
Response Letter 

Title: Soil nutrient competitive traits of plants, microbes, and mineral surfaces explain 

nutrient acquisition in tropical experimental manipulations 

General Response: 

We would like to thank the two anonymous referees for their constructive 

comments. In this revision, we used a standard function (gelman.diag) in the R package 

“coda” to calculate the Gelman-Rubin criterion. As suggested by the reviewers, we also 

added more discussion about model imperfection, parameter edge effects, and soil 

heterogeneity. 

The response letter is organized by (1) reviewers’ major comments in black and 

(2) authors’ responses in blue.  

  



Reviewer #1 

1. Unfortunately, the authors seem to have used a wrong equation for the Gelman-Rubin 

diagnostic aka the "potential scale reduction factor", psrf. In Figure A2 the psrf is 

considerably below 1 for 6 parameters. However, the limit value is 1 and the psrf should 

be >= 1! Please check this equation again.  

Response: 

Thanks for pointing out the error. We coded the Gelman-Rubin in MATLAB with 

an incorrect equation. Instead, now we used the R function gelman.diag to calculate the 

Potential Scale Reduction Factor (PSRF). The new Gelman-Rubin convergence criterions 

are updated in Table 4 and Figure A2. 

 

Figure A2. Gelman-rubin convergence criterion (solid lines). Baseline value is set to 1.1 

(dash lines). When Gelmen-rubin criterion is smaller than or equal to 1.1, the chains are 

thought to converge. 

 
 

2. Clearly, convergence is not reached, and I would advise the authors to refrain from 

using the term posterior. Instead they could state that they used the best parameter set 

obtained from MCMC sampling, while it was not possible to obtain a proper sample from 

the posterior. 

Response: 



Thanks for the suggestion. In the revised manuscript, we have replaced the term 

“posterior parameters” with “calibrated parameters”.  

  



Reviewer #2 

1. The authors have tried to address the concerns about the non-perfect model calibration. 

Although I am not satisfied with their response, I recommend following the suggestion of 

reviewer 2 to clearly acknowledge the imperfections of the calibration and go on with 

conclusions that can be drawn despite of these calibration imperfections.  

Response: 

Thanks for the suggestion. We added more discussion in results and conclusion 

sections to clearly acknowledge the model imperfections. 

 

2. Thanks for implementing the comments regarding prediction uncertainty, and using 

quantiles instead of fitting Gaussians for inferring uncertainty reduction.  

Response: 

Thanks for the positive comments. 

 

3. Fig.4: The sampling yields one multivariate distribution. The fact that a several of the 

marginals of this multivariate distribution do not differ (inferred by the Gelman criterion) 

does not help, that the chains sample different regions and failed to converge to the same 

limiting distribution. I agree with reviewer 2 that data paucity should not be the reason 

for this. A good sampler would sample the prior. Instead of using the Gelman criterion 

for the marginal, also the multivariate Gelman criterion can be used (Brooks, SP. and 

Gelman, A. (1998) General methods for monitoring convergence of iterative simulations. 

Journal of Computational and Graphical Statistics, 7, 434-455). It is implemented with R 

function gelman.diag of the coda package.  

Response: 

Thanks for the suggestion of using “gelman.diag”. In this revision, we used R 

function gelman.diag to calculate Potential Scale Reduction Factor (PSRF). The MCMC 

chains are univariate. Therefore, we did not calculate multivariate Gelman criterion, 

which assumes multivariate chains.  

We argue that parameter non-convergence could be due to the equifinality issue. 

We did not mean to say that the non-convergence was totally due to data paucity. 

However, we argue that the sparse sampling of data could be one of the reasons for the 



equifinality and non-convergence. Starting from different initial values, MCMC chains 

ended up with different posterior values, however, they may have similar model-data 

misfit. 

