zhuang, 359	

2014], because it quantitatively reveals the reduction in the range of a particular 360	

parameter after calibration with MCMC. It does not, however, indicate that the parameter 361	

itself is more consistent with observed values of the parameter. A large value of UR 362	

implies a more robust posterior model. 363	

In addition, we conducted a sensitivity study to identify the dominant controlling 364	

factors regulating nutrient competition in N-COM. Three scenarios were considered: (1) 365	

baseline climate and soil conditions; (2) elevated soil temperature (by 5 °C); and (3) 366	

elevated soil moisture (by 50%). SOBOL sampling [Pappas et al., 2013], a global 367	

sensitivity technique, is employed to calculate the sensitivities of output variables with 368	

respect to various inputs: 369	

  
Si =

VARpi
(Ep~i

(Y | pi ))

VAR(Y )
         (31) 370	

where Si is the first order sensitivity index of the ith parameter and ranges from 0 to 1. By 371	

comparing the values of Si, we were able to evaluate which processes were relatively 372	

more important in affecting nutrient competition. Y represents the model outputs of plant 373	

NH4
+, NO3

-, or POx uptake;  pi  is the target parameter;   p~i  denotes all parameters that are 374	

associated with nutrient competition except the target parameter; and VAR(.) and E(.) 375	

represent variance and mean, respectively.  376	

2.4 Model application 377	



After calibration, we applied the N-COM model to several tropical forest nutrient 378	

fertilization studies not included in the calibration dataset, where isotopically labeled 379	

nitrogen or phosphorous fertilizer was injected into the soil. The fertilization experiments 380	

measured the fate of added nutrients; for example, identifying the fraction of added N or 381	

P that goes into the plant, is immobilized by microbes, or is stabilized by mineral 382	

surfaces. These measurements offer an effective baseline to test whether the N-COM 383	

model captures short-term nutrient competition. 384	

Because we have focused in this paper on applications in tropical forests, we 385	

choose three tropical forest fertilization experiments with (1) PO4
3-; (2) NH4

+; and (3) 386	

NO3
- additions (Table 5). The PO4

3- fertilization experiment [Olander and Vitousek, 387	

2005] was conducted in three Hawaiian tropical forests along a soil chronosequence (300, 388	

20000, and 4100000 year old soils) that were fertilized with 10 µg g-1 32PO4
3-, 389	

respectively, and microbial demand versus soil sorption was measured. We did not 390	

evaluate the role of plants in phosphorus competition for the Hawaii sites, since plant 391	

phosphorus uptake was not measured in those field studies. Our model discriminates the 392	

Hawaii sites along the chronosequence by setting distinct initial pool sizes (derived from 393	

[Olander and Vitousek, 2004; Olander and Vitousek, 2005]) of soil organic carbon, 394	

nitrogen and phosphorus, and soil parent material phosphorus. 395	

We also used measurements from NH4
+ and NO3

- fertilization studies located at 396	

the Luquillo tropical forest in Puerto Rico [Templer et al., 2008]. In that study, 4.6 µg g-1 397	

15NH4
+ was added into the highly weathered tropical forest soil and the consumption of 398	

15NH4
+ by plant roots, decomposing microbes, and nitrifiers were measured. In the same 399	

study, 0.92 µg g-1 15NO3
- was added to the soil and the plant uptake and microbial 400	



immobilization was measured. The measurements were made 24 or 48 hours after the 401	

fertilizers were added.  402	

For the model scenarios, we (1) spun up the N-COM model for 100 years; (2) 403	

perturbed the soil nutrient pool by the same amount as the fertilization; (3) ran the model 404	

for 24 or 48 hours and calculated how much of the added nutrients were absorbed by 405	

plants, microbes, or mineral surfaces; and (4) compared our model simulations with the 406	

observed data to assess model predictability. The 100-year spin up simulation aimed at 407	

eliminating the effects of imposed initial inorganic pool sizes on fertilization 408	

experiments, rather than accumulating soil organic matter in the system, since we 409	

initialized the soil organic carbon pools from CLM4.5 steady state predictions. 410	

 411	

3. Results and discussion 412	

3.1 Posterior model parameters 413	

Our best estimates (second half of the MCMC chain) of the selected model 414	

parameters based on the observations at the Tapajos National Forest, Para, Brazil are 415	

shown in Figure 2. We found that posterior parameter samples were not heavily tailed 416	

and they generally follow Gaussian distributions (Figure A3). In order to quantitatively 417	

compare the posterior parameter distributions with prior distributions, we fit parameter 418	

samples to a Gaussian distribution and estimated its means and standard deviations 419	

(Table 4). 420	

Even though the posterior mean was improved, the uncertainty of the posterior 421	

model may still be relatively large. In other words, a prognostic prediction based on these 422	

posterior parameters could be relatively uncertain [Scholze et al., 2007], due to large 423	



uncertainty associated with the posterior parameters. Therefore, we calculated the 424	

variance-based Uncertainty Reduction (URσ) (Eqn. 30a) to evaluate model improvement 425	

in terms of posterior uncertainty. We found that parameters’ uncertainties were reduced 426	

by 13%~98%. This calculation might either overestimate or underestimate the URσ, due 427	

to the fact that the posterior parameters did not strictly follow Gaussian distributions. But 428	

the actual URσ should not be far from our estimates, because the posterior samples were 429	

not widely spread across the potential parameter space (Figure 2). The least constrained 430	

parameter was   kNO3
plant  (reaction rate of plant nitrogen carrier enzyme with NO3

- substrate). 431	

Two other NO3
- dynamics related parameters were also not well constrained: URσ of432	

  KM NO3
mic  (half-saturation constant for decomposing microbe NO3

- immobilization) and 433	

  KM NO3
den  (half-saturation constant for denitrifier NO3

- consumption) were only 63% and 434	

68%, respectively. Compared with NH4
+ or POx competition related parameters, we 435	

concluded that parameters associated with NO3
- competition were the least constrained in 436	

the model. This result was primarily due to the lack of NO3
- pool size data, and 437	

secondarily due to the fact that NO3
- was not the major nitrogen source for plant or 438	

decomposing microbes. We also provide quantile-based Uncertainty Reduction for 439	

reference (Table 4). The above-mentioned conclusions still hold with quantile-based URQ, 440	

although the quantile-based URQ is generally higher than variance-based URσ. 441	

Convergence of model parameters is reported with the Gelman-Rubin criterion 442	

(Figure A2). Using this criterion, eleven (out of twenty) parameters are found to converge 443	

