1 REVISED MANUSCRIPT

2	A strong CO ₂ sink enhanced by eutrophication in a tropical coastal embayment
3	(Guanabara Bay, Rio de Janeiro, Brazil)
4	
5	Luiz C. Cotovicz Jr. ^{1,2,*} , Bastiaan A. Knoppers ¹ , Nilva Brandini ¹ , Suzan J. Costa
6	Santos ¹ , and Gwenaël Abril ^{1,2}
7	
8	[1] Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João
9	Batista s/n, 24020015, Niterói, RJ, Brazil.
10	[2] Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux
11	(EPOC), CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac
12	Cedex France.
13	[*] Correspondance to Luiz C. Cotovicz Jr (<u>lccjunior@id.uff.br</u>)

14

15 Abstract

16 In contrast to its small surface area, the coastal zone plays a disproportionate role in the 17 global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are significant at the global scale, but still poorly known, especially 18 19 in tropical regions. Surface water pCO₂ and ancillary parameters were monitored during 20 nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical 21 eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, SE-Brazil. Water pCO₂ varied between 22 and 3715 ppmv in the Bay 22 23 showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and Chlorophyll a (Chl a). Marked pCO₂ undersaturation was prevalent in the shallow, 24 25 confined and thermally stratified waters of the upper bay, whereas pCO₂ oversaturation was restricted to sites close to the small river mouths and small sewage channels, which 26 covered only 10 % of the bay's area. Substantial daily variations in pCO₂ (up to 395 ppmv 27 between dawn and dusk) were also registered and could be integrated temporally and 28

spatially for the establishment of net diurnal, seasonal and annual CO₂ fluxes. In contrast 1 to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO₂, 2 a property enhanced by the concomitant effects of strong radiation intensity, thermal 3 stratification, and high availability of nutrients, which promotes phytoplankton 4 development and net autotrophy. The calculated CO₂ fluxes for Guanabara Bay ranged 5 between -9.6 to -18.3 mol C m⁻² yr⁻¹, in the same order of magnitude of the organic carbon 6 7 burial and organic carbon inputs from the watershed. The positive and high net community production (52.1 mol C m^{-2} yr⁻¹) confirms the high carbon production in the 8 bay, and its autotrophic status apparently enhanced by eutrophication. Our results show 9 that global CO₂ budgetary assertions still lack information on tropical, marine-dominated 10 11 estuarine systems, which are affected by thermal stratification and eutrophication and behave specifically with respect to atmospheric CO₂. 12

13 Key words: CO₂ fluxes, eutrophication, estuarine embayment, tropical, SE-Brazil.

14

15 **1 Introduction**

16 The rising of atmospheric CO₂ concentration in the last decades has worldwide concern, mainly due to global atmospheric temperature increases (Allen et al., 2009; Matthews et 17 18 al., 2009) and ocean acidification (Doney et al., 2009). The oceans are known to act as the major sink of atmospheric CO₂, with well quantified air-sea exchange and uptake of 19 excess anthropogenic CO₂ (Takahashi et al., 2002; Sabine et al., 2004; Orr et al., 2005). 20 21 The coastal ocean, however, is still subject to controversy and poorly understood due to 22 its intrinsic intra- and inter-specific heterogeneity of its typology. The lack of sufficient studies covering the spatial and temporal variability with a common standardized 23 24 sampling strategy and methodology and the manifold diverse types of ecosystems types (estuaries, deltas, embayments and coastal lagoons) affected by multiple external and 25 internal sources, are some of the reasons for these uncertainties (Gattuso et al., 1998; 26 Borges, 2005; Chen et al., 2013; Cloern et al., 2014). Despite the small surface area of 27 28 the coastal ocean of around 7 % of the global ocean, it exerts a disproportionately large 29 influence upon the carbon cycle, especially on the role of primary production, remineralisation and sedimentation of organic matter (Gattuso et al., 1998; Wollast, 30 1998). Coastal ecosystems receive material from land via river inputs, submerged 31 groundwater discharge, atmospheric deposition, as well as from the adjacent open ocean. 32 The climatological regime has great influence over these areas, and contributes to the 33

great variability of biogeochemical processes in space and time. In addition,
approximately 37% of human population lives within 100 km of coastline (Cohen et al.,
2007), making this area of greatest human impact on the marine environment, including
intense loading of nutrients, suspended matter, organic and inorganic matter with
associated pollutants, and also overfishing (Bauer et al., 2013).

6

7 Several authors have demonstrated that the CO₂ emissions from estuaries are globally 8 significant (Borges and Abril, 2011; Chen et al., 2013). Total ecosystem respiration generally exceeds gross primary production in most estuaries (Gattuso et al., 1998), which 9 are net heterotrophic and sources of atmospheric CO₂ (Borges and Abril, 2011; Cloern et 10 al., 2014). The Land-Ocean Interactions in the Coastal Zone Program (LOICZ) budgetary 11 assertions of more than 250 estuaries and lagoons have also shown that most of them are 12 heterotrophic or may have a balanced metabolism (Knoppers, 1994; Smith et al., 2010). 13 CO_2 outgassing in major part of the estuaries is supported by the inputs of CO_2 -enriched 14 15 freshwaters, and by the CO₂ generated in the estuarine system itself, planktonic and benthic net heterotrophy and CO_2 advection from saltmarshes and mangroves (e.g. 16 Borges and Abril, 2011; Cai, 2011). On the other hand, low pCO₂ waters and autotrophic 17 18 metabolism has been observed in some estuarine plumes but with small percentage of surface area compared to the freshwater influence (Borges and Abril, 2011). As more 19 20 systems are being included in the budgeting effort, the global estuarine CO₂ emission estimate at the air-water interface has been declining (Borges and Abril, 2011; Guo et al., 21 22 2012; Chen et al., 2013; Huang et al 2015). The pioneer estimate of the CO₂ released by estuaries was 0.51 Pg C yr⁻¹ (Borges, 2005), whereas the more recent estimate was 0.094 23 Pg C yr⁻¹. (Chen et al., 2013). In fact, first budgets were based on data in systems generally 24 25 located at temperate regions, being river-dominated, macrotidal and turbid (Borges, 2005; 26 Borges and Abril, 2011). The more recent estimate includes a set of new data from 27 estuaries located at low wind regions and the Arctic Ocean, which contributed to the 28 decrease of the carbon released (Chen et al., 2013). Additionally, Jiang et al. (2008) demonstrated that pCO₂ can be significantly lower in marine-dominated estuaries than 29 river-dominated, and according to Maher and Eyre (2012) marine dominated estuaries 30 with low freshwater influences can be CO₂ sink. 31

In tropical regions, the spatial coverage of CO_2 fluxes of estuaries is still scarce. But, the few available studies also suggested that the tropical estuaries seem to be sources of carbon to the atmosphere (Souza et al., 2009; Sarma et al., 2012; Araujo et al., 2014), except for one lagoon (Koné et al., 2009). Also, most studies are potentially biased by the lack of information on the diurnal variations of CO_2 , which corresponds to a crucial component of mass balance calculations (Borges and Frankignoulle, 1999; Zhang et al., 2013; Maher et al., 2015).

8

The CO₂ budgets of coastal ecosystems may also be altered by eutrophication generated 9 by the anthropogenic nutrient inputs from sewage and fertilizer usage in agriculture, 10 which has become a widespread water quality issue (Nixon, 1995; Cloern, 2001). The 11 12 consequences of eutrophication, like the development of excessive algal blooms, toxic algae, loss of submerged aquatic vegetation and increase of hypoxia and anoxia, has been 13 well documented (Bricker et al., 2003; Rabalais et al., 2009). However, the influence of 14 15 eutrophication per se on the CO₂ budgets is poorly documented. In fact, the response of estuarine metabolism to eutrophication seems to be type-specific. Some papers discussed 16 that eutrophication can amplify autotrophy and favour CO₂ uptake (Gypens et al., 2009), 17 while others show that eutrophication can reinforce heterotrophy and CO₂ degassing 18 (Sarma et al., 2012; Chou et al., 2013; Wallace et al., 2014). 19

20

The present study addresses the question whether a tropical, marine-dominated, and 21 22 eutrophic estuarine system Guanabara Bay (SE-Brazil) is a sink or a source of atmospheric CO₂. The bay, surrounded by the City of Rio de Janeiro, is the second largest 23 Brazilian estuarine embayment (Kjerfve et al., 1997). The system is one of the most 24 degraded estuaries worldwide. The waters of Guanabara are eutrophic to hypertrophic 25 (according to the classification of Nixon, 1995) and provide ideal conditions to assess the 26 response of aquatic CO₂ metabolism under marked eutrophication. CO₂ fluxes at the air-27 28 water interface of Guanabara Bay were estimated with continuous monitoring of surface 29 water pCO₂, taking into account different temporal (daily and seasonal) and spatial scales. Our results show a very different behaviour in terms of carbon cycling of Guanabara Bay 30 compared to previously documented estuaries, with extremely low values of pCO₂ and a 31 net uptake of atmospheric CO₂ annually. 32

2 2 Material and Methods

3 2.1 Study Site

4 Guanabara Bay (22°41' - 22°58' S and 43°02' - 43°18' W) is located at the SE-Brazil coast, SW-Atlantic, and embedded within the metropolitan area of Rio de Janeiro, the 5 second most densely populated region of the Brazilian Coast (Fig. 1). The bay has a 6 surface area of 384 km², a mean depth of about 5.7 m, and a volume of 1870 x 10^6 m³. 7 The main subaqueous channel runs from the bay's 1.8 km wide entrance with depths 8 9 varying from 25 to 50 m up to 6 km inwards and along 24 km to the upper 20 km wide 10 bay, with depths down to about 2 to 3 m. The lateral portions of the bay are spiked by small bays, with depths of 2 m. It is a partially mixed estuarine embayment (Kjerfve et 11 al., 1997), being completely mixed in wintertime but can become stratified in 12 13 summertime due to concomitant effects of sunlight (thermal stratification) and freshwater discharge (haline stratification) mostly in the central and inner regions (Bérgamo, 2010). 14

15

16 The Bay is subject to a semi-diurnal microtidal regime with an annual mean of 0.7 m and 17 spring tides attaining 1.3 m. With the exception of the entrances of small rivers, salinities vary between 25 and 34. The time for renewal of 50% of the total water volume is 11.4 18 19 days and water circulation is complex, as currents are modulated by tide and abrupt changes in the geomorphological configuration (Kjerfve et al., 1997). Circulation 20 21 between the central and upper western regions is hampered by the presence of a large island (Ilha do Governador, Fig. 1). At the bay's mouth, maximum water velocities vary 22 between 0.8 - 1.5 m s⁻¹ and seawater residence time is much shorter than in most inner 23 regions, particularly behind Governador Island, where maximum current velocities are 24 less than 0.3 m s^{-1} (Kjerfve et al., 1997). 25

26

Guanabara Bay is located in the intertropical zone and its climate is characterized by a diversity of both the annual temperature and precipitation regimes. The weather is tropical humid (Bidone and Lacerda, 2004), with a warm and wet summer in October-March, and a cooler and drier winter in April-November. The most frequent winds in the bay from the N and NE in spring and summer, with monthly average velocity of 5 m s⁻¹. Winds from the S and SE are associated with polar cold weather fronts being more common in
 autumn and winter (Amarante et al., 2002).

The drainage basin has an area of 4080 km² and includes 35 small rivers and streams, 6 3 4 of which flow into the upper region of the bay and contribute with up to 85% of the total runoff to the bay. The average annual freshwater water discharge to the bay is 100 ± 59 5 m³ s⁻¹ and ranges from around 40 m³ s⁻¹ in winter to 190 m³ s⁻¹ in summer. Annual 6 freshwater discharge is nine times smaller than the bay's volume, which also contributes 7 8 to the two-layered gravitational circulation (the ebb-flood oscillatory tidal current), resulting in the predominant saline (i.e. polyhaline) character of the waters (Kjerfve et al., 9 10 1997).

11

More than 7 million inhabitants discharge 25 m³ s⁻¹ of untreated domestic wastewaters 12 into the bay (Kjerfve et al., 1997; Bidone and Lacerda, 2004), which contributes to a load 13 of about 465 T day⁻¹ of organic matter (FEEMA, 1998). Small channels directly 14 connected to sewage outlets are totally anoxic, but represents less than 5% of the surface 15 area of the Bay. More intense cultural eutrophication since the 50's (Borges et al., 2009) 16 17 also contributed to hypoxic conditions of bottom waters in some of the more confined lateral and upper regions of the bay (Paranhos et al., 1998, Ribeiro and Kjerfve, 2002). 18 19 Fluxes of phosphorous are currently 9-times higher than those estimated since the late 1800s (Borges et al., 2009). According to Godoy et al. (1998), sedimentation rates have 20 21 increased up to 14 times over the last 50 years, in parallel with a 10-fold increase in the 22 flux of organic matter to the sediments (Carreira et al., 2002).

23

24 In this study, five sectors were defined for the treatment, computations and interpretation of the data (Fig. 1): Sector one (S1) corresponds to the region up to 3 km inwards from 25 26 the narrow and deeper tidal channel, is characterized by a maximum of seawater exchange, material dispersion and is partially mixed. Sector two (S2), located towards the 27 28 western part of the bay, is delimited on the north by the Governador Island, which creates 29 a barrier for direct tidal advection of waters into the upper north-western area of the bay. 30 It is one of the most contaminated areas of Guanabara Bay. Sector three (S3) corresponds to the deeper channel which connects S1 (i.e. the bay's outlet to the South Atlantic) with 31 32 the upper region. Sector four (S4) in the upper northeastern part of the bay, is shallow,

moderately impacted and bordered by a 90 km² of mangrove forest and non-urbanized land. Sector five (S5) is the most confined area of the bay, located at the northwest and behind Ilha do Governador. It is shallow, has the longest residence time of waters and also receives significant amounts of sewage waters. The small western channel connecting S2 and S5 was disregarded from our analysis, due to its difficult access and extreme degree of contamination; however, it only covers less than 10 % of the entire sampled area.

8

9 2.2 Sampling Strategy

10 Nine sampling campaigns were performed with a frequency varying between 30 to 45 days from April 2013 to April 2014. Each campaign consisted in continuous 11 measurements of the partial pressure of CO_2 (p CO_2), salinity, temperature, Chl a, DO, pH 12 13 and GPS position, all at a frequency of 1 minute. Sub-surface (~30cm) water was pumped alongside the boat. In addition to the spatial screening, the diurnal variations of water 14 pCO₂ were estimated on four occasions within the upper and most eutrophic sectors (S4 15 and S5) and also once in S1, by performing lateral trajectories forth and back across the 16 17 sectors from dawn (04:30 am) to afternoon or dusk (at the latest until 09:30 pm). Diurnal measurements were made in Aug.2013 and Jan.2014, Feb. and Apr.2014 (S4 and S5) and 18 19 in S1 in Apr.2014.

20

In addition, discrete sampling was performed at 16 to 19 stations along the continuous tracks (Fig. 1), except in Dec.2013, when only 8 stations could be sampled due to logistical problems. Water samples were collected in sub-surface waters at a ~30cm depth with a Niskin bottle, and then conditioned (i.e. fixed and/or kept on ice in the dark) for further chemical analysis in the laboratory. Vertical profiles of temperature, salinity, fluorescence and DO were performed at all discrete stations with an YSI 6600 V2 multiparameter probe.

28

29 2.3 Analytical Procedures

30 **2.3.1 Discrete parameters**

Total alkalinity (TA) was determined on 100 ml filtrate from GF/F filtered samples, using 1 the classical Gran (1952) electro-titration method by an automated titration system 2 (Metler Toledo Mod. T50). The reproducibility of TA was 4 μ mol kg⁻¹ (n=7). 3 Measurements were compared to certified reference material (CRM provided by A.G. 4 Dickson from Scripps Institution of Oceanography) and consistent at a maximum 5 precision level of $\pm 7 \mu mol \text{ kg}^{-1}$. Dissolved inorganic nitrogen (ammonia, nitrite, and 6 7 nitrate) and phosphate were quantified as in Grasshof et al. (1999) and Chl a as in Strickland and Parsons (1972). Whatman GF/F filters were used for the Chl a analyses 8 9 and the filtrate for the nutrient analyses. All water samples were kept in the dark and on ice during transport to the respective laboratories and nutrient samples and Chl a filters 10 11 kept at -18 °C in a freezer prior to analyses.

12

13 2.3.2 On-Line parameters

Continuous measurement of temperature, salinity, fluorescence and DO were performed 14 with a calibrated YSI 6600 V2 multiparameter probe inserted in a flow-through 15 customized acrylic chamber. The values of the fluorescence sensor were correlated with 16 17 the discrete analysis of Chl a to derive a conversion factor. pH was measured continuously with a pH-meter WTW 3310, equipped with one electrode Sentix 41 also inserted in the 18 19 chamber, and calibrated with a three-point standard (pH 4.01, pH 7.00 and pH 10.01) according to the National Bureau Standard (NBS), before each sampling campaign. The 20 21 precision of the pH measurements was about 0.01 (after 7 verifications against standards). 22 As we have overdetermined the carbonate system (pