

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa¹, N. Marbà¹, C. E. Lovelock², O. Serrano^{3,4}, P. S. Lavery⁴, J. W. Fourqurean⁵, H. Kennedy⁶, M. A. Mateo^{4,7}, D. Krause-Jensen^{8,9}, A. D. L. Steven¹⁰, and C. M. Duarte^{1,11}

Discussion Paper

Discussion Paper

Back Full Screen / Esc

Printer-friendly Version

Interactive Discussion

BGD

Seagrass meadows as a globally significant carbonate reservoir

12, 4107-4138, 2015

I. Mazarrasa et al.

Title Page

Introduction **Abstract**

Conclusions References

> **Tables Figures**

Close

¹Department of Global Change Research. IMEDEA (CSIC-UIB) Institut Mediterrani d'Estudis Avançats, C/Miguel Marqués 21, 07190 Esporles (Mallorca), Spain

²School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia ³The UWA Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia

⁴School of Natural Sciences, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup WA 6027, Australia

⁵Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA

⁶School of Ocean Sciences, College of Natural Sciences, Bangor University, Askew Street, Menai Bridge, LL59 5AB, UK

⁷Centro de Estudios Avanzados de Blanes, Consejo Superior de Investigaciones Científicas, Acceso Cala St. Francesc 14, 17300 Blanes, Spain

⁸Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark

⁹Arctic Research Centre, Aarhus University, C.F. Møllers Allé 8, 8000 Aarhus, Denmark

Discussion Paper

Discussion Paper

Discussion Paper

¹⁰CSIRO, EcoSciences Precinct – Dutton Park 41 Boggo Road Dutton Park QLD 4102, Australia

¹¹Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

Received: 19 December 2014 - Accepted: 24 January 2015 - Published: 6 March 2015

Correspondence to: I. Mazarrasa (imazarrasa@imedea.uib-csic.es)

Published by Copernicus Publications on behalf of the European Geosciences Union.

BGD

12, 4107–4138, 2015

Seagrass meadows
as a globally
significant carbonate
reservoir

I. Mazarrasa et al.

There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC) stocks and accumulation rates and ignored the inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha⁻¹, with an average of 654 ± 24 Mg PIC ha⁻¹, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of $-8 \pm 2 \,\mathrm{Mg} \,\mathrm{PIC} \,\mathrm{ha}^{-1} \,\mathrm{degree}^{-1}$ of latitude (GLM, p < 0.0003). Using PIC concentration and estimates of sediment accretion in seagrass meadows, mean PIC accumulation rates in seagrass sediments is 126.3 ± 0.7 g PIC m⁻² y⁻¹. Based on the global extent of seagrass meadows (177 000 to 600 000 km²), these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y⁻¹, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO₂ emissions from precipitation, seagrass meadows are still strong CO₂ sinks as demonstrates the comparison of carbon (POC and POC) stocks between vegetated and adjacent un-vegetated sediments.

BGD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I

I

I

I

Back Close

Full Screen / Esc

Interactive Discussion

4109

Calcium carbonate (CaCO₃) accounts for about a 25% of the surface marine sediments (Balch et al., 2005). Contemporary oceanic carbonate sediments are mainly composed by two main mineral forms of calcium carbonate, calcite (including Mgcalcite, magnesium-rich calcite) and aragonite, both primarily formed by biogenic precipitation (Smith, 2013). The coastal ocean accounts for around 33% of the global CaCO₃ production (Smith, 2013) but it is where the highest proportion of carbonate sediment accumulation takes place (nearly two-thirds of its production) whereas in open ocean sediments only one-third of the CaCO₃ produced is accumulated (Milliman and Droxler, 1996; Smith, 2013). A broad range of communities is involved in the production and subsequent accumulation of CaCO₃ in marine sediments, including benthic ecosystems dominated by coral reefs (Chave et al., 1972; Smith, 2013), calcareous algae (Milliman, 1993) and maerl beds (Bosence and Wilson, 2003); and planktonic communities including coccolithophores (Westbroek et al., 1989), foraminifera (Langer et al., 1997), and pteropods (Fabry, 1990). More recently the important contribution of echinoderms (Lebrato et al., 2010), molluscs (Chauvaud et al., 2003) and fish (Wilson et al., 2009) to CaCO₃ production has been revealed. Relative to other ecosystems, the production and accumulation of CaCO₃ in seagrass sediments is poorly studied and not explicitly considered in any of the existing assessments of the global ocean carbonate budget (Milliman et al., 1993; Milliman and Droxler, 1996; Lebrato et al., 2010), despite the important load of carbonate often found in their sediments and leaves (Canals and Ballesteros, 1997; Gacia et al., 2003; Perry and Beavington-Penney, 2005; Serrano et al., 2012; Enriquez and Schubert, 2014) and their role as a source of carbonate sand for beach formation and preservation (De Falco et al., 2003; Tigny et al., 2007). Indeed, a global estimate of the carbonate stock in seagrass sediments is not yet available and the potential contribution of these systems to the global ocean carbonate budget remains to be evaluated.

BGD

Paper

Discussion Paper

Discussion Paper

Discussion Paper

12, 4107-4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Interactive Discussion

4110

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page Introduction **Abstract** Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

There is considerable interest in quantifying the capacity of the World's ecosystems to trap and store carbon, as this can offset anthropogenic carbon emissions to the atmosphere. To date, most work on the carbon pools in seagrass ecosystems has focused on the amount of particulate organic carbon (POC) stored (Fourqurean et al., 5 2012; Lavery et al., 2013) whereas, except for *Posidonia oceanica* in the Mediterranean Sea (Serrano et al., 2012), the inorganic component, particulate inorganic carbon (PIC), has not yet been considered in the assessment of carbon deposits in seagrass meadows. Seagrass ecosystems support diverse and active communities of calcifying organisms and through their photosynthetic activity their canopies provide pH environments that facilitate carbonate deposition (Hendriks et al., 2014). While PIC, in the form of shells and other skeletal remains represent a substantial carbon stock, the production of PIC through calcification may act as a source of CO₂ to the atmosphere (Frankignoulle et al., 1994; Gattuso et al., 1998; Smith, 2013). Thus, understanding the amount of carbonate in seagrass ecosystems is crucial to determining their role in the global atmospheric carbon cycle. The evaluation of the carbonate accumulation rates and stocks in seagrass sediments is also relevant as they may significantly contribute to sediment accretion in coastal areas, a fundamental mechanism supporting the role of seagrass in coastal protection (Duarte et al., 2013).

Seagrass meadows accumulate PIC through calcium carbonate production by calcifying organisms inhabiting the meadows, such as epiphytes (Frankovich and Zieman, 1994; Perry and Beavington-Penny, 2005; James et al., 2009; Enríquez and Schubert, 2014) and benthic invertebrates (Jeudy de Grissac and Boudouresque, 1985) and the deposition of carbonate associated with sedimentation of particles (Gacia et al., 2003). In addition, a recent study demonstrates a direct implication of the seagrass Thalassia testudinum in the formation of aragonite needles that accumulate internally in the cell walls and as external deposits on the blades (Enriquez and Schubert, 2014). Other evidence for the existence of active carbonate processes in seagrass beds include calcification and carbonate dissolution in the canopy, associated with the daily cycles of photosynthesis and respiration (Frankovich and Zieman, 1994;

Barrón et al., 2006; Yates and Halley, 2006), and the dissolution of calcium carbonate in the sediment as a result of below-ground release of CO₂ by respiratory processes (Hu and Burdige, 2007).

All the processes mentioned (precipitation, dissolution and sedimentation) partially depend on seagrass metabolic activity and plant structural features and thus, CaCO₃ stocks in seagrass sediments are likely to vary across meadows of different species (Duarte, 1991). In addition, CaCO₃ stocks in seagrass meadows will likely vary with latitude, as temperature regulates the seawater saturation state for carbonate minerals, that increases with increasing temperature (Zeebe and Ridgwell, 2011) thereby favouring biogenic carbonate precipitation in warmer waters (Mutti and Hallock, 2003).

Here we provide the first global assessment of the particulate inorganic carbon (PIC) deposits in seagrass ecosystems. We do so through a synthesis of published and unpublished data on carbonate stocks in seagrass sediments. We examine the variability of PIC stocks with biogeographic region, latitude and taxonomic composition of the seagrass community. We also compare the PIC and POC stocks in seagrass ecosystems with those in adjacent un-vegetated sediments, provide a first global assessment of the PIC:POC ratio over sediment depth profiles and discuss its implications for current estimates of CO₂ sequestration in seagrass ecosystems.

Material and methods

We compiled the published data available on carbonate stocks in seagrass meadows and adjacent un-vegetated sediments. We considered the total pool of CaCO₃ reported without distinguish between the different possible biogenic carbonate mineral forms (calcite, Mg-calcite and aragonite). Fourqurean et al. (2012) provided data for 201 sites, and a literature search using both the Web of Knowledge (using the search terms "seagrass*" AND "inorganic carbon*" AND ["calcific* OR sediment* OR CaCO3 OR dissolut* OR diagenesis"]) and Google Scholar (using the search terms "seagrass

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page Introduction **Abstract**

Conclusions References

Tables Figures

Close Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

4112

Figures

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

carbonate") yielded data for an additional 83 sites. We amended the database with unpublished values for 152 additional sites sampled by the authors. This yielded a total of 436 sites with data on sediment carbonate concentration in coastal areas occupied by seagrasses, of which 34 corresponded to sand patches adjacent to seagrass 5 meadows. The final database comprised estimates for 402 seagrass vegetated sites, of which 219 consisted of values for sediment surface samples (ca. 1-30 cm depth) and 183 consisted of values for sediment cores of variable length (148 cores < 100 cm-long, and 35 cores \geq 100 cm-long).

regions (20-40° latitude) for both the southern and Northern Hemispheres whereas the data from higher latitude regions were scarce (Fig. 1). Data on surface sediment carbonate was broadly distributed, but most (80%) core data available was from subtropical and temperate seagrass meadows (Fig. 1).

Lithogenic characteristics of the sites were not considered in this study, which, thereby, assumes that the seagrass meadows are the source of carbonate stocks in their sediments. We cannot discard this leading to an overestimation of carbonate deposition rates in areas where lithogenic carbonate might be important. However, as the biogenic carbonate pool is considered to be the dominant in contemporary oceanic sediments (Smith et al., 2013), the local geological characteristics might not have a highly relevant impact in the results of this study.

assuming that PIC is 12% of the total molar mass of the CaCO₃. In most cases, particulate inorganic carbon (PIC) was reported as a percentage of dry weight (%DW), where PIC, in mg PIC cm⁻³, was calculated as the product of the fraction of sediment dry weight composed by PIC and the dry bulk density (DBD) of a given core section (n = 340 sites). When DBD was not reported (n = 113 sites), we used the average DBD (1.03 g cm⁻³) reported by Fourqurean et al. (2012) for seagrass sediments in the calculations. The error introduced by this assumption was small, as a paired t test revealed an average deviation of 3.3 % (t ratio = 4.32; p < 0.0001) when we tested the

4113

The greatest proportion of the sites (46%) was located in tropical and subtropical

When only one of the variables, CaCO₃ or PIC was reported, the other was estimated

BGD 12, 4107–4138, 2015

> **Seagrass meadows** as a globally significant carbonate reservoir

> > I. Mazarrasa et al.

Title Page

Introduction **Abstract**

Conclusions References

differences between estimating PIC concentration using the observed DBD and the assumption of 1.03 for the sites where an observed DBD was reported.

Due to the variability in length of the sediment cores available for the study, mean PIC concentration in seagrass sediments was estimated for the top 10 cm of sediment for a total of 384 sampled sites, for which at least one measure of PIC was reported for this depth zone. To estimate the carbonate stock within the top meter of sediment for the total database available we assumed a constant concentration of PIC in the top meter for those cores where shallower profiles were reported, as almost half (46%) of the long cores (lenght > 100 cm, n = 35) showed no significant change in PIC concentration with depth within the first top meter and the remaining long cores showed only a slight increase of 0.011% DW cm⁻¹ on average.

The sites were classified based on (1) the seagrass biogeographic regions described by Hemminga and Duarte (2000) (North East Pacific, South East Pacific, Tropical Western Atlantic, North Atlantic, South Atlantic, Mediterranean, Indo-Pacific, Western Pacific and Southern Australia), (2) 10° latitude bins and (3) the genus of the dominant seagrass species (*Amphibolis*, *Halophila*, *Halodule*, *Enhalus*, *Thalassia*, *Zostera*, *Posidonia*, *Syringodium*, *Thalassodendrum* and *Cymodocea*).

PIC and POC concentrations were compared along the sediment depth profiles when both variables were reported in the same site (n = 391). The depth profile of POC, PIC and POC: PIC within the top meter was explored for the longest cores (length > $100 \, \text{cm}$) when at least three different data were reported within the top meter (n = 26). For those sites from where data for sediments from adjacent vegetated and unvegetated patches were reported (n = 34), POC and PIC concentrations were also compared.

We used a paired sample t test to assess the difference between the frequency distribution and average of observed values and estimated values of top meter stocks and the difference between PIC and POC across the data set and between adjacent vegetated and un-vegetated patches. Analyses of Variance (ANOVA) and a post-hoc Tukey-test were applied to compare the PIC stocks among the biogeographic

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l≼ ≻l

■ Back Close

Full Screen / Esc

Printer-friendly Version

Discussion Paper

regions and among the dominant genera. We used general linear models (GLM) to test the effect of latitude on the PIC stocks, the depth-variability in the POC and PIC concentrations and their ratio POC: PIC and the variability in POC and PIC concentrations in vegetated and un-vegetated patches. All statistical analyses were 5 conducted using the statistical software JMP 5.01a.

