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Responses to reviewers’ comments 

Dear Dr Akihiko Ito, 

Thank you very much for accepting our manuscript for open discussions in your journal. The 
interactive discussion process is very helpful. The two anonymous referees provided 
constructive comments that are helpful for improving the manuscript. The manuscript was 
also commented by two other colleagues. Dr Göran I. Ågren and Dr Hatem Ibrahim showed 
their interest of the study, and kindly commented on the paper. All these reviewers concluded 
that we presented an interesting study and the manuscript was well written. We appreciate all 
the comments from these reviewers, and have carefully addressed them point-to-point to 
revise the paper. We have marked all the modifications in the manuscript in BLUE colour for 
easy recognition by you. You can find our detailed responses in the following sections. 

We look forward to hearing from you again. 

Regards, 

Zhongkui Luo (Zhongkui.luo@csiro.au), Enli Wang, Hongxing Zheng, Jeff A. Baldock, 

Osbert J. Sun, Quanxi Shao 

########################################################################### 

Comments from Anonymous Referee #1  
Luo and coauthors present a nice analysis that examines the challenges in parameterizing and 
reducing uncertainty in soil C models that are used for land management and policy decisions. 
Even with an spatially and temporarily robust dataset from agricultural sites around Australia 
they find that well calibrated models over the observational period still show significant 
uncertainty in trying to make future projections about the fate of C in a changing world.  

Response: We appreciate these comments which highlight the importance of this study.  

While I strongly agree that better understanding and structural representation of microbial 
physiology, C quality, and management effects are needed to reduce uncertainty in soil C 
projections (section 4), I'm not convinced the data presented clearly support these conclusions. 
A significant amount of confusion is generated because the manuscript presently conflates 
model structural uncertainty, parameterization uncertainty, and forcing (or scenario) 
uncertainty in the analysis (see Hawkins and Sutton 2009). In me estimating focusing on the 
first one of two of these types of uncertainty would strengthen the conclusions being made 
here. 

Response: Thanks you very much for your comments and suggestion. Yes there are several 
types of uncertainties and it is complicated and extensive task to deal with all the 
uncertainties together. As the reviewer suggested, focusing on one or two types 
uncertainties would strengthen the conclusion. Indeed, our current study focused on 
the uncertainty induced only by model parameterization and model initialization. In 
the revision, we carefully clarified this objective. More details are given in the 
following sections in responding to the reviewers’ comments. 
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General comments 
• Parameter uncertainty: A significant amount of effort went into reducing parameter 
uncertainty in the model at each site (Figs 1 & 2) I’m surprised that sensitivity analyses of 
temperature, moisture, and N scalars weren’t considered in this model since previous work 
demonstrates that model results are strongly determined by these parameters (e.g., Todd-
Brown et al. 2013; Exbrayat et al. 2014). Would consideration of these parameters in the 
optimization routines better constrain the projected uncertainty, or compound the equifinality 
problems mentioned in section 3.1? 

Response: We agree with the reviewer that how the model simulates the response of soil 
carbon change to temperature, moisture and nutrient availability (e.g., nitrogen) is 
important. Different models usually use different response functions to modify their 
potential decomposition rate. The uncertainty related to these response functions is 
more associated with model structure, thus was not included in this study where we 
focused on uncertainties related to model parameters. 

  Our main focus in this paper was to assess the uncertainties associated with the 
determination of model parameters and initialization of the SOC pools using 
measured SOC data. In the APSIM model, as in other carbon models, actual 
decomposition rate of each carbon pool is simulated as the maximum decomposition 
rate modified by soil temperature, moisture and nutrient availability, etc. (as described 
in lines 117-119). The decay constants of the SOC pools, together with the carbon use 
efficiency (CUE) of microbes, are the parameters we investigated. Due to the 
unmeasurable nature of the SOC pools in the model, the uncertainty caused by 
initialising these pools using measured total SOC was therefore also included.  

 Due to the many parameters involved, further inclusion of the types of response 
functions will indeed compound the equifinality problems. Therefore, we decided to 
look at the impact of response functions in a separate study.   

To satisfy the reviewer’s concern on this point, we explicitly discussed the above 
points in the revised manuscript and cited the relevant references. See lines 321-327.  

