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Abstract

Soil carbon models are important tool to understand soil carbon balance and project
carbon stocks in terrestrial ecosystems, particularly under global change. The initializa-
tion and/or parameterization of soil carbon models can vary among studies even when
the same model and dataset are used, causing potential uncertainties in projections.5

Although a few studies have assessed such uncertainties, it is yet unclear what these
uncertainties are correlated with and how they change across varying environmental
and management conditions. Here, applying a process-based biogeochemical model
to 90 individual field experiments (ranging from 5 to 82 years of experimental duration)
across the Australian cereal-growing regions, we demonstrated that well-designed cal-10

ibration procedures enabled the model to accurately simulate changes in measured
carbon stocks, but did not guarantee convergent forward projections (100 years). Ma-
jor causes of the projection uncertainty were due to insufficient understanding of how
microbial processes and soil carbon composition change to modulate carbon turnover.
For a given site, the uncertainty significantly increased with the magnitude of future15

carbon input and years of the projection. Across sites, the uncertainty correlated pos-
itively with temperature, but negatively with rainfall. On average, a 331 % uncertainty
in projected carbon sequestration ability can be inferred in Australian agricultural soils.
This uncertainty would increase further if projections were made for future warming
and drying conditions. Future improvement in soil carbon modeling should focus on20

how microbial community and its carbon use efficiency change in response to environ-
mental changes, better quantification of composition of soil carbon and its change, and
how the soil carbon composition will affect its turnover time.
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1 Introduction

Soil is the largest carbon (C) reservoir in the terrestrial biosphere and CO2 emission
from soil organic matter (SOM) decomposition accounts for ∼ 35 % of the global CO2
emissions (Schlesinger and Andrews, 2000). Due to the large amount of soil organic
carbon (SOC), carbon sequestration in soils represents a great potential for mitigating5

greenhouse gas emissions and climate change as well as maintaining soil fertility (Lal,
2004). Accurate projections of future change in SOC are therefore needed for C and
greenhouse gas (GHG) inventories to guide the development of future policies and land
management practices (Janssens et al., 2003). Due to the complex and dynamic in-
teractions between SOC, climate, soil and land management practices, process-based10

SOM models have become an important tool to investigate SOC change and project
SOC trends under different land uses (Jenkinson et al., 1991; Friedlingstein et al.,
2006; Smith et al., 2007; Piao et al., 2009). Some studies have suggested that the
uncertainties in such projections should be systematically addressed in order to judge
the credibility of the underlying projections and develop appropriate polices for carbon15

sequestration and climate change mitigation (Friedlingstein et al., 2006; Tang et al.,
2008; Todd-Brown et al., 2013; Nishina et al., 2014). Better understanding of these
uncertainties and their drivers will help identify knowledge gaps and improve process-
based models (Luo et al., 2014).

Uncertainty in simulation results derived from dynamic models can arise from inac-20

curacies in input data, deficiencies in model structure and inappropriate calibration of
model parameters. For SOM models, initialization of the SOM pools can also be a ma-
jor cause of divergent model projections. Most SOM models divide SOM into several
conceptual pools (e.g. fast, slow and recalcitrant pools) and simulate the decompo-
sition of each pool as a first-order decay process (Smith et al., 1997; Davidson and25

Janssens, 2006; Schmidt et al., 2011). In many cases, measurements are only avail-
able for total SOC, and there is no agreed-on procedure for initialization of these model
pools using total SOC (Basso et al., 2011). As a result, model calibration was often
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conducted based on limited SOC measurements (usually at temporal scales less than
decades) together with empirical initialization. The calibrated model was then used to
project SOC change at wider spatiotemporal scales (Friedlingstein et al., 2006; Thorn-
ton et al., 2007). Such projection is subject to unknown uncertainty (Friedlingstein et al.,
2006; Tang et al., 2008; Luo et al., 2013), because it does not properly address the in-5

accuracies in both model initialization and model parameters, with the latter potentially
caused by imperfect knowledge and model structure (Schmidt et al., 2011).

To illustrate the uncertainty propagation in SOC projections caused by initialization
and parameterization and to understand what correlates to the change in the patterns
of projection uncertainty, we used the Agriculture Production System sIMulator AP-10

SIM (Keating et al., 2003) together with data from 90 agricultural experiments at 26
sites across the Australian cereal-growing regions. The data include measurements
of total SOC stock (0–30 cm), C input (i.e., amount of residue retention), crop yield,
and records of management practices. The APSIM model uses a very similar SOM
pool structure and first decay approach to simulate SOM dynamics to other common15

Earth system models (Smith et al., 1997; Friedlingstein et al., 2006; Thornton et al.,
2007). We firstly conducted sensitivity analysis to identify the model parameters whose
change impacted most on simulated SOC dynamics. We then used Bayesian optimiza-
tion approach to derive the posterior joint distribution of the identified parameters that
enabled best match between measured and observed SOC. These ensembles of pa-20

rameters were used to run APSIM for each of the 90 experiments, and simulations
were continued for further 100 years after the end of the experiment to produce SOC
projections for uncertainty analysis. We quantified the uncertainty in SOC projections
induced by both initialization of SOC pools and parameterization of algorithms for sim-
ulation of process dynamics. While the uncertainty obviously increases with years of25

projections, we further hypothesized that it is also influenced by site-specific climate,
soil and management conditions, in addition to the impact of model calibration. We
further investigated how the projection uncertainty can be quantified by using these
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drivers, so that future SOC projections can become more useful with attached and well
quantified uncertainties.

2 Materials and methods

2.1 Study sites and datasets

Data from a total of 90 experimental plots located within 26 different sites (Fig. S15

in the Supplement) and compiled and described by Skjemstad and Spouncer (2003)
were used in this study. The experimental duration of these trials ranged from 5 to
82 years, and cover diverse climate, soil and agricultural management conditions and
are representative of Australian cereal-growing regions (Table S1 in the Supplement).
The dataset included detailed records on crop sequence, crop yield, crop residue pro-10

duction (estimated according to harvest index) and agricultural management practices
such as residue management (removal or retention) and fertilizer application over each
year. SOC stock was determined for representative 0–30 cm soil samples at least at the
beginning and end of the each experiment, with some experiments having as many as
six temporal measurements. Other soil properties at the start of the experiment were15

also measured including total nitrogen content, bulk density, clay content and pH, and
were used to initialize the APSIM model.

2.2 The APSIM model

APSIM was developed to simulate biophysical process in agricultural systems, and has
been comprehensively verified and used to study productivity, nutrient cycling and envi-20

ronmental impacts of farming systems as influenced by climate variability and manage-
ment practice (Keating et al., 2003). APSIM simulates crop growth and soil processes
on a daily time-step in response to climate (i.e., temperature, rainfall, and radiation) and
soil conditions (water availability, and nutrient status etc.). The model allows flexible
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specification of management options like crop and rotation type, tillage, residue man-
agement, fertilization and irrigation. The ability of APSIM to simulate SOC dynamics
under different cropping and management practices has been verified (Probert et al.,
1998; Luo, Z. et al., 2011).

APSIM simulates the dynamics of both soil C and N stocks in each soil layer. Similar5

to other SOM models like RothC and Century, SOM in APSIM is divided into six con-
ceptual pools (i.e., microbial biomass, humic organic matter and inert organic matter,
together with three fresh organic matter pools, Fig. S2 in the Supplement). The de-
composition of each pool is treated as a first-order decay process modified by soil tem-
perature, moisture and nitrogen availability (for fresh organic matter pool only), leading10

to the release of CO2 to the atmosphere and transfer of the remaining decomposed
C to other pools. The flow of N depends on the C : N ratio of the receiving pool. The
decomposition of surface residues is modified by the degree of contact of the residue
with soil (Thorburn et al., 2001).

The model requires values for initial SOC content, total soil N content, bulk den-15

sity, and soil hydraulic parameters for each soil layer simulated. In the Skjemstad and
Spouncer (2003) dataset, measured values for SOC content, bulk density and total soil
nitrogen content were provided for the 0–30 cm layer. For the deeper soil layers and
hydraulic parameters in the whole soil profile, values from a measured soil profile near-
est to the site were selected from the Agricultural Production Systems Research Unit20

(APSRU) reference sites soil database (http://www.asris.csiro.au/themes/model.html).
Daily weather data (from 1889 to present) for each site including radiation, maximum
and minimum temperatures, and rainfall was obtained from the SILO Patched Point
Dataset (http://longpaddock.qld.gov.au/silo).

The APSIM model was first set up for each experiment. Agricultural management25

including crops, residue management and fertilizer application was set according to
available historical records. Crops were sown depending on rainfall (> 20 mm in suc-
cessive five days) and soil water content (90 % of saturation water content in the top
20 cm soil). Crop cultivars were assigned according to sowing date, i.e., the earlier the
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sowing date, the later the maturity type of the crop cultivar. For simplification, three cul-
tivars for each crop representing early, middle and later maturity cultivars were selected
from the default cultivars in the files released with the APSIM model. For pasture, how-
ever, there was no record on the species and cultivar. Here, perennial lucerne (Med-
icago sativa, a commonly used species in Australian pasture) was used to represent5

pasture and only one cultivar trifecta was used in the simulation. Lucerne was sown
and removed after harvesting and before sowing of annual crops in the corresponding
rotations, respectively. Harvest to the height of 10 cm was assumed each time lucerne
reached the flowering stage to mimic possible grazing and/or haying.

In the experiments included in this study, C from assimilation of crop growth was10

the only source of C input to the soil. In order to achieve credible simulation of crop
growth, plant available water capacity (PAWC) of the soil was adjusted. This adjusted
PAWC at each site was used throughout the simulations. Despite the reliability of the
APSIM model to simulate crop growth (both belowground and aboveground), we did
not use the simulated aboveground C input during the simulation. Alternatively, the15

recorded aboveground C input (as crop residue) was manually incorporated into the
model at the time of crop harvesting, whilst the simulated crop residue was removed.
This manipulation eliminated the effect of imperfect match of modeled with observed
crop residue on SOC dynamics.

2.3 Sensitivity analysis of SOC dynamics20

A total of nine parameters (Table S2 in the Supplement) that directly link to the SOC
dynamics in the model were selected for sensitivity analysis in order to identify the most
important ones regulating SOC dynamics. To inspect the response of simulated SOC
to variations of those parameters, a univariate local sensitivity analysis was conducted
by looking at the impact of one parameter at a time and fixing all other parameters.25

As the purpose was to identify the most influential parameter(s), a continuous wheat
system with 100 % residue retention (the dominant crop in the studied experiments, see
Table S1) and a nitrogen application of 200 kgNha−1 yr−1 were used and simulated for
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100 years. The default model parameters were first used (Table S2), and then each
parameter was sequentially increased by 10 % of its default value. For each parameter,
the sensitivity function (Si ) was calculated to represent the sensitivity of model output
y (i.e., total 0–30 cm SOC stock) to changes in a single parameter θi (Soetaert and
Herman, 2008):5

Si = θi
y |θ∗i − y |θi
θ∗i −θi

, (1)

where θi was the default parameter value, and y |θi the model output using θi , θ
∗
i the

altered parameter value (increased by 10 %) and y |θ∗i the model output using θ∗i . Finally,
the importance index of the i th parameter (Ii ), i.e., the overall sensitivity of the output
with respect to this parameter, was calculated by summarizing the sensitivities for the10

100 year outputs (n = 100):

Ii =

√√√√1
n

n∑
j=1

S2
i j . (2)

where Si j was the sensitivity function for parameter i at the j th year of the n (n = 100)
years of each simulation. The greater the magnitude of I is, the more sensitive the
model output was to the parameter (Soetaert and Herman, 2008). The importance in-15

dices were compared among the nine parameters, and the most important parameters
were identified and optimized to obtain the best agreement between simulated and ob-
served SOC dynamics (i.e., calibration) for each of the 90 experiments. As the relative
importance of those parameters was independent of soil and climate conditions, the
typical soil and climate at Wagga Wagga (a major cropping area in Australia, and one20

of the 26 sites used in the main text), New South Wales of Australia were selected to
conduct above analyses.

4252

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4245–4272, 2015

Uncertainty in soil
carbon projections

Z. Luo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.4 Model optimization

The differential evolution (DE) algorithm (belongs to the class of genetic algorithms)
was used to optimize the most influential parameters identified. The optimization was
performed in R 3.0.3 using the DEoptim function in the “DEoptim” package (Mullen
et al., 2011). DE is a global optimization algorithm for continuous numerical minimiza-5

tion problems, which use biology-inspired operations of crossover, mutation, and se-
lection on population in order to minimize an objective function over the course of
successive generations.