As is also illustrated in our previous response letter, again here we conceptually 

showed how sparse data result in parameter non-convergence. For example, only three 

measurements of soil free phosphate were made during 1999. Many detailed dynamics 

are therefore missing. MCMC sampling may end up with three different posterior models 

(blue lines versus red line) that have similar model-data misfits. We argue that more data 

across the year, which better represent seasonal dynamics, would lead to better 

constrained and converged posteriors. In this case, more POx observations in January, 

February, August, and September would be extremely helpful to constrain POx 

associated parameters. 

 

 
 

4. Fig 2, parameter at edges: I do not agree with the replies on this issue. Model 

discrepancy becomes apparent for the phosphorous processes, probably because those 

processes are constrained by relatively few observations. If the results with such a high 

parameter are reasonable, the prior density maybe of wrong magnitude. You could try a 

wider prior, but the parameter might still be at the edge. This edge effect should be at 

least stated. Better add a little discussion.  

Response: 



Thanks for pointing out the edge effect issue, which is only for one parameter 

(kplant
P). In the revised manuscript, we added more discussion on this edge effect issue.  

The prior ranges of kplant
P are what we believe to be physically reasonable. We 

argue that model calibration tried to minimize the model-data misfit conditioned that the 

parameter must be within the prior knowledge. If a parameter is out of the prior ranges, 

the system is physically unreasonable, even though in that condition the model-data 

misfit is smaller. Having a calibrated parameter at the edge (high end) of prior implies 

that plant is highly efficient in P uptake, which is reasonable given that tropical plants are 

likely highly adapted to low phosphorus environments (Begum et al., 2005; Foshe et al., 

1988). 

 

5. Soil heterogeneity: I understand that the model focuses on ecosystem scale. Still, I am 

interested in your expectations or hypotheses what would change if you could account for 

soil heterogeneity.  

Response: 

We agree that soil heterogeneity is an important issue in modeling soil nutrient 

cycles. By assuming a well-mixed soil, large-scale models completely ignore the 

heterogeneity. We acknowledge in the manuscript that this is an inevitable flaw, because 

of large computational demands and a lack of scale-aware parameters and model 

structures for large-scale models to run fine scale simulations. 

The ECA nutrient competition framework here considered for large-scale model 

integration is readily applicable to fine scale models that explicitly consider soil 

heterogeneity. Accounting for soil heterogeneity, a fine-scale model simulates nitrogen 

movement towards root surface due to diffusion and mass flow (Leadley et al., 1997; Nye 

and Marriot 1969). Plant nutrient uptake creates a nitrogen-depleted zone (named 

rhizosphere), where strong competition between roots and microbes is expected. The 

ECA competition framework could be directly applied to the calculation of plant nitrogen 

uptake at root surface.  

Accordingly, we have to change the assumption that roots compete with soil 

microbes everywhere in the soil. In stead, we hypothesize that in bulk soil nutrient 

competition only occurs among different microbes because they are ubiquitous in the soil 



(e.g., nitrifier versus microbial decomposer); while in the rhizosphere competition occurs 

among plants and microbes (e.g., nitrifier versus microbial decomposer versus roots). 

We have added more discussion about the soil heterogeneity issue in the revised 

manuscript.  

 

6. K^plant_NO3: the statement “may result from random effects of MCMC sampling, but 

not inferred by the calibration data” Suggests not trusting the sampling too much. But 

then also take caution in drawing conclusions on importance of parameters. 

Response: 

In the revised manuscript, we have removed the results about the parameter 

importance. In the conclusion section, we acknowledge that the calibrated model is the 

best we can get based on limited data, but it is not the best posterior model we want. 

Future work on data collection, model calibration, and uncertainty reduction are 

definitely needed.  

 

Reference: 

Begum, H., and M. Islam. "Role of synthesis and exudation of organic acids in 

phosphorus nutrition in plants in tropical soils."Biotechnology 4.4 (2005): 333-

340. 

Fohse, D., N. Claassen, and A. Jungk. "Phosphorus efficiency of plants: I. External and 

internal P requirement and P uptake efficiency of different plant species." Plant 

and Soil (1988): 101-109. 

Leadley, Paul W., James F. Reynolds, and F. S. Chapin III. "A model of nitrogen uptake 

by Eriophorum vaginatum roots in the field: ecological implications." Ecological 

Monographs 67.1 (1997): 1-22.  

Nye P., and F. Marriot 1969. A theoretical study of the distribution of substances around 

roots resulting from simultaneous diffusion and mass flow. Plant and Soil 30: 
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Appendix	A.	CNP	fluxes	

The fluxes of carbon, nitrogen, and phosphorus coming from the upstream pool (i) 

to the downstream pool (j) due to SOM decomposition are calculated as: 
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where gi is the percentage of carbon remaining in the soil after decomposition of the ith 

SOM pool (i.e., CUE, with the rest being released as CO2); fij is the fraction of SOM 

leaving the ith pool and entering the jth pool; and   
FC ,i

dec  is the first order decay of the ith 

SOM pool. CN and CP are soil C:N and C:P ratios, respectively. 

If the upstream-decomposed soil organic nitrogen (phosphorus) is more than 

enough to sustain the downstream C:N (C:P) ratio, then the excess nitrogen (phosphorus) 

enters the soil NH4
+ (POx) pool. POx represents the sum of PO4

3-, HPO4
2-, and H2PO4

- 

that could be utilized by plants and microorganisms, and adsorbed by mineral surfaces.  
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where 
  
FN ,ij

mob  and   
FP,ij

mob   are the nitrogen and phosphorus gross mineralization rates. Eqn. 

A4 - A5 ensure that gross mineralization is not less than zero. In contrast, if nitrogen 

(phosphorus) is insufficient, soil microbes immobilize free NH4
+ and NO3

- (POx): 
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where   FN
immob,pot ,   FNH 4

immob,pot ,   FNO3
immob,pot , and   FP

immob,pot  are microbial N, NH4
+, NO3

-, and 

POx immobilization rates. [NH4] and [NO3] are the free NH4
+ and NO3

- pools, 

respectively. We assume that microbes have no preference for NH4
+ or NO3

- (Eqn. A7-

A8). If soil nutrients are limited, a limitation factor will be applied to those potential soil 

decomposition CNP fluxes (Eqn. A1 – A9) to maintain the soil organic matter CNP 

stoichiometry. 

Besides decomposing microbe nutrient immobilization, other potential nutrient 

uptakes are: 

  FNH 4
nit ,pot = [NH 4]⋅ knit ⋅rθ ⋅rT ⋅(1− f anox )        (A10) 

  FNO3
den,pot = min( f (decomp), f ([NO3])) ⋅ f anox       (A11) 
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d[POx ]
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where   FNH 4
nit ,pot ,   FNO3

den,pot , and   FP
surf ,pot  are potential rates for NH4

+ nitrification, NO3
- 

denitrification, and mineral surface POx adsorption. knit is the maximum fraction of free 

NH4
+ pool that could be utilized by nitrifiers. The potential nitrification rate is controlled 

by soil temperature ( rT ), soil moisture ( rθ ), and soil oxygen status (1-fanox). The potential 



denitrificaiton rate (  FNO3
den,pot ) is either constrained by substrate availability (f(decomp)) or 

NO3
- availability (f([NO3])) [Del Grosso et al., 2000], taking into account the soil 

anaerobic condition (fanox).   FP
surf ,pot

 is derived from the Langmuir adsorption model 

[Barrow, 1978], where adsorbed P is equal to 
  
VMAX P

surf ⋅
[POx ]

K M
surf ,P + [POx ]

. Taking the time 

derivative leads to the adsorption rate [Wang et al., 2010]. 

Soil NH4
+ content is altered by inputs from deposition (  FNH 4

dep ) and biological N2 

fixation (FBNF) [Cleveland et al., 1999]: 

  
F BNF = 1.8 ⋅1− e−0.003⋅NPPannual

365⋅86400
        (A13) 

where NPPannual is annual net primary production. Controls on biological N2 fixation are 

complex and several models have been developed for large-scale land BGC models 

[Cleveland et al., 1999; Fisher et al., 2010; Hartwig, 1998; Parton et al., 1993; Running 

et al., 1989; Vitousek and Field, 1999]. However, the emergent responses predicted 

across these model structures are inconsistent [Galloway et al., 2004]. Recognizing this 

important structural uncertainty, we used a simple model where biological N2 fixation 

(FBNF) is modeled as a function of annual NPP [Cleveland et al., 1999]. 

