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Abstract 12 

Methanotrophic bacteria play an important role oxidizing a significant fraction of methane 13 

(CH4) produced in lakes. Aerobic CH4 oxidation depends mainly on lake CH4 and oxygen 14 

(O2) concentrations, in such manner that higher MO rates are usually found at the oxic/anoxic 15 

interface, where both molecules are present. MO also depends on temperature, and via 16 

methanogenesis, on organic carbon input to lakes, including from thawing permafrost in 17 

thermokarst (thaw)-affected lakes.  18 

Given the large variability in these environmental factors, CH4 oxidation is expected to be 19 

subject to large seasonal and geographic variations, which have been scarcely reported in the 20 

literature. In the present study, we measured CH4 oxidation rates in 30 Alaskan lakes along a 21 

north-south latitudinal transect during winter and summer with a new field laser spectroscopy 22 

method. Additionally, we measured dissolved CH4 and O2 concentrations. We found that in 23 

the winter, aerobic CH4 oxidation was mainly controlled by the dissolved O2 concentration, 24 

while in the summer it was controlled primarily by the CH4 concentration, which was scarce 25 

compared to dissolved O2. The permafrost environment of the lakes was identified as another 26 

key factor. Thermokarst (thaw) lakes formed in yedoma-type permafrost had significantly 27 

higher CH4 oxidation rates compared to other thermokarst and non-thermokarst lakes formed 28 

in non-yedoma permafrost environments. As thermokarst lakes formed in yedoma-type 29 
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permafrost have been identified to receive large quantities of terrestrial organic carbon from 1 

thaw and subsidence of the surrounding landscape into the lake, these results confirm that 2 

coupling of terrestrial and aquatic habitats.  3 

1 Introduction 4 

Freshwater ecosystems are an important source of atmospheric CH4, responsible for 6–16% of 5 

global emission to the atmosphere (Bastviken et al., 2011). Northern lakes are responsible for 6 

as much as 6% of these global CH4 emissions (Walter et al., 2007). Methane emission from 7 

aquatic ecosystems is significantly mitigated by CH4 oxidation (MO) by aerobic 8 

methanotrophs, a group of gram-negative bacteria that use CH4 as a carbon and energy source 9 

(Murrell et al., 1993; Trotsenko and Murrell, 2008). It has been estimated that globally, 30 to 10 

99% of total CH4 produced in freshwater ecosystems is microbiologically oxidized in the 11 

water column rather than being released to the atmosphere (Bastviken et al., 2002; Thauer et 12 

al., 2008). Likewise, MO plays an important role in northern lakes specifically by oxidizing 13 

up to 88% of the CH4 production (Kankaala et al., 2006, 2007; Bastviken et al., 2008; Bellido 14 

et al., 2011). MO is therefore a pathway that reincorporates a significant fraction of the CH4-C 15 

produced into the biogeochemical carbon cycle within lakes. As recently demonstrated using 16 

stable isotopes, after assimilating CH4, methanotrophs are incorporated into the lake food web 17 

by zooplankton (Kankaala et al., 2006; Jones and Grey, 2011), Daphnia magna (Taipale et al., 18 

2012), Odonata spp. (Seifert and Scheu, 2012), and Chironomus larvae (Gentzel et al., 2012; 19 

Wooller et al., 2012), among others. 20 

Several environmental factors directly affect aerobic MO in freshwater ecosystems. First, 21 

methanotrophy depends on the availability of both CH4 and O2. Higher MO rates are usually 22 

found at the oxic/anoxic interface, where both CH4 and O2 are present (Utsumi et al., 1998a, 23 

1998b; Bastviken et al., 2002; Liikanen et al., 2002; Carini et al., 2005; Schubert et al., 2010). 24 

In turn, CH4 and O2 concentrations depend on numerous other processes involved in 25 

biogeochemical carbon cycling (Fig. 1). Among these, the most important are methanogenesis 26 

producing CH4, primary production and atmospheric diffusion supplying O2, and several 27 

aerobic metabolic processes that compete with MO for available O2 (Dzyuban, 2010). 28 

In addition to autochthonous and allochthonous carbon inputs to lakes, permafrost thaw can 29 

provide an additional source of labile organic carbon to fuel methanogenesis and carbon 30 

mineralization in thermokarst (thaw) lakes (Zimov et al., 1997; Walter et al., 2006). MO in 31 

northern regions is therefore directly and indirectly linked to permafrost type and landscape 32 
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processes that are highly variable. Permafrost ranges from sporadic to continuous and is also 1 

variable in composition (Jorgenson et al., 2008). Yedoma-type permafrost is an organic-rich 2 

(about 2% carbon by mass) Pleistocene-age permafrost with ice content of 50–90% by 3 

volume (Zimov et al., 2006), which occurs mainly in the previously unglaciated regions of 4 

Siberia, Alaska, and NW Canada (Czudek and Demek, 1970; Walter et al., 2007; Kanevskiy 5 

et al., 2011; Grosse et al., 2013). Non-yedoma permafrost is characterized by thinner ice-rich 6 

horizons and have a more widespread distribution (Ping et al., 2008; Tarnocai et al., 2009; 7 

Hugelius et al. 2014).  8 

Many northern lakes are located in continental climate zones, subject to contrasting seasonal 9 

conditions with long, cold winters followed by relatively short, but warm summers. Although 10 

psychrotolerant and psychrophilic methanotrophs have been reported (Omelchenko et al., 11 

1993, 1996; Bowman et al., 1997; Trotsenko and Khmelenina, 2002), MO occurs more 12 

efficiently at mesophilic temperatures, from 20 to 35 °C (Semrau et al., 2010). During winter, 13 

northern lakes are covered by a thick ice layer for seven to nine months. Surface lake ice 14 

impedes oxygen transfer from the atmosphere to the lake and, when snow-covered, 15 

substantially reduces light penetration and oxygen production by photosynthesis (White et al., 16 

2008; Clilverd et al., 2009). Thus, the combination of low temperature and limited oxygen 17 

availability suggests lower MO rates in northern lakes in winter than in summer.  18 

Given the number of parameters having a potential effect on MO, as well as the patchwork of 19 

seasonal and geographic conditions found among northern lakes, MO is expected to exhibit 20 

large geographic and seasonal variations that still remain to be characterized. The goal of our 21 

study was to determine these variations through measurement of dissolved CH4 and O2 as 22 

well as MO rates in the winter and summer in 30 lakes along a south-north transect in Alaska.  23 

 24 

2 Materials and Methods 25 

2.1 Site description 26 

We sampled 30 Alaskan lakes during two field campaigns, one in late winter (March–April 27 

2011) and one in summer (June–July 2011). To evaluate the effects of latitudinal variation 28 

and permafrost type on MO, lakes were selected along a transect from the southcentral 29 

Alaskan coast on the Kenai Peninsula to the Arctic Ocean near Prudhoe Bay (Fig. 2). The 30 

transect crossed through glaciated mountain ranges and discontinuous, sporadic, or no 31 
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permafrost in south-central Alaska; discontinuous to isolated yedoma permafrost in the 1 

interior of Alaska; and continuous permafrost in northern Alaska. In this work, for simplicity, 2 

lakes located in yedoma-type permafrost areas will be referred to as “yedoma lakes” and all 3 

others as “non-yedoma lakes”. Geographic variability along the north-south Alaska transect 4 

has been previously described for ecosystems, climate, geology, and permafrost type 5 

(Gregory-Eaves et al., 2000; Jorgenson et al., 2008; Smith et al., 2010). Additionally, 6 

Sepulveda-Jauregui et al. (2014) quantified the surface area of the selected lakes (0.002–1.45 7 

km
2
), their trophic states (ultraoligotrophic to eutrophic), and their annual CH4 fluxes (0.5–8 

317 g CH4 m
-2

 y
-1

). Table 1 shows the location and permafrost type of the selected lakes.   9 

2.2 Sampling and field measurements 10 

We sampled lake water usually near the center of each lake. In the winter, the ice cover was 11 

drilled through with a motorized auger (0.3 m in diameter). Using a Hydrolab DataSonde 12 

(Hach Hydromet, Loveland, CO, USA), we measured temperature, pH, chlorophyll a, and 13 

dissolved oxygen (DO). The Hydrolab was calibrated regularly, before and after each section 14 

of the latitudinal lake transect (four sections per transect, approximately one calibration per 15 

week). All parameters were measured at 0.5 or 1-m depth intervals throughout the water 16 

column, except in Dolly Varden L. where measurement intervals were increased to every five 17 

meters from 15 m to 25m depth. In lakes shallower than 1 m, we measured Hydrolab 18 

parameters at three distributed depths throughout the lake water column.  19 

Water samples for MO rates and dissolved CH4 concentration were taken at a depth of within 20 

1 m of the ice-water interface in winter and usually at 0.75 to 1 m water depth in summer. 21 

Due to differences in lake depth and thickness of the ice sheets, samples reflected surface 22 

water in deep lakes, but mid water column or even lake bottom water environment, in shallow 23 

lakes. Samples were taken with a horizontal Van Dorn bottle (Wildco, Yulee, FL, USA). 24 

Water density derived from surface and bottom water temperatures were used to determine 25 

the relative water column stability (RWCS; Padisak et al., 2003). Lakes with RWCS >56.5 26 

were considered fully stratified, lakes with RWCS <16.3 were considered fully mixed, and 27 

lakes with intermediate RWCS were considered partially stratified (Branco et al., 2009). 28 

Similarly, we determined whether an oxycline was present in each lake based on a sharp DO 29 

gradient or presence of an oxic/anoxic interface. Detailed temperature and DO profiles are 30 
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available as a Supplement in Sepulveda-Jauregui et al. (2014). We report all results in mean ± 1 

standard deviation (SD). 2 

2.3 Dissolved CH4 concentration and MO rate 3 

To avoid long delays in sample transfer from remote locations to the laboratory, we 4 

determined dissolved CH4 concentrations with a previously described method based on 5 

Headspace Equilibration using Infrared Tunable Diode Laser Absorption Spectroscopy (HE-6 

TDLAS; Sepulveda-Jauregui et al., 2012). This method consisted of determining the CH4 7 

concentration in the headspace of an equilibration vial containing a known volume of lake 8 

water and in which gas/liquid equilibrium has been reached by 10 s of vigorous shaking. The 9 

CH4 concentration in the headspace was determined using a laser beam crossing the 10 

headspace of the equilibration vial. This measurement was conducted with a modified open-11 

field CH4 analyzer (GasFinder 2; Boreal Laser, Edmonton, Canada). The CH4 concentration 12 

in the water sample was calculated from the measured headspace concentration according to 13 

Henry’s law (see Sepulveda-Jauregui et al., 2012 for details).  14 

We determined duplicate MO rates in one water sample from each lake taken as described 15 

above, using a modified HE-TDLAS method to allow for measurement of MO in the field. 16 

This new method was based on a previous development using the HE-TDLAS method for the 17 

determination of methanogenic activity (Martinez-Cruz et al., 2012). Two 60-mL lake water 18 

subsamples from a single Van Dorn bottle sample were gently transferred to two 100-mL 19 

equilibration vials (duplicates). Equilibration vials were immediately closed with rubber 20 

stoppers and vigorously shaken for 10 s to transfer most of the dissolved CH4 contained in the 21 

water sample to the headspace. Next, the headspace was vented, the vial was closed, and the 22 

sample was shaken again to evacuate the residual CH4 content of the water sample. Using this 23 

procedure, more than 99.5% of the original CH4 content of the sample was evacuated. The 24 

equilibration vials were then closed with rubber stoppers and aluminum crimp caps, spiked 25 

with 0.6 mL CH4 (99.0% purity; Air Liquide, Houston, TX, USA) injected with a disposable 26 

syringe, and vigorously shaken for 10 s. This approach allowed MO tests to be conducted 27 

with an initial standard CH4 concentration in the liquid phase (~0.6 mg L
-1

). It also provided 28 

an initial CH4 to O2 molar ratio of 0.062, significantly below the stoichiometric ratio (0.5), 29 

ensuring no O2 limitation.    30 
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Equilibration vials were incubated for 10–12 days in a water bath inside insulated boxes 1 

placed in our vehicle. In the winter, the vials were maintained at 2 ± 2 °C in a water bath with 2 

ice supplements; in the summer, the vials were maintained at 15 ± 2 °C. The temperature of 3 

the water bath was measured daily. We measured the CH4 concentration in the equilibration 4 

vials daily using the HE-TDLAS method described in detail by Sepulveda-Jauregui et al. 5 

(2012). Briefly, dry control MO test vials containing only CH4 standards were read by the 6 

TDLAS for calibration. Each experimental equilibration vial was vigorously shaken for 10 s 7 

to reach phase equilibrium and then immediately placed in the laser beam path, after which a 8 

stable HE-TDLAS reading was typically observed within 5 s. Five readings were taken for 9 

each MO test vial and recalibration was conducted after measuring each set of test vials to 10 

ensure instrument stability. The field HE-TDLAS method allowed measurement of dissolved 11 

CH4 and MO rates. This technique was simple, rapid (about 60 s per sample measurement), 12 

non-invasive, and avoided complications and long delays in sample transfer from remote 13 

locations to the laboratory.  14 

We calculated the total CH4 concentration (CCH4 = total CH4 mass present in the gas and 15 

liquid phases divided by the sample liquid volume) in each vial during the MO tests. MO rates 16 

were determined from the decrease in CCH4 in the equilibration vials with time. MO rates 17 

determined by this method represent the MO rate after aeration and CH4 addition (vials spiked 18 

with CH4 and vigorously shaken). Thus, these MO rates do not correspond to actual 19 

observations of in situ DO and dissolved CH4 concentrations in the lakes. The measured CH4 20 

oxidation rate was considered the potential MO (rmax; mg CH4 L
-1

 d
-1

) under non-limiting CH4 21 

and DO concentrations. To estimate the actual rate (r; mg CH4 L
-1

 d
-1

) from rmax, a double 22 

Monod model was used (Bae and Rittmann, 1996; Segers, 1998) in which CCH4 and CO2 23 

represent the actual dissolved CH4 and DO concentrations measured in the lake, respectively, 24 

and KS-CH4 and KS-O2 are the apparent affinity constants of the methanotrophic community, for 25 

CH4 and DO, respectively: 26 

𝑟 = 𝑟max  ∙
𝐶CH4

KS−CH4 + 𝐶CH4 
∙

𝐶𝑂2

KS−O2 + 𝐶𝑂2
      (1) 27 

Average KS-CH4 and KS-O2 values for lakes have been determined by previous studies: KS-CH4 = 28 

0.110 ± 0.053 mg L
-1

 (mean ± SD; Liikanen et al., 2002; Lofton et al., 2013) and KS-O2 = 29 

0.624 ± 0.064 mg L
-1

 (mean ± SD; Lidstrom and Somers, 1984; Frenzel et al., 1990). To the 30 

best of our knowledge, the highest KS-CH4 reported in lakes is 0.704 mg L
-1

 (Liikanen et al., 31 

2002). It should be noted that these reported KS values refer to the apparent affinity constants 32 
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for the methanotrophic community, rather than the half-saturation constant for the CH4 1 

monooxygenase enzyme that catalyzes CH4 oxidation. The potential error caused by using 2 

previously reported KS, instead of experimentally determined values will be considered in the 3 

discussion section.  4 

To establish the extent of potential MO limitation by CH4 or DO, two limitation factors were 5 

defined, where  is the limitation factor for CH4 (%) and  is the limitation factor for DO (%): 6 

0% ≤ 𝛽 = (1 −
𝐶CH4

KS−CH4 + 𝐶CH4 
) ∙ 100 ≤ 100%     (2) 7 

0% ≤ 𝛾 = (1 −
𝐶𝑂2

KS−O2+𝐶𝑂2 
) ∙ 100 ≤ 100%     (3) 8 

A limitation factor of 100% means that 100% of a process ceases to occur due to the absence 9 

of the limiting substrate, while a limitation factor of 0% indicates a process occurring at 10 

maximum rate (r = rmax). When  > , CH4 was considered to be the limiting factor; 11 

conversely, when  > , DO was considered to be the limiting factor. 12 

2.4 Statistical analyses 13 

Normality was assessed by the Shapiro-Wilk test. Since most of the data was non-normally 14 

distributed and with unequal samples number, significant differences among all parameters 15 

were determined using Kruskal-Wallis multiple comparison test (differences were considered 16 

significant at p < 0.05, Z > 1.96). To assess whether CH4 was oxidized during the MO 17 

incubation tests, significant differences between CCH4 were determined by an analysis of 18 

variance (ANOVA; p < 0.05), after normality was assessed by the Shapiro-Wilk test. 19 

Statistical analyses were conducted using the NCSS 2000 Statistical Analysis System 20 

software (Number Cruncher Statistical Systems, Kaysville, UT, USA). Linear regressions 21 

were also conducted to determinate the MO rates using Wolfram Mathematica 7.0 (Wolfram, 22 

