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Abstract 10 

Soil carbon (C) models are important tool to understand soil C balance and project C stocks 11 

in terrestrial ecosystems, particularly under global change. The initialization and/or 12 

parameterization of soil C models can vary among studies even when the same model and 13 

dataset are used, causing potential uncertainties in projections. Although a few studies have 14 

assessed such uncertainties, it is yet unclear what these uncertainties are correlated with and 15 

how they change across varying environmental and management conditions. Here, applying a 16 

process-based biogeochemical model to 90 individual field experiments (ranging from 5 to 82 17 

years of experimental duration) across the Australian cereal-growing regions, we 18 

demonstrated that well-designed optimization procedures enabled the model to accurately 19 

simulate changes in measured C stocks, but did not guarantee convergent forward projections 20 

(100 years). Major causes of the projection uncertainty were due to insufficient understanding 21 

of how microbial processes and soil C pool change to modulate C turnover. For a given site, 22 

the uncertainty significantly increased with the magnitude of future C input and years of the 23 

projection. Across sites, the uncertainty correlated positively with temperature, but negatively 24 
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with rainfall. On average, a 331% uncertainty in projected C sequestration ability can be 25 

inferred in Australian agricultural soils. This uncertainty would increase further if projections 26 

were made for future warming and drying conditions. Future improvement in soil C modeling 27 

should focus on how microbial community and its C use efficiency change in response to 28 

environmental changes, and better conceptualization of heterogeneous soil C pools and the C 29 

transformation among those pools. 30 

1 Introduction 31 

Soil is the largest carbon (C) reservoir in the terrestrial biosphere and CO2 emission from soil 32 

organic matter (SOM) decomposition accounts for ~35% of the global CO2 emissions 33 

(Schlesinger and Andrews, 2000). Due to the large amount of soil organic carbon (SOC), 34 

carbon sequestration in soils represents a great potential for mitigating greenhouse gas 35 

emissions and climate change as well as maintaining soil fertility (Lal, 2004). Accurate 36 

projections of future change in SOC are therefore needed for C and greenhouse gas (GHG) 37 

inventories to guide the development of future policies and land management practices 38 

(Janssens et al., 2003). Due to the complex and dynamic interactions between SOC, climate, 39 

soil and land management practices, process-based SOM models have become an important 40 

tool to investigate SOC change and project SOC trends under different land uses (Jenkinson 41 

et al., 1991; Friedlingstein et al., 2006; Smith et al., 2007; Piao et al., 2009). Some studies 42 

have suggested that the uncertainties in such projections should be systematically addressed 43 

in order to judge the credibility of the underlying projections and develop appropriate polices 44 

for carbon sequestration and climate change mitigation (Friedlingstein et al., 2006; Tang et al., 45 

2008; Todd-Brown et al., 2013; Nishina et al. 2014). Better understanding of these 46 

uncertainties and their drivers will help identify knowledge gaps and improve process-based 47 

models (Luo et al., 2014). 48 
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Uncertainty in simulation results derived from dynamic models can arise from inaccuracies in 49 

input data, deficiencies in model structure and inappropriate optimization of model 50 

parameters. For SOM models, initialization of the SOM pools can also be a major cause of 51 

divergent model projections. Most SOM models divide SOM into several conceptual pools 52 

(e.g. fast, slow and recalcitrant pools) and simulate the decomposition of each pool as a first-53 

order decay process (Smith et al., 1997; Davidson and Janssens, 2006; Schmidt et al., 2011). 54 

In many cases, measurements are only available for total SOC, and there is no agreed-on 55 

procedure for initialization of these model pools using total SOC (Basso et al., 2011). As a 56 

result, model optimization was often conducted based on limited SOC measurements (usually 57 

at temporal scales less than decades) together with empirical initialization. The optimized 58 

model was then used to project SOC change at wider spatiotemporal scales (Friedlingstein et 59 

al., 2006; Thornton et al., 2007). Such projection is subject to unknown uncertainty 60 

(Friedlingstein et al., 2006; Tang et al., 2008; Luo et al., 2013), because it does not properly 61 

address the inaccuracies in both model initialization and model parameters, with the latter 62 

potentially caused by imperfect knowledge and model structure (Schmidt et al. 2011). 63 

To illustrate the uncertainty propagation in SOC projections caused by initialization and 64 

parameterization and to understand what correlates to the change in the patterns of projection 65 

uncertainty, we used the Agriculture Production System sIMulator APSIM (Keating et al., 66 

2003; Wang et al., 2002; Holzworth et al., 2014) together with data from 90 agricultural 67 

experiments at 26 sites across the Australian cereal–growing regions. The data include 68 

measurements of total SOC stock (0–30 cm), C input (i.e., amount of residue retention), crop 69 

yield, and records of management practices. The APSIM model uses a very similar SOM 70 

pool structure and first decay approach to simulate SOM dynamics to other common Earth 71 

system models (Smith et al., 1997; Friedlingstein et al., 2006; Thornton et al., 2007). We 72 

firstly conducted sensitivity analysis to identify the model parameters whose change 73 
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impacted most on simulated SOC dynamics. We then used Bayesian optimization approach 74 

to derive the posterior joint distribution of the identified parameters that enabled best match 75 

between measured and observed SOC. These ensembles of parameters were used to run 76 