(Gelman-Rubin <= 1.1). One reason for the lack of convergence of the remaining 444	

parameters is likely data paucity and resulting equifinality. In particular, starting from 445	

different prior values, MCMC calibrations may result in different converged posteriors 446	



but predict similar dynamics. In this regard, high frequency measurements may improve 447	

model calibration [Tang and Zhuang, 2008]. We acknowledge that, for large-scale model 448	

application, more work on parameter tuning and uncertainty analysis is needed. However, 449	

even with these caveats, the model predictability is reasonably good when applied to the 450	

tropical forest fertilization experiments described in Section 3.4.  451	

We re-organize the right hand sides of Eqns. 14 – 22 to be the product of potential 452	

nutrient uptake rate and an ECA limitation term; for example for plant NH4
+ uptake: 453	

  FNH 4
plant = kNH 4

plant ⋅ECANH 4
plant          (32) 454	

  

ECANH 4
plant =

[NH 4]⋅[EN
plant ]

KM NH 4
plant (1+ [NH 4]

KM NH 4
plant +
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KM NO3

plant +
[EN

plant ]
KM NH 4

plant +
[EN

mic ]
KM NH 4

mic +
[EN

nit ]
KM NH 4

nit )
   (33) 455	

Other “consumer-substrate reactions” have similar forms. Under a nutrient 456	

abundant situation (e.g., fertilized agriculture ecosystem), the relative competitiveness of 457	

each consumer (ECA) is dominated by its specific enzyme abundance ([E]). Under such 458	

conditions, substrate affinity is no longer a controlling factor. In contrast, under nutrient 459	

limited conditions (e.g., many natural ecosystems), ECA is dominated by the specific 460	

enzyme abundance as well as the substrate affinity ([E]/KM). Therefore, consumers could 461	

either enable an alternative high affinity nutrient transporter system (low KM) or exude 462	

more enzyme to enhance competitiveness. For example, at the whole-soil scale it has 463	

been shown that root spatial occupation (
 
C froot ) determines a plant’s competitiveness 464	

when low soil nutrient diffusivity is limiting nutrient supply [Raynaud and Leadley, 465	

2004]. Consistently, our results highlighted the dominant role of nutrient carrier enzyme 466	

abundance (E proportional to 
 
C froot ) in controlling competition. If we further assumed 467	

that plants, decomposing microbes, and nitrifiers enzyme abundances were 468	



approximately equal, we will have that the relative their competitiveness in acquiring 469	

NH4
+ was about 4:10:9 (  1/ KM NH 4

plant :1/ KM NH 4
mic :1/ KM NH 4

nit ). However, such results could 470	

not be easily generalized to other ecosystems, because they heavily relied on the traits 471	

(affinity) of specific competitors. For a different ecosystem, those traits would be 472	

drastically different due to the change of, e.g., plant species composition and microbial 473	

community structure. Even for the same ecosystem, those traits could be highly 474	

heterogeneous. For example, the community structure of decomposing microbes could be 475	

different in rhizosphere and bulk soil (with different KM). However, in this work we 476	

assumed a well-mixed environment (one soil column), in order to be consistent with 477	

large-scale ecosystem models. Although beyond the scope of the current study, the 478	

consequences of ignoring the rhizosphere versus bulk soil heterogeneity warrants further 479	

investigation. Large-scale models aim to quantify ecosystem level dynamics, although 480	

they are usually driven by parameters inferred from in situ field observations. In the 481	

absence of a model that explicitly represents this spatial heterogeneity, it is difficult to 482	

quantify the impacts of using inferred rhizosphere decomposer affinities on model 483	

predictions of the whole soil [Schimel et al., 1989]. 484	

Our modeling framework highlights the important concept that “competitiveness” 485	

is a dynamic property of the competition network, and more importantly that it is linked 486	

to competitor functional traits (affinity and nutrient carrier enzyme abundance). This 487	

concept is in contrast to the prevailing assumption underlying all major large-scale 488	

ecosystem models, which either assume “relative demand competitiveness for different 489	

nutrient consumers” [Thornton et al., 2007] or “soil microbes outcompete plants” 490	

[McGuire et al., 1992; Parton et al., 1988]. Imposing such pre-defined orders of 491	



competitiveness neglects the diversity of nutrient competitors (plants and microbes) and 492	

their differences in nutrient uptake capacity expressed by relevant functional traits. Our 493	

model framework offers a theoretically consistent approach to account for the diversity of 494	

nutrient competition in different competitor networks. 495	

3.2 Model sensitivity analysis 496	

Through sensitivity analysis, we separately investigated the factors controlling 497	

plant NH4
+, NO3

-, and POx competition (Figure 3). Each sensitivity analysis consisted of 498	

three scenarios: (1) normal conditions (control); (2) elevated soil temperature (+Ts); and 499	

(3) elevated soil moisture (+θ). The sensitivity analysis indicates that the model is highly 500	

sensitive to kinetics parameters  (e.g., KM). Furthermore, the model is consistently 501	

sensitive to the same parameters across all temperature and moisture conditions. The 502	

environment affects the nutrient competition primarily through altering the nutrient 503	

abundance. Enhanced soil temperature and soil moisture accelerated soil organic carbon 504	

turnover, thereby releasing more inorganic nutrient into the soil (gross mineralization). 505	

However, the impacts on plant nutrient uptake are limited (Figure 3) because the 506	

enhanced soil organic matter decay also requires higher immobilization fluxes to sustain 507	

the soil organic matter CNP stoichiometry. The enhancement of net mineralization would 508	

be limited, and therefore would not change soil nutrient status dramatically.  509	

3.3 Posterior model performance 510	

The prior and posterior models were compared against observational datasets of 511	

pool sizes of soil free phosphate, sorbed phosphate, and NH4
+, CO2 efflux, and N2O 512	

efflux (Figure 4). We note that although we attempted to acquire as many datasets that 513	

contained these five observations as possible, more observations in tropical ecosystems 514	



would clearly improve the posterior parameter estimates. For example, in the experiment 515	

we analyzed, only three measurements of soil free phosphate were made during 1999. 516	

Many detailed dynamics are therefore missing and could impact our posterior parameter 517	

estimates. The prior model predicted an increasing trend of soil free POx, which resulted 518	

from underestimates of plant P uptake (by underestimating of kP
plant ) and soil microbial P 519	

immobilization (by overestimating  KM P
mic ). The posterior model captured the seasonal 520	

dynamics of soil free POx reasonably well: increases during the wet season and gradual 521	

decreasing during the dry season (August to November). The prior model also largely 522	

underestimated the seasonal variability of nitrogen dynamics and underestimated the 523	

NH4
+ pool size due to overestimation of plant NH4

+ uptake (  kNH 4
plant ). In addition, it also 524	

underestimated the denitrification N2O emissions, because of an underestimation of NH4
+ 525	

to NO3
- transformation rate ( knit ). Consequently, there was not enough NO3

- substrate to 526	

react with denitrifiers and release N2O. The posterior model, however, accurately 527	

reproduced the seasonal dynamics of both NH4
+ pool sizes and soil N2O emissions. There 528	

were small differences between the prior and posterior model predictions of soil CO2 529	

emissions. The CO2 and N2O effluxes were more frequently observed at Tapajos National 530	

Forest during 1999 to 2001, compared with phosphorus data. Most of the measurements 531	

were collected during the wet season. Therefore the modeled CO2 and N2O emissions 532	

were largely improved by assimilating these datasets.  533	

The posterior model performance implies that after assimilating multiple datasets, 534	

our model predictions were improved over the prior model. However, it is clear that more 535	

observations of the metrics applied in our MCMC approach would benefit the posterior 536	

model. Unfortunately, because of our focus on tropical sites, we were unable to acquire 537	



more datasets that had the full suite of measurements required. Datasets of soil nutrient 538	

pool sizes (e.g., NO3
-) and higher frequency sampling of those sparse measurements (e.g., 539	

POx) would significantly benefit the model uncertainty reduction. 540	

3.4 Model testing against nitrogen and phosphorus fertilization studies 541	

To test the posterior N-COM model, we conducted short-term numerical 542	

competition experiments (24-hour or 48-hour simulations) by manually imposing an 543	

input flux into nutrient pools equivalent to the N and P fertilization experiments 544	

described above and in Table 5. The simulated results were compared with observations 545	

from the field manipulations. 546	

In the P addition experiments across the Hawaiian chronosequence, the 547	

partitioning of phosphate between microbes and mineral surfaces was well represented by 548	

the N-COM model in the intermediate (20K yr) and old (4.1M yr) sites (Figures 5b and 549	

5c), with no significant differences between model predictions and observations. In the 550	

youngest Hawaiian site (300 yr; Figure 5a), the relative partitioning was correctly 551	

simulated, but the predicted PO4
3- magnitudes were lower than observations. Our 552	

simulations indicated that at the young soil site the added P exceeded microbial demand, 553	

resulting in lower predicted microbial P uptake than observed. This discrepancy reflected 554	

a possible deficiency of first-order SOC decay models (as we used here), which implicitly 555	

treat microbes as a part of soil organic matter. Since microbial nutrient immobilization is 556	

strictly regulated by the SOC turnover rate in this type of model, external nutrient inputs 557	

will no longer affect microbial nutrient uptake if the inputs exceed potential microbial 558	

demand. We therefore believe that explicit Microbe-Enzyme models might be able to 559	

better explain the strong microbe PO4
3- uptake signal observed at the young Hawaii 560	



fertilization experiment site. Microbial models explicitly simulate the dynamics of 561	

microbial biomass, which might be able to capture the expected rapid growth of 562	

microbial communities under conditions of improved substrate quality [Kaspari et al., 563	

2008; Wieder et al., 2009]. 564	

In the Puerto Rican Luquillo forest nitrogen addition experiments, partitioning of 565	

added ammonium between plants and heterotrophic bacteria was well captured by the N-566	

COM model, with no significant differences between model predictions and observations 567	

(Figure 5d). However, the model underestimated nitrifier NH4
+ uptake. NO3

- competition 568	

in this site was also relatively accurately predicted (Figure 5e), although the 569	

measurements did not include denitrification. Model estimates of plant NO3
- uptake and 570	

microbial NO3
- immobilization were consistent with the observed ranges, but we 571	

highlight the large observational uncertainties, particularly for microbial NO3
- uptake. 572	

In the pseudo-first-order decomposition model we applied here to demonstrate the 573	

ECA competition methodology, the soil organic matter C:N:P ratio also limited microbial 574	

N and P uptake. For this type of decomposition model, stoichiometric differences 575	

between soil organic matter and microbes are not dynamically simulated. Such a 576	

simplification of soil and microbial stoichiometry favors large spatial scale model 577	

structures over long temporal periods, but hampers prediction of microbial short-term 578	

responses to N and P fertilization. For example, the observed difference between 579	

microbial and soil C:P ratios can be as large as 6-fold [Mooshammer et al., 2014; Xu et 580	

al., 2013]. Were that the case in the observations we applied, the potential soil P demand 581	

calculated based on a fixed soil organic matter C:P ratio could be only 17% of that based 582	

on microbial C:P ratio.  583	



3.5 Implications of ECA competition treatment 584	

Terrestrial ecosystem growth and function are continuously altered by climate 585	

(e.g., warming, drought; [Chaves et al., 2003; Springate and Kover, 2014]), external 586	

nutrient inputs (e.g., N deposition; [Matson et al., 2002; Matson et al., 1999]), and 587	

atmospheric composition (e.g., CO2 concentration; [Norby et al., 2010; Oren et al., 2001; 588	

Reich et al., 2006]). Improved understanding of the underlying mechanisms regulating 589	

ecosystem responses to environmental changes has been obtained through in situ level to 590	

large-scale and long-term manipulation experiments. For example, decade-long Free-Air 591	

Carbon Dioxide Enrichment (FACE) experiments have revealed that nitrogen limitation 592	

diminished the CO2 fertilization effect of forests [Norby et al., 2010] and grasslands 593	