To use DE, each parameter was first assumed to exhibit a uniform distribution
bounded within a range (i.e., the prior distribution, see Table S2) that was biologically10

and physically possible based on previous knowledge about the process, thereby elim-
inating solutions in conflict with prior knowledge. The optimization performed a quasi-
random walk through the multi-dimensional parameter space to find the parameter set
that caused the model to generate the best match between predicted and observed
SOC. The “best match” was defined as the model output that minimized the crite-15

ria selected for model evaluation (Table S3 in the Supplement). Seven criteria that
are commonly used in the literature were selected to assess the possible effects of
criterion selection on modeling results. Using each criterion, the optimization was con-
ducted 100 times (i.e., 100 ensembles of initial parameter values through quasi-random
walk), which generated 100 ensembles of parameters (i.e., the joint posterior distribu-20

tion of the most influential parameters), giving simulation results with approximately
equally good matches to the observed data. Consequently, 700 ensembles of param-
eters (from using seven criteria) for each experiment were produced. The optimizing
procedure and related simulations were operated on Bragg and Dell CPUs of CSIRO
Clusters.25

However, the required computing time (∼ 2 days for one experiment and one se-
lection criterion using 100 computer cores) has posed a significant challenge even
using the high performance computing clusters (Bragg and Dell CPUs) for this multi-
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parameter optimization of the process-oriented APSIM model. To complete all opti-
mizations using seven criteria for the 90 experiments, a run time of four months was
expected assuming that 1000 cores could be continuously available on the clusters.
For this reason, the global optimization DE was only applied for two sites, i.e., Brigalow
and Tarlee, providing two cases of DE optimization as compared to an alternative and5

faster Bayesian sampling approach as described below.
For all the experiments, a Bayesian sampling approach was substituted for the DE

optimization in order to complete the work within a reasonable time but without much
sacrificing of model performance. The APSIM model was run for each experiment for
100 000 times using 100 000 ensembles of parameters that were randomly sampled10

from their prior distributions. The best 100 ensembles of parameters were selected as
their posterior distributions through using each criterion listed in Table S3. At Brigalow
and Tarlee, the distributions of parameters “optimized” through this Bayesian sampling
approach were compared with those optimized through DE optimization. The identified
parameter ensembles by Bayesian sampling approach were referred to as “optimized15

parameters” in the following text and used to assess the uncertainty in projected SOC.

2.5 Uncertainty in projected SOC

After obtaining the 700 ensembles of optimized parameters (i.e., after “calibration pe-
riod”), the APSIM model was run continuously from the start to the end of each ex-
periment and then for an additional 100 years after the end of each experiment using20

each parameter set (i.e., 700 simulations for each experiment). For the last 100 year
simulations (i.e., projection period), a continuous wheat system was assumed together
with 100 % residue retention, which is the same as that used in sensitivity analysis.
Carbon input through crop residue retention was expected to be an important factor
regulating SOC dynamics in the projection period. As residue (or biomass) production25

is dominantly controlled by fertilizer application rates under natural rainfall condition at
each site, scenarios with nitrogen application rates ranging from 0 to 300 kgNha−1 yr−1

with increment of 20 kgNha−1 yr−1 were modeled. These scenarios made it possible to
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mimic different management practices that influence C input to the soil and to assess
its impact on the uncertainty of simulated SOC.

Climate data from the start year of each experiment through to 2013 was used for the
corresponding simulation period. For all years from 2014 onwards, the corresponding
years of the latest historical climate data were used. For example, for the possible5

simulations from 2014 to 2104 (91 years), the historic climate data of 91 years from
1923 to 2013 was used.

SOC content in the 0–30 cm soil layer was output at the start of projection (excluding
the calibration period) and at the end of each year of projection (Ci ). For the i th year of
projection, the mean (MSOCi

) of Ci of the 700 estimates was calculated, and the range10

(RSOCi
) of the 95 % confidence interval was calculated as the difference between 97.5th

and 2.5th percentile of the 700 estimates. Then, the percentage uncertainty (UPi
) for

that year of projection was estimated based on half of the RSOCi
divided by the MSOCi

:

UPi
=

RSOCi

2×MSOCi

×100%, i = 1,2,3, . . .,100. (3)

2.6 Covariates of the uncertainty15

After estimating UP, we further addressed the following question: how and why does
the uncertainty (i.e., UP) in projected SOC change across space and time? We hy-
pothesized that UP is experiment-specific, i.e., UP is different among experiments and
is associated with the experiment-specific space of optimized model parameters and
environmental conditions. In addition, the attributes relating to the management of pro-20

jection such as the time-span of projection and C input levels were also assumed to
influence UP. As the hierarchy of those attributes (i.e., individual-level attributes, e.g., C
input levels, can group in group-level attributes, e.g., experiment-specific model param-
eter ensembles), a hierarchical regression model, also called multilevel model (Gelman
and Hill, 2006), was applied to estimate the effect of both group-level and individual-25

level attributes on UP. The multilevel modeling approach is a generalization of the clas-
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sical regression approach, and can explicitly model the hierarchical structure in the
data accounting for individual- and group-level variances and their interaction (Gelman
and Hill, 2006; Qian et al., 2010).

Considering the importance of overall time trends, a time-series non-nested multi-
level model was fitted to estimate UPi

(yi ) on C input (xi ), applied to the J = 90 ex-5

periments and K = 100 time-spans of projection. The non-nested multilevel model was
written as a data (the predicted UPi

belonging to experiment j with k years of pro-
jection) level model, allowing the model coefficients (α and β) to vary by experiment
(j = 1, . . .,J) and time-span of projection (k = 1, . . .,K ) (Gelman and Hill, 2006):

yi ∼ N
(
αj [i ],k[i ] +βj [i ],k[i ]xi ,σ

2
y

)
, for i = 1, . . .,n, (4)10

and a decomposition of its intercepts and slopes into terms for experiment, the time-
span of projection and their interaction,(
αj ,k
βj ,k

)
∼
(
αexpt
j +αyear

k +αexpt×year
j ,k

βexpt
j +βyear

k +βexpt×year
j ,k

)
+

(
γexpt

0j

γexpt
1j

)
(5)

+

(
γyear

0k
γyear

1k

)
+

(
γexpt×year

0jk

γexpt× year
1jk

)
, (6)

and models for variation,15 (
γexpt

0j

γexpt
1j

)
∼ N
((

0
0

)
,Σexpt

)
, for j = 1, . . .,J (7)(

γyear
0k

γ1k
year

)
∼ N
((

0
0

)
,Σyear

)
, for k = 1, . . .,K (8)(

γexpt×year
0jk

γexpt×year
1jk

)
∼ N
((

0
0

)
,Σexpt×year

)
, for j = 1, . . .,J ; k = 1, . . .,K . (9)
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where Σ was the 2×2 covariance matrix representing the variation of the intercepts
and slopes in the population of groups (experiments and time-spans of projection).
In essence, there is a separate regression model for each experiment and time-span
combination with the coefficients estimated by the weighted average of pooled (do
not consider groups) and un-pooled (consider each group separately) estimates, i.e.,5

partial pooling. This hierarchical structure of the model allows the assessment of the
variation of individual-level coefficients across groups and accounting for group-level
variation in the uncertainty for individual-level coefficients.

To assess the variation of individual-level coefficients (αexpt
j and βexpt

j ) across differ-
ent experiments, a classic linear regression was conducted to identify the effects of10

different sources of variation. At the experiment level, we assumed that two groups of
attributes influence αexpt

j and βexpt
j : (1) uncertainty in model parameters, i.e., the three

optimized parameters based on experiment-specific dataset, and (2) climate including
mean annual rainfall and temperature, which are predominant factors controlling SOC
dynamics during model calibration as well as during projection. The generalized vari-15

ance (GV) was calculated as an indicator of the overall variation in model parameters,
which is defined as the determinant of the variance-covariance matrix of the three pa-
rameters and is a scalar measure of overall multidimensional scatter. The two groups of
attributes including all interactions were selected through a stepwise regression model
selection by Akaike Information Criterion. Before fitting the model, GV was logarith-20

mically transformed to satisfy additivity and linearity assumptions and then centered
by subtracting the mean of the data, and rainfall and temperature were also centered.
For coefficients over the time-spans of projection (αyear

k and βyear
k ), their relationship

with the time-span of projection were presented. All the statistical analyses including
the multilevel model fitting were conducted using the R software version 3.0.3 (R Core25

Team, 2013).

4257

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4245–4272, 2015

Uncertainty in soil
carbon projections

Z. Luo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 Results and discussion

3.1 Sensitivity analysis and model performance

Three parameters were identified as most influential on simulated SOC (Fig. S3 in the
Supplement). Microbial carbon use efficiency (cue), i.e., the efficiency of microbial com-
munity to assimilate the decomposed SOC, had the biggest impact. This highlights the5

key role of microbial process to control SOM decomposition, and the need for better
capturing the dynamics and impact of microbial process in SOM models (Allison et al.,
2010; Singh et al., 2010; Xu et al., 2014). As cue was treated as a constant in most
SOM models, a framework is needed to incorporate microbial data (e.g., community,
activity, and their responses and feedbacks to biotic and abiotic factors) into SOM mod-10

els to provide robust estimations and predictions. Potential decomposition rate of humic
organic matter (rdhum) ranked the second, followed by the fraction of the humic carbon
that is recalcitrant to decomposition (finert). This result further indicates the importance
to better quantify the composition and decomposition of the bulk of the heterogeneous
SOM (Schmidt et al., 2011; Sierra et al., 2011). The wide distributions of cue, rdhum15

and finert parameters (derived by constraining the model against the measurement
data, Fig. 1b) imply deficiencies in our understanding of the microbial community and
its activity and how they change with environmental conditions to modulate the SOM
decomposition processes.

Our calibration procedure enabled accurate simulation of SOC change during the20

calibration period (Fig. 1a) using distinct ensembles of model parameters for each
experiment (Fig. 1b). Pooling together all data of the 90 experiments, the modeled
average SOC of the 700 simulations could explain 96 % (P < 0.001) of the variance in
observed SOC (Fig. 1a). For each experiment, model performance was nearly identical
(Fig. 1a) when the simulations (using different parameter sets) were inter-compared.25

At the Tarlee site (Fig. 2b), for example, the RMSE between modeled and observed
SOC ranged from 0.44 to 0.52 tha−1, compared with the range of 3.11 to 3.12 tha−1 at
Brigalow site (Fig. 1b). This high level of consistency highlights significant equifinality,
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i.e., different parameter ensembles leading to similar simulation results (Figs. 1b, 2c
and d), in process-based SOM models, which must be addressed in modeling studies
aimed at enhanced process understanding and hypothesis testing (Tang et al., 2008;
Luo, Y. et al., 2011).

3.2 Uncertainty in SOC projections5

The accurate simulations of past SOC, however, do not guarantee convergent pro-
jections beyond the model calibration period. In contrast, running the model with the
same parameter ensembles generated very divergent future projections (Fig. 2a and
b), indicating significant uncertainty propagation with time of projection (Luo Y. et al.,
2011; Tang et al., 2008). Furthermore, the uncertainty is also related to management10

in terms of C input level and site conditions. At Brigalow (Fig. 2b), for example, the
95 % confidence interval of projected SOC under optimal N input (i.e., no N stress for
crops) ranged from 37 to 56 tha−1 10 years after the model calibration period, which
increased to 26–68 tha−1 for the projected SOC after 50 years. Under low N input sce-
nario (0 kgNha−1), the uncertainty was smaller. At Tarlee (Fig. 2a), the uncertainty15

propagation followed a similar pattern to that at Brigalow, but the uncertainty under low
N input scenario was much smaller.

If a continuous wheat system was practiced for 100 years after the end of each ex-
periment at the 26 sites, optimal N management was predicted to result in an average
increase in SOC (Fig. 3a), while a SOC decline under zero N input (Fig. 3b). The20

amount of potential SOC change depends on not only the management level (N in-
put) and the climate and soil conditions that determine the potential productivity of
crops, but also the initial SOC level at the start of the projections. Across the 90 ex-
periments, the percentage uncertainty in the SOC projections ranged from 2 to 140 %
with an average of 53 % under optimal N management (Fig. 3c), and from 0.8 to 108 %25

with an average of 40 % under zero N input (Fig. 3d). Applying this result to Australia’s
cereal-growing regions, the simulated potential SOC stock of ∼ 7.5 Pg (Luo et al., 2013)
could be subject to 53 % uncertainty under optimal N and residual management. Tak-
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ing this into account, the predicted average SOC change at national level could be
331 % higher or lower, leading to an absolute soil carbon budget change ranging from
−3.3 to +5.2 PgC, that is −16.3 to +36.2 tCha−1 with an average of 8.4 tCha−1 in the
top 30 cm of Australian agricultural soils if the optimal agricultural management was
adopted.5

3.3 Covariates of the uncertainty

The uncertainty propagation with time of prediction and across experiments could be
explained using a linear model by linking the percentage uncertainty (UP) to the C input
from crop residue (CR), i.e., UP = α+βCR. However, both α and β changed signifi-
cantly across experiments (Fig. 4a) and years of projections (Fig. 4b), and were also10

impacted by their interactions. Across the years of projection, the uncertainty increased
with the number of years for projection, reflected by the linear increase in α (model in-
tercepts) and asymptotic increase in β (model slope, Fig. 4b). The asymptotic increase
in β (model slope) also implies that the relative contribution of C input to prediction un-
certainty reduces with time. Across experiments, there was a marked variation in the15

effect of C input on UP, indicating impact of site-specific conditions (e.g. climate and
soil as described later). Across sites and years of projections, the majority of positive
β implies increased uncertainty in SOC projections with increasing C input, which has
not been properly addressed in previous modeling studies (Joos et al., 2001; Jones
et al., 2005; Smith et al., 2005; Ogle et al., 2010). The fate of C input has direct effect20

on the amount of soil C. The general positive effect of C input on uncertainty would
attribute to that the amount of C input ending up in the soil would be more variable
and thus higher uncertainty in soil C under higher C input. These results highlight the
importance of understanding the consequences of future C input changes on soil C
dynamics.25

The variance in model parameters (GV) across experiments had a major effect on the
intercepts (positive at P < 0.001) and slopes (positive at P < 0.001) of the regression
model linking UP to C input (Table 1). As GV was logarithmically transformed when
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fitting the model, the increase in UP with GV was exponential across experiments.
This result highlights the crucial role to improve the representation of the sensitive
microbial processes (Zhou et al., 2012; Xu et al., 2014) and the heterogeneous SOM
composition (Sierra et al., 2011) in biogeochemical SOM models, and to constrain the
space of relevant model parameters.5

Rainfall and temperature, together with their interaction, had significant impact on
SOC projection uncertainty through their impact on the fitted model intercepts across
experiments (Table 1). αexpt

j increased with temperature, but tended to decrease with
rainfall, implying increased uncertainty in SOC projection under future warming and
drying conditions. Based on the results, the uncertainty in projected SOC will be in-10

creased by 4.95 %, if average temperature is increased by 1 ◦C under global warming.
For the slopes βexpt

j , rainfall and its interaction with GV had significant negative effect.
These effects may reflect the impact of rainfall on both primary productivity (thus C
input) and soil moisture conditions (thus microbial activity and decomposition rate of
SOC), emphasizing the importance of understanding the interactions between soil pro-15

cesses and their responses to external drivers and management such as temperature
and rainfall (Davidson and Janssens, 2006; Carvalhais et al., 2014).

It is important to notice that the posterior distributions of model parameters were
apparently different across experiments (Figs. 1b–d and S4 in the Supplement), con-
firming that model parameters are sensitive to the data constraining the model (Keenan20

et al., 2012; Hararuk et al., 2014; Luo et al., 2014) Our results indicated that cue was
higher for site under longer cultivation history (the Tarlee site) than for site under shorter
cultivation history (the Brigalow site, Fig. 2c vs. d), implying the potential linkage be-
tween environmental conditions (e.g., land use type) and microbial community structure
that determines overall carbon use efficiency. The distributions of the optimized model25

parameters were also influenced by the choice of criteria to evaluate model perfor-
mance (Figs. 2d and S5 in the Supplement). The differences in parameter distributions
subsequently impact on the SOC projections as showed in Fig. 2b, albeit the near
identical model performance in simulating historical SOC. These highlight the needs
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for: (1) improving the science for capturing process interactions in the model, particu-
larly the role of microbial processes, (2) conducting model calibration conditioned on
all observed data from experiments together with Bayesian inference technique, and
(3) quantifying uncertainty in SOC projections with ensemble model simulations (Post
et al., 2008; Weng et al., 2011; Xia et al., 2013; Hararuk et al., 2014; Luo et al., 2014).5

4 Conclusions

Our results demonstrate that great uncertainty exists in soil C projections from process-
based SOM models, due to deficiency in model structure to capture the process inter-
actions, such as microbial C use efficiency and its drivers, as well as lack of detailed
information to initialize the model, e.g., the composition of SOM and its impact on sub-10

sequent decomposability. The prediction uncertainty propagates with extended years
of projections and C input into soil. It is also influenced by site-specific climate (tem-
perature and rainfall) and soil conditions together with management inputs, which de-
termine both the C input (through primary productivity) and the SOM decomposition
processes. The results also suggest that C projection into warming and drying future15

climate will be subject to even increased uncertainty. For agricultural land uses, un-
certainty caused by management practices has to be carefully considered due to its
impact on microbial activity and subsequent projected SOC. For any future predictions
of SOC change, ensemble simulations conditioned on total observed datasets together
with a Bayesian inference technique should be used in order to quantify the uncertain-20

ties in modeling results. Based on our results, future improvement in SOM modeling
should focus on how microbial community and its carbon use efficiency change in re-
sponse to environmental changes, better quantification of composition of SOM and its
change, and how the SOM composition will affect its turnover time.
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The Supplement related to this article is available online at
doi:10.5194/bgd-12-4245-2015-supplement.
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Table 1. The effects of experiment-specific variance of model parameters and climate on
individual-level coefficients (i.e., αexpt

j and βexpt
j in Fig. 4a).

Factore αexpt βexpt

Estimate SE t value P Estimate SE t value P

Model intercept 26.35 2.14 12.30 c 1.62 0.33 4.89 c

GV 3.15 0.55 5.69 c 0.17 0.088 1.97 d

R −0.059 0.016 −3.63 c −0.0055 0.0026 −2.15 a

T 4.95 1.35 3.66 c −0.16 0.21 −0.77 0.44
GV×R – − – – −0.0018 0.00061 −2.87 b

GV× T −0.57 0.33 −1.74 d – − – –
R × T −0.046 0.010 −4.49 c 0.0021 0.0014 1.46 0.15
Whole model R2 0.44 c 0.21 c

a P < 0.001; b P < 0.01; c P < 0.05; d, P < 0.1.
e GV, generalized variance of the identified three model parameters including microbial carbon use efficiency,
decomposition rate of humic organic carbon and the fraction of inert organic carbon; R, the annual average rainfall; T ,
the annual average temperature. GV was logarithmically transformed and centered, and R and T were also centered
when fitting the model.
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Figure 1. Model performance in simulating soil organic carbon (SOC) dynamics (a) and the
corresponding optimized model parameters (b) across the studied 90 experiments. Circles and
bars (a) indicate the average and 95 % confidence interval of the simulations for each exper-
iment using different parameter ensembles. Red and blue symbols (a) highlight the data at
Tarlee and Brigalow respectively, corresponding to the data in Fig. 2. Dashed line is the 1 : 1
line in (a). The parameter ensembles at Tarlee and Brigalow are highlighted in (b). See Fig. 2
for the means of the colorful symbols in (b).
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Figure 2. Projected soil organic carbon dynamics at two case sites Tarlee (a) and Brigalow
(b) and the correspondingly used parameter ensembles (c and d). Black symbols show the
observations. Seven criteria (RMSE, MAE, pMAE, IoA, rIoA, NSE and rNSE, see Table S3 for
details) are used to derive the posterior joint distribution of model parameters (cue, rdhum and
finert). cue, microbial carbon use efficiency; rdhum, the potential decomposition rate of humic
organic carbon; finert, the fraction of inert organic carbon.
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Figure 3. Projected SOC (a and b) and its percentage uncertainty (c and d) under high (a
and c) and low (b and d) carbon input scenarios after 100 year simulations in 90 experiments
across 26 sites. Concentric circles show the different experiments at the same site. The sizes of
the pies correspond to the projected average of SOC content (a and b) and the corresponding
percentage uncertainty (c and d). Blue and red circles indicate that the average of the 700
simulations is increased and decreased, respectively, compared with the SOC content at the
start of the projection. Blue and red sectors of the pies in (c) and (d) indicate the fraction of
700 bootstrapping simulations that shows an increase and a decrease of the projected SOC,
respectively, compared with the SOC content at the start of the projection period.

4271

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-print.pdf
http://www.biogeosciences-discuss.net/12/4245/2015/bgd-12-4245-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 4245–4272, 2015

Uncertainty in soil
carbon projections

Z. Luo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 4. Coefficients (estimate±SD) for the regression model: UP = α+βCR. The model is
fitted to estimate the effects of carbon input (CR) on the percentage uncertainty (UP) in soil
organic carbon projections, applied to 90 experiments (a) and 100 time-spans of projection
(b). α̂, β̂ and σ show the data-level coefficients (i.e., averaging over experiments and time-
spans of projection) and errors, respectively. In (a), experiments are sorted according to αexpt

j .
The coefficients at the experiment× time-span level are not shown. See more details in the
Methods for the regression model.
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