APSIM for each of the 90 experiments, and simulations were continued for further 100 years 77 

after the end of the experiment to produce SOC projections for uncertainty analysis. We 78 

quantified the uncertainty in SOC projections induced by both initialization of SOC pools and 79 

parameterization of algorithms for simulation of process dynamics. While the uncertainty 80 

obviously increases with years of projections, we further hypothesized that it is also 81 

influenced by site-specific climate, soil and management conditions, in addition to the impact 82 

of model initialization and parameterization. We further investigated how the projection 83 

uncertainty can be quantified by using these drivers, so that future SOC projections can 84 

become more useful with attached and well quantified uncertainties. 85 

2 Materials and Methods 86 

2.1 Study sites and datasets 87 

Data from a total of 90 experimental plots located within 26 different sites (Fig. 1 in the 88 

supplement) and compiled and described by Skjemstad and Spouncer (2003) were used in 89 

this study. The experimental duration of these trials ranged from 5 to 82 years, and cover 90 

diverse climate, soil and agricultural management conditions and are representative of 91 

Australian cereal-growing regions (Table 1 in the supplement). The dataset included detailed 92 

records on crop sequence, crop yield, crop residue production (estimated according to harvest 93 

index) and agricultural management practices such as residue management (removal or 94 

retention) and fertilizer application over each year. SOC stock was determined for 95 

representative 0-30 cm soil samples at least at the beginning and end of the each experiment, 96 

with some experiments having as many as six temporal measurements. Other soil properties 97 

at the start of the experiment were also measured including total nitrogen content, bulk 98 
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density, clay content and pH, and were used to initialize the APSIM model.  99 

2.2 The APSIM model 100 

APSIM was developed to simulate biophysical process in agricultural systems, and has been 101 

comprehensively verified and used to study productivity, nutrient cycling and environmental 102 

impacts of farming systems as influenced by climate variability and management practice 103 

(Keating et al., 2003; Wang et al., 2002; Holzworth et al., 2014). APSIM simulates crop 104 

growth and soil processes on a daily time–step in response to climate (i.e., temperature, 105 

rainfall, and radiation) and soil conditions (water availability, and nutrient status etc.). The 106 

model allows flexible specification of management options like crop and rotation type, tillage, 107 

residue management, fertilization and irrigation. The ability of APSIM to simulate SOC 108 

dynamics under different cropping and management practices has been verified (Probert et al., 109 

1998; Luo et al., 2011). 110 

APSIM simulates the dynamics of both soil C and N stocks in each soil layer. Similar to other 111 

SOM models like RothC and Century, SOM in APSIM is divided into six conceptual pools 112 

(i.e., microbial biomass, humic organic matter and inert organic matter, together with three 113 

fresh organic matter pools, Fig. 2 in the supplement). Inert organic matter is considered to be 114 

non-susceptible to decomposition, i.e., indecomposable, due to physicochemical and/or 115 

biological protections. The amount of inert organic C is initialized at the start of the 116 

simulation and dos not change during the simulation. The decomposition of other pools is 117 

treated as a first–order decay process modified by soil temperature, moisture and nitrogen 118 

availability (for fresh organic matter pool only), leading to the release of CO2 to the 119 

atmosphere and transfer of the remaining decomposed C to other pools. Microbial carbon use 120 

efficiency (CUE), i.e., the efficiency of microbial community to assimilate the decomposed 121 

SOC, determines the fraction of decomposed C transferred to other pools. The model 122 
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assumes a constant CUE for all C pools. The flow of N depends on the C:N ratio of the 123 

receiving pool. The C:N ratio of each pool is assumed to be constant through time. The 124 

decomposition of surface residues is modified by the degree of contact of the residue with 125 

soil (Thorburn et al., 2001). 126 

The model requires values for initial SOC content, total soil N content, bulk density, and soil 127 

hydraulic parameters for each soil layer simulated. In the Skjemstad and Spouncer (2003) 128 

dataset, measured values for SOC content, bulk density and total soil nitrogen content were 129 

provided for the 0-30 cm layer. For the deeper soil layers and hydraulic parameters in the 130 

whole soil profile, values from a measured soil profile nearest to the site were selected from 131 

the Agricultural Production Systems Research Unit (APSRU) reference sites soil database 132 

(http://www.asris.csiro.au/mapping/hyperdocs/APSRU/). Daily weather data (from 1889 to 133 

present) for each site including radiation, maximum and minimum temperatures, and rainfall 134 

was obtained from the SILO Patched Point Dataset 135 

(https://www.longpaddock.qld.gov.au/silo/).  136 

The APSIM model was first set up for each experiment. Agricultural management including 137 

crops, residue management and fertilizer application was set according to available historical 138 

records. Crops were sown depending on rainfall (>20 mm in successive five days) and soil 139 

water content (90% of saturation water content in the top 20 cm soil). Crop cultivars were 140 

assigned according to sowing date, i.e., the earlier the sowing date, the later the maturity type 141 

of the crop cultivar. For simplification, three cultivars for each crop representing early, 142 

middle and later maturity cultivars were selected from the default cultivars in the files 143 

released with the APSIM model. For pasture, however, there was no record on the species 144 

and cultivar. Here, perennial lucerne (Medicago sativa, a commonly used species in 145 

Australian pasture) was used to represent pasture and only one cultivar–trifecta–was used in 146 
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the simulation. Lucerne was sown and removed after harvesting and before sowing of annual 147 

crops in the corresponding rotations, respectively. Harvest to the height of 10 cm was 148 

assumed each time lucerne reached the flowering stage to mimic possible grazing and/or 149 

haying. 150 

In the experiments included in this study, C from assimilation of crop growth was the only 151 

source of C input to the soil. In the APSIM model, crop growth is simulated using light 152 

interception and radiation use efficiency, modified by water and nitrogen supply. In order to 153 

achieve credible simulation of crop growth, plant available water capacity (PAWC) of the 154 

soil was adjusted. This adjusted PAWC at each site was used throughout the simulations. 155 

Despite the reliability of the APSIM model to simulate crop growth (both belowground and 156 

aboveground), we did not use the simulated aboveground C input during the simulation. 157 

Alternatively, the recorded aboveground C input (as crop residue) was manually incorporated 158 

into the model at the time of crop harvesting, whilst the simulated crop residue was removed. 159 

This manipulation eliminated the effect of imperfect match of modeled with observed crop 160 

residue on SOC dynamics.  161 

2.3 Sensitivity analysis of SOC dynamics 162 

A total of eight parameters (Table 2 in the supplement) that directly link to the SOC 163 

dynamics in the model were selected for sensitivity analysis in order to identify the most 164 

important ones regulating SOC dynamics. One model input for model initialization, i.e., the 165 

fraction of inert organic carbon in the total SOC at the start of the simulation (finert), was 166 

also included in the sensitivity analysis, due to lack of observed data of finert and its great 167 

effect on simulated soil C changes. To inspect the response of simulated SOC to variations of 168 

those parameters (finert was also called as a parameter for convenience hereafter), a 169 

univariate local sensitivity analysis was conducted by looking at the impact of one parameter 170 
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at a time and fixing all other parameters. As the purpose was to identify the most influential 171 

parameter(s), a continuous wheat system with 100% residue retention (the dominant crop in 172 

the studied experiments, see Table 1 in the supplement) and a nitrogen application of 200 kg 173 

N ha–1
 yr–1 were used and simulated for 100 years. The default model parameters were first 174 

used (Table 2 in the supplement), and then each parameter was sequentially increased by 10% 175 

of its default value. For each parameter, the sensitivity function (Si) was calculated to 176 

represent the sensitivity of model output y (i.e., total 0-30 cm SOC stock) to changes in a 177 

single parameter θi (Soetaert and Herman, 2008):  178 

 S� = θ� �|��∗
�|����∗
�� ,  (1) 179 

where θi was the default parameter value, and y|��the model output using θi, θi
* the altered 180 

parameter value (increased by 10%) and y|��∗ the model output using θi
*. Finally, the 181 

importance index of the ith parameter (Ii), i.e., the overall sensitivity of the output with respect 182 

to this parameter, was calculated by summarizing the sensitivities for the 100 year outputs 183 

(n=100): 184 

 I� = ���∑ S������� .  (2) 185 

where Sij was the sensitivity function for parameter i at the jth year of the n (n = 100) years of 186 

each simulation. The greater the magnitude of I is, the more sensitive the model output was to 187 

the parameter (Soetaert and Herman, 2008). The importance indices were compared among 188 

the nine parameters, and the most important parameters were identified and optimized to 189 

obtain the best agreement between simulated and observed SOC dynamics for each of the 90 190 

experiments. As the relative importance of those parameters was independent of soil and 191 

climate conditions, the typical soil and climate at Wagga Wagga ( a major cropping area in 192 

Australia, and one of the 26 sites used in the main text), New South Wales of Australia were 193 
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selected to conduct above analyses. 194 

2.4 Model optimization 195 

The differential evolution (DE) algorithm (belongs to the class of genetic algorithms) was 196 

used to optimize the most influential parameters identified. The optimization was performed 197 

in R 3.0.3 using the DEoptim function in the “DEoptim” package (Mullen et al., 2011). DE is 198 

a global optimization algorithm for continuous numerical minimization problems, which use 199 

biology-inspired operations of crossover, mutation, and selection on population in order to 200 

minimize an objective function over the course of successive generations.  201 

To use DE, each parameter was first assumed to exhibit a uniform distribution bounded 202 

within a range (i.e., the prior distribution, see Table 2 in the supplement) that was 203 

biologically and physically possible based on previous knowledge about the process, thereby 204 

eliminating solutions in conflict with prior knowledge. The optimization performed a quasi-205 

random walk through the multi-dimensional parameter space to find the parameter set that 206 

caused the model to generate the best match between predicted and observed SOC. The “best 207 

match” was defined as the model output that minimized the criteria selected for model 208 

evaluation (Table 3 in the supplement). Seven criteria that are commonly used in the 209 

literature were selected to assess the possible effects of criterion selection on modeling results. 210 

Using each criterion, the optimization was conducted 100 times (i.e., 100 ensembles of initial 211 

parameter values through quasi–random walk), which generated 100 ensembles of parameters 212 

(i.e., the joint posterior distribution of the most influential parameters), giving simulation 213 

results with approximately equally good matches to the observed data. Consequently, 700 214 

ensembles of parameters (from using seven criteria) for each experiment were produced. The 215 

optimizing procedure and related simulations were operated on Bragg and Dell CPUs of 216 

CSIRO Clusters.  217 
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However, the required computing time (~2 days for one experiment and one selection 218 

criterion using 100 computer cores) has posed a significant challenge even using the high 219 

performance computing clusters (Bragg and Dell CPUs) for this multi-parameter optimization 220 

of the process-oriented APSIM model. To complete all optimizations using seven criteria for 221 

the 90 experiments, a run time of four months was expected assuming that 1000 cores could 222 

be continuously available on the clusters. For this reason, the global optimization DE was 223 

only applied for two sites, i.e., Brigalow and Tarlee, providing two cases of DE optimization 224 

as compared to an alternative and faster Bayesian sampling approach as described below.  225 

For all the experiments, a Bayesian sampling approach was substituted for the DE 226 

optimization in order to complete the work within a reasonable time but without much 227 

sacrificing of model performance. The APSIM model was run for each experiment for 228 

100,000 times using 100,000 ensembles of parameters that were randomly sampled from their 229 

prior distributions. The best 100 ensembles of parameters were selected as their posterior 230 

distributions through using each criterion listed in Table 3 in the supplement. At Brigalow 231 

and Tarlee, the distributions of parameters “optimized” through this Bayesian sampling 232 

approach were compared with those optimized through DE optimization. The identified 233 

parameter ensembles by Bayesian sampling approach were referred to as “optimized 234 

parameters” in the following text and used to assess the uncertainty in projected SOC.  235 

2.5 Uncertainty in projected SOC 236 

After obtaining the 700 ensembles of optimized parameters (i.e., after “optimization period”), 237 

the APSIM model was run continuously from the start to the end of each experiment and then 238 

for an additional 100 years after the end of each experiment using each parameter set (i.e., 239 

700 simulations for each experiment). For the last 100-year simulations (i.e., projection 240 

period), a continuous wheat system was assumed together with 100% residue retention, 241 
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which is the same as that used in sensitivity analysis. Carbon input through crop residue 242 

retention was expected to be an important factor regulating SOC dynamics in the projection 243 

period. As residue (or biomass) production is dominantly controlled by fertilizer application 244 

rates under natural rainfall condition at each site, scenarios with nitrogen application rates 245 

ranging from 0 to 300 kg N ha–1 yr–1 with increment of 20 kg N ha–1 yr–1 were modeled. 246 

These scenarios made it possible to mimic different management practices that influence C 247 

input to the soil and to assess its impact on the uncertainty of simulated SOC induced by 248 

model initialization and parameterization.  249 

Climate data from the start year of each experiment through to 2013 was used for the 250 

corresponding simulation period. For all years from 2014 onwards, the corresponding years 251 

of the latest historical climate data were used. For example, for the possible simulations from 252 

2014 to 2104 (91 years), the historic climate data of 91 years from 1923 to 2013 was used. As 253 

we focused on the potential uncertainty induced by model parameterization and initialization, 254 

we did not consider the uncertainty related to climate change. 255 

SOC content in the 0-30 cm soil layer was output at the start of projection (excluding the 256 

optimization period) and at the end of each year of projection (Ci). For the ith year of 257 

projection, the mean (MSOCi) of Ci of the 700 estimates was calculated, and the range (RSOCi) 258 

of the 95% confidence interval was calculated as the difference between 97.5th and 2.5th 259 

percentile of the 700 estimates. Then, the percentage uncertainty (UPi) for that year of 260 

projection was estimated based on half of the RSOCi divided by the MSOCi: 261 

 U�� = ��� ��×"�� �
× 100%, i = 1,2,3, … ,100.  (3) 262 

2.6 Attributes controlling the variability of the uncertainty 263 

After estimating UP, we further addressed the following question: how and why does the 264 
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uncertainty (i.e., UP) in projected SOC change across space and time? We hypothesized that 265 