[Reich and Hobbie, 2013] ecosystems. However, fewer efforts have been made towards 594	

incorporating the observed process-level knowledge into Earth System Models (ESMs). 595	

Therefore, a major uncertainty that has limited the predictability of ESMs has been the 596	

incomplete representation of soil nutrient dynamics [Zaehle et al., 2014]. Even though 597	

new soil nutrient cycle paradigms were proposed during recent decades [Korsaeth et al., 598	

2001; Schimel and Bennett, 2004], they were restricted to either conceptual models or 599	

only applied to explain laboratory experiments. 600	

Many large-scale terrestrial biogeochemistry models (e.g., O-CN, CASA, TEM) 601	

have adopted the classical paradigm that microbes decompose soil organic matter and 602	

release NH4
+ as a “waste” product [Waksman, 1931]. The rate of this process is defined 603	

as “net N mineralization”, and is adopted as a “measure” of plant available inorganic N 604	

[Schimel and Bennett, 2004]. This classical paradigm overlooked the fact that “net N 605	

mineralization” actually comprised two individual processes - gross N mineralization and 606	



microbial N immobilization. Implicitly, the classical paradigm assumes that the microbes 607	

have priority to assimilate as much of the available nutrient pool as possible. Soil 608	

nutrients were only available for plant uptake if there were not enough free energy 609	

materials (e.g., dissolved soil organic carbon) to support microbial metabolism. As a 610	

result, soil microbes were considered “victors” in the short-term nutrient competition. 611	

Some other large-scale terrestrial biogeochemistry models (e.g., CLM4CN), simplify the 612	

concept of nutrient competition differently. They calculate the plant N uptake and soil N 613	

immobilization separately; and then down-regulate the two fluxes according to the soil 614	

mineral N availability. As a result, plant and soil microbe competitiveness for nutrients is 615	

determined by their relative demand. 616	

Climate-scale land models have over-simplified or ignored competition between 617	

plants, microbes, and abiotic mechanisms. In reality, under high nutrient stress 618	

conditions, plants can exude nutrient carrier enzymes or facilitate mycorrhizal fungi 619	

associations to enhance competitiveness for nutrient acquisition [Drake et al., 2011; 620	

Hobbie and Hobbie, 2006; Treseder and Vitousek, 2001]. In addition, plants can adjust C 621	

allocation to construct more fine roots, which scavenge nutrients over larger soil volumes 622	

[Iversen et al., 2011; Jackson et al., 2009; Norby et al., 2004]. Soil spatial heterogeneity 623	

might also contribute to the success of plant nutrient competition [Korsaeth et al., 2001]. 624	

Therefore, most ecosystem biogeochemistry models with traditional treatments of 625	

nutrient competition likely underestimate plant nutrient uptake. 626	

Nutrient competition should be treated as a complex consumer-substrate reaction 627	

network: multiple ‘consumers’, including plant roots, soil heterotrophic microbes, 628	

nitrifiers, denitrifiers, and mineral surfaces, each competing for substrates of organic and 629	



inorganic nitrogen and phosphorus as nutrient supply. In such a model structure, the 630	

success of any consumer in substrate acquisition is affected by its consumer-substrate 631	

affinity [Nedwell, 1999]. Such competitive interactions have been successfully applied to 632	

microbe-microbe and plant-microbe substrate competition modeling [Bonachela et al., 633	

2011; Lambers et al., 2009; Maggi et al., 2008; Maggi and Riley, 2009; Moorhead and 634	

Sinsabaugh, 2006; Reynolds and Pacala, 1993] for many years.  635	

Here, we applied the consumer-substrate network in a broader context of plant, 636	

microorganism, and abiotic mineral interactions. We analyzed the consumer-substrate 637	

network using a first-order accurate equilibrium chemistry approximation (ECA) [Tang 638	

and Riley, 2013; Zhu and Riley, 2015]. Our sensitivity analysis confirmed that the 639	

consumer-substrate affinity and nutrient carrier enzyme abundance were the most 640	

important factors regulating relatively short-term competitive interactions. The ECA 641	

competition treatment represents ecosystem responses to environmental changes and has 642	

the potential to be linked to a microbe-explicit land biogeochemistry model. The 643	

approach allows competition between plants, microbes, and mineral surfaces to be 644	

prognostically determined based on nutrient status and capabilities of each consumer.  645	

 646	

4. Conclusions 647	

In this study, we developed a soil biogeochemistry model (N-COM) that resolves 648	

the dynamics of soil nitrogen and phosphorus, plant uptake of nutrients, microbial uptake, 649	

and abiotic interactions. We focused on the implementation, parameterization, and testing 650	

of the nutrient competition scheme that we plan to incorporate into the ESM land models 651	

CLM and ALM. We described the multiple-consumer and multiple-nutrient competition 652	



network with the Equilibrium Chemical Approximation (ECA) [Tang and Riley, 2013] 653	

considering two inhibitive effects: (1) multiple substrates (e.g., NH4
+ and NO3

-) sharing 654	

one consumer inhibits the effective binding between any specific substrate and the 655	

consumer and (2) multiple consumers (e.g., plants, decomposing microbes, nitrifers) 656	

sharing one substrate (e.g., NH4
+) lowers the probability of effective binding between any 657	

consumer and that substrate. We calibrated the model at a tropical forest site with highly 658	

weathered soil (Tapajos National Forest, Para, Brazil), using multiple observational 659	

datasets with the Markov Chain Monte Carlo (MCMC) approach. The model parameters 660	

were well constrained compared with their prior distributions (Table 4). The posterior 661	

parameter uncertainties were greatly reduced (on average by 75%). The posterior model 662	

compared to multiple categories of observational data was substantially improved over 663	

the prior model (Figure 4). The seasonal dynamics of soil carbon, nitrogen, and 664	

phosphorus were moderately well captured. However, our results would likely be more 665	

robust if more temporally resolved observations of carbon, nitrogen, and phosphorous 666	

were available in the individual consumer pools.  667	

To test the resulting model using the posterior parameters, we applied N-COM to 668	

two other tropical forests (Hawaii tropical forest and Luquillo tropical forest) not used in 669	

the calibration process and conducted nutrient perturbation studies consistent with 670	

fertilization experiments at these sites. The results showed that N-COM simulated the 671	

nitrogen and phosphorus competition well for the majority of the observational metrics. 672	