Minneapolis, MN, USA).   23 

 24 

3 Results 25 

3.1 Physicochemical parameters 26 

The sampled lakes were shallow; other than four atypical lakes with a maximum known depth 27 

>20 m (lakes #4, #24, #26 and #30), the average lake depth in summer was 4.5 ± 2.6 m (mean 28 
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± SD). During winter, none of the lakes was completely frozen at the sampling stations. 1 

Liquid water was always present underneath the ice cover, which ranged in thickness from 2 

0.60 to 1.25 m (mean ± SD, 0.81 ± 0.14 m). The mean temperature throughout the lake water 3 

columns was 2.4 ± 0.6 °C (mean ± SD, n = 103) in the winter and 13.9 ± 2.4 °C (mean ± SD, 4 

n = 235) in the summer. According to RWCS, during the summer, 15 lakes of the 28 for 5 

which a complete temperature profile was determined were fully thermally stratified. Six 6 

lakes were partially stratified and seven lakes were mixed. During the winter, 16 of 18 lakes 7 

were fully mixed, while two lakes were partially stratified and none was fully stratified. 8 

Overall, only one third of the temperature profiles indicated clear stratification. In both 9 

seasons, no correlation between RWCS and lake depth was found, probably due to the fact 10 

that lakes were shallow and with an uneven depth distribution. 11 

Lake water pH ranged from 5.9 to 8.2 in winter and 6.3 to 9.2 in summer among the study 12 

lakes. Chlorophyll a was only detected during the summer, ranging from 1.0 to 45.9 µg L
-1

 13 

(detection limit, 0.03 µg L
-1

). The concentration of dissolved CH4 in the 30 lakes ranged from 14 

0.01 to 14.77 mg L
-1

 during the winter and from 0.02 to 1.51 mg L
-1

 during the summer 15 

(Table 2). The DO concentration at the same depths ranged from 0.10 to 13.63 mg L
-1

 during 16 

the winter and from 0.22 to 11.07 mg L
-1

 during the summer (Table 2). During summer, a 17 

clear oxycline was observed in all yedoma lakes, but only in six of 20 non-yedoma lakes. In 18 

contrast, during winter, an oxycline was not observed in any of the yedoma lakes, which were 19 

largely anaerobic throughout the whole water column. We observed an oxycline in winter in 20 

four of 13 non-yedoma lakes. Overall, an oxycline was observed in 30% of the DO profiles. 21 

Temperature-oxygen profiles for all 30 studied lakes are shown in Sepulveda-Jauregui et al. 22 

(2014).  23 

Fig. 3 shows the statistical distributions of the dissolved CH4 and DO concentrations, as well 24 

as the Kruskal-Wallis comparisons. Significant differences were observed between yedoma 25 

and non-yedoma lakes (p < 0.05). In yedoma lakes, the CH4 and DO concentrations were 26 

significantly higher and lower, respectively, than in non-yedoma lakes during both seasons 27 

(Kruskal-Wallis  test, p < 0.05). In addition to differences related to permafrost type, higher 28 

CH4 concentrations and lower DO concentrations were observed during the winter than in the 29 

summer (Fig. 3) and an apparent geographic trend was observed. Higher dissolved CH4 and 30 

lower DO concentrations were found in lakes from central Alaska than in those from southern 31 

and northern Alaska (Sepulveda-Jauregui et al., 2014).  32 
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3.2 Methane oxidation rates 1 

The  HE-TDLAS method allowed us to determine the MO potential in the field in all studied 2 

lakes. Fig. 4 shows three representative CCH4 trends observed in the MO vials. In some cases, 3 

MO began on the first day of incubation (Fig. 4a) and the initial slope of the change in CCH4 4 

was taken into account in determining the MO rate. In about 60% of the cases during the 5 

summer and 80% during the winter, a lag phase was observed; i.e. period of time with no 6 

apparent MO (Fig. 4b). This behavior, termed “induction of MO”, has previously been 7 

reported for various soils (Bender and Conrad, 1995; Dunfield et al., 1999) and can be 8 

interpreted as an adaptation period of the CH4 oxidizers to the culture conditions. In lakes in 9 

which this pattern was observed, the lag phase was not taken into account and the MO rate 10 

was instead determined from the slope of CCH4 after the lag phase. When no significant 11 

decrease in CCH4 was observed during the first seven days (Fig. 4c; ANOVA , p < 0.05), we 12 

assumed an MO rate of zero, consistent with previous reports for various soils (Whalen et al., 13 

1990; Bender and Conrad, 1995; Dunfield et al., 1999). We observed MO rates of zero in only 14 

three non-yedoma lakes during winter. Otherwise, no correlation with lake morphology, 15 

season, or permafrost type was observed in regard to the existence of a lag phase or its 16 

duration. 17 

The potential MO rate rmax ranged from 0.000 to 0.488 mg L
-1

 d
-1

 during the winter and from 18 

0.073 to 1.339 mg L
-1

 d
-1

 during the summer (Fig. 5a). Seasonal variation of rmax was 19 

significant, with summer rmax up to 47 times higher than winter rates. Permafrost type was 20 

also an important determining factor, because during the summer, yedoma lakes had higher 21 

rmax than non-yedoma lakes (Kruskal-Wallis test, p < 0.05); specifically, rmax was 0.71 ± 0.36 22 

and 0.29 ± 0.16 mg L
-1

 d
-1

 (mean ± SD) for yedoma and non-yedoma lakes, respectively. 23 

However, during the winter, no significant differences were observed between yedoma and 24 

non-yedoma lakes. In addition to differences related to permafrost type, an apparent 25 

latitudinal pattern was also observed, with higher rmax for lakes from central Alaska compared 26 

to those from southern and northern Alaska (Fig. 5a). 27 

 28 
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4 Discussion 1 

4.1 Geographic and seasonal variations in physicochemical parameters 2 

In yedoma lakes, the CH4 and DO concentrations were significantly higher and lower, 3 

respectively, than in non-yedoma lakes during both seasons. This observation is most likely 4 

due to higher organic carbon and nutrient inputs associated with thawing permafrost in 5 

yedoma-type lakes. Walter Anthony et al. (2014) and Sepulveda-Jauregui et al. (2014) 6 

showed that thawing yedoma permafrost not only provides ancient (Pleistocene-aged) organic 7 

carbon stimulating CH4 production but also phosphate and nitrogen (ammonium), which 8 

promotes bacterial, algal and contemporary plant growth in and around lakes. Since terrestrial 9 

plant matter surrounding lakes gets deposited in thermokarst-lake sediments as lakes laterally 10 

expand, both enhanced allochthonous and autochthonous productivity of yedoma-type lake 11 

ecosystems results in higher rates of contemporary organic matter loading to sediments of 12 

yedoma-type lakes compared to non-yedoma lakes (Walter Anthony et al., 2014). 13 

Contemporary organic matter decomposes in part to form CH4 in surface lake sediments, 14 

whereas ancient yedoma carbon is progressively released from thaw bulb beneath lakes to 15 

surface sediments (Heslop et al., 2015). Hence, organic carbon is made available to microbial 16 

decomposition in both shallow and deep sedimentary environments (Fig. 1). Thus higher 17 

organic carbon and nutrient inputs in yedoma-type lakes promote higher anaerobic and 18 

aerobic metabolism and accordingly, lower DO concentrations. Conversely, higher organic 19 

carbon inputs promote higher rates of methanogenesis in the sediments (Huttunen et al., 20 

2003), leading to higher dissolved CH4 concentrations in the lake water column.  21 

In both yedoma and non-yedoma lakes, higher CH4 concentrations and lower DO 22 

concentrations were observed during the winter than in the summer (Fig. 3). This seasonal 23 

variation can be attributed to thick ice covering the lakes in winter. Ice cover impedes gas 24 

exchange between the water and the atmosphere, promoting CH4 build-up in the water 25 

column (Phelps et al., 1998; Bastviken et al., 2004; Juutinen et al., 2009) and hindering O2 26 

transfer from the atmosphere, except in some locations where high-flux ebullition seeps allow 27 

gas exchange through local holes in lake ice (Greene et al., 2014). Ice and snow also reduce 28 

light penetration and oxygen production by photosynthesis beneath the ice (White et al., 2008; 29 

Clilverd et al., 2009). The absence of detectable levels of chlorophyll a in ice-covered lakes 30 

during March and April (see results section) despite the longer springtime photoperiod was 31 

supportive evidence of reduced photosynthesis under the ice. In summer, although CH4 32 
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production was probably higher due to warmer sediments, ice was not a physical barrier to 1 

CH4 exchange between the lake water and the atmosphere (Fig. 1). 2 

Geographic variations were also observed with higher dissolved CH4 and lower DO 3 

concentrations being found in lakes from central Alaska than in those from southern and 4 

northern Alaska. However, this apparent latitudinal pattern was related to the higher 5 

proportion of yedoma lakes in central Alaska. No significant latitudinal trend was observed 6 

when yedoma and non-yedoma lakes were analyzed separately (Kruskal-Wallis test, p < 7 

0.05). 8 

Fig. 3 shows that when relatively high CH4 concentrations were found, relatively low DO 9 

concentrations were observed and conversely, when low dissolved CH4 concentrations were 10 

found, higher DO concentrations were observed. This pattern was particularly clear in 11 

yedoma lakes: in winter, a CH4 concentration of 7.32 ± 5.86 mg L
-1 

(mean ± SD) was found, 12 

while the DO concentration was 0.13 ± 0.03 mg L
-1 

(mean ± SD). In the same yedoma lakes, 13 

the summer CH4 concentration was 0.49 ± 0.52 mg L
-1 

(mean ± SD), while the DO 14 

concentration was 3.19 ± 3.24 mg L
-1 

(mean ± SD).
 
This observation suggests that MO was 15 

actively controlling O2 and CH4 concentrations by oxidizing CH4 when O2 was present. To 16 

confirm the latter, it would be necessary to measure experimentally the O2 uptake rate by 17 

methanotrophs and by other aerobic processes that compete with MO (Dzyuban, 2010). 18 

The trend toward higher CH4 concentrations and lower DO concentrations in winter than in 19 

summer was not as strong in non-yedoma lakes as in yedoma lakes (Fig. 4). These results 20 

provide additional evidence that organic carbon inputs to yedoma lakes fuel methanogenesis 21 

and MO more strongly than in non-yedoma lakes. Another reason is that yedoma lakes have a 22 

significantly higher ebullition year round (Walter et al., 2007; Sepulveda-Jauregui et al., 23 

2014). Even during winter, Greene et al. (2014) found that 80% of CH4 in ebullition bubbles 24 

trapped by lake ice dissolves into the lake water column, leading to elevated dissolved CH4 25 

beneath the ice. Another possible explanation for higher MO in yedoma lakes compared to 26 

non-yedoma lakes may be related to microbial community composition, but this was beyond 27 

the scope of our study. 28 

4.2 Limiting factors of MO rates 29 

The actual MO rates r estimated from rmax, reduced the magnitude of the MO, with r ranging 30 

from 0.000 to 0.124 mg L
-1

 d
-1

 during the winter and from 0.017 to 0.538 mg L
-1 

d
-1

 during the 31 
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summer (Fig 6b). These values are within the range reported for arctic lakes of 0.001 to 1.000 1 

mg L
-1 

d
-1

 (Liikanen et al., 2002; Kankaala et al., 2006; Lofton et al., 2014). Similarly, r 2 

values were 1 to 50-fold higher in the summer than in the winter. We attribute this finding to 3 

the temperature dependence of methanotrophy (Semrau et al., 2008; Borrel et al., 2011), but 4 

also to the limited DO concentration under the ice cover during the winter.  5 

In addition to seasonal variations, permafrost type was also a determining factor of r and rmax. 6 