UP is associated with the management in terms of residue C inputs. At the same time, we 266 

assumed that the detailed relationship between UP and C inputs is different not only across 267 

experiments but also across time periods of the projection. As the hierarchy of the 268 

relationships (i.e., individual-level C inputs group in experiments and time periods of the 269 

projection), a hierarchical regression model, also called multilevel model (Gelman and Hill, 270 

2006), was fitted to estimate UPi (y�) on C input (x�), applied to the J = 90 experiments and K 271 

= 100 time periods of projection. The multilevel model was written as a data (the predicted 272 

UPi belonging to experiment j with k years of projection) level model, allowing the model 273 

coefficients (α and β) to vary by experiment (j = 1, …, J) and time period of projection (k = 274 

1, …, K) (Gelman and Hill, 2006): 275 

 y�	~	N,α�.�/,0.�/ + β�.�/,0.�/x�, σ��4, for	i = 1,… , n,  (4) 276 

and a decomposition of its intercepts and slopes into terms for experiment, the time period of 277 

projection and their interaction,  278 

 :;<,=><,=?~	@
;<ABCDE;=FAGHE;<,=ABCD×FAGH
><ABCDE>=FAGHE><,=ABCD×FAGH

I + @JK<ABCDJL<ABCD
I + :JK=FAGHJL=FAGH? + @

JK<=ABCD×FAGH
JL<=ABCD×FAGH

I,  (5) 279 

and models for variation, 280 

 @JK<ABCDJL<ABCD
I~NN,OO4, ΣQRSTU , for	j = 1, … , J  (6) 281 

 :JK=FAGHJL=FAGH?~N N,
OO4, Σ�QYZU , for	k = 1,… , K  (7) 282 

 @JK<=ABCD×FAGHJL<=ABCD×FAGH
I~NN,OO4, ΣQRST×�QYZU , for	j = 1,… , J; 	k = 1,… , K.  (8) 283 
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where Σ was the 2×2 covariance matrix representing the variation of the intercepts and slopes 284 

in the population of groups (experiments and time periods of projection). In essence, there is 285 

a separate regression model for each experiment and time period combination with the 286 

coefficients estimated by the weighted average of pooled (do not consider groups) and un-287 

pooled (consider each group separately) estimates, i.e., partial pooling. This hierarchical 288 

structure of the model allows the assessment of the variation of individual-level coefficients 289 

across groups and accounting for group-level variation in the uncertainty for individual-level 290 

coefficients. 291 

To assess the variation of individual-level coefficients (α�QRST and β�QRST) across different 292 

experiments, a classic linear regression was conducted to identify the effects of different 293 

sources of variation. At the experiment level, we assumed that two groups of attributes 294 

influence α�QRST and β�QRST: 1) uncertainty in model parameters, i.e., the three optimized 295 

parameters based on experiment-specific dataset, and 2) climate including mean annual 296 

rainfall and temperature, which are predominant factors controlling SOC dynamics during 297 

model optimization as well as during projection. The generalized variance (GV) was 298 

calculated as an indicator of the overall variation in model parameters, which is defined as the 299 

determinant of the variance-covariance matrix of the three parameters and is a scalar measure 300 

of overall multidimensional scatter. The two groups of attributes including all interactions 301 

were selected through a stepwise regression model selection by Akaike Information Criterion. 302 

Before fitting the model, GV was logarithmically transformed to satisfy additivity and 303 

linearity assumptions and then centered by subtracting the mean of the data, and rainfall and 304 

temperature were also centered.  For coefficients over the time-spans of projection (α0�QYZ and 305 

β0�QYZ), their relationship with the time-span of projection were presented. All the statistical 306 

analyses including the multilevel model fitting were conducted using the R software version 307 
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3.0.3 (R Core Team, 2013).  308 

3 Results and discussion 309 

3.1 Sensitivity analysis and model performance  310 

Three parameters were identified as most influential on simulated SOC (Fig. 3 in the 311 

supplement). Microbial carbon use efficiency (CUE) had the biggest impact. This highlights 312 

the key role of microbial process to control SOM decomposition, and the need for better 313 

capturing the dynamics and impact of microbial process in SOM models (Allison et al., 2010; 314 

Singh et al., 2010; Sinsabaugh et al., 2013; Xu et al., 2014). As CUE was treated as a 315 

constant in most SOM models, a framework is needed to incorporate microbial data (e.g., 316 

community, activity, and their responses and feedbacks to biotic and abiotic factors) into 317 

SOM models to provide robust estimations and predictions. Potential decomposition rate  318 

constant of humic organic matter (khum, day-1) ranked the second, followed by the fraction of 319 

the humic carbon that is recalcitrant to decomposition (finert). This result further indicates the 320 

importance to better quantify the decomposability of the heterogeneous SOM (Schmidt et al., 321 

2011; Sierra et al., 2011). It should be noted that the actual decomposition rate is simulated 322 

through modifying khum by a series of biotic and abiotic variables at different spatiotemporal 323 

scales, and different models simulate the responses differently (Todd-Brown et al, 2013; 324 

Exbrayat et al., 2014). Although we did not quantify the relative importance of these 325 

modifiers (e.g., soil moisture ad temperature), the results indicated that khum has to be 326 

constrained, implying the importance of determining how it responses to environmental 327 

factors. The wide distributions of CUE, khum and finert parameters (derived by constraining 328 

the model against the measurement data, Fig. 1b) imply deficiencies in our understanding of 329 

the microbial community and its activity and how they change with environmental conditions 330 

to modulate the SOM decomposition processes. 331 
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Our optimization procedure enabled accurate simulation of SOC change during the 332 

optimization period (Fig 1a) using distinct ensembles of model parameters for each 333 

experiment (Fig. 1b). Pooling together all data of the 90 experiments, the modeled average 334 

SOC of the 700 simulations could explain 96% (P<0.001) of the variance in observed SOC 335 

(Fig. 1a). For each experiment, model performance was nearly identical (Fig. 1a) when the 336 

simulations (using different parameter sets) were inter-compared. At the Tarlee site (Fig. 2a), 337 

for example, the RMSE between modeled and observed SOC ranged from 0.44 to 0.52 t ha–1, 338 

compared with the range of 3.11 to 3.12 t ha–1 at Brigalow site (Fig. 2b). This high level of 339 

consistency highlights significant equifinality, i.e., different parameter ensembles leading to 340 

similar simulation results (Fig 1b, 2c and 2d), in process-based SOM models, which must be 341 

addressed in modeling studies aimed at enhanced process understanding and hypothesis 342 

testing (Tang et al., 2008; Luo et al., 2011). 343 

3.2 Uncertainty in SOC projections 344 

The accurate simulations of past SOC, however, do not guarantee convergent projections 345 

beyond the model optimization period. In contrast, running the model with the same 346 

parameter ensembles generated very divergent future projections (Fig. 2a and b), indicating 347 

significant uncertainty propagation with time of projection (Luo et al., 2011; Tang et al., 348 

2008). Furthermore, the uncertainty is also related to management in terms of C input level 349 

and site conditions. At Brigalow (Fig. 2b), for example, the 95% confidence interval of 350 

projected SOC under optimal N input (i.e., no N stress for crops) ranged from 37 to 56 t ha–1 351 

10 years after the model optimization period, which increased to 26–68 t ha–1 for the 352 

projected SOC after 50 years. Under low N input scenario (0 kg N ha–1), the uncertainty was 353 

smaller. At Tarlee (Fig. 2a), the uncertainty propagation followed a similar pattern to that at 354 

Brigalow, but the uncertainty under low N input scenario was much smaller. At Brigalow, in 355 

addition, we found that the choice of criterion (objective functions) influenced the 356 
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distributions of the derived parameters (Fig. 2d) because a specific criterion only focuses on a 357 

specific aspect (e.g., mean or variance) of the data and the model results, of which the 358 

consequence for SOC simulations (e.g., the bifurcation pattern of projected SOC showed in 359 

Fig. 2b) ought to be carefully considered in future studies. 360 

It is important to notice that the posterior distributions of model parameters were apparently 361 

different across experiments (Fig. 1b, c and d, and Fig. 4 in the supplement), confirming that 362 

model parameters are sensitive to the data constraining the model (Keenan et al., 2012; 363 

Hararuk et al., 2014; Luo et al., 2014). Our results indicate that CUE was likely higher for 364 

site under longer cultivation history (the Tarlee site) than for new-cleared site (the Brigalow 365 

site, Fig 2c vs 2d), implying the potential importance of land use history for constraining 366 

model parameters such as microbial carbon use efficiency because land use history has direct 367 

effect on the quantity and quality of carbon input as well as on soil properties. However, such 368 

impact needs further confirmation with more data. The distributions of the optimized model 369 

parameters were also influenced by the choice of criteria to evaluate model performance (Fig. 370 

2d, Fig. 5 in the supplement). The differences in parameter distributions subsequently impact 371 

on the SOC projections as showed in Fig. 2b, albeit the near identical model performance in 372 

simulating historical SOC. In addition, finert and khum was positively related (Fig. 2c and d), 373 

implying the importance of the interactions and/or feedback between different C pools and 374 

their impacts on soil C projection. These highlight the needs for: 1) improving the science for 375 

capturing process interactions in the model such as the role of microbial processes and 376 

conceptualization of heterogeneous C pools and their transformation (Manzoni et al., 2012; 377 

Luo et al., 2014), 2) conducting model optimization conditioned on all observed data from 378 

experiments together with Bayesian inference technique, and 3) quantifying uncertainty in 379 

SOC projections with ensemble model simulations (Post et al., 2008; Weng et al., 2011; Xia 380 

et al., 2013; Hararuk et al., 2014; Luo et al., 2014).   381 
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If a continuous wheat system was practiced for 100 years after the end of each experiment at 382 

the 26 sites, optimal N management was predicted to result in an average increase in SOC 383 

(Fig. 3a), while a SOC decline under zero N input (Fig. 3b). The amount of potential SOC 384 

change depends on not only the management level (N input) and the climate and soil 385 

conditions that determine the potential productivity of crops, but also the initial SOC level at 386 

the start of the projections. Across the 90 experiments, the percentage uncertainty in the SOC 387 

projections ranged from 2% to 140% with an average of 53% under optimal N management 388 

(Fig. 3c), and from 0.8% to 108% with an average of 40% under zero N input (Fig. 3d). 389 

Applying this result to Australia’s cereal-growing regions, the simulated potential SOC stock 390 

of ~7.5 Pg (Luo et al., 2013) could be subject to 53% uncertainty under no N deficient and 391 

100% residue retention.  392 

3.3. Attributes controlling the variability of the uncertainty 393 

The uncertainty propagation with time of prediction and across experiments could be 394 

explained using a linear model by linking the percentage uncertainty (UP) to the C input from 395 

crop residue (CR), i.e., UP = α + β CR . However, both α and β changed significantly across 396 

experiments (Fig. 4a) and years of projections (Fig. 4b), and were also impacted by their 397 

interactions. Across the time periods of projection, the uncertainty increased with the number 398 

of years for projection, reflected by the linear increase in α (model intercepts) and asymptotic 399 

increase in β (model slope, Fig. 4b). The asymptotic increase in β (model slope) also implies 400 

that the relative contribution of C input to prediction uncertainty reduces with time. Across 401 

experiments, there was a marked variation in the effect of C input on UP, indicating impact of 402 

site-specific conditions (e.g. climate and soil as described later). Across sites and years of 403 

projections, the majority of positive β implies increased uncertainty in SOC projections with 404 

increasing C input, which has not been properly addressed in previous modeling studies (Joos 405 
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et al., 2001; Jones et al., 2005; Smith et al., 2005; Ogle et al., 2010). The fate of C input has 406 

direct effect on the amount of soil C. The general positive effect of C input on uncertainty 407 

would attribute to that the amount of C input ending up in the soil would be more variable 408 

and thus higher uncertainty in soil C under higher C input. These results highlight the 409 

importance of understanding the consequences of future C input changes on soil C dynamics. 410 

The variance in model parameters (GV) across experiments had a major effect on the 411 

intercepts (positive at P < 0.001) and slopes (positive at P < 0.001) of the regression model 412 

linking UP to C input (Table 1). As GV was logarithmically transformed when fitting the 413 

model, the increase in UP with GV was exponential across experiments. This result highlights 414 

the crucial role to improve the representation of the sensitive microbial processes (Zhou et al., 415 

2012; Xu et al., 2014) and the heterogeneous SOM (Sierra et al., 2011) in biogeochemical 416 

SOM models, and to constrain the space of relevant model parameters. For example, we 417 

assumed a relatively wide range of CUE (0.2–0.8) as the prior information for the Bayesian 418 

optimization. Sinsabaugh et al. (2013) suggested that CUE prediction should consider 419 

resource composition, stoichiometry constraints and biomass composition, as well as 420 

environmental drivers. A more informative prior of CUE could help reduce the uncertainty in 421 

soil C projections.  422 

Rainfall and temperature, together with their interaction, had significant impact on SOC 423 

projection uncertainty through their impact on the fitted model intercepts across experiments 424 

(Table 1). α�QRST increased with temperature, but tended to decrease with rainfall, implying 425 

increased uncertainty in SOC projection under future warming and drying conditions . Based 426 

on the results, the uncertainty in projected SOC will be increased by 4.95%, if average 427 

temperature is increased by 1 °C under global warming. For the slopes β�QRST, rainfall and its 428 

interaction with GV had significant negative effect. These effects may reflect the impact of 429 
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rainfall on both primary productivity (thus C input) and soil moisture conditions (thus 430 

microbial activity and decomposition rate of SOC), emphasizing the importance of 431 

understanding the interactions between soil processes and their responses to external drivers 432 

and management such as temperature and rainfall (Davidson and Janssens, 2006; Carvalhais 433 

et al., 2014).  434 

4 Conclusions 435 

Our results demonstrate that great uncertainty exists in soil C projections from process-based 436 

SOM models, due to deficiency in model initialization and parameterization to capture the 437 

process interactions, such as microbial C use efficiency and its drivers, as well as lack of 438 

detailed information to initialize the model, e.g., the heterogeneous SOM with different 439 

decomposability. The prediction uncertainty propagates with extended years of projections 440 

and C input into soil. It is also influenced by site-specific climate (temperature and rainfall) 441 

and soil conditions together with management inputs, which determine both the C input 442 

