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Abstract 18 

The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the 19 

major fluxes in the global carbon cycle. At present, the accumulated field observation data 20 

cover a wide range of geographical locations and climate conditions. However, there are still 21 

large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. 22 

Using a global soil respiration dataset, we developed a climate-driven model of soil 23 

respiration by modifying and updating Raich’s model, and the global spatiotemporal 24 

distribution of soil respiration was examined using this model. The model was applied at a 25 

spatial resolution of 0.5° and a monthly time step. Soil respiration was divided into the 26 

heterotrophic and autotrophic components of respiration using an empirical model. The 27 

estimated mean annual global soil respiration was 91 Pg C yr−1 (between 1965 and 2012; 28 
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Monte Carlo 95% confidence interval: 87–95 Pg C yr−1) and increased at the rate of 0.09 Pg C 1 

yr−2. The contribution of soil respiration from boreal regions to the total increase in global soil 2 

respiration was on the same order of magnitude as that of tropical and temperate regions, 3 

despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual 4 

global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr−1, 5 

respectively. The global soil respiration responded to the increase in air temperature at the rate 6 

of 3.3 Pg C yr−1 °C−1, and Q10=1.4. Our study scaled up observed soil respiration values from 7 

field measurements to estimate global soil respiration and provide a data-oriented estimate of 8 

global soil respiration. The estimates are based on a semi-empirical model parameterized with 9 

over one thousand data points. Our analysis indicates that the climate controls on soil 10 

respiration may translate into an increasing trend in global soil respiration and emphasizes the 11 

relevance of the soil carbon flux from soil to the atmosphere in response to climate change. 12 

Further approaches should additionally focus on climate controls in soil respiration in 13 

combination with changes in vegetation dynamics and soil carbon stocks along with their 14 

effects on the long temporal dynamics of soil respiration. We expect that these spatiotemporal 15 

estimates will provide a benchmark for future studies and also help to constrain process-16 

oriented models. 17 

 18 

1 Introduction 19 

The carbon balance of terrestrial ecosystems is the result of the balance between carbon 20 

uptake by plants and carbon loss by plant and soil respiration (Beer et al., 2010; Luyssaert et 21 

al., 2007; Malhi et al., 1999; Le Quéré et al., 2009, 2014; Trumbore, 2006). The value of the 22 

balance, i.e., whether terrestrial ecosystems act as sinks or sources of carbon, has been a 23 

subject of considerable interest for studies of climate change. Accurate evaluations of each 24 

sink/source component and their response to environmental factors are thus essential for 25 

understanding future changes in the terrestrial carbon balance. 26 

The carbon dioxide (CO2) flux from the soil to the atmosphere (called soil respiration, RS) is 27 

one of the major fluxes in the global carbon cycle (Schlesinger and Andrews, 2000). RS 28 

primarily consists of heterotrophic respiration (soil organic matter decomposition) and 29 

autotrophic respiration (root respiration) (Bond-Lamberty et al., 2004; Hanson et al., 2000). 30 

RS is the main contributor to the total ecosystem respiration (Malhi et al., 1999); hence, RS 31 

plays a role in determining the carbon balance of terrestrial ecosystems. RS is sensitive to 32 
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environmental factors (e.g., temperature and precipitation) (Davidson et al., 1998; Hashimoto 1 

et al., 2011b; Raich and Schlesinger, 1992; Raich et al., 2002; Schlesinger and Andrews, 2 

2000), and future climate change is expected to increase the rate of RS at the global scale 3 

(Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2011a; Raich et al., 2002). Even a 4 

small change in the global RS rate will have a strong impact on the terrestrial carbon cycle and 5 

may accelerate the increase in the atmospheric CO2 concentration (IPCC, 2001, 2007). 6 

Observations of RS have a long history; in particular, the amount of collected field data 7 

increased rapidly in the 1990s, and there are now thousands of records of observed data 8 

(Bond-Lamberty and Thomson, 2010a; Chen et al., 2014). Recently, a global dataset of 9 

observed RS was established by collecting data from available studies published in the peer-10 

reviewed scientific literature (Bond-Lamberty and Thomson, 2010a). The use of the 11 

accumulated data for field observations will improve the estimation of global RS. 12 

The number of global estimates of RS is, however, quite limited compared to the estimates of 13 

other terrestrial carbon fluxes (e.g., gross and net primary production (GPP and NPP, 14 

respectively)), or other greenhouse gas fluxes (e.g., methane and nitrous oxide). For instance, 15 

based on a literature survey (Ito, 2011), there are at least 251 estimates of global NPP. For RS, 16 

to the best of our knowledge, there are only six global estimates, ranging from 68 to 98 Pg C 17 

yr−1 and, thus, characterized by a large uncertainty (Hashimoto, 2012). Another example that 18 

indicates the large uncertainty in estimating RS are the large variations in estimates of soil 19 

carbon stocks and heterotrophic respiration simulated by the state-of-the-art Earth system 20 

models of the Coupled Model Intercomparison Project Phase 5 (CMIP5; http://cmip-21 

pcmdi.llnl.gov/cmip5/) (Exbrayat et al., 2014; Todd-Brown et al., 2013), which is a model 22 

intercomparison project that provides scientific knowledge to the Intergovernmental Panel on 23 

Climate Change (Taylor et al., 2012). These facts suggest that further efforts should attempt 24 

to constrain the estimate of global RS by employing a model-data integration approach and 25 

field measurements. 26 

The purpose of this study was to provide a new global estimate of the spatiotemporal 27 

distribution of RS based on the available observational datasets. Using a global RS dataset 28 

(Bond-Lamberty and Thomson, 2010a), we developed a semi-empirical climate-driven model 29 

for RS. The temperature and precipitation functions of Raich’s model were refined, and the 30 

parameters of the model were newly determined using over one thousand data points. We 31 

explored the spatiotemporal distribution of RS and examined the temperature sensitivity of RS. 32 
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We further divided the estimated global RS into the heterotrophic and autotrophic components 1 

of RS using an empirical relationship between RS and heterotrophic respiration and examined 2 

the distribution of each type of respiration. 3 

 4 

2 Materials and methods 5 

2.1 Models 6 

We developed a climate-driven model by updating Raich’s model (Raich and Potter, 1995; 7 

Raich et al., 2002). The original model, equation (1), simulates the RS as a function of 8 

temperature and water (precipitation), and its sensitivities are parameterized using three 9 

constants (F, K, and Q). The model is applied at a monthly time step and requires the monthly 10 

mean air temperature (T, °C) and monthly precipitation (P, cm). 11 
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where, moRS is the mean monthly RS (gC m−2 d−1), and F (gC m−2 d−1), Q (°C−1), and K (cm 13 

mo−1) are the parameters. The advantage of this model is its simplicity. Although there are 14 

numerous factors that affect RS (Chen et al., 2014), it is often recognized that temperature and 15 

precipitation are the two best predictors to represent the spatiotemporal variability of RS 16 

(Bond-Lamberty and Thomson, 2010b). In this study, the temperature and water functions of 17 
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where, F (gC m−2 d−1) and K (cm mo−1) are the parameters; a (°C−1) and b (°C−2) are the 20 

parameters for the temperature function; and α is the parameter for the precipitation function; 21 

Pm−1 (cm) is the precipitation of the previous month. 22 

First, we introduced a more flexible temperature function that has been reported to behave 23 

better than the simple exponential temperature function (Tuomi et al., 2008). This function 24 

peaks at T=a (2b)−1, and the function can take either a convex shape or a simple exponential-25 

like shape depending on the parameters a and b. The simple exponential temperature function 26 

has been widely applied to the modeling of the temperature sensitivity of RS, but a limitation 27 

is often pointed out in that the Q10 value (the factor by which the respiration rate increases for 28 
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a temperature interval of 10°C) of the exponential function does not change across 1 

temperature, while analyses of observed temperature sensitivities of RS suggest that the Q10 2 

value decreases with an increase in temperature (Kirschbaum, 1995; Tuomi et al., 2008) (but 3 

see Mahecha et al., 2010). The Q10 value of the new temperature function can change across 4 

temperature ranges. 5 

Second, we adopted the weighted average of the precipitation of both the current month and 6 

the previous month instead of only using the precipitation of the current month. One of the 7 

limitations of the precipitation function of the original model was the so-called “zero-8 

precipitation-zero-respiration” problem (Reichstein et al., 2003). In the original precipitation 9 

function, RS becomes zero when precipitation of the present month is zero; however, although 10 

zero precipitation occurs at times, even in temperate regions, RS can be maintained. However, 11 

this assumption of RS is reasonable when we focus on a global-scale evaluation and 12 

distinguish between very dry regions, such as deserts, and other regions. Including a soil 13 

water sub model to simulate the soil water conditions would be one solution, but we used a 14 

weighted average of precipitation here to avoid model complexity. By modifying the 15 

temperature and precipitation functions, the model has an increased flexibility, and global 16 

parameters for the model were estimated. 17 

2.2 Dataset 18 

The RS data used in this study were obtained from the SRDB database (Bond-Lamberty and 19 

Thomson, 2010a) (version 3). The database covers a wide range of geographical and climatic 20 

spaces (Fig. S1 in the Supplement), although the availability is limited for certain regions 21 

(i.e., with low temperature, and with high temperature and low precipitation). For the purpose 22 

of modeling, the data from non-experimentally manipulated, non-agricultural ecosystems that 23 

had been measured using an infrared gas analyzer or gas chromatograph were extracted. The 24 

data with quality check flags, except for Q01, Q02, and Q03, were excluded. We further 25 

extracted the data with the location information (latitude and longitude) to support their 26 

combination with the monthly climate data from the global climate dataset. Annual RS in the 27 

SRDB was used for data-model synthesis. Some of the data points in the SRDB are based on 28 

multi-year observations; however, the data were not weighted in this study. Each data point 29 

has the information of the year in which the study was performed or the middle year if the 30 

observation was conducted in multiple years, and we assumed that the data were obtained in a 31 

year of observation (or in the middle year if multiple years) and linked to the climate data. For 32 
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each data point, we ran the model using a monthly time step and calculated the annual RS. The 1 

air temperature and precipitation were derived from the CRU3.21 climate data (University of 2 

East Anglia Climatic Research Unit (CRU) [Jones Phil and Harris Ian], 2013). The spatial 3 

resolution of the climate data is 0.5°. Using the latitude and longitude information and the 4 

year of observation in the SRDB, we extracted the monthly climate data from the climate 5 

dataset. The number of data points used for model parameterization was 1638. 6 

We examined other models that included leaf area index (LAI) and GPP for the 7 

parameterization of F in equation (1) (Mahecha et al., 2010; Migliavacca et al., 2011; 8 

Reichstein et al., 2003) (Table S1 in the Supplement). The model with LAI and GPP was 9 

characterized by a higher R2 value than the simple climate-driven model (Table S1 in the 10 

Supplement), which supports the hypothesis that vegetation substantially influences the 11 

variation in RS (Migliavacca et al., 2011; Reichstein et al., 2003; Wang et al., 2010). 12 

However, the number of data points in the database with LAI and GPP were limited, and 13 

including LAI and GPP resulted in losses of over 70% and 90% of the data points, 14 

respectively (Table S1 in the Supplement) (e.g., Bond-Lamberty and Thomson, 2010b). For 15 

the purpose of providing global estimates based on the accumulated observed data, we placed 16 

a higher value on relatively larger data points that cover wider geographical and climatic 17 

spaces rather than building additional mechanistic models. Hence, the above-described 18 

climate-driven model was adopted for the estimation of global RS in this study. Similar to 19 

previous studies, the impact of land use change was not included in this study. 20 

2.3 Parameterization 21 

We used a Bayesian calibration scheme to determine the best parameter sets and their 22 

uncertainty (Bates and Campbell, 2001; Hashimoto et al., 2011b; Van Oijen et al., 2005; 23 

Ricciuto et al., 2008; Zobitz et al., 2008). We assumed a uniform distribution for the a priori 24 

distribution of every parameter (F, a, b, K, α) and assumed a Gaussian model-data error 25 

(standard deviation: σ). To generate the a posteriori distribution, we performed a Markov 26 

Chain Monte Carlo simulation (MCMC) based on the Metropolis-Hastings (M-H) algorithm; 27 

the log-likelihood was used in practice. The MCMC program was coded in C, and the 28 

statistical analyses of the output were conducted using R versions 3.0.2 and 3.1.0 (R Core 29 

team, 2013). We conducted 100,000 iterations of sampling and discarded the first 20,000 30 

iterations as the burn-in period. The maximum a posteriori estimates (MAP) were designated 31 

as the best-fit parameters. Geweke’s Z-score was calculated for convergence diagnostics 32 
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(Geweke, 1992); a Geweke’s Z-score range of ±1.96 indicates convergence (significance level 1 

of 5%).  2 

2.4 Global application 3 

The RS was evaluated at a spatial resolution of 0.5° and a monthly time resolution. The air 4 

temperature and precipitation were derived from the CRU 3.21 climate data (University of 5 

East Anglia Climatic Research Unit (CRU) [Jones Phil and Harris Ian], 2013). The global 6 

land-use data in SYNMAP (Jung et al., 2006) were converted to 0.5° for use in this study. We 7 

calculated the RS for the period from 1965 to 2012. A Monte Carlo simulation was applied to 8 

evaluate the uncertainty of the estimates; the model was run 1,000 times using the parameter 9 

uncertainties derived from the Bayesian calibration. 10 

2.5 Partitioning the total RS into the heterotrophic (RH) and autotrophic (RA) 11 

respiration components 12 

The estimated annual RS was divided into heterotrophic respiration (RH) and autotrophic 13 

respiration (RA) using an empirical relationship derived by a meta-analysis (Bond-Lamberty et 14 

al., 2004). From that meta-analysis, a global relationship between the heterotrophic and 15 

autotrophic components of RS was established from the analysis of published data. We 16 

adopted this relationship: 17 

)ln(73.022.1)ln( SH anRanR += . (3) 18 

The annual RH (anRH) was estimated by substituting the calculated annual RS (anRS) into the 19 

above-described relationship. The annual RA was then calculated by subtracting the annual RH 20 

from the annual RS. 21 

2.6 Comparison with Earth system models 22 

The estimated RH was compared with the estimates from Earth system models provided by 23 

CMIP5. We calculated global RH using 20 Earth system models of the CMIP5 (Table S2 in 24 

the Supplement) and compared the results with our estimate. 25 

2.7 Statistical analysis 26 

We defined tropical, temperate, and boreal regions based on the annual temperature (T < 2°C, 27 

2°C ≤ T ≤ 17°C, 17°C < T) after a previous study (Bond-Lamberty and Thomson, 2010b). 28 
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Statistical analyses were conducted using R versions 3.0.2 and 3.1.0 (R Core team, 2013). The 1 

Mann-Kendall trend test was applied to test for the significance of trends (R package, Kendall 2 

version 2.2). 3 

 4 

3 Results 5 

Table 1 lists the a priori and a posteriori distributions of the parameters, and the estimated 6 

best parameters with their uncertainties and statistics. The temperature function and 7 

precipitation function developed in this study are depicted in Figure 1, and the two original 8 

functions are also plotted. Regarding the temperature function, the three lines were 9 

approximately overlapping under 10°C, but the differences among the three lines increased 10 

with an increase in temperature. The temperature sensitivity of the newly estimated function 11 

was attenuated at high temperatures compared to the simple exponential functions applied in 12 

the original temperature functions, for which the temperature sensitivity steadily increased. 13 

Depending upon the parameterization, the newly introduced function can either peak at a 14 

certain temperature or behave as a simple exponential function. Our parameterization did not 15 

result in a peak in this temperature range, but the temperature sensitivity decreased as the 16 

temperature increased. The newly estimated precipitation function was similar to that of the 17 

previous study (Raich and Potter, 1995); note that the precipitation used in this study is the 18 

weighted average of the precipitation of the current month and the previous month. The best 19 

value for the weighting factor α was 0.98, but α was characterized by a large uncertainty 20 

(0.03–0.99, 95% confidence interval).  21 

The estimated mean annual global RS was 91 Pg C yr−1 (1965–2012; Monte Carlo 95% 22 

confidence interval: 87–95 Pg C yr−1), and the spatial distribution of RS is depicted in Figure 23 

2. The estimated RS was high in tropical regions and low in boreal regions, following a 24 

temperature-oriented gradient from near the equator to higher latitudes, but the estimated 25 

values were low in dry regions as well (Fig. 2AB). Latitudinally, the regions between 30°S–26 

30°N contributed the most to global RS, but the contribution of the region between 30°N–27 

60°N was also large (Fig. 2C). The contributions of the tropical, temperate, and boreal regions 28 

were 64, 24, and 12%, respectively, of global RS. The monthly global RS was lowest in 29 

February (5.7 Pg C mo−1) and greatest in July (9.4 Pg C mo−1) (Figs. S2 and S3 in the 30 

Supplement). The mean annual grid-cell RS was characterized by a broad distribution, ranging 31 

from 0 to greater than 1500 g C m−2 yr−1 (Fig. S4 in the Supplement). 32 
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The estimated RS followed an increasing trend over time, with fluctuations, and the rate of the 1 

estimated increase was 0.09 Pg C yr−2 (P<0.0001) between 1965 and 2012 and 0.14 Pg C yr−2 2 

(P=0.0015) between 1990 and 2012 (Fig. 3, Table S3 in the Supplement). The lowest value of 3 

RS (88 Pg C yr−1) occurred in both 1965 and 1970, and the highest value (95 Pg C yr−1) 4 

occurred in 2010. The higher and lower values were mainly coincident with El Niño Southern 5 

Oscillation events. The trends were examined for the tropical, temperate, and boreal regions: 6 

the annual variation was largest in tropical regions and was lowest in boreal regions (Fig. 4 7 

and Fig. S5 in the Supplement). In tropical regions, large fluctuations in RS occurred during 8 

the 1970s. In all regions, the RS followed an increasing trend with time. The rates of increase 9 

in RS for the tropical, temperate, and boreal regions were 0.048 (P<0.0001), 0.025 10 

(P<0.0001), and 0.021 (P<0.0001) Pg C yr−2, respectively; hence, the highest rates of increase 11 

occurred in the tropical regions. The proportional increases in the RS of the tropical, 12 

temperate, and boreal regions were 0.08, 0.11, and 0.19%, respectively; thus, the proportional 13 

increase was greatest for the boreal regions. The difference between the earlier and later 14 

period of the simulation is shown by latitude in Figure 2D. The RS increased at nearly all 15 

latitudes. There were large increases in RS between 0°N and 30°N and between 30°N and 16 

70°N. 17 

The relationship between the annual mean global temperature and the global RS is 18 

characterized by a slope of 3.3 Pg C yr−1 °C−1 (P<0.0001) (Fig. 5) and a Q10 value of 1.4 19 

(derived by fitting an exponential function). Figure 6 presents the distribution of the Q10 20 

values at the grid scale, which was calculated using the temperature function estimated in this 21 

study and the mean temperature of each grid. The Q10 values varied between 1 and 2 and were 22 

lower in the regions near the equator and higher in the regions at high latitudes with colder 23 

climates. 24 

The estimated global RH and RA were 51 and 40 Pg C yr−1, respectively. The spatial 25 

distributions of RH and RA are depicted in Figure 7. Both the RH and the RA were high in 26 

tropical regions and low in cold and/or dry regions. The RH and RA were nearly equivalent to 27 

each other, but in the regions of high RS, RA was greater than RH; and in the regions with low 28 

RS, RH was greater than RA. The distribution of the RA:RS ratio indicates that, in tropical and 29 

temperate regions, the RA component contributes approximately 40–50% of RS, while RA 30 

accounted for less than 30% of RS in cold and/or dry regions (Fig. 8). 31 
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Figure 9 compares the RH estimated by our model to those estimated using other Earth system 1 

models. The value of RH estimated by the Earth system models varied from 40 Pg C yr−1 to 2 

greater than 77 Pg C yr−1. The mean of the results from the Earth system models (54 Pg C 3 

yr−1, 1965–2004) was similar to our estimate. The latitudinal distributions of RH differed 4 

among the Earth system models (Figure 10). In particular, the differences among models were 5 

large between 30°S and 10°N and from 40°N to 70°N. The distribution of the RH estimated 6 

using this model was primarily in accordance with the mean of Earth system models; 7 

however, a large difference was noted between 10°S and 10°N. 8 

 9 

4 Discussion 10 

4.1 Spatiotemporal distribution of RS 11 

Overall, the estimated RS was high in tropical regions and low in cold and/or dry regions. The 12 

model parameters derived from the parameterization (Table 1 and Fig. 1) indicate that the RS 13 

increases under conditions of high temperature and high precipitation. Our modeling suggests 14 

that the spatial distribution of RS at global scale is controlled by both precipitation and 15 

temperature (Fig. 2A and Fig. S6 in the Supplement). These patterns basically agree with 16 

those reported in previous studies (Bond-Lamberty and Thomson, 2010b; Chen et al., 2010; 17 

Hashimoto, 2012; Raich et al., 2002). However, the estimated total global RS of this study (91 18 

Pg C yr−1) differs from the results of the previous studies. Previous estimates can be roughly 19 

divided into two categories, the highest estimate of 98 Pg C yr−1 (Bond-Lamberty and 20 

Thomson, 2010b) and the other estimates (76 Pg C yr−1, on average, N=5) (Hashimoto, 2012; 21 

Raich and Potter, 1995; Raich and Schlesinger, 1992; Raich et al., 2002; Schlesinger, 1977) 22 

(Table S4 in the Supplement). Our estimate is based on the same dataset as that analyzed for 23 

the highest estimate (Bond-Lamberty and Thomson, 2010b), but the new estimate of this 24 

study was 7% lower than that estimate. We speculate that one of the reasons for this 25 

difference might be the differences in model structure. A non-linear model was used in this 26 

study, while linear models were employed in the previous study. In particular, we assumed 27 

that RS is sensibly reduced when the sum of precipitation of the current month and previous 28 

month is zero. The RS was very low in dry regions (e.g., deserts in Africa and Mongolia) (Fig. 29 

2). The numbers of observations are quite limited for very dry regions and deserts; for this 30 

reason, although we considered that it is reasonable to assume approximately zero-respiration 31 
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in these regions, we should consider the potentially high uncertainty in these estimates. 1 

However, the new estimate was higher than other previous estimates (i.e., all of the estimates 2 

other than Bond-Lamberty and Thomson 2010b). In particular, the new estimate was higher 3 

than that of Raich et al. (2002) despite using nearly the same model structure. We attribute 4 

this difference to the differences in the datasets analyzed for parameterization (Table S1 and 5 

Fig. S7 in the Supplement). 6 

The global RS followed an increasing trend, and the rate of the increase was comparable to 7 

that estimated by a previous study (Bond-Lamberty and Thomson, 2010b). Our model did not 8 

include a detailed carbon cycle for the evaluated ecosystems; hence, it is not possible to argue 9 

that this increasing trend indicates a net loss of carbon from the soil to the atmosphere 10 

(Gottschalk et al., 2012; Smith and Fang, 2010). However, our analysis provides additional 11 

data to support an increasing trend for global RS, even though a new model was applied for 12 

this study, and supports the assumption that the soil carbon flux from soil to the atmosphere is 13 

increasing in response to climate change. 14 

4.2 Heterotrophic and autotrophic respirations 15 

Although the number of reports of RH is limited, our estimate of RH is comparable to those of 16 

previous studies (IPCC, 2001; Potter and Klooster, 1997; Sitch et al., 2015; Tian et al., 2015). 17 

In addition, the mean value of RH estimated using the Earth system models is comparable to 18 

our estimate (Fig. 9). This agreement might imply that the carbon cycles in the Earth system 19 

models are, to an extent, well constrained by the carbon influx terms (GPP and NPP), and 20 

there are, in comparison to RH, numerous global estimates for GPP and NPP. However, when 21 

we look at the results from each Earth system model, the differences among estimates are 22 

distinct in terms of the magnitude and spatial distribution. Because the air temperature 23 

simulated by the models in CMIP5 is well correlated with CRU surface air temperature 24 

(Todd-Brown et al., 2013), the variation in RH might be attributable to the differences in the 25 

description of the terrestrial carbon cycle in each model. RH is a major carbon flux in an 26 

ecosystem carbon cycle; therefore, the large variation in RH indicates that there are large 27 

uncertainties in the overall flows of carbon in ecosystems (e.g., photosynthesis and 28 

respiration) associated with the Earth system model. In addition, the Q10 value for RH in each 29 

Earth system model in CMIP5 ranged from 1.4 to 2.2 (Todd-Brown et al., 2014); thus, the 30 

range of Q10 is wide enough and must contribute to the large variation in RH. In fact, there are 31 

large variations among estimates of soil carbon stocks and soil carbon responses to climate 32 
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change generated using Earth system models (Carvalhais et al., 2014; Nishina et al., 2014; 1 

Todd-Brown et al., 2013). 2 

The mean terrestrial NPP reported in previous studies was 56.2 ± 14.3 Pg C yr−1 based on a 3 

thorough literature survey (Ito, 2011) (most data included were published after 1990), and our 4 

estimated RH between 1990 and 2012 was 51.5 Pg C yr−1. The residual, the so-called net 5 

ecosystem production, is then 4.7 Pg C yr−1. The global terrestrial carbon sink for 1990–2009 6 

was estimated to be 2.4 Pg C yr−1 (Sitch et al., 2015); when global fire carbon emission (2.0 7 

Pg C yr−1; 1997–2009) (van der Werf et al., 2010) is taken into account, despite that these 8 

figures are based on different approaches, the figures show surprising consistency. 9 

Although previously reported NPP trends vary and are still debated (Table S5 in the 10 

Supplement) (Ahlström et al., 2012) and care must be taken to ensure that different climate 11 

data were used among the studies, comparing the trends of RH with those of NPP may imply 12 

possible changes in net global ecosystem carbon uptake. Before 2000, both NPP and RH 13 

showed increasing trends (Table S5 in the Supplement); however, the reported trends of NPP 14 

were larger than that of RH estimated in this study, suggesting a possible increase in global 15 

ecosystem carbon uptake. In the 2000s, the increasing trend of NPP is likely to continue; 16 

however, one study reported the possible decline of NPP, which may imply the possible 17 

diminishment of increasing global ecosystem carbon uptake (Table S5 in the Supplement). 18 

However, in this study, RH was estimated using a simple empirical relationship with RS, and 19 

the interannual changes in RS are mostly climate-driven and do not include process-based 20 

changes in the carbon cycle. Therefore, the trends in RH obtained in this study may be 21 

underestimated and must be carefully evaluated. 22 

The estimated global-scale contribution of RA (root respiration) to total RS was 44%. At the 23 

grid scale, there was considerable variation in the RA:RS ratio, which is in agreement with the 24 

reports based on compilations of previous laboratory and field studies (Hanson et al., 2000). 25 

However, although there are observational reports of RA:RS ratio greater than 0.5, such high 26 

RA:RS ratios were not observed in our modeling study because of the relationship between RS 27 

and RH applied in this study. Another reason might be that the compilation studies included 28 

data observed under various vegetation/soil conditions and seasons, while our study provides 29 

a spatiotemporal average. For example, the RA:RS ratio will be high in densely planted 30 

vegetation. 31 
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4.3 Contributions of tropical, temperate, and boreal regions 1 

Our study, similar to previous studies, revealed that tropical regions contribute the largest 2 

proportion of global RS (Bond-Lamberty and Thomson, 2010b; Hashimoto, 2012; Raich et al., 3 

2002). This finding is not surprising because RS responds to temperature exponentially and 4 

also because there are large amounts of litter input to soil in tropical regions. However, 5 

strikingly, the contribution of RS from boreal regions to the rate of increase in RS at the global 6 

scale for the study period was on the same order of magnitude with that of the contributions 7 

from tropical and temperate regions despite the lower contribution of RS from boreal regions 8 

to the total global RS in terms of absolute magnitude. This relatively large contribution is 9 

attributed to the temperature sensitivity of RS (quasi-linear response) and the magnitude of the 10 

temperature increase in boreal regions, which was greater than the increase for tropical 11 

regions. At present, tropical regions are the most influential regions in terms of global RS 12 

(e.g., 64% of the global RS based on our results). As suggested in previous studies, the 13 

importance of boreal regions in global carbon cycle is increasing and will continue to increase 14 

because a large amount of carbon is stored in soils in boreal regions (Batjes, 1996; Dixon et 15 

al., 1994; Eswaran et al., 1993; Post et al., 1982). 16 

4.4 Temperature sensitivity 17 

RS is strongly influenced by temperature, and an understanding of the response of global RS to 18 

the change in global temperature is critical to understanding and predicting the response of the 19 

terrestrial carbon cycle under climate change. In our study, global RS responded to the 20 

increase in global air temperature, over the study period, at the rate of 3.3 Pg C yr−1 °C−1 21 

(Q10=1.4, based on the air temperature, not the soil temperature), which is in accord with the 22 

results of previous studies (Bond-Lamberty and Thomson, 2010b; Raich et al., 2002; Zhou et 23 

al., 2009). There are several estimates of the global Q10 for RH (organic matter decomposition) 24 

or ecosystem respiration (the sum of plant and soil respiration), and, approximately, these 25 

values range from 1–2 and are distributed around 1.5 (Ise and Moorcroft, 2006; Jones and 26 

Cox, 2001; Kaminski et al., 2002; Mahecha et al., 2010; Todd-Brown et al., 2013; Zhou et al., 27 

2009) (Table S6 in the Supplement). At the field scale, the observed Q10 values of RS are 28 

typically in the range of 2.0–3.0, are characterized by high variability, and decrease with an 29 

increase in temperature (Bond-Lamberty and Thomson, 2010a; Kirschbaum, 1995; Wang et 30 

al., 2010; Wei et al., 2010), although the calculated Q10 value depends on temperature range 31 

and on the analyzed temperature (air/soil temperature, depth of soil temperature). In regards to 32 



 14 

ecosystem respiration, the observed temperature sensitivity at the ecosystem level is 1 

seasonally confounded, and an unconfounded Q10 value of 1.4 has been suggested, even 2 

among multiple biomes and independent of the mean temperature (Mahecha et al., 2010). In 3 

other words, the Q10 value, which has a value of 1.4, is observed to be approximately 2–3 4 

(with a high degree of variation) at the field scale, while the globally estimated value (1.5) is 5 

approximately equal to the intrinsic value. These apparent differences in temperature 6 

sensitivity are curious and are probably attributed to the confounding effects of other 7 

ecophysiological factors (e.g., photosynthesis), and differences among analyses conducted at 8 

multiple spatiotemporal scales (e.g., Kirschbaum, 2010; Subke and Bahn, 2010). These 9 

apparent differences in temperature sensitivity have not yet been fully interpreted. Some 10 

studies have addressed this issue; for example, a modeling study (Kirschbaum, 2010) 11 

reproduced, in part, such changes in temperature sensitivity across scale that is introduced by 12 

seasonal temperature variations. When process-oriented ecosystem models are applied at the 13 

field or grid scale and then scaled up to the global scale, comparisons of the global scale 14 

temperature sensitivity of such scaling efforts with the results of our study may be useful for 15 

examining whether RS has been properly scaled.  16 

4.5 Conclusions and future work 17 

In this study, we estimated the spatiotemporal variation of global RS using a global soil 18 

database, SRDB, and a semi-empirical model. The study scaled up the observed field-scale RS 19 

values to a global-scale RS to provide a data-oriented estimate of global RS. The estimated 20 

mean annual global RS was 91 Pg C yr−1 (1965–2012; Monte Carlo 95% confidence interval: 21 

87–95 Pg C yr−1), which differs from those of previous studies. Our model does not include 22 

detailed processes for ecosystem carbon cycles, imparting both limitations and advantages to 23 

this study. For example, plant photosynthesis, belowground carbon allocation, soil carbon 24 

stock changes, land-use changes, and nitrogen transformations can affect RS, and in particular, 25 

these processes play important roles in long-term simulations of terrestrial carbon cycles. 26 

Estimation of RS by satellite remote sensing (e.g. normalized difference vegetation index, 27 

NDVI), which includes the vegetation information, may be a promising solution (Huang et al., 28 

2013). In regards to boreal regions, the impact of permafrost melting, which is an important 29 

process in northern regions, was not explicitly considered in this study, although SRDB 30 

includes some data measured in permafrost regions. However, simple semi-empirical models 31 

are good at assimilating accumulated observed field data and providing data-oriented 32 



 15 

estimations. The relationship between RH and RS is derived from data observations for forest 1 

ecosystems, which could affect our estimate of RH. The resolution of our analysis is coarse 2 

compared to the scale of the field observations.  3 

Our study has demonstrated that the accumulated data for RS can be used to develop simple, 4 

data-oriented models, but in the future, datasets that include other related processes/properties 5 

(e.g., LAI, and GPP) will be necessary to generate relatively more sophisticated, simple 6 

models and to further constrain process-oriented models. Nevertheless, our approach, the use 7 

of a simple model for the analysis of accumulated data resources, provides data-oriented 8 

estimates and can be used to bridge a gap between process-oriented modeling and observed 9 

datasets. We expect that our data-oriented, spatiotemporal estimates will serve as benchmarks 10 

and also help to constrain process-oriented models and Earth system models. The gridded 11 

outputs are available at http://cse.ffpri.affrc.go.jp/shojih/data/index.html. 12 
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Table 1. A priori and a posteriori probability distributions of the parameters. The MAP is the 1 
maximum a posteriori estimate. A uniform distribution was assumed for every a priori 2 
distribution. CI indicates the confidence interval. F, a, b, K, and α are the model parameters, 3 
and σ is the standard deviation of the model-data error. 4 

 5 

6 
Parameters Prior MAP Mean Median SD 95% CI Kurtosis Geweke's P Geweke's Z 

F 0.1–5.0 1.68 1.76 1.76 0.15 1.478 – 2.049 2.83 0.59 0.22 

a 0.001–0.1 0.0528 0.049 0.049 0.01 0.0335 – 0.0725 2.99 0.32 −0.48 

b 0.00001–0.005 0.000628 0.0006 0.0005 0.0003 0.0001 – 0.0012 2.97 0.31 −0.50 

K 0.01–10.0 1.20 1.46 1.42 0.35 0.861 – 2.211 3.00 0.45 −0.12 

α 0.0–1.0 0.98 0.47 0.41 0.33 0.0254 – 0.987 1.56 0.51 0.03 

σ 100.0–1500.0 375.5 377.6 377.5 6.61 365.0 – 390.8 3.07 0.52 0.05 
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Figure 1. Shapes of the temperature function (A) and precipitation function (B). The red line 1 

represents the results of this study, and the green-dashed and blue-dashed lines indicate the 2 

functions estimated by previous studies (Raich and Potter, 1995; Raich et al., 2002). The grey 3 

area is the 95% confidence interval of the estimated functions. 4 

 5 

Figure 2. Spatial distribution of the estimated annual soil respiration (A), the latitudinal 6 

patterns of soil respiration components (B, C), and difference between the earlier (1965–7 

1989) and later (1990–2012) periods of the simulation (D). 8 

 9 

Figure 3. Temporal variation of the estimated global soil respiration. The grey region 10 

indicates the 95% confidence limits of the Monte Carlo simulation (N=1000). The orange line 11 

represents the 5-year moving average. 12 

 13 

Figure 4. Interannual variations of soil respiration for boreal, temperate, and tropical regions. 14 

The orange lines represent the 5-year moving averages. 15 

 16 

Figure 5. Relationship between the global mean air-temperature anomaly and the soil-17 

respiration anomaly. The anomaly was calculated as the deviation from the 1965–2012 mean. 18 

 19 

Figure 6. Spatial distribution of Q10 values estimated using the temperature function of 20 

equation (2) (fT=exp(aT−bT2)) and the mean temperature of each grid (TM). The Q10 value was 21 

calculated by fT(TM+5)/fT(TM−5). 22 

 23 

Figure 7. Spatial distribution of heterotrophic respiration (A) and autotrophic respiration (B). 24 

C and D depict the latitudinal distributions of heterotrophic and autotrophic respiration per 25 

square meter and per 0.5°, respectively. 26 

 27 

Figure 8. Distribution of the ratio of autotrophic respiration to total soil respiration. 28 



 24 

 1 

Figure 9. Comparison of global heterotrophic respiration. The grey bars are the results from 2 

the 20 Earth system models of the CMIP5 (1965–2004; please see Table S2 in the 3 

Supplement). The orange line represents the result of this study. The blue line indicates the 4 

mean of the results of the 20 Earth system models. 5 

 6 

Figure 10. Latitudinal distribution of heterotrophic respiration. The orange line represents the 7 

results of this study. The grey lines are the results from the 20 Earth system models (please 8 

see Table S2 in the Supplement). A smoothing spline was fit to each result because of the 9 

variation in the grid sizes of the Earth system models. The solid blue lines and broken blue 10 

lines indicate the mean and standard deviation, respectively, of the results of the 20 Earth 11 

system models. 12 

 13 
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