As mentioned before, although no difference in rmax was observed during winter between 7 

yedoma and non-yedoma lakes, rmax in yedoma lakes was about twice higher than in non-8 

yedoma lakes during summer. We attribute that difference to a more active MO 9 

methanotrophic community in yedoma lakes, as all rmax tests were conducted in aerated vials 10 

with an initial standard CH4 concentration in the liquid phase (~0.6 mg L
-1

), thus ensuring 11 

optimal conditions. As observed with rmax, during summer yedoma lakes showed 2–3 times 12 

higher r than non-yedoma lakes (Kruskal-Wallis test, p < 0.05; r = 0.28 ± 0.17, mean ± SD, 13 

yedoma lakes; r = 0.09 ± 0.08 mg L
-1

 d
-1

, mean ± SD, non-yedoma lakes). Higher r values for 14 

yedoma lakes in summer is explained by the higher dissolved CH4 concentration in presence 15 

of a relatively high DO concentration above the oxycline (Fig. 3). An apparent latitudinal 16 

trend was observed, with higher r and rmax for lakes from central Alaska compared to those 17 

from southern and northern Alaska (Fig. 5). This apparent trend was associated with a higher 18 

proportion of yedoma lakes in central Alaska. No significant latitudinal trend in MO was 19 

observed when yedoma and non-yedoma lakes were analyzed separately.  20 

The actual MO rates; r, were determined from rmax and CH4 and DO concentrations using two 21 

affinity constants, KS-CH4 and KS-O2. These affinity constants are highly variable, because their 22 

determination is challenging and subject to relatively high determination error (Segers et al., 23 

1998) and because the methanotrophic community is sensitive to numerous factors and 24 

changes over time and space (Carini et al., 2005; He et al., 2012). For instance, Lofton et al. 25 

(2014) reported a variation of 150% in KS-CH4 within the hypolimnetic water column of two 26 

lakes with similar characteristics. The determination of MO rates may, therefore, be subject to 27 

large error if reported values are used instead of experimental parameters or if an error occurs 28 

in experimental KS determinations. To quantify these potential errors, a sensitivity analysis 29 

was conducted. We arbitrarily modified KS-CH4 and KS-O2 and calculated the resulting r (Eq. 1) 30 

using the experimental rmax, CCH4, and CO2 measured in the 30 lakes. Fig. 6 shows the error on 31 

r caused by a given error on KS-O2 (Fig. 6a) and KS-CH4 (Fig. 6b), for yedoma and non yedoma 32 
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lakes, in winter and in summer. According to this analysis, an underestimation of KS-O2 or KS-1 

CH4 would lead to an overestimation of the actual MO rate (positive error), while an 2 

overestimation of these affinity constants would produce an underestimation of r (negative 3 

error). Fig. 6a shows that, an error on KS-O2 ranging from -50% to 200%, would cause from 4 

10% to -6% error on r, for all lakes and all seasons, except in yedoma lakes during winter, 5 

where an error from 75% to -50% would be generated. This relatively high sensitivity of r to 6 

error in KS-O2 in yedoma lakes during winter is due to DO concentrations close to KS-O2. 7 

Likewise, Fig. 6b shows that, from an error on KS-CH4 ranging from -50% to 200%, a resulting 8 

error on r from 6% to -4% would be done, for all lakes and all seasons, except in non yedoma 9 

lakes during summer, where an error from 50% to -34% would be generated. As above, the 10 

latter is due to CH4 concentrations close to KS-CH4 in non yedoma lakes during summer. This 11 

sensitivity analysis shows that, other than for KS-O2 in yedoma lakes during winter and KS-CH4 12 

in non-yedoma lakes during summer, errors on KS would have relatively little impact on 13 

determination of methanotrophic rates 14 

From Eq. 2 and 3, we estimated that, during the summer CH4 was the main limiting factor in 15 

25 out of 30 lakes. In contrast, during winter, CH4 was the main limiting factor in 10 of 26 16 

lakes (Table 2). Notably, during the winter, DO was the limiting factor for all seven yedoma 17 

lakes, while during the summer, MO was limited by CH4 for all non-yedoma lakes. A similar 18 

error analysis was done on  and , as done with r, to estimate if the estimated limiting factor 19 

would change as a result of error on KS ranging from -50% to 200%. The results showed no 20 

impact on the limiting factor in the 30 lakes and for both seasons. These results confirm that 21 

MO was mainly controlled by DO and CH4 availability, which in turn, depended on the 22 

season and landscape processes.  23 

A potential bias in our r estimates may have arisen from taking duplicate water samples at a 24 

single depth in each lake. The literature has clearly shown that a higher MO rate is often 25 

found at the oxic/anoxic interface in stratified lakes (Utsumi et al., 1998a, 1998b; Bastviken et 26 

al. 2002; Carini et al., 2005; Pimenov et al., 2010; Schubert et al., 2010). Estimation of MO 27 

rates consistently measured at a single depth that was not necessarily located at the 28 

oxic/anoxic interface may have neglected potentially higher rates occurring at the oxic/anoxic 29 

interface in stratified lakes. However, in the present study, the sampled lakes were in many 30 

cases shallow, relatively well mixed, and without a clear oxycline (see Results section), 31 

suggesting a relatively homogeneous water column. Utsumi et al. (1998b) observed 32 
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homogeneous MO rates at all depths of a shallow and mixed temperate lake, while Rudd and 1 

Hamilton (1978) also reported homogeneous MO rates during overturn of a dimictic lake. 2 

Determination of MO rates at the oxic/anoxic interface, in the few cases in which such an 3 

interface was observed, would likely have indicated higher MO rates. Thus, the results of r 4 

presented here, may be underestimated to an unknown extent. 5 

 6 

5 Conclusions 7 

We developed a new method based on a TDLAS for the determination of MO rates together 8 

with dissolved CH4 concentration in lakes in the field. This method was successfully applied 9 

to 30 lakes along a north-south transect and allowed for the determination of MO potentials 10 

ranging from 0.000 to 1.339 mg L
-1

 d
-1

 in winter and summer. MO rates in water of Alaskan 11 

lakes showed high seasonal and geographic variability. In addition to temperature effects, the 12 

main factors controlling MO were: 1) CH4 availability during the summer, limited both by 13 

exchange with the atmosphere and by MO itself; 2) DO availability during the winter, mainly 14 

due to ice cover impeding gas exchange with the atmosphere and primary production; and 3) 15 

inputs of organic substrates to lakes, mainly related to the presence or absence of yedoma 16 

permafrost as an additional source of carbon and nutrients. These results indicate that MO 17 

may substantially mitigate the increase in CH4 emission predicted by permafrost thawing 18 

(Khvorostyanov, et al. 2008; Walter Anthony et al., 2014). 19 
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Tables 1 

 2 

Table 1. Identification, location, and permafrost soil type for lakes included in the study. 3 

*Indicates informal lake name, yedoma lakes are marked on light grey. 4 

# Name Lat. Long. Permafrost type 

1 Big Sky* A31 69.581 -148.639 Non-Yedoma 

2 GTH 112 68.672 -149.249 Non-yedoma 

3 NE2 68.647 -149.582 Non-yedoma 

4 Toolik A28 68.632 -149.605 Non-yedoma 

5 E1 68.626 -149.555 Non-yedoma 

6 Julieta* A27 68.447 -149.369 Non-yedoma 

7 El Fuego* A36 67.666 -149.716 Non-yedoma 

8 Jonas* A26 67.647 -149.722 Non-yedoma 

9 Augustine Zoli* A25 67.138 -150.349 Non-yedoma 

10 Ping* 67.136 -150.370 Non-yedoma 

11 Grayling* A24 66.954 -150.393 Non-yedoma 

12 Eugenia* 65.834 -149.631 Yedoma 

13 Goldstream* 64.916 -147.847 Yedoma 

14 Killarney* 64.870 -147.901 Yedoma 

15 Smith A13 64.865 -147.868 Non-yedoma 

16 Stevens Pond* 64.863 -147.871 Yedoma 

17 Duece A2 64.863 -147.942 Yedoma 

18 Ace A1 64.862 -147.937 Yedoma 

19 Rosie Creek* 64.770 -148.079 Yedoma 

20 Otto 63.842 -149.037 Non-yedoma 

21 Floatplane* A16 63.394 -148.670 Non-yedoma 

22 Montana A40 62.143 -150.048 Non-yedoma 

23 Rainbow Shore* A41 61.694 -150.089 Non-yedoma 

24 Big Merganser A49 60.726 -150.644 Non-yedoma 

25 Rainbow A48 60.719 -150.808 Non-yedoma 

26 Dolly Varden A47 60.704 -150.787 Non-yedoma 

27 Abandoned Cabin* A50 60.696 -151.315 Non-yedoma 

28 Scout A46 60.533 -150.843 Non-yedoma 

29 Engineer A45 60.478 -150.323 Non-yedoma 

30 Lower Ohmer A44 60.456 -150.317 Non-yedoma 

 5 
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Table 2. Methane oxidation parameters for 30 Alaskan lakes. * indicates median; ND - Not 1 

determined; BDL - Bellow detection limit, yedoma lakes are marked on light grey. 2 

# 
CH4 (mg L

-1
) O2 (mg L

-1
) 

Potential MO Actual MO 
Limiting factor 

(mg L
-1

 d
-1

) (mg L
-1

 d
-1

) 

Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer 

1 6.43 0.05 0.13 10.53 0.23 0.11 0.08 0.03 O2 CH4 

2 0.58 0.09 0.43 8.28 0.14 0.36 0.05 0.15 O2 CH4 

3 0.02 0.05 1.73 9.80 0.12 0.07 0.02 0.02 CH4 CH4 

4 0.11 0.03 10.09 9.46 BDL 0.28 0.00 0.06 CH4 CH4 

5 0.05 0.04 9.59 9.52 0.10 0.19 0.03 0.05 CH4 CH4 

6 0.08 0.07 ND 9.81 0.12 0.20 ND 0.09 ND CH4 

7 ND 0.06 ND 9.65 ND 0.18 ND 0.04 ND CH4 

8 3.68 0.03 13.63 10.30 0.03 0.18 0.03 0.04 O2 CH4 

9 8.83 0.11 3.64 9.87 0.05 0.39 0.04 0.19 O2 CH4 

10 3.00 0.06 0.25 6.94 0.11 0.11 0.03 0.03 O2 CH4 

11 8.43 0.88 0.19 9.31 BDL 0.28 0.00 0.23 O2 CH4 

12 0.79 0.07 0.15 6.90 0.09 0.29 0.02 0.11 O2 CH4 

13 8.43 0.19 0.11 6.23 0.49 0.54 0.07 0.48 O2 O2 

14 12.59 0.31 0.09 0.31 0.20 0.92 0.03 0.30 O2 O2 

15 1.30 0.02 0.23 3.93 0.05 0.31 0.01 0.05 O2 CH4 

16 ND 0.72 0.11 1.36 ND 0.34 ND 0.20 O2 O2 

17 6.60 0.59 0.19 0.57 0.06 1.34 0.01 0.54 ND O2 

18 0.70 0.03 0.14 6.74 0.02 0.77 0.00 0.15 O2 CH4 

19 14.77 1.51 0.13 0.22 0.20 0.74 0.04 0.19 O2 O2 

20 1.24 0.03 0.31 9.47 0.05 0.67 0.01 0.15 O2 CH4 

21 ND 0.04 ND 9.52 ND 0.33 ND 0.08 ND CH4 

22 0.08 0.05 2.79 11.07 0.05 0.20 0.01 0.06 CH4 CH4 

23 0.30 0.08 5.84 9.59 0.02 0.68 0.01 0.33 CH4 CH4 

24 0.04 0.02 12.40 9.66 0.06 0.34 0.02 0.08 CH4 CH4 

25 0.08 0.03 11.91 10.20 0.32 0.25 0.12 0.04 CH4 CH4 

26 0.01 0.03 10.00 10.24 0.04 0.08 0.00 0.02 CH4 CH4 

27 0.03 0.02 7.90 9.67 0.15 0.41 0.03 0.07 CH4 CH4 

28 0.07 0.04 0.20 9.01 BDL 0.38 0.00 0.09 O2 CH4 

29 0.04 0.04 9.13 10.19 0.02 0.28 0.00 0.05 CH4 CH4 

30 ND 0.03 ND 10.25 ND 0.38 ND 0.11 ND CH4 

Mean 
Global 3.29 0.47 3.91 7.95 0.10 0.39 0.03 0.13 O2

*
 CH4

*
 

Yedoma 7.53 1.73 0.14 3.19 0.18 0.71 0.03 0.28 O2
*
 CH4

*
 

Non-yedoma 2.02 0.09 5.30 9.40 0.08 0.29 0.03 0.09 CH4
*
 CH4

*
 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
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Figure captions 1 

 2 

Figure 1. Carbon cycling in northern high-latitude lakes during the summer and winter. 3 

Carbon (Corg) release from primary production and landscape processes promotes CH4 4 

production and competes with MO for O2. 5 

Figure 2. Locations of studied Alaskan lakes (white circles) plotted on the Alaska DEM 6 

hillshade raster. Information about the distribution of yedoma-type deposits (Pleistocene-7 

aged, ice-rich silt containing deep thermokarst lakes) was from Jorgenson et al. (2008) and 8 

Kanevskiy et al. (2011). The Alaska map is the National Elevation Data Set 30 m hillshade 9 

raster. 10 

Figure 3. Statistical distributions of CH4 (white boxes) and DO (grey boxes) water 11 

concentrations in yedoma and non-yedoma lakes during the winter and summer. The boxes 12 

include the median (Q2) and the quartile range (Q1 and Q3). The whiskers show minimum 13 

and maximum data. The open circles show outlier data.  Capital letters are Kruskal-Wallis 14 

multiple comparison test; values with the same capital letter are not significantly different (p 15 

< 0.05, Z > 1.96). n represents the number of lakes measured. 16 

Figure 4.  Examples of CH4 oxidation patterns observed during the MO assays: (a) assay with 17 

no lag-phase. (b) assay with a 3-day lag-phase. and (c) assay with no detected activity. 18 

Straight lines are linear correlations. 19 

Figure 5. (a) CH4 oxidation potential (rmax) and (b) CH4 oxidation rates observed in 30 lakes 20 

along a north-south transect (left-right) in Alaska during the summer (white bars) and the 21 

winter (black bars). 22 

Figure 6. Sensitivity analysis of the impact of an error or variation in KS-O2 (a.) and KS-CH4 23 

(b.) on r; yedoma lakes in winter (), yedoma lakes in summer (   ), non-yedoma lakes 24 

in winter (   ) and non-yedoma lakes in summer (-----). 25 



O2 CH4 

CO2 

Corg 

Primary 
production 

O2 CH4 

CO2 

Corg 

O2 CH4 

CH4 + CO2                 Corg  

Carbon 
release 

Carbon 
release 

Thaw bulb 

Corg                  CO2 + CH4 
Methanogenesis 

Carbon release 



Yedoma permafrost 

     Studied lakes 

1 

2 3 

4 
5 6 

7 

12 

11 10 

9 
8 

20 

21 

13 
15 

14 

16 
17 

18 19 

22 

23 

30 
29 28 

27 

26 24 

25 



●

●

●●

●

●

●

●

●

0.01

0.10

1.00

10.00

Winter Summer Winter Summer

C
on

ce
nt

ra
tio

n 
 (

m
g 

L−
1 )

Yedoma Non−Yedoma

A
n=6

X
n=7

A,B
n=7

Y
n=7

A,B
n=20

Y,Z
n=19

C
n=23

Z
n=23



0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12

C
H

4
(m

g
 L

-1
)

Time (d)

c 

b 

a 



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

r m
a
x

(m
g

 C
H

4
 L

-1
d

-1
)

Lake #

a 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

r 
(m

g
 C

H
4

L
-1

 d
-1

)

Lake #

b 



-50%

-25%

0%

25%

50%

-50% 0% 50% 100% 150% 200%

E
rr

o
r 

o
n

 r
 (

%
)

Error on KS-O2 (%)

-50%

-25%

0%

25%

50%

-50% 0% 50% 100% 150% 200%

E
rr

o
r 

o
n

 r
 (

%
)

Error on KS-CH4 (%)

a 

b 


	Manuscript
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6