Results

Particulate inorganic carbon concentration within the top 10 cm of seagrass sediments ranged between 0.3 and 174 mg PIC cm⁻³, with an average of 62.5 ± 1.7 mg PIC cm⁻³ and a median of 54 mg PIC cm⁻³ (n = 384). The PIC stock in the top meter of sediment in seagrass meadows showed a wide variability, ranging between 3 and 1660 Mg PIC ha^{-1} , with an average \pm standard error and a median of 654 ± 24 and $647 \, Mg \, PIC$ ha⁻¹, respectively (n = 402; Fig. 2). Estimated stocks (mean \pm SE, 676 ± 26 Mg PIC ha⁻¹, Table S1 in the Supplement) were significantly higher than those derived from direct measurements (mean \pm SE, 423 \pm 52 Mg PIC ha⁻¹, Table S1, p > 0.05); however. estimated and measured paired values did not show a significant difference (Fig. 2; paired t test, p > 0.05).

The PIC stocks differed significantly among seagrass biogeographic regions (ANOVA, F ratio = 12.57, p < 0.0001). The largest stocks were found in the Tropical Western Atlantic similar to those from the Indo-Pacific and the Mediterranean regions. The North Atlantic PIC stocks were significantly lower (Table 1). The largest PIC stocks were found in equatorial and subtropical regions and tended to decrease polewards by $-8\pm2\,\mathrm{Mg}\,\mathrm{PIC}\,\mathrm{ha}^{-1}\,\mathrm{degree}^{-1}$ of latitude (Fig. 4; GLM, ChiSquare = 13.16, p<0.0003). The low PIC values found between -10 and -20° in the Southern Hemisphere derive from Queensland (Australia), and the low values between 50-60 and 60-70° (Northern Hemisphere) correspond to meadows in Northern Denmark and south-west Greenland, respectively (Fig. 4).

Conclusions References

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally

significant carbonate

reservoir

I. Mazarrasa et al.

Title Page

Abstract

Figures

Close

Introduction

Back

Full Screen / Esc

Printer-friendly Version

The PIC stocks also differed among dominant species (ANOVA, F ratio = 13.92; p < 0.0001). The highest PIC stocks were found underlying *Halodule*, *Thalassia* and *Cymodocea* meadows while the lowest stocks were supported by *Zostera* and *Halophila* meadows (Fig. 3). *Posidonia* meadows had intermediate PIC stocks.

Where both PIC and POC were measured concurrently (391 sites; n = 3076), mean PIC concentrations tended to exceed mean POC concentrations (paired t test: T ratio = 64.67, p < 0.0001). The POC: PIC ratio ranged from nearly 0 to 108, with an average of 0.74 ± 0.05 and a median of 0.20 (Table 2; Fig. 5). For the longest cores in the database (length ≥ 100 cm) which had a minimum of three different observations reported over one meter depth (n = 26), the POC concentration (mg POC cm⁻³) along the sediment profile of these cores tended to decrease with depth whereas PIC (mg PIC cm⁻³) was more variable (Fig. S1 in the Supplement). The POC: PIC ratio declined consistently with depth in the top meter of sediment in 69% of these cores at an average of -0.00054% cm⁻¹.

There was a strong relationship between PIC content (%DW) in paired vegetated and un-vegetated sediments ($R^2 = 0.92$, Fig. 6a), with a slope very close to 1 (0.99 ± 0.02) and an intercept not different from 0 (0.17 ± 0.99), indicating that the PIC content in seagrass sediments did not differ significantly from that in adjacent un-vegetated sediments (paired t test, T ratio = 1.67, p > 0.05; n = 195) (Fig. 6a). However, no relationship was found between the POC content (%DW) in seagrass sediments and adjacent bare sediments (Fig. 6b). POC content was significantly higher in vegetated sediments (mean \pm SE, 0.66 ± 0.04) compared to adjacent bare sediments (mean \pm SE, 0.35 ± 0.017 , paired t test, T ratio = -6.57, p < 0.0001; n = 195).

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Id N

•

Close

Full Screen / Esc

Back

Printer-friendly Version

4.1 PIC stocks and estimated accumulation rates in seagrass meadows

Our review of the literature indicated that PIC accumulation in seagrass sediments is high and comparable to other carbonate producing ecosystems. Based on our identified mean PIC concentration of $62.5 \pm 1.7 \,\mathrm{mg}$ PIC cm⁻³ in the top 10 cm of seagrass sediments (n = 384) and a mean rate of sediment accretion in seagrass meadows of $0.2 \pm 0.04 \,\mathrm{cm\,y}^{-1}$ (Duarte et al., 2013) we estimate that the PIC accumulation rates in seagrass sediments would average $126.3 \pm 0.7 \,\mathrm{g}$ PIC m⁻² y⁻¹. This rate is somewhat below the range of PIC sedimentation rates reported by Gacia et al. (2003) in seagrass meadows of SE Asia, based on direct measures of daily sediment deposition at 8 different sites ($145-9443 \,\mathrm{g}$ PIC m⁻² y⁻¹) but higher than the average PIC accumulation rate in sediments of *Posidonia oceanica* meadows ($54.3 \pm 1.9 \,\mathrm{g}$ PIC m⁻² y⁻¹) estimated from sediment stock assessment and sediment dating (Serrano et al., 2012).

Extrapolation, assuming an estimated range of global area of seagrass meadows between 177 000 and 600 000 (Mcleod et al., 2011), suggests a total accumulation of PIC in seagrass sediments ranging between 22 and 76 Tg PIC y^{-1} . This rate of PIC accumulation highlights the importance of seagrass meadows as major sites for CaCO₃ production and storage in the ocean. Although PIC accumulation rates are substantially lower than in planktonic communities (100–132 Tg PIC y^{-1}) (Milliman and Droxler, 1996; Catubig et al., 1998), they are comparable to those of coral reefs (84 Tg PIC y^{-1}), and exceed those estimated for *Halimeda* bioherm systems (20 Tg PIC y^{-1} , Milliman and Droxler, 1996; Table 3).

4.2 PIC global stocks and the effect of species and latitudinal distribution

Available data on PIC stocks in seagrass meadows showed an important geographic bias. Whereas seagrass meadows are distributed along the coast of all continents

Discussion |

.

12, 4107-4138, 2015

BGD

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Discussion Paper

Discussion

Paper

nion Daner

Introduction

References

Figures

Back

Abstract

Conclusions

Tables

. _

Printer-friendly Version

Interactive Discussion

iscussion P

L

except Antarctica (Hemminga and Duarte, 2000), data on PIC stocks in seagrass sediments are mostly restricted to tropical and temperate regions, with a particularly important contribution to the data set by meadows in Australia and the Mediterranean, especially for the profiles at least 1 m deep. Fourqurean et al. (2012), also found a similar bias on the distribution of data available for their review of particulate organic carbon (POC) stocks in seagrass meadows, although the data were more widely distributed. The geographic bias in data availability and the great variability in PIC stocks among the sites included in this study, add uncertainty in the assessment of the global estimates provided here. Even scarcer are data from un-vegetated sediments adjacent to seagrass meadows, with a comparative approach possible in only 34 over the total of 436 sites, limiting the certainty of comparisons of PIC and POC stocks in vegetated vs. un-vegetated habitats.

The median PIC sediment top meter stocks of 648 Mg PIC ha⁻¹ (n = 402), is nearly 5 times larger than the median stock of POC recently estimated by Fourqurean et al. (2012) at around 140 Mg POC ha⁻¹ (n = 89). Based on the available range of estimates of global seagrass area, between 177 000 and 600 000 km² (Mcleod et al., 2011), seagrass meadows store globally between 11 and 39 Pg of PIC in the top meter of sediment.

Our results show that the PIC stocks of seagrass meadows vary depending on the seagrass genera. Large genera, with larger leaf size and extended leaf life span (Duarte, 1991) were expected to sustain a higher amount of calcareous epiphytes and favour a higher accumulation of PIC. The age of the leaves affects the colonisation of seagrass leaves by epiphytes (including calcareous organisms; Heijs, 1985; Borowitzka et al., 1990; Cebrián et al., 1994) and the mineral load has been found to increase with increasing leaf age (Gacia et al., 2003). The height of the canopy, which correlates with shoot size, has also been shown to determine the epiphyte biomass and species biodiversity in meadows of *Amphibolis* (Borowitzka et al., 1990). Sedimentation process and particle trapping in a meadow are also linked to canopy height (Gacia et al., 2003) and leaf density (Fonseca and Cahalan, 1992) and therefore PIC

BGD

12, 4107–4138, 2015

Seagrass meadows
as a globally
significant carbonate
reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions

Tables Figures

I∢ ≯I

Back Close

Full Screen / Esc

Printer-friendly Version

Back

Interactive Discussion

sedimentation and retention may be also favoured in seagrass meadows dominated by larger species, where long leaves effectively slow water currents and increase particle setting. In addition, larger seagrass species may favour carbonate precipitation through their metabolic activity as the leaf area index has been seen to directly relate to maximum and range Ω daily values in seagrass meadows (Hendricks et al., 2014). Hence, we expected to find high storage of PIC in the sediment of large seagrass genera. However, some large genera, such as *Posidonia*, did not support particularly large stocks, while some small genera, such as *Halodule*, supported large stocks. The lack of a clear effect of the genera size could be partially due to factors that could not be considered in this study that control the precipitation and preservation of carbonate in the sediment at regional and local scales, such as geomorphology, salinity, water depth, nature of tidal and current regimes, CO₂ balance, nutrient or light availability and the nature and distribution of substrates (Lees, 1975).

Latitude also influenced the size of the PIC stocks in seagrass sediments, that tended to decrease with increasing latitude, consistent with the higher epiphyte carbonate loads in seagrass leaves in tropical compared to temperate regions (Gacia et al., 2003). This general trend of decline with increasing latitude has been observed in other carbonate-intense ecosystems, such as reef-building corals (Veron and Minchin, 1992; Veron, 1995) and encrusting red algae communities, which are more heavily calcified in warm tropical than in cold temperate waters (Lowenstam and Weiner, 1989). The latitudinal distribution of carbonate stocks may be explained by temperature and salinity dependence of the saturation state of carbonate minerals (Ω) (Zeebe and Wolf-Gladrow, 2001). The saturation of calcium carbonate in seawater is mostly dependent on the availability of CO_3^{2-} , as Ca^{2+} concentration is two orders of magnitude higher than CO_3^{2-} concentrations (Gattuso et al., 1998). From a thermodynamic perspective, cold and fresh water generally promotes lower Ω saturation states and prevents CaCO₃ precipitation (Mucci et al., 1983). As both salinity and temperature tend to decrease with increasing latitude the carbonate saturation state decreases polewards with respect to tropical and temperate waters (Hoegh-Guldberg et al., 2007). Hence, the

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Introduction **Abstract** Conclusions References **Figures** Close Full Screen / Esc Printer-friendly Version

precipitation of biogenic $CaCO_3$ is favoured in tropical and subtropical areas compared to temperate regions (Mutti and Hallock, 2003). Discrepancies from the general trend, such as the low carbonate stocks reported in the latitudinal bins -10 to -20° S are probably explained by local factors that alter the Ω saturation states, such as inputs of fresh water and terrigeneous sediments from river discharges in the sites of study (Mellors et al., 2002; Fisher and Sheaves, 2003).

4.3 Implications in the assessment of the CO₂ sink capacity of seagrass meadows

While PIC represents a substantial carbon stock, carbonate precipitation results in a rise of the partial pressure of CO₂ (pCO₂), which, can result in CO₂ supersaturation and release of CO₂ to the atmosphere (Ware et al., 1992). The net release of CO₂ with carbonate deposition is defined by the molar ratio of CO₂ flux: CaCO₃ precipitation (Ψ), which decreases with decreasing temperature while increasing with pCO₂ (Frankignoulle et al., 1994). Ψ varies from 0.63 in surface waters in low to mid-latitudes, where carbonate precipitation takes place, to 0.85 below 500 m depth throughout the ocean, where most dissolution takes place (Smith, 2013). Due to the vertical variation in Ψ, Smith (2013) identified the pelagic carbonate system as a net sink of CO₂, as most of the surface production ($\Psi = 0.63$) dissolves as it reaches deep waters ($\Psi = 0.85$) compensating for the CO_2 emitted by $CaCO_3$ precipitation in surface waters. In contrast, carbonate deposition in shallow ecosystems, such as seagrass meadows, would act as a CO2 source as approximate two-thirds of the CaCO₃ produced in shallow benthic ecosystems accumulates in the sediment, and Ψ has the same value for CaCO₃ precipitation and dissolution (Milliman and Droxler, 1996; Smith, 2013). Given that seagrass meadows are sites of strong net primary production, any pCO₂ increase due to calcification may be more than compensated for, by organic production. Hence, Y has been interpreted to imply a POC: PIC production ratio threshold, with a value of 0.63 equivalent to no net change in pCO2 and values greater or smaller than this value implying a net sink or source respectively.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

ld ⊩l

•

Back Close
Full Screen / Esc

Printer-friendly Version

Back

Printer-friendly Version

Interactive Discussion

The median POC: PIC ratio of seagrass sediments found in this study was 0.2, independent of depth (median of surface sediments 0.17), well below the POC: PIC ratio threshold of 0.63, with only 18% of seagrass sediments showing POC:PIC ratios > 0.6. Following the rationale above and assuming that organic carbon and calcium carbonate accumulate in the sediment in proportion to their production, these results could be interpreted to imply that CO₂ emissions derived from carbonate deposition may offset the CO₂ sink capacity associated with organic carbon burial in seagrass sediments globally, as discussed before for Posidonia oceanica in the Mediterranean (Mateo and Serrano, 2012; Serrano et al., 2012). However, such interpretation would be premature. In general terms, the organic and inorganic carbon cycles in the ocean run at very different rates and although organic matter is produced at much faster rates than CaCO₃, it is also decomposed more rapidly (Smith, 2013). However, the carbonate precipitation in seagrass meadows is intimately regulated by the organic metabolic rates of the ecosystem (Smith and Atkinson, 1983; Barrón et al., 2006; Yates and Halley, 2006; Hendriks et al., 2014) and when both organic and inorganic carbon metabolic pathways have been measured in situ simultaneously, seagrass have been found to be mainly net CO₂ sinks systems at a yearly scale (Barrón et al., 2006). In addition to carbon burial, a significant fraction of the net community production of seagrass, supporting a CO2 sink, is also exported as DOC and POC (Cebrián et al., 1997; Barrón and Duarte, 2009). Hence, the comparison of sediment standing stocks would reflect only a fraction of the sink capacity of the seagrass ecosystems but not the net effect of the organic and inorganic carbon metabolic pathways on the net CO₂ flux. Therefore, more research, which takes into account both the organic and inorganic carbon cycles associated with these systems, is needed to better assess the role of seagrass ecosystems as carbon sinks or sources.

Understanding the balance between CO₂ emissions from carbonate deposition and CO₂ sequestration from organic carbon storage in seagrass sediments should not only focus on the POC: PIC ratio, but also on resolving how seagrass affect the POC: PIC ratio compared to adjacent un-vegetated sediments. There was no difference in PIC

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Introduction **Abstract** Conclusions

References **Tables Figures**

Close

Full Screen / Esc

Discussion Paper

Discussion Paper

Back

Printer-friendly Version

Interactive Discussion

content between seagrass and adjacent un-vegetated patches whereas the organic carbon content was about two-fold larger in vegetated sediments compared to adjacent un-vegetated sediments as previously observed (Duarte et al., 2010; Kennedy et al., 2010). As a consequence, the POC: PIC ratio of seagrass sediments (mean ± SE, ₅ 0.28 ± 0.06) exceeded that of adjacent un-vegetated sediments (mean ± SE, 0.19 ± 0.040) in 73% of the meadows examined. Hence, the organic carbon stock present in seagrass sediments would be expected to be reduced to half if seagrass cover was lost while the inorganic stock will be comparable, thereby confirming the role of seagrass meadows as intense CO₂ sinks. It is important to point out that the rational above relates to the content (%DW) of both PIC and POC and not to the rate of accumulation, which may be significantly higher in seagrass compared to adjacent sand patches due to autotrophic production and sediment trapping.

In addition there are possible interactions between carbonate and organic carbon deposition that might enhance carbon sequestration in seagrass meadows. One possibility may be that high carbonate deposition rates may promote organic carbon sequestration and storage by enhancing sediment accretion and by rapidly removing organic carbon from surface sediments and away from the oxic zone, thereby enhancing preservation of organic carbon. The accumulation of carbonates in seagrass sediments may also influence below-ground biomass through the stimulation of vertical growth in the sediments, or through alteration of sediment composition and nutrient availability (Short, 1987; Ferdie and Fourgurean, 2004). In fact, Erftemeijer (1994) found higher below-ground biomass in seagrass meadows growing in carbonate sediments, compared to meadows from the same species that develop in terrigenous sediment. Thus, the potentially higher below-ground production in carbonate-rich meadows may enhance organic carbon burial.

Implications in the role of seagrass meadows as coastal protection

Carbonate stocks represented an average of 51 ± 1 % of the dry weight in the top 10 cm (range 0.2 to 100 %) of the seagrass sediments examined, therefore contributing

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Introduction **Abstract**

Conclusions References

> **Tables Figures**

Close

Full Screen / Esc

12, 4107–4138, 2015

BGD

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page Introduction **Abstract** Conclusions References **Figures** Close Back Full Screen / Esc Printer-friendly Version Interactive Discussion

significantly to the sediment accretion rate and coastal protection from increased sea level rise and storminess with climate change (Duarte et al., 2013). The capacity of seagrass meadows to raise the seafloor at speeds that could match or exceed current sea level rise allows them to remain effective in protecting coastal areas (Duarte 5 et al., 2013). A recent review of coastal ecosystems sediment accretion rates found an average accretion rate of $2 \pm 0.4 \,\mathrm{mm}\,\mathrm{y}^{-1}$ for seagrass communities (Duarte et al., 2013; Mazarrasa et al., 2013), highlighting the important role these ecosystems may play in climate adaptation in coastal areas. Carbonate production and accumulation supports about half of this accretion rate.

This study offers the first global compilation of carbonate deposits in seagrass sediments. Despite some limitations in the geographic distribution of the data available, the scarcity of data from adjacent sand patches and the lack of local sediment accretion rates, we identified a significant role of seagrass ecosystems in the carbonate dynamics of coastal areas, with carbonate stocks and rates relevant at the global scale. Carbonate stocks, markedly higher in tropical and subtropical meadows, play a significant role in supporting the accretion rate of seagrass meadows, and while high carbonate deposition lead to CO₂ emissions, comparison of vegetated vs. adjacent unvegetated sediments still identify seagrass meadows as strong CO₂ sinks. In order to enhance knowledge of the effect of carbonate accumulation in seagrass meadows on the function they play as CO₂ sinks, further investigation is required, especially on the coupling of the organic and inorganic metabolic processes that take place within the meadows.

The Supplement related to this article is available online at doi:10.5194/bqd-12-4107-2015-supplement.