However, the model underestimated NH4
+ uptake by nitrifiers, probably due to the 673	

loosely constrained nitrification parameters that were the result of NO3
- pool size data 674	

paucity during calibration at the Brazil site (Table 4). Datasets of soil nutrient pool sizes 675	



and CO2 and N2O effluxes with high frequency sampling would significantly benefit the 676	

model uncertainty reduction. 677	

To date, many terrestrial ecosystem biogeochemistry models assume microbes 678	

outcompete plants and immobilize nutrients first [Y P Wang et al., 2007; Zaehle and 679	

Friend, 2010; Zhu and Zhuang, 2013], although CLM currently assumes constant and 680	

relative demand competitiveness of plants and microbes. Few models, to our knowledge, 681	

consider the role of abiotic interactions in the competitive interactions. In the case of 682	

microbes outcompeting plants, the plant is only able to utilize the nutrients that exceed 683	

microbial demands during that time step. The leftover nutrients are defined as net 684	

mineralization, which is a widely adopted concept in soil biogeochemistry modeling 685	

[Schimel and Bennett, 2004]. These models oversimplify plant-microbe interactions by 686	

imposing dubious assumptions (e.g., microbes always win against plants). We showed 687	

that (in section 3.1) “competitiveness” is a dynamic rather than fixed property of the 688	

competition network, and more importantly, it should be linked to competitor functional 689	

traits (affinity and nutrient carrier enzyme abundance).  690	

This study is an important step towards implementing more realistic nutrient 691	

competition schemes in complex climate-scale land models. Traditional ESMs generally 692	

lack realistic soil nutrient competition, which likely biases the estimates of terrestrial 693	

ecosystem carbon productivity and biosphere-climate feedbacks. This study showed the 694	

effectiveness of ECA kinetics in representing soil multiple-consumer and multiple-695	

nutrient competition networks. Offline calibration and independent site-level testing is 696	

critically important to ensuring the newly incorporated model will perform reasonably 697	

when integrated in a complex ESM. To this end, we provide a universal calibration 698	



approach using MCMC, which could in the future be used to further constrain N-COM 699	

across plant functional types, climate, and soil types.  700	
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Figure 1. Model structure. Boxes represent pools, solid arrows represent aqueous fluxes, 706	

and dashed arrows represent gaseous pathways out or into the system. Three essential 707	

chemical elements (Carbon (C), Nitrogen (N) and Phosphorus (P)) are simulated in N-708	

COM (blue, red, and green represent C, N, and P pools and processes, respectively).  709	
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 Figure 2. Distribution of prior and posterior model parameters.  711	
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Figure 3. Model sensitivity analysis with SOBOL sampling. For each metric, three 713	

scenarios are shown: baseline (Control), elevated soil temperature by 5 °C (+Ts), and 714	

elevated soil moisture by 50% (+θ), respectively. The length of bar (plot in polar 715	

coordinate) is the sensitivity (unit-less) of model output with respect to model input 716	

variables. Our results showed that the plant nutrient uptake was mostly regulated by 717	

internal consumer-substrate uptake kinetics rather than the external environmental 718	

conditions (e.g., Ts, θ). 719	
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Figure 4. Model performance at Tapajos National Forest, Para, Brazil. Overall, the 721	

posterior model (blue line) improved predictions over the prior model (grey line) when 722	

compared to observations. Green areas indicate the posterior model uncertainties. 723	
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Figure 5. Model perturbation experiments compared with nitrogen and phosphorus 725	

fertilization field experimental data. The blue dots show the difference between control 726	

and perturbed simulations, which mean how much newly added nutrient each consumer 727	

takes up. The red circles are recovered isotopically labeled nutrient within each 728	

consumer.  Since plants phosphorus uptake was not measured at Hawaii sites, we didn’t 729	

include the plants in the perturbation study. 730	
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Table 1. A summary of the modeled consumer-resource competition network.  732	

Resources Consumers 

NH4
+ Plant Decomposing Microbe Nitrifier 

NO3
- Plant Decomposing Microbe Denitrifier 

POx Plant Decomposing Microbe Mineral surface 

 733	



Table 2. Model parameters and baseline values.	734	

C associated     
gi Percentage of carbon remains in the soil after 

decomposition of ith SOM 
- [1.0; 0.45; 0.5; 0.5; 0.83; 0.45; 0.45] 

 
[Koven et al., 2013] 

fij fraction of SOM leave from ith pool and enter into jth pool - [0, 0, 0.76, 0.24, 0, 0, 0; 
 0, 0, 0, 0, 1, 0, 0; 
 0, 0, 0, 0, 1, 0, 0; 
 0, 0, 0, 0, 0, 1, 0; 
 0, 0, 0, 0, 0, 0.995, 0.005; 
 0, 0, 0, 0, 0.93, 0, 0.07; 
 0, 0, 0, 0, 1, 0, 0] 
 

[Koven et al., 2013] 

CN Soil organic matter CN ratio  - [13,16,7.9] [Parton et al., 1988] 
CP Soil organic matter CP ratio - [110,320,114] [Parton et al., 1988] 
TURNSOM Soil organic matter turn over [CWD, metabolic lit, 

cellulose lit, lignin lit, fast SOM, medium SOM, slow 
SOM] 

year [4.1, 0.066, 0.25, 0.25, 
0.17, 5, 270] 

[Koven et al., 2013] 

N associated     

  kNH 4
plant

 
Reaction rate of plant NH4

+ carrier enzyme  day-1 120 (a) [Jackson et al., 1997; Min 
et al., 2000] 

  KM
NH 4
plant

 
Half-saturation constant for plant NH4

+ uptake g m-2 0.09 [Kuzyakov and Xu, 2013] 

  KM
NH 4
mic

 
Half-saturation constant for decomposing microbe NH4

+ 
immobilization 

g m-2 0.02 [Kuzyakov and Xu, 2013] 

 knit  
Maximum fraction of NH4

+ pool that could be utilized by 
nitrifiers 

day-1 10% [Parton et al., 2001] 

  KM
NH 4
nit

 
Half-saturation constant for nitrifier NH4

+ consumption g m-2 0.076 [Drtil et al., 1993] 

  kNO3
plant

 
Reaction rate of plant NO3

- carrier enzyme day-1 2 (a) [Jackson et al., 1997; Min 
et al., 2000] 

  KM NO3
plant

 
Half-saturation constant for plant NO3

- uptake g m-2 0.07 [Kuzyakov and Xu, 2013] 

  KM NO3
mic

 
Half-saturation constant for decomposing microbe NO3

- 
immobilization 

g m-2 0.04 [Kuzyakov and Xu, 2013] 

  KM NO3
den

 
Half-saturation constant for denitrifier NO3

- consumption g m-2 0.011 [Murray et al., 1989] 

  [EN
plant ]  

Plant nitrogen carrier enzyme abundance for nitrogen 
uptake 

g m-2 
  
C froot ⋅0.0000125 (a) [Tang and Riley, 2013; 

Trumbore et al., 2006] 

  [EN
mic ]

 
Decomposing microbes nitrogen carrier enzyme 
abundance for nitrogen immobilization 

g m-2 

  

FN
immob,pot

1000
(b) 

[Tang and Riley, 2013] 

  [EN
nit ]

 
Nitrifier nitrogen carrier enzyme abundance for NH4

+ 
assimilation 

g m-2 1.2E-3  [Raynaud et al., 2006] 



  [EN
den]

 
Denitrifier nitrogen carrier enzyme abundance for NO3

- 
assimilation 

g m-2 1.2E-3  [Raynaud et al., 2006] 

fN2O Fraction of nitrification flux lost as N2O  - 6E-4 [Li et al., 2000] 
P associated     
kweather Parent material P weathering rate g P m-2 year-1 0.004 [Y P Wang et al., 2010] 
koccl P occlude rate month-1 1.0E-6 [Yang et al., 2014] 

 kP
plant

 
Reaction rate of plant POx carrier enzyme day-1 12 (a) [Colpaert et al., 1999] 

 KM P
plant

 
Half-saturation constant for plant POx uptake g m-2 0.067 [Cogliatti and Clarkson, 

1983] 

 KM P
mic

 
Half-saturation constant for decomposing microbe POx 
immobilization 

g m-2 0.02 [Chen, 1974] 

 VMAX P
surf

 
Maximum mineral surface POx adsorption g m-2 133 [Y P Wang et al., 2010] 

 KM P
surf

 
Half-saturation constant for mineral surface POx 
adsorption 

g m-2 64 [Y P Wang et al., 2010] 

  [EP
plant ]  

Plant phosphorus carrier enzyme abundance for POx 
uptake 

g m-2 
  
C froot ⋅0.0000125 (a) [Tang and Riley, 2013; 

Trumbore et al., 2006] 

  [EP
mic ]

 
Decomposing microbes phosphorus carrier enzyme 
abundance for POx immobilization 

g m-2 

  

FP
immob,pot

800
(b) 

[Tang and Riley, 2013] 

  [EP
surf ]  

Mineral surface “effective enzyme” abundance for POx 
adsorption 

g m-2 
  VMAX P

surf − [SP]  [Tang and Riley, 2013] 

(a) The scaling factor for plant nutrient enzyme abundance is 0.0000125. This number is inferred by assuming that growing season plant nutrient carrier enzymes are roughly the same order of 
magnitude compared with decomposing microbes’. Typical values for soil decomposing microbe biomass and tropical forest fine root biomass are 0.1 [Tang and Riley, 2013] and 400 [Trumbore et al., 
2006] gC m-2. A typical value of scaling factor that scales microbial biomass to enzyme abundance is 0.05 [Tang and Riley, 2013]. Therefore,

  
C froot ⋅ x = Cmic ⋅0.05  or   400 ⋅ x = 0.1⋅0.05 . We have 

  x = 0.0000125 . Further, we have   kNH 4
plant ⋅[EN

plant ] =VMAX NH 4
plant .  We know that typical values for   VMAX NH 4

plant  and   [EN
plant ]  are 0.6 g m-2 day-1 [Min et al., 2000] and 0.005 g m-2. Then we have   kNH 4

plant = 120  

day-1. Similarly, we have   kNO3
plant ⋅[EN

plant ] =VMAX NO3
plant ,   kP

plant ⋅[EP
plant ] =VMAX P

plant .  Knowing that typical values for   VMAX NO3
plant  and  VMAX P

plant  are 0.01 [Min et al., 2000] and 0.06 [Colpaert et al., 1999] 

g m-2 day-1, we have   kNO3
plant = 2  and   kP

plant = 12 day-1.  

(b) For decomposing microbes, we have   VMAX N
mic = kN

mic ⋅[E N
mic ] . Typical values for  VMAX N

immob  and   [EN
mic ]  are 5 g m-2 day-1 [Kuzyakov and Xu, 2013] and 0.005 g m-2 [Tang and Riley, 2013]. 

Therefore, we have   kN
mic = 1000 . Since our model calculates potential N immobilization rates and approximates them as  VMAX N

mic . The changes of potential N immobilization rates at each time step 

imply the changes of enzyme abundance through 
  
[EN

mic ] =
FN

immob,pot

kN
mic =

FN
immob,pot

1000
. Similarly, we have that  VMAX P

immob  and   [EN
mic ]  are 2 g m-2 day-1 [Chen, 1974] and 0.005 g m-2. Therefore,   kP

mic = 800  

and 
  
EP

mic =
FP

immob,pot

800
. 



Table 3. Observational datasets used for calibration. Number of observations for each 735	

data stream is included in brackets. 736	

Processes Datasets Location References 
C associated Soil heterotrophic 

respiration (20) 
 Tapajos National 

Forest, Para, Brazil 
[Silver et al., 2012] 

N associated Soil NH4
+ (5) N2O efflux (20) Tapajos National 

Forest, Para, Brazil 
[Silver et al., 2012] 

P associated Soil free phosphate (3)  Sorb phosphate (3) Tapajos National 
Forest, Para, Brazil 

[McGroddy et al., 
2008] 

  737	



Table 4. Posterior parameters are reported in terms of (1) mean/standard deviation by 738	

fitting to a Gaussian distribution; (2) 25% and 75% quantile. Both variance-based and 739	

quantile-based parameters uncertainty reduction are provided. 740	

Parameters 
 
µ prior   

σ prior   
µ posterior   

σ posterior  
UR 

   
Qprior

25
 

  
Qprior

75
 

  
Qposterior

25
 

  
Qposterior

75
 

UR  

TURNSOM 

[CWD, 

metabolic, 

cellulose, 

lignin lit, 

fast, 

medium 

SOM] 

[3.7, 

0.06, 

0.23,  

0.23,0.16, 

4.6] 

[3.9, 

0.06, 

0.24, 

0.24, 

0.18, 

4.8] 

[5.2, 

0.07, 

0.17,  

0.17, 

0.14, 

3.6] 

[0.33, 

0.01, 

0.01, 

0.005, 

0.008, 

0.37] 

[92, 

83, 

96, 

98, 

96, 

92] 

[5.33, 

0.086, 

0.33, 

0.33, 

0.22, 

6.5] 

[19.32, 

0.31, 

1.18, 

1.18, 

0.8, 

23.5] 

[5.05, 0.63, 

0.16, 0.17, 

0.13, 3.2] 

[5.39, 

0.076, 0.18, 

0.18, 0.14, 

3.9] 

[97, 

94, 

97, 

99, 

98, 96 

  kNH 4
plant

 
109 114 58 14 88 156.1 565.4 52.8 60.0 98 

  KM
NH 4
plant

 
0.082 0.086 0.173 0.018 79 0.12 0.42 0.16 0.18 93 

  KM
NH 4
mic

 
0.018 0.019 0.071 0.0067 65 0.026 0.094 0.065 0.076 85 

 knit  
0.091 0.095 0.37 0.038 60 0.13 0.47 0.36 0.39 91 

  KM
NH 4
nit

 
0.069 0.072 0.082 0.012 83 0.10 0.36 0.07 0.09 94 

  kNO3
plant

 
1.8 1.9 7.6 1.7 13 2.60 9.42 6.11 9.14 56 

  KM NO3
plant

 
0.064 0.067 0.085 0.0064 90 0.09 0.33 0.08 0.09 97 

  KM NO3
mic

 
0.036 0.038 0.096 0.014 63 0.05 0.19 0.09 0.10 92 

  KM NO3
den

 
0.0101 0.0105 0.022 0.0034 68 0.014 0.052 0.019 0.024 87 

 kP
plant

 
11 11.5 59 0.75 93 15.61 56.54 58.86 59.81 98 

 KM P
plant

 
0.061 0.064 0.11 0.015 77 0.09 0.32 0.10 0.12 94 

 KM P
mic

 
0.018 0.019 0.037 0.0047 75 0.026 0.094 0.034 0.039 93 

 VMAX P
surf

 
121 127 182 30 76 173.0 626.6 156.5 206.3 89 



 KM P
surf

 
64 58 200 50 18 83.2 301.5 162.6 233.0 68 

  741	



Table 5. Short-term (24 or 48 hours) fertilization experiments of NH4
+, NO3

-, or PO4
3- 742	

additions used to evaluate the performance of the N-COM competition scheme.  743	

Datasets Added 

nutrient 

Competitors Duration 

(hour) 

References 

PO4
3- fertilization 10 µg g-1 I. Mineral 

surface 

II. Decomposing 

microbe 

 48 [Olander and Vitousek, 2005] 

NH4
+ fertilization  4.6 µg g-1 I. Plant II. Decomposing 

microbe 

III. Nitrifier 24 [Templer et al., 2008] 

NO3
- fertilization  0.92 µg g-1 I. Plant II. Decomposing 

microbe 

 24 [Templer et al., 2008] 

	 	744	
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Appendix	A.	CNP	fluxes	

The fluxes of carbon, nitrogen, and phosphorus coming from the upstream pool (i) 

to the downstream pool (j) due to SOM decomposition are calculated as: 

  
FC ,ij

move = fij FC ,i
decgi 	 	 	 	 	 	 	   (A1) 

  
FN ,ij

move = fij FC ,i
dec min( 1

CNi

,
gi

CN j

)        (A2) 

  
FP,ij

move = fij FC ,i
dec min( 1

CPi

,
gi

CPj

)         (A3) 

where gi is the percentage of carbon remaining in the soil after decomposition of the ith 

SOM pool (i.e., CUE, with the rest being released as CO2); fij is the fraction of SOM 

leaving the ith pool and entering the jth pool; and   
FC ,i

dec  is the first order decay of the ith 

SOM pool. CN and CP are soil C:N and C:P ratios, respectively. 

If the upstream-decomposed soil organic nitrogen (phosphorus) is more than 

enough to sustain the downstream C:N (C:P) ratio, then the excess nitrogen (phosphorus) 

enters the soil NH4
+ (POx) pool. POx represents the sum of PO4

3-, HPO4
2-, and H2PO4

- 

that could be utilized by plants and microorganisms, and adsorbed by mineral surfaces.  

  
FN ,ij

mob = fij FC ,i
dec max(

1
CNi

−
gi

CN j

,0)        (A4) 

  
FP,ij

mob = fij FC ,i
dec max(

1
CPi

−
gi

CPj

,0)        (A5) 

where 
  
FN ,ij

mob  and   
FP,ij

mob   are the nitrogen and phosphorus gross mineralization rates. Eqn. 

A4 - A5 ensure that gross mineralization is not less than zero. In contrast, if nitrogen 

(phosphorus) is insufficient, soil microbes immobilize free NH4
+ and NO3

- (POx): 



  
FN ,ij

immob,pot = fij FC ,i
dec max(

gi

CN j

− 1
CNi

,0)        (A6) 

  
FNH 4,ij

immob,pot = FN ,ij
immob,pot ⋅ [NH 4]

[NH 4]+ [NO3]
       (A7) 

  
FNO3,ij

immob,pot = FN ,ij
immob,pot ⋅ [NO3]

[NH 4]+ [NO3]
       (A8) 

  
FP,ij

immob,pot = fij FC ,i
dec max(

gi

CPj

− 1
CPi

,0)        (A9) 

where   FN
immob,pot ,   FNH 4

immob,pot ,   FNO3
immob,pot , and   FP

immob,pot  are microbial N, NH4
+, NO3

-, and 

POx immobilization rates. [NH4] and [NO3] are the free NH4
+ and NO3

- pools, 

respectively. We assume that microbes have no preference for NH4
+ or NO3

- (Eqn. A7-

A8). If soil nutrients are limited, a limitation factor will be applied to those potential soil 

decomposition CNP fluxes (Eqn. A1 – A9) to maintain the soil organic matter CNP 

stoichiometry. 