(through primary productivity) and the SOM decomposition processes. The results also 443 

suggest that C projection into warming and drying future climate will be subject to even 444 

increased uncertainty. For agricultural land uses, uncertainty caused by management practices 445 

has to be carefully considered due to its impact on microbial activity and subsequent 446 

projected SOC. For any future predictions of SOC change, ensemble simulations conditioned 447 

on total observed datasets together with a Bayesian inference technique should be used in 448 

order to quantify the uncertainties in modeling results. Based on our results, future 449 

improvement in SOM modeling should focus on how microbial community and its carbon 450 

use efficiency change in response to environmental changes, better quantification of 451 

heterogeneous SOM and the effects of its change on total soil C turnover.  452 
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Table 1. The effects of experiment-specific variance of model parameters and climate on 601 

individual-level coefficients (i.e., α�QRST and β�QRST in Fig. 4a). 602 

Factor† 
αQRST  βQRST 

Estimate SE t value P  Estimate SE t value P 

Model intercept 26.35 2.14 12.30 ***   1.62 0.33 4.89 ***  

GV  3.15 0.55 5.69 ***   0.17 0.088 1.97 • 

R –0.059 0.016 –3.63 ***   –0.0055 0.0026 –2.15 *  

T 4.95 1.35 3.66 ***   –0.16 0.21 –0.77 0.44 

GV × R – – – –  –0.0018 0.00061 –2.87 **  

GV × T –0.57 0.33 –1.74 •  – – – – 

R × T  –0.046 0.010 –4.49 ***   0.0021 0.0014 1.46 0.15 

Whole model R2 0.44 ***  0.21 *** 

***, P < 0.001; **, P < 0.01; *, P < 0.05; •, P < 0.1.  603 

†GV, generalized variance of the identified three model parameters including microbial 604 

carbon use efficiency, decomposition rate of humic organic carbon and the fraction of inert 605 

organic carbon; R, the annual average rainfall; T, the annual average temperature. GV was 606 

logarithmically transformed and centered, and R and T were also centered when fitting the 607 

model.  608 

  609 
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Figure legends 610 

Figure 1. Model performance in simulating soil organic carbon (SOC) dynamics (a) and the 611 

corresponding optimized model parameters (b) across the studied 90 experiments. Circles and 612 

bars (a) indicate the average and 95% confidence interval of the simulations for each 613 

experiment using different parameter ensembles. Red and blue symbols in (a) highlight the 614 

data at Tarlee and Brigalow respectively, corresponding to the data in Fig. 2. Dashed line is 615 

the 1:1 line in (a). The parameter ensembles at Tarlee and Brigalow are highlighted in (b). 616 

See Fig.2 for the means of the colorful symbols in (b), showing the different ranges of 617 

optimized fraction of inert organic carbon (finert).  618 

Figure 2. Projected soil organic carbon dynamics at two case sites Tarlee (a) and Brigalow (b) 619 

and the correspondingly used parameter ensembles (c and d).  Black symbols show the 620 

observations. Seven criteria (RMSE, MAE, pMAE, IoA, rIoA, NSE and rNSE, see Table 3 in 621 

the supplement for details) are used to derive the posterior joint distribution of model 622 

parameters (CUE, khum and finert). CUE, microbial carbon use efficiency; khum, the potential 623 

decomposition rate of humic organic carbon; finert, the fraction of inert organic carbon.  624 

Figure 3. Projected SOC (a and b) and its percentage uncertainty (c and d) under high (a and 625 

c) and low (b and d) carbon input scenarios after 100-year simulations in 90 experiments 626 

across 26 sites. Concentric circles show the different experiments at the same site. The sizes 627 

of the pies correspond to the projected average of SOC content (a and b) and the 628 

corresponding percentage uncertainty (c and d). Blue and red circles indicate that the average 629 

of the 700 simulations is increased and decreased, respectively, compared with the SOC 630 

content at the start of the projection. Blue and red sectors of the pies in (c) and (d) indicate 631 

the fraction of 700 bootstrapping simulations that shows an increase and a decrease of the 632 

projected SOC, respectively, compared with the SOC content at the start of the projection 633 
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period. 634 

Figure 4. Coefficients (estimate ± standard deviation) for the regression model: UP = α + β 635 

CR . The model is fitted to estimate the effects of carbon input (CR) on the percentage 636 

uncertainty (UP) in soil organic carbon projections, applied to 90 experiments (a) and 100 637 

time-spans of projection  (b).	αa, βb and σ show the data-level coefficients (i.e., averaging over 638 

experiments and time-spans of projection) and errors, respectively. In (a), experiments are 639 

sorted according to α�QRST. The coefficients at the experiment × time-span level are not shown. 640 

See more details in the Methods for the regression model.  641 
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