Acknowledgements. This study was funded by the EU FP7 projects Opera (contract number 308393), the project EstresX funded by the Spanish Ministry of Economy and Competitiveness (contract number CTM2012-32603), the CSIRO Marine and Coastal Carbon Biogeochemistry

4123

Discussion

Back Full Screen / Esc

Cluster and the Danish Environmental Protection Agency within the Danish Cooperation for Environment in the Arctic (DANCEA). I. Mazarrasa was supported by a PhD scholarship of the Government of the Balearic Islands (Spain) and The European Social Founding (ESF), and N. Marbà was partially supported by a Gledden visiting fellowship of The Institute of Advanced Studies-UWA. This is contribution number X (X will be substituted by the actual number after the publication of the manuscript and will be updated for the final revised version of this article.) from the Southeast Environmental Research Center at FL

References

- Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T., and Booth, E. S.: Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data, J. Geophys. Res. Oceans, 110, 1978–2012, 2005.
- Barrón, C., Duarte, C. M., Frankignoulle, M., and Borges, A. V.: Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica), meadow, Estuar. Coast., 29, 417-426, 2006.
- Barrón, C. and Duarte, C. M.: Dissolved organic matter release in a Posidonia oceanica meadow, Mar. Ecol.-Prog. Ser., 374, 75-84, 2009.
 - Borowitzka, M. A., Lethbridge, R. C., and Charlton, L.: Species richness, spatial distribution and colonisation pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii, Mar. Ecol.-Prog. Ser., 64, 281-291, 1990.
- Bosence, D. and Wilson, J.: Maerl growth, carbonate production rates and accumulation rates in the NE Atlantic, Aquat. Conserv., 13, S21–S31, 2003.
- Canals, M. and Ballesteros, E.: Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 3-4, 611–629, 1997.
- ²⁵ Catubig, N. R., Archer, D. E., Francois, R., Demenocal, P., Howard, W., and Yu, E. F.: Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum, Paleoceanography, 13, 298-310, 1998.
 - Cebrián, J., Marbá, N., and and Duarte, C. M.: Estimating leaf age of the seagrass Posidonia oceanica (L.) Delile using the plastochrone interval index, Aguat. Bot., 49, 59–65, 1994.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Introduction **Abstract**

Conclusions References

Tables Figures

Close

Printer-friendly Version

Discussion

Paper

Interactive Discussion

- Cebrián, J., Duarte, C. M., Marbà, N., and Enriquez, S.: Magnitude and fate of the production of four cooccurring western Mediterranean seagrass species, Mar. Ecol.-Prog. Ser., 155, 29–44, 1997.
- Chauvaud, L., Thompson, J. K., Cloern, J. E., and Thouzeau, G.: Clams as CO₂ generators: the Potamocorbula amurensis example in San Francisco Bay, Limnol. Oceanogr., 48, 2086-2092, 2003.
- Chave, K. E., Smith, S. V., and Roy, K. J.: Carbonate production by coral reefs, Mar. Geol., 12, 123-140, 1972.
- De Falco, G., Molinaroli, E., Baroli, M., and Bellaciccob, S.: Grain size and compositional trends of sediments from Posidonia oceanica meadows to beach shore. Sardinia, western Mediterranean, Estuar. Coast. Shelf S., 58, 299-309. 2003.
- Duarte, C. M.: Allometric scaling of seagrass form and productivity, Mar. Ecol.-Prog. Ser., 77. 289-300, 1991.
- Duarte, C. M., Marbà, N., Gacia, E., Fourgurean, J. W., Beggins, J., Barrón, C., and Apostolaki, E. T.: Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows, Global Biogeochem. Cv., 24, GB4032, doi:10.1029/2010GB003793, 2010.
- Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N.: The role of coastal plant communities for climate change mitigation and adaptation, Nature Clim. Change, 3, 961–968, 2013.
- Enríquez, S. and Schubert, N.: Direct contribution of the seagrass Thalassia testudinum to lime mud production, Nat. Comm., 5, 3835, doi:10.1038/ncomms4835, 2014.
- Erftemeijer, P. L.: Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia, B. Mar. Sci., 54, 403-419, 1994.
- Fabry, V. J.: Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: implications for the marine carbonate system, J. Mar. Res., 48, 209-222, 1990.
- Ferdie, M. and Fourgurean, J. W.: Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment, Limnol. Oceanogr., 49, 2082-2094, 2004.
- Fisher, R. and Sheaves, M. J.: Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows, Hydrobiologia, 495, 143-158, 2003.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables **Figures**

Close

Full Screen / Esc

Discussion Paper

Close

- Fonseca, M. S. and Cahalan, J. A.: A preliminary evaluation of wave attenuation by four species of seagrass, Estuar. Coast. Shelf S., 35, 565-576, 1992.
- Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally significant carbon stock, Nature Geosci., 5, 505-509, 2012.
- Frankovich, T. A. and Zieman, J. C.: Total epiphyte and epiphytic carbonate production on Thalassia testudinum across Florida Bay, Bull. Mar. Sci., 54, 679–695, 1994.
- Frankignoulle, M., Canon, C., and Gattuso, J. P.: Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO₂, Limnol. Oceanogr., 39, 458-46, 1994.
- Gacia, E., Duarte, C. M., Marba, N., Terrados, J., Kennedy, H., Fortes, M. D., and Tri, N. H.: Sediment deposition and production in SE-Asia seagrass meadows, Estuar. Coast. Shelf S., 56. 909–919. 2003.
- 15 Gattuso, J. P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate metabolism in coastal aquatic ecosystems, Annu. Rev. Ecol. Evol. S., 29, 405-434, doi:10.1146/annurev.ecolsys.29.1.405, 1998.
 - Heijs, F. M.: The seasonal distribution and community structure of the epiphytic algae on Thalassia hemprichii (Ehrenb.) Aschers. from Papua New Guinea, Aquat. Bot., 21, 295–324, 1985.
 - Hemminga, M. A. and Duarte, C. M.: Seagrass Ecology, Cambridge University Press, Cambridge, 298 pp., 2000.
 - Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., and Duarte, C. M.: Photosynthetic activity buffers ocean acidification in seagrass meadows, Biogeosciences, 11, 333-346, doi:10.5194/bg-11-333-2014, 2014.
 - Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.: Coral reefs under rapid climate change and ocean acidification, Science, 318, 1737-1742, 2007.
- 30 Hu, X. and Burdige, D. J.: Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: evidence for coupled carbonate dissolution and reprecipitation, Geochim. Cosmochim. Ac., 71, 129-144, 2007.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables **Figures**

Back

Printer-friendly Version

- BGD
- 12, 4107–4138, 2015
- Seagrass meadows as a globally significant carbonate reservoir
 - I. Mazarrasa et al.
- - © **()**