Besides decomposing microbe nutrient immobilization, other potential nutrient 

uptakes are: 

  FNH 4
nit ,pot = [NH 4]⋅ knit ⋅rθ ⋅rT ⋅(1− f anox )        (A10) 

  FNO3
den,pot = min( f (decomp), f ([NO3])) ⋅ f anox       (A11) 

  
FP

surf ,pot =
VMAX P

surf ⋅KM P
surf

(KM P
surf + [POx ])2 ⋅

d[POx ]
dt

⋅       (A12) 

where   FNH 4
nit ,pot ,   FNO3

den,pot , and   FP
surf ,pot  are potential rates for NH4

+ nitrification, NO3
- 

denitrification, and mineral surface POx adsorption. knit is the maximum fraction of free 

NH4
+ pool that could be utilized by nitrifiers. The potential nitrification rate is controlled 

by soil temperature ( rT ), soil moisture ( rθ ), and soil oxygen status (1-fanox). The potential 



denitrificaiton rate (  FNO3
den,pot ) is either constrained by substrate availability (f(decomp)) or 

NO3
- availability (f([NO3])) [Del Grosso et al., 2000], taking into account the soil 

anaerobic condition (fanox).   FP
surf ,pot

 is derived from the Langmuir adsorption model 

[Barrow, 1978], where adsorbed P is equal to 
  
VMAX P

surf ⋅
[POx ]

KM P
surf + [POx ]

. Taking the 

time derivative leads to the adsorption rate [Wang et al., 2010]. 

Soil NH4
+ content is altered by inputs from deposition (  FNH 4

dep ) and biological N2 

fixation (FBNF) [Cleveland et al., 1999]: 

  
F BNF = 1.8 ⋅1− e−0.003⋅NPPannual

365⋅86400
        (A13) 

where NPPannual is annual net primary production. Controls on biological N2 fixation are 

complex and several models have been developed for large-scale land BGC models 

[Cleveland et al., 1999; Fisher et al., 2010; Hartwig, 1998; Parton et al., 1993; Running 

et al., 1989; Vitousek and Field, 1999]. However, the emergent responses predicted 

across these model structures are inconsistent [Galloway et al., 2004]. Recognizing this 

important structural uncertainty, we used a simple model where biological N2 fixation 

(FBNF) is modeled as a function of annual NPP [Cleveland et al., 1999]. 

Soil NO3
- content is modified by external deposition inputs (  FNO3

dep ) and leaching 

losses (  FNO3
leach ): 

  
FNO3

leach = [NO3]
W

⋅Qdis          (A14) 



where soil nitrate concentration ([NO3]: gN m-2) divided by soil water content (W: gH2O 

m-2) results in the concentration of dissolved nitrate (DIN). The hydrologic discharge 

(Qdis: gH2O m-2 s-1) applied to DIN (gN gH2O-1) leads to the leaching loss (gN m-2 s-1).  

Soil POx content is affected by external inputs from parent material weathering 

(Fweather) and leaching losses ( FP
leach ). Sorbed P (PS) could be further strongly occluded 

and become unavailable for plant and microbial uptake. Parent material stock can be 

increased by atmospheric dust deposition ( FP
dep ) [Mahowald et al., 2008]: 

  F
weather = [PP]⋅ kweather          (A15) 

  
FP

leach =
[POx ]

W
⋅Qdis          (A16) 

  FP
occl = [PS ]⋅ koccl          (A17) 

where parent material weathering (Fweather) is calculated using a weather rate (kweather) and 

parent material P content ([PP]). POx leaching loss is modeled with a similar approach to 

nitrate leaching (Eqn. A16). Phosphorus occlusion rate is modeled as the product of a 

constant rate (koccl) and the sorbed P content ([PS]). 
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Appendix B. Derivation of VMAX 
The enzyme substrate reaction is:

  
S + E k1

+

k1
−← →⎯ C k⎯ →⎯ P + E , where the enzyme 

(E) and substrate (S) reaction is reversible and forms complex (C). The irreversible 

reaction releases product (P) and liberates enzyme (E). At steady state, the formation rate 

of the enzyme substrate complex is equal to the consumption rate:  

  k1
+[S][E]= k1

−[C]+ k[C]         (B1) 

To simply the equation, we define an affinity parameter: 

  
KM =

k1
− + k
k1
+ = [S]⋅[E]

[C]
        (B2) 

By definition, the total enzymes   [Etot ]  in the system is the sum of free enzymes   [E]  and 

enzymes that are bound with the substrate   [C] :  

  [Etot ]= [E]+ [C]          (B3) 

Substituting Eqn. (B3) into (B2), we have: 

  
KM =

[S]⋅([Etot ]− [C])
[C]

        (B4) 

Collecting terms containing [C], we have: 

  [C]⋅(KM + [S]) = [Etot ]⋅[S]         (B5) 

The production rate is: 

  
d[P]

dt
= k ⋅[C]           (B6) 

Substituting Eqn. (B5) into (B6), we have: 

  

d[P]
dt

= k ⋅[Etot ]⋅
[S]

KM + [S]
        (B7) 



Comparing Eqn. (B7) with the classic Michaelis-Menten equation, it is clear that the 

definition of maximum production rate is the product of the reaction rate and enzyme 

abundance in the system: 

  VMAX = k ⋅[Etot ]         (B8) 

	 	



Figure A1. MCMC chain. Blue line represents the MCMC samples that are used to infer 

our model posterior parameters. Two other replicated MCMC calibrations (with different 

random number seeds) were conducted (yellow and red lines), in order to check the 

convergence of MCMC calibration. 
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Figure A2. Gelman-Rubin convergence criterion calculated from three chains in 

Figure A1. Baseline value is commonly set to 1.1 (red line). When the Gelmen- 

Rubin criterion is less than or equal to 1.1, the multiple chains are thought to 

converge. 
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Figure A3. Posterior model parameters (blue bars) fitted to Gaussian distribution (red 

line). 
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