Soil NO3
- content is modified by external deposition inputs (  FNO3

dep ) and leaching 

losses (  FNO3
leach ): 

  
FNO3

leach = [NO3]
W

⋅Qdis          (A14) 



where soil nitrate concentration ([NO3]: gN m-2) divided by soil water content (W: gH2O 

m-2) results in the concentration of dissolved nitrate (DIN). The hydrologic discharge 

(Qdis: gH2O m-2 s-1) applied to DIN (gN gH2O-1) leads to the leaching loss (gN m-2 s-1).  

Soil POx content is affected by external inputs from parent material weathering 

(Fweather) and leaching losses ( FP
leach ). Sorbed P (PS) could be further strongly occluded 

and become unavailable for plant and microbial uptake. Parent material stock can be 

increased by atmospheric dust deposition ( FP
dep ) [Mahowald et al., 2008]: 

  F
weather = [PP]⋅ kweather          (A15) 

  
FP

leach =
[POx ]

W
⋅Qdis          (A16) 

  FP
occl = [PS ]⋅ koccl          (A17) 

where parent material weathering (Fweather) is calculated using a weather rate (kweather) and 

parent material P content ([PP]). POx leaching loss is modeled with a similar approach to 

nitrate leaching (Eqn. A16). Phosphorus occlusion rate is modeled as the product of a 

constant rate (koccl) and the sorbed P content ([PS]). 
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Appendix B. Derivation of VMAX 
The enzyme substrate reaction is:

  
S + E k1

+

k1
−← →⎯ C k⎯ →⎯ P + E , where the enzyme 

(E) and substrate (S) reaction is reversible and forms complex (C). The irreversible 

reaction releases product (P) and liberates enzyme (E). At steady state, the formation rate 

of the enzyme substrate complex is equal to the consumption rate:  

  k1
+[S][E]= k1

−[C]+ k[C]         (B1) 

To simply the equation, we define an affinity parameter: 

  
K M =

k1
− + k
k1
+ = [S]⋅[E]

[C]
        (B2) 

By definition, the total enzymes   [Etot ]  in the system is the sum of free enzymes   [E]  and 

enzymes that are bound with the substrate   [C] :  

  [Etot ]= [E]+ [C]          (B3) 

Substituting Eqn. (B3) into (B2), we have: 

  
K M =

[S]⋅([Etot ]− [C])
[C]

        (B4) 

Collecting terms containing [C], we have: 

  [C]⋅(K M + [S]) = [Etot ]⋅[S]         (B5) 

The production rate is: 

  
d[P]

dt
= k ⋅[C]           (B6) 

Substituting Eqn. (B5) into (B6), we have: 

  

d[P]
dt

= k ⋅[Etot ]⋅
[S]

K M + [S]
        (B7) 



Comparing Eqn. (B7) with the classic Michaelis-Menten equation, it is clear that the 

definition of maximum production rate is the product of the reaction rate and enzyme 

abundance in the system: 

  VMAX = k ⋅[Etot ]         (B8) 

	 	



Figure A1. MCMC chain. Blue line represents the MCMC samples that are used to infer 

our model posterior parameters. Two other replicated MCMC calibrations (with different 

random number seeds) were conducted (yellow and red lines), in order to check the 

convergence of MCMC calibration. 

 

  



Figure A2. Gelman-rubin convergence criterion (solid lines) calculated from three chains 

in Figure A1. Baseline value is set to 1.1 (dash lines). When Gelmen-rubin criterion is 

smaller than or equal to 1.1, the chains are thought to converge. 
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Figure A3. Posterior model parameters (blue bars) fitted to Gaussian distribution (red 

line). 
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