- James, N. P., Bone, Y., Brown, K. M., and Cheshire, A.: Calcareous epiphyte production in cool-water carbonate seagrass depositional environments-southern Australia, perspectives in carbonate geology, Int. Assoc. Sediment Spec. Publ., 41, 123–148, 2009.
- Jeudy de Grissac, A. and Boudouresque, C. F.: Rôles des herbiers de phanérogames marines dans les mouvements des sédiments côtiers: les herbiers à *Posidonia oceanica*, Colloque franco-japonais Oceanographie, Marseille, 16–21 September, 1, 143–151, 1985 (in French).
- Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and Middelburg, J. J.: Seagrass sediments as a global carbon sink: isotopic constraints, Global Biogeochem. Cy., 24, GB4026, doi:10.1029/2010GB003848, 2010.
- Langer, M. R., Silk, M. T., and Lipps, J. H.: Global ocean carbonate and carbon dioxide production; the role of reef Foraminifera, J. Foramin. Res., 27, 271–277, 1997.
- Lavery, P. S., Mateo, M.A, Serrano, O., and Rozaimi, M.: Variability in the carbon storage of seagrass habitats and its implications for global estimates of Blue Carbon ecosystem service, PLoS ONE, 8, e73748, doi:10.1371/journal.pone.0073748, 2013.
- Lebrato, M., Iglesias-Rodríguez, D., Feely, R. A., Greeley, D., Jones, D. O., Suarez-Bosche, N., and Alker, B.: Global contribution of echinoderms to the marine carbon cycle: CaCO₃ budget and benthic compartments, Ecol. Monogr., 80, 441–467, 2010.
 - Lees, A.: Possible influence of salinity and temperature on modern shelf carbonate sedimentation, Mar. Geol., 19, 159–198, 1975.
 - Lowenstam, H. A. and Weiner, S.: On Biomineralization, Oxford University Press, Oxford, 336 pp., 1989.
 - Mateo, M. A. and Serrano, O.: The carbon sink associated to *Posidonia oceanica*, in: Mediterranean Seagrass Meadows: Resilience and Contribution to Climate Change Mitigation, edited by: Pergent, G., Bazairi, H., Bianchi, C. N., Boudouresque, C. F., Buia, M. C., Clabaut, P., Harmelin-Vivien, M., Mateo, M. A., Montefalcone, M., Morri, C., Orfanidis, S., Pergent-Martini, C., Semroud, R., Serrano, O., and Verlaque, M., IUCN, Gland, Switzerland and Málaga, Spain, 80 pp., 2012.
 - Mazarrasa, I., Marbà, N., Hendriks, I. E., Losada, I. J., and Duarte, C. M.: Estimates of Average Sediment Accretion Rates in Vegetated Coastal Habitats Around the World (Digital CSIC); available at: http://hdl.handle.net/10261/77396, 16 February 2015, 2013.
 - Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved

Discussion

Paper

Interactive Discussion

understanding of the role of vegetated coastal habitats in sequestering CO₂, Front. Ecol. Environ., 9, 552-560, 2011.

Mellors, J., Marsh, H., Carruthers, T. J. B., and Waycott, M.: Testing the sediment-trapping paradigm of seagrass: do seagrasses influence nutrient status and sediment structure in tropical intertidal environments?, Bull. Marine Sci., 71, 1215–1226, 2002.

Milliman, J.: Production and accumulation of calcium carbonate in the ocean: budget of a non steady state, Global Biogeochem. Cy., 7, 927–957, 1993.

Milliman, J. D. and Droxler, A. W.: Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss, Geol. Rundsch., 85, 496–504, 1996.

Mutti, M. and Hallock, P.: Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints, Int. J. Earth Sci., 92, 465-475, 2003.

Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure, Am. J. Sci., 283, 780-799, 1983.

Peirano, A., Morri, C., Bianchi, C. N., and Rodolfo-Metalpa, R.: Biomass, carbonate standing stock and production of the mediterranean coral Cladocora caespitosa (L.), Facies, 44, 75-80, 2001.

Perry, C. T. and Beavington-Penney, S. J.: Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique, Sediment. Geol., 174, 161–176, 2005.

Serrano, O., Mateo, M. A., Renom, P., and Julià, R.: Characterization of soils beneath a Posidonia oceanica meadow, Geoderma, 185, 26-36, 2012.

Short, F. T.: Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment, Aguat. Bot., 27, 41–57, 1987.

Smith, S. V. and Atkinson, M. J.: Mass balance of carbon and phosphorus in Shark Bay, Western Australia, Limnol. Oceanogr., 28, 625–639, 1983.

Smith, S. V.: Parsing the oceanic calcium carbonate cycle: a net atmospheric carbon dioxide source, or a sink?, Land O e-Books. Association for the Sciences of Limnology and Oceanography (ASLO) Waco, TX, doi:10.4319/svsmith.2013.978-0-9845591-2-1, 2013.

Tigny, V., Ozer, A., De Falco, G., Baroli, M., and Djenidi, S.: Relationship between the Evolution of the Shoreline and the *Posidonia oceanica* meadow limit in a Sardinian Coastal Zone, J. Coast. Res., 23, 787-793, 2007.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Introduction **Abstract**

Conclusions References

Tables **Figures**

Close

Full Screen / Esc

Printer-friendly Version

- Veron, J. E. N. and Minchin, P. R.: Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan, Cont. Shelf Res., 12, 835–857, 1992.
- Veron, J. E. N.: Corals in Space and Time: the Biogeography and Evolution of the Scleractinia, Cornell University Press, Cornell, 321 pp., 1995.
- Ware, J. R., Smith, S. V., and Reaka-Kudla, M. L.: Coral reefs: sources or sinks of atmospheric CO₂?, Coral Reefs, 11, 127–130, 1992.
- Westbroek, P., Young, J. R., and Linschooten, K.: Coccolith production (biomineralisation) in the marine alga *Emiliania huxleyi*, J. Protozool., 36, 368–373, 1989.
- Wilson, R. W., Millero, F. J., Taylor, J. R., Walsh, P. J., Christensen, V., Jennings, S., and Grosell, M.: Contribution of fish to the marine inorganic carbon cycle, Science, 323, 359–362, 2009.
 - Yates, K. K. and Halley, R. B.: Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay, Estuar. Coast., 29, 24–39, 2006.
- Zeebe, R. E. and Ridgwell, A.: Past changes of ocean carbonate chemistry, in: Ocean Acidification, edited by: Gattuso, J.-P. and Hansson, L., Oxford University Press, Oxford, 352 pp., 2011.
 - Zeebe, R. E. and Wolf-Gladrow, D.: CO₂ in Seawater: Equilibrium, Kinetics, Isotopes: Equilibrium, Kinetics, Isotopes, Elsevier Science, B.V., the Netherlands, 360 pp., 2001.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Table 1. Number of observations, mean \pm standard error, median and range of values for the PIC stocks in each biogeographic region (Tropical Western Atlantic, Indo-Pacific, Mediterranean, Southern Australia and Northern Atlantic). The results of the comparison among different regions (Tukey–Kramer HSD test) are shown in the last column where different letters represent a significant difference (p < 0.05).

Biogeographic region	п	Mean (Mg PIC ha ⁻¹)	SE (Mg PIC ha ⁻¹)	Median (Mg PIC ha ⁻¹)	Range (Mg PIC ha ⁻¹)	Tukey–Kramer HSD test
T.W. Atlantic	60	869.5	54.6	891.4	16–1660	A
Indo-pacific	145	713.9	47.0	795.2	3-1611	AB
Mediterranean	42	654.4	71.3	658.2	87-1542	AB
S. Australia	121	603.9	34.2	566.5	8-1475	В
N. Atlantic	34	199.8	36.1	64.1	8–555	С

BGD

12, 4107-4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢ ≯I

•

Close

Full Screen / Esc

Back

Printer-friendly Version

Discussion Paper

Discussion Paper

as a globally significant carbonate

I. Mazarrasa et al.

Title Page

BGD

12, 4107–4138, 2015

Seagrass meadows

reservoir

Abstract Conclusions **Tables**

Introduction References

Figures

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Mean ± Standard Error (SE), median, minimum and maximum values of particulate inorganic carbon (PIC), particulate organic carbon (POC) and the estimated POC: PIC ratio for the data set where both POC and PIC were reported (391 sites; n = 3076).

	PIC (mg cm ⁻³)	POC (mg cm ⁻³)	POC:PIC
Mean ± SE	72.5 ± 0.8	51.6 ± 0.6	0.74 ± 0.05
Median	68.3	49.4	0.20
Max	325.1	321.0	107.6
Min	0.2	0.4	0.00038

Table 3. Estimated range of global PIC accumulation rates $(TgPICy^{-1})$ by different carbonate producing ecosystems including the results found for seagrass in this study and a global estimation considering neritic, slopes, and pelagic areas along with organism-level data.

Ecosystem	Tg PIC y ⁻¹	Reference
Planktonic communities	100–132	Catubig et al. (1998), Milliman and Droxler (1996)
Coral reefs	84	Milliman and Droxler (1996)
Halimeda bioherms	20	Milliman and Droxler (1996)
Bank/Bays	24	Milliman and Droxler (1996)
Seagrass meadows	22-76	This study
Global	1500	Lebrato et al. (2010)

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

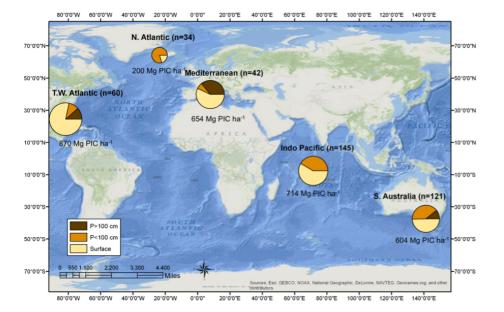
I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I4 ≯I

■ Back Close

Full Screen / Esc

Printer-friendly Version

Figure 1. Distribution of the data of PIC stocks in seagrass meadows (average top meter; Mg PIC ha⁻¹) compiled in this study by the biogeographic regions described by Hemminga and Duarte (2000). The size of the pie charts is proportional to the top-meter PIC stocks in each region. The fraction of PIC stocks estimated from surface sediments (yellow) and short sediment cores ($P < 100 \, \text{cm}$, orange) and longer cores than $100 \, \text{cm}$ ($P > 100 \, \text{cm}$, brown) is indicated.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

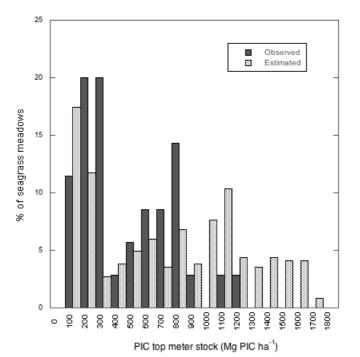
I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I∢ ≯I

Back Close

Full Screen / Esc

Printer-friendly Version

Figure 2. Frequency distribution of observed (i.e. sites reporting data to at least one meter depth, n = 35) and estimated (i.e. sites where shallower depths were reported, n = 367) PIC stocks (Mg PIC ha⁻¹) in the top meter of seagrass sediments.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

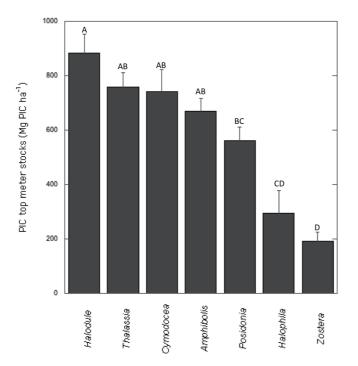
I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures


I◀ ▶I

■ Back Close

Full Screen / Esc

Printer-friendly Version

Figure 3. Average PIC stocks (Mg PIC ha^{-1}) \pm SE across the dominant seagrass genera forming the meadows. Only genera with more than 10 observations have been represented. Identical letters indicate no significant differences between dominant species forming the meadows (ANOVA and Post-hoc Tuckey-test).

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Close

Full Screen / Esc

Back

Printer-friendly Version

I. Mazarrasa et al.

Abstract

Conclusions References

Introduction

BGD

12, 4107–4138, 2015

Seagrass meadows

as a globally significant carbonate

reservoir

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

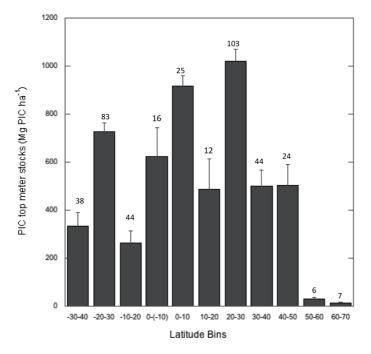
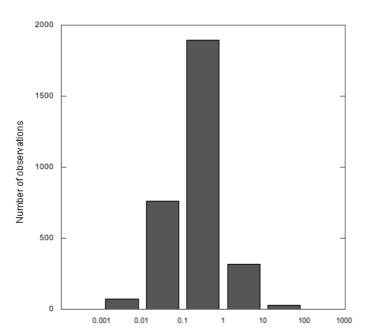
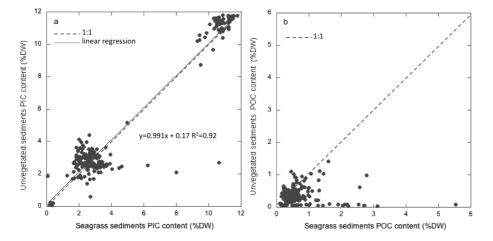



Figure 4. Average PIC stocks (Mg PIC ha⁻¹) ± SE by 10° latitude bins. The number above each bar indicates the number of observations reported for each latitude bin.

Figure 5. Frequency distribution of the POC: PIC ratio in the seagrass sediments examined (391 sites; n = 3076).

POC:PIC


BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Figure 6. Relationship between **(a)** PIC content (%DW) in seagrass sediments (x axis) and adjacent un-vegetated sediments (y axis) and **(b)** POC content (%DW) in seagrass sediments (x axis) and adjacent un-vegetated sediments (y axis). Dash line shows the 1:1 relationship whereas the continuous line in panel **(a)** represents the linear regression model between PIC content (%DW) in vegetated patches vs. adjacent un-vegetated patches.

BGD

12, 4107–4138, 2015

Seagrass meadows as a globally significant carbonate reservoir

I. Mazarrasa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ← I

← I

Back Close

Full Screen / Esc