Fig. 2b shows a split in SOC projections for both high and low inputs. One is left to surmise 
this bifurcation in results is generated by the concurrent split in parameter space shown in Fig. 
2d. The authors hint at this finding at the end of section 3.3, it’s never adequately discussed in 
section 3.2, where optimization results are presented. 

Response: Thanks for this point. The bifurcation in results was generated by the split in 
parameter space, which was caused by using different objective functions in the 
optimisation. We expanded the discussions on the reason and consequence of the 
bifurcation pattern showed at Brigalow in section 3.2 (see lines 354-359).  

Optimized CUE values seem quite high in Figs. 1ab, 2, especially given conclusions by 
Sinsabaugh and others (2013) that CUE values in soils should be considerably lower? I 
wonder if better constraints on the prior distributions of parameter values may lead to 
different conclusions? I’m not sure such analyses are warranted here, but discussing this 
dependency of prior distributions in Bayesian analyses seems warranted. 

Response: Sinsabaugh et al. (2013) suggested that CUE prediction should consider “resource 
composition, stoichiometry constraints and biomass composition, as well as 
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environmental drivers”. In this study, we assumed a prior distribution of CUE ranging 
from 0.2 to 0.8. Although this range is relatively wide, the purpose is to cover the 
potential change of CUE. In addition, the mean of our derived cue was around 0.5 that 
is consistent with the estimates in terrestrial ecosystems.  

However, we accepted the suggestion to discuss the potential limitation of prior 
distribution. See lines 416-421. 

• Structural uncertainty: Similarly, it looks like all the sites have very different management 
practices (SI Table 1), but the effects of these different management practices are implicitly 
represented by site-level parameter estimation for steady state and temporal changes in soil C 
for each of the sites & treatments. Instead, I wonder if a single model would be better, with 
“global” decay constants that are modified by scalars for different management practices- in 
addition to temperature, moisture, and N scalars that already being used? With so many 
unconstrained parameters this approach may run into the same equifinality problems, but also 
may better constrain management effects on future soil C storage? I’m not asking that 
environmental or management scalars be evaluated here- but their potential importance 
should be discussed. Instead, my larger concern comes in how uncertainty analyses were 
conduced and the inferences drawn from them. 

Response: Thanks for this suggestion. Management practice has substantial effects on soil 
carbon dynamics through its effect on soil carbon input (in terms of both quantity and 
quality) and soil properties. We mentioned this issue in several places through the 
manuscript (e.g., lines 436–438, 440–442 in the Conclusion section). See more on this 
point in our responses to the following comments on C input (the key final 
consequence of agricultural management). 

• Forcing uncertainty: It’s not clear what actually generates the uncertainty shown in Fig. 2? 
It seems as though SOC parameters were optimized (Fig. 1), but that uncertainty in the crop 
response generated wide uncertainty in plant productivity, and therefore soil C inputs (which 
were not previously optimized). As the authors hypothesize in section 2.5, first order models 
are very sensitive to soil C inputs (again Todd-Brown et al. 2013). Projected inputs varied by 
more than a factor of two (section 3.2). Thus, uncertainty shown in Fig. 2a does not 
surprising- if this is what’s actually generating the spread in projections? If so, I’m not 
confident that conclusions about persistent uncertainty in soil C projection (section 4) are 
well supported by this analysis? To control for differences in plant inputs, could the authors 
increase residue by 10% for different parameterizations of soil C at each site and quantify the 
variation in SOC projections? 

Response: Thanks for the careful review. For carbon input during the model calibration 
period, we used the observed amount of crop residue as a forcing input (i.e., there was 
no uncertainty in carbon input), which was described at the end of section 2.2.  

For the projection period, no changes were made to the model parameters that control 
plant growth and therefore carbon input into soil. The changes were only made to the 
model parameters that control SOC decomposition and initialization (i.e., rate 
constant for humic pool, microbial carbon use efficiency, fraction of inert organic 
carbon etc), which are the only causes for the uncertainty in projected SOC.  

In order to assess the uncertainty in soil C projections under a typical level of C input, 
during the model projection period, we simulated the soil C dynamics under different 
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N application rates thus different C input levels (see the first paragraph of section 2.5: 
lines 241-248). For example, in Fig. 2a, the simulated C input under 0 kg N/ha 
scenario (i.e., low C input) was low but similar when different soil parameter 
ensembles were used. Under optimal N input, C input was high and similar as well. 
The purpose of the nitrogen scenarios is to ensure that that the uncertainty in C input 
under a specific N management is small. And thus, the uncertainty in C projection 
(Fig. 2a and b) is induced by the uncertainty in the optimised model parameters.  

Additionally, in the APSIM model, crop growth is predominantly controlled by soil 
water and nitrogen availability, given a specific climate. In our simulation, water 
availability is a function of rainfall and soil water holding capacity, and is not 
changed by those optimised parameters. For nitrogen availability, the model can well 
simulate soil C dynamics under all parameter ensembles (Fig. 1). As the modelled N 
dynamics couple with C through a constant C:N ratio for each pool, the simulated N 
could follow the similar pattern to C. This means the N supply for crop growth will be 
similar under different parameter combinations. We added more details on these 
points in section 2.2 (see lines 122-123, 150-152). 

Subsequently, what if temperatures warmed [or soils dried] over the 100-year projection 
window, how would the temperature sensitivity of decomposition vary depending on 
tradeoffs between humus decay rates and partitioning to inert C? There is some speculation 
towards this effect in the middle of p 4261, but it’s not clear how the authors generate climate 
uncertainty effects on soil C storage here? By isolating these variables, uncertainty in 
parameter estimates and/or model structure could be isolated (if this is the focus of the paper, 
as implied in the abstract), and would avoid confounding forcing uncertainty in the analysis. 

Response: In this study, we did not quantify the uncertainty related to climate change, and 
repeated the historic climate from the last 100 years to drive the model. This 
information was added to the manuscript (see lines 252-254). As clarified in above 
responses, our study focused on the uncertainty induced by model parameterization 
and initialization. See our response to the next comment about the results on the 
climate factors.  

• Uncertainty attribution: I have to admit that I'm not really clear what the intercept (α) and 
slope (β) parameters are showing (sections 2.6 & 3.3)? The authors conclusions seem to 
strongly rest on the change in α and β over sites and time (first paragraph of section 3.3). First 
order models can exhibit false priming (as in Fontaine et al. 2011) because initially increase 
soil C inputs enter pools with faster turnover times (FOM in this model), thus increasing soil 
respiration rates more than may be expected. Over time, however, as more C enters larger 
SOM pools with slower turnover times (humus and inert pools here) and the system begins to 
achieve a new equilibrium state the crop residue effects (Cr) on percentage uncertainty (Up) 
should increase. It’s not clear if this is what’s going on here, but I’d suspect this may explain 
why α and β both increase over time (Fig. 4b)? Similarly, sites with “well behaved” 
parameter estimates that have a narrow range of values for rdhum and finert (e.g., Tarlee, Fig 
2a,c) likely have low α & β values, whereas sites that generate bimodal distributions of 
parameter combinations (e.g., Brigalow Fig. 2b,d) will have larger α & β values? Is that 
what’s being shown in Table 1? 

Response: In this study, we used a multilevel regression model to test that whether the 
uncertainty in soil C projections induced by model parameterization and initialization 
correlates with management in terms of C input (which was simulated under different 
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N application scenarios as described previously), and how this correlation changes 
across space (e.g., climate) and time (e.g., time period of the projection). The purpose 
of this analysis is to address why uncertainty change across space and time. To avoid 
the potential misunderstanding, we carefully revised the relevant sections to make the 
interpretation of the regression model clearer (see sections 2.6).  

 Briefly, we assumed that the uncertainty in soil C projections relates to C input (CR), 
i.e., UP = α + β CR. At the same time, we assumed that the relationship is different 
across experiments (Fig. 4a) and time period of the projection (Fig. 4b), i.e., the 
coefficients α and β are different among experiments and time periods of the 
projections. We further assumed that the attributes at experiment level (e.g., rainfall 
and temperature, and the generalized variance of the optimized parameters under the 
specific experiment) can explain the variation of α and β among experiments (Table 
1). These assumptions were tested using the abovementioned multilevel model. Fig. 4 
and Table 1 showed the relevant results.  

• Unsubstantiated claims: In the same paragraph (bottom of pg 4259), there’s discussion of 
‘optimal agricultural management’- which as something to do with residue management and 
N application? The authors also make what seem like widely speculative claims on the 
potential changes in agricultural soil C changes. Details of how these extrapolations were 
generated are lacking from the text, and I recommend removing this seemingly tangential 
finding from the text. 

Response: Thanks for the suggestion. Yes it seems that the material is not directly relevant to 
the purpose of the manuscript. As suggested, we deleted the mentioned discussions.  

Also, discussion of the potential effect of cultivation history on CUE seems very speculative 
(bottom of p. 4261). Although it’s an interesting idea, with only a single site under “long” 
and “short” cultivation history, the results seems spurious at best, with no mechanism as to 
what would drive such changes in microbial physiology as a function of land use practices.  

Response: The purpose of this discuss is to highlight that land use history likely affects both 
the composition of carbon pools and microbial processes, because land use history 
regulates soil environment and carbon input in terms of both quality and quantity.  

In the revision, we further clarified the limitation of our results and the need for more 
research to confirm the findings; see lines 363-368. 

Technical comments 
• Precise language: The phrase ‘carbon composition’ is mentioned several times in the 
abstract (p. 4246, l. 14, 22, & 23) as well as several times in the main text (e.g. p. 4250, l. 9; 
4250, l. 14; etc.) but this term is somewhat ambiguous. Is this referring to the chemical 
quality of SOM, its physical accessibility to microbes, or something else? Can the authors use 
more precise language for this phrase? 

Response: Thanks for the careful review. We checked the whole manuscript, and replace 
“carbon composition” with more meaningful words, like carbon pools etc (e.g., 22, 29, 
320, 438, and 451). 

• Structural Clarity: The authors refer to the ‘calibration’ of their model and the ‘calibration 
period’, however, this procedure is never really described in the methods. I suspect that 



6 

 

‘calibration’ and ‘optimization’ (described in section 2.4) are being used interchangeably here, 
but this may not the true? Care should be taken to clarify language so readers can accurately 
understand results and discussion in the context of the numerical methods being applied. 
Maybe subheadings in section 3 that match those in the methods would help clarify results. 
(e.g., 3.1 Sensitivity analysis; 3.2 Optimization; etc). 

Response: Thanks for the careful review. We followed this suggestion and changed the 
‘calibration’ to ‘optimization’ in order to make the terminology consistent.  

Similarly, it seemed as though results from DE optimization were going to be compared to 
the Bayesian approach (top of page 4252). It seems like Fig. 2 presents results from the DE 
optimization and Fig. 3 shows results from the Bayesian approach; however, from a 
comparison of the two methods is not clearly presented. I think this is actually discussed at 
the bottom of page 4261, and in SI Fig. 4 (section 3.3), but this text should be move up to the 
optimization section (section 3.2), as described in the methods (section 2.4). 

Response: Thanks for the careful review. Change was made accordingly. See lines 360–380.  

Use of model abbreviations in the text that are not clarified in the model conceptual diagram 
(SI Fig. 2) unnecessarily obscures findings for readers who are not intimately familiar with 
the model. The model is simple enough to deduce the abbreviations being used, but could be 
made more direct by labeling parameters of interest on SI Fig. 2, and / or simplifying the 
parameter names (e.g. kcarb, kcellulose, klignin… to describe the first-order decay constants 
of each pool). 

Response: Thanks for the careful review. We accordingly updated Fig. 2 in the supplement 
and the parameters names (see Table 2 in the supplement).  

• Technical clarifications: How does material get into the “Inert C pool”? This isn’t clearly 
described in the text of evident in SI Fig. 2, but it’s an important parameter in the model 
according to the sensitivity analysis (section 3.1, SI Table 2). Similarly CUE (which I’m used 
to seeing capitalized) is adequately described in the in the text, but not evident in SI Fig. 2. 
One is forced to assume that CO2 fluxes from each pool are equal to 1-CUE, and therefore 
the same for C losses out of each pool. But this should be clarified in the description of the 
model and it’s wiring diagram. 

Response: Thanks for the careful review. Both inert C pool and CUE was defined in the 
revised version. See lines 114–117 for the definition of inert C pool and lines 120–
123 for the definition of CUE.  

I’m used to seeing plots like Figure 1a with the axes reversed, since here we’re interested in 
how the model (independent variable) can predict observations (dependent variable). Figure 
1b is nearly unintelligible. Is this showing the 3 dimensional parameter space for the 
optimized parameters to generate steady state SOC pools in Fig 1a? The legend says that 
colors are described in Fig 2, but no description is provided there- forcing readers to assume 
that colors represent different ranges for the fraction of C allocated the inert C pool (Fig. 2c)? 
The one relevant finding one may draw from this figure is that turnover of the humic pool 
(rdhum, which I would suggest calling khumic) is inversely related to the fraction of C 
allocated to the inert pool (fintert). This apparent covariation, however, is never discussed 
(e.g. section 3.3). 
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Response: Fig. 1 and its legend were updated based on these comments. The correlation 
between finert and khum were further discussed and clarified. See lines 372-374. 

It’s unclear how the spatial distribution of the uncertainty analysis (Fig. 3) adds to the story 
being told here since it’s never discussed in the text (section 3.2). As such does the map of 
individual study sites and their magnitude of SOC change communicate much? If not, maybe 
these projected results (and uncertainties) could just be added to SI Table 1, along with 
observed, optimized SOC pools? 

Response: Thanks for this comment. Fig. 3 shows the spatial pattern of simulated soil C stock 
and its uncertainty under low (zero) and optimal N input levels, highlighting the 
importance of local climatic and soil conditions, and management practices. Although 
the numbers can be incorporated into the mentioned table, the information on the 
spatial patterns will be missed. This spatial pattern also links with the discussion in 
section 3.3 on the attributes controlling the variability of the uncertainty across the 
divergent climate, soil and experimental conditions. As such, we kept Fig. 3 in the 
manuscript.   

Since Fig 4b is discussed before Fig 4a (section 3.3) can these panels be switched? 

Response: Thanks for this comment. We rearranged some statements to ensure that Fig. 4a 
was cited before Fig. 4b.  

References: 
Hawkins, E., and R. Sutton, (2009) The potential to narrow uncertainty in regional climate 
predictions. Bull. Amer. Meteor. Soc., 90, 1095–1107. 
Exbrayat J F, Pitman A J and Abramowitz G (2014) Response of microbial decomposition to 
spin-up explains CMIP5 soil carbon range until 2100 Geosci. Model Dev. 7 2683–92 
Fontaine, S., et al. (2011) Fungi mediate long term sequestration of carbon and nitrogen in 
soil through their priming effect. Soil Biology and Biochemistry, 43, 86-96. 
Sinsabaugh R L, Manzoni S, Moorhead D L and Richter A (2013) Carbon use efficiency of 
microbial communities: stoichiometry, methodology and modelling Ecology Letters 16 930-9. 
Todd-Brown, K. E. O., et al. (2013): Causes of variation in soil carbon simulations from 
CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717– 
1736, doi:10.5194/bg-10-1717-2013, 2013. 

Response: Thanks for these references. We incorporated the references that are closely 
related to our study into the revised version.  

########################################################################### 

Comments from Anonymous Referee #2  
This is an interesting paper illuminating the difficulties in making model projections even 
when past can be described accurately.  

Response: We appreciate this comment. 

Specific comments 

1. Is there any reference, where the APSIM model is described in detail, see also comments 
below?  
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Response: Yes, we have added two references including a currently published paper. See line 
104. 

2. It is not clear from the manuscript if a constant CUE, independent of pools is assumed.  

Response: Thanks for the careful review. The model assumes a constant CUE for all C pools. 
This was clarified in the manuscript. See line 120-123. 

3. One parameter, rdhum, representing transfer to an inert pool, is used. This parameter must 
be better explained. Is it a rat r a fraction of other transfers?  

Response: rdhum is the potential decomposition rate constant of humic organic carbon pool 
in the model. It does not represent the transfer to inert pool. We explained this 
parameter further and defined it clearly in line 317-318 and in the Supplementary 
Table 2. 

4. Is the inert pool a constant 35% of SOC or will its size depend on the rate of transfers to 
this pool? 

Response: Inert pool is defined as the pool that does not decompose. This value is initialized 
at the start of the simulation and will not change during the simulation. A clear 
definition of the inert pool was added in line 114-117. 

########################################################################### 

Comments from Dr G. Ågren (goran.agren@slu.se) 

Luo et al. present an interesting study of model projections of soil organic carbon (SOC). In 
spite of very good model fits to past SOC development, the projections diverge drastically. I 
think this illustrates what we could call “the curse of equifinality”; there are many parameter 
combinations, or for that matter models, that fit data equally well but it is difficult to know 
which do this for the right reason and which do this for wrong reasons.  

Response: We appreciated these comments. As summarised by Dr Ågren, our study 
demonstrated that accurate reproduction of past SOC did not guarantee convergent 
projection of SOC. In addition, we further assessed the relative importance of 
different model parameters in the uncertainty quantification, and found that the 
uncertainty caused by equifinality was also impacted by climatic conditions and 
carbon input (management), which provided an effective way to estimate uncertainty 
in predictions of soil carbon models across various climate and management 
conditions.  

One way around this conundrum is to focus less on how well models fit data and find ways to 
constrain allowable parameter ranges and pay more attention to the internal consistency of 
models. I will here give an example of an analysis of the latter. I have dissected five SOC 
models CENTURY, (Parton et al., 1987; Parton et al. 1994; Paustian et al., 1992), DAISY 
(Hansen et al., 1990; Jensen et al,. 1997; Mueller et al., 1997),;ROTHC- 16.3 (Coleman & 
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Jenkinson, 1995; Jenkinson et al., 1992), VERBERNE (Verberne et al., 1990; Whitmore et al., 
1997), and NCSOIL (Nicolardot & Molina, 1994). All five models describe SOC as 
consisting of between 2 and 5 pools with transfers between them and losses as CO2 
(respiration).I have characterised each pool by a quality, which depends on the total rate 
(respiration plus transfers to other pools) at which this pool is depleted. From this I have then 
calculated the carbon use efficiency (CUE) as the fraction of C lost from a pool that is 
transferred to another pool; 1–CUE is the fraction lost as respiration. I have also calculated 
the dispersion D(q,q’), which describes the fraction of carbon from the pool with quality q’ 
that is transferred to the pool with quality q. The results are presented in Figures1 &2. A 
more detailed description of the calculations can be found in Nilsson (2004). CUE is in most 
models independent of the quality of the pool but varies considerably between models but is 
in the range also found by Luo et al. Model studies in general, including Luo et al., tend to 
point out CUE as one of the parameters to which model predictions is most sensitive (see also 
Hyvönen et al. 1998), However, this assumed constancy, albeit the simplest to make in view 
of our ignorance of its sensitivity to substrate properties, must be strongly questioned as from 
a theoretical perspective CUE should vary with substrate quality (Manzoni et al. 2012). If 
CUE is constant in the five models analyses, this is not the case for the dispersion function, 
where in four of the models (not ROTH-C) the function looks like an alpine landscape. This 
is problematic because model predictions are also very sensitive to this function (Hyvönen et 
al. 1998). This is also one of the properties where empirical information is really scarce 
because of difficulties in measuring it. However, the question is if any of the dispersion 
functions in Figure 2 are reasonable or if we should expect them to be much smoother and 
probably monotonic functions? The manuscript by Luo et al. provides no further information 
on this point. In conclusion, the manuscript by Luo et al. points to a problematic area for the 
modelling of SOC. Better control on the internal consistency of models could help 
constraining model prediction by preventing unrealistic parameter combinations.  

Response: Dr G. Ågren pointed out an important issue about the internal inconsistency of soil 
carbon models in terms of CUE and dispersion. This inconsistency mainly results 
from the difficulty of conceptualizing heterogeneous organic matter and their 
transformation using conceptual pools in the carbon models. There is in general a lack 
understanding on how to dynamically simulate CUE in the model. Thus, a constant 
CUE (different among models as studied by Dr G. Ågren) was assumed in most of 
models. In this study, we attempted to quantify the uncertainty induced by the 
variation in this constant CUE. 

By studying five common models, Dr Ågren found that the dispersion function 
quantifying the transformation between carbon pools is markedly different among the 
models (Fig. 2 in his comments). Its potential effect on soil carbon projections 
certainly warrants further investigation. The APSIM model used in our current study 
shares the similar structure for simulating soil carbon dynamics with the models 
studied by Dr Ågren. In APSIM, the dispersion, i.e., the fraction of C lost from a 
typical pool transferring to other pools is pool-specific. In our study, we did not 
address the potential influence of this issue and used the default dispersion function in 
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the APSIM model. One reason is that, as also mentioned by Dr Ågren, we did not 
have enough relevant information to constrain them. Another reason is that all soil 
carbon models use conceptual pools with different potential decomposition rates. 
These conceptual pools cannot be directly measured. This means that the dispersion 
function would be dependent on how we conceptualize the pools and derive their 
decomposition rates. However, we acknowledge the important of this issue raised by 
Dr Ågren. We expanded the relevant discussion on this topic (see lines 374-377) and 
cited the relevant reference recommended by Dr Ågren.  

The purpose of our study was not to develop or improve our modelling capacity on 
CUE and dispersion, but to quantify the uncertainty in predictions, identify potential 
areas that should be improved, and assess how the uncertainty correlates to climatic 
and management conditions. We acknowledge that model development is certainly 
required to improve simulations of CUE and carbon pool transformation.  

References: 

Coleman, K. and Jenkinson, D.S.: RothC-26.3-A model for the turnover of carbon in soil. In: 
Powlson, D.S., Smith, P., and Smith, J.U. (Eds.). Evaluation of soil organic matter models 
using existing, long-term datasets. NATO ASI series 1, vol. 38. Springer, Berlin Heidelberg 
New York, pp. 237-246, 1996.  

Hansen, S., Jensen, H.E., Nielsen, N.E. and Svedsen, H.:. Daisy-soil plant atmosphere system 
model. Npo- forskning fra Miljøstyrelsen,vol A10, Miljøstyrelsen, Copenhagen, 272 pp., 
1990.  

Hyvönen R., Ågren G.I., Bosatta E.: Predicting long-term soil carbon storage from short-term 
information. Soil Science Soc. Am. J., 62, 1000-1005, 1998.  

Jenkinson, D.S., Harkness, D.D., Vance, E.D., Adams, D.E. and Harrison, A.F.: Calculating 
net primary production and annual input of organic matter to soil from the amount and 
radiocarbon content of soil organic matter. Soil Biol. Biochem,. 24, 295-308., 1992.  

Jensen, L.S., Mueller, T., Nielsen, N.E., Hansen, S., Crocker, G.J., Grace, P.R., Klír, J., 
Körschens, M. and Poulton, P.R.: Simulating trends in soil organic carbon in long-term 
experiments using the soil-plant-atmosphere model DAISY. Geoderma, 81, 5-28, 1997.  

Manzoni S., Taylor P., Richter A., Porporato A., Ågren G.I.: Environmental and 
stoichiometric controls on microbial carbon-use effi- ciency in soils. New Phytol., 196:79-91, 
2012.  

Mueller, T., Jensen, L.S., Magid, J. and Nielsen, N.E.: Temporal variation of C and N 
turnover in soil after oilseed rape straw incorporation in the field: simulations with the soil-
plant-atmosphere model DAISY. Ecol. Model., 99: 247-262., 1997.  



11 

 

Nicolardot, B. and Molina, J.A.E.: C and N fluxes between pools of soil organic matter: 
model calibration with long-term field experimental data. Soil Biol.Biochem., 26, 245-251., 
1994.  

Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S.: Analysis of factors controlling soil 
organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J., 51,1173-1179., 1987.  

Nilsson K S.. Modelling soil organic matter turnover. Ph.D thesis. Acta Universitatis 
Agriculturae Sueciae 326, 2004.  

Parton, W.J., Ojima, D.S., Cole, C.V. and Schimel, D.S.: A general model for soil organic 
matter dynamics: sensitivity to litter chemistry, texture and management. Soil Sci. Soc. Am. 
Special publication, 39, 147-167, 1994.  

Paustian, K., Parton, W.J. and Persson, J.: Modelling soil organic matter in organic-amended 
and nitrogen- fertilized long-term plots. Soil Sci. Soc. Am. J., 56, 476-488., 1992.  

Verberne, E.L.J., Hassink, J, De Willigen, P., Groot, J.J.R. and Van Veen, J.A.: Modelling 
organic matter dynamics in different soils. Neth. J. Agr. Sci., 38, 221-238., 1990.  

Whitmore, A.P., Klein-Gunnewiek, H., Crocker, G.J., Klír, J., Körschens, M. and Poulton, 
P.R.: Simulating trends in soil organic carbon in long-term experiments using the 
Verberne/MOTOR model. Geoderma, 81, 137-151., 1997.  

Figure captions Figure 1. Calculated carbon use efficiency e(q) = CUE as a function of 
quality q for the five models. Figure 2. Calculated dispersion matrix D(q,q’) for the five 
models. q’ represents the quality of origin and q the quality to which this carbon is converted. 
The sum of D(q,q’) over q equals 1. 

Response: We thank Dr Ågren for showing his case study and the detailed literature citiation. 
The relevant references in the above list were cited in the revised manuscript.  

########################################################################### 

Comments from Dr Hatem Ibrahim (brahim_hatem@yahoo.fr) 

This manuscript is well-written and thoughtfully prepared. Thanks for this nice study. 

Response: Thanks for this comments. 

I am agree that SOM models, initialization of the SOM pools can also be a major cause of 
divergent model projections, and I have some questions concerning “the future improvement 
in soil carbon modeling should focus on how microbial community and its carbon use 
efficiency change in response to environmental changes”: 1- The author compare APSIM to 
other SOM models like RothC and Century, for this reason it is necessary to classify in the 
section materials and methods what kind of models are used (the model is linear, non linear, 
using a quadratic function. . . Pansu et al 2014). 
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Response: The APSIM model shares the similar structure with other models like RothC and 
Century (see the relevant description in lines 111-114).To avoid the potential 
misunderstanding, we modified the relevant model description in the revised 
manuscript. In terms of the model structure, we have clearly stated that “the 
decomposition of the soil organic carbon pools is treated as a first-order decay 
process…”. First-order decay indeed shows the function type, which is commonly 
used in most of carbon models.  

2- Current global models do not represent direct microbial control over decomposition “a 
new generation is required to capture fundamental microbial mechanisms without excessive 
mathematical complexity” (Todd-Brown et al, 2012), for this reason can future models 
(conceptual pools) be based on the functional ecology of soil microbial biomass (MB) which 
increases by assimilation of humic organic matter, fresh organic matter and decreases by 
microbial respiration and mortality? 

Response: This is likely one of the directions for future model development. However, we 
don’t think that better describing microbial biomass alone is enough. Incorporating 
microbial processes into carbon models needs our advanced understanding of 
microbial carbon and nutrient use efficiency, microbial stoichiometry, microbial 
physiology and their response to environmental and management changes. We 
emphasized issues related to microbial processes in several place of the manuscript 
(e.g., lines 314-317, 327-330, 363-367, 416-421).  

3- Published references lack mechanistic predictions of the continuous transfers of C between 
plants, soil compartments and the atmosphere. We believe that it is because the functional 
role of micro-organisms was neglected in many models which focused mainly on total C 
stocks, rather than on transfers within the microbial and plant OC pools with varying 
stabilities. Although some models are appearing that take account of microbial activity 
(Allison et al. 2010; Pansu et al. 2004; Schimel and Weintraub, 2003), and quantify the 
microbial biomass (MB), (Xu et al., 2013), the influence of detritus on stability of ecological 
systems (Moore et al., 2004), and “the crucial roles of microorganisms in regulating soil 
carbon dynamics” (Jizhong Zhou et al. 2011). Author think introduce in the future research 
the determination MB-C (carbon microbial biomass) using for example the fumigation-
extraction method? And demonstrate a direct microbial control over decomposition? 

Response: Thanks for these suggestions. Mature techniques exist to determine microbial 
biomass. In this study, however, we did not describe the relevant methods much as 
our paper focuses on modelling and the relevant uncertainty. The second question is 
important, and relies on our understanding of the underlying microbial processes 
under different environmental conditions. The modelling results in our manuscript 
also emphasize the importance of microbial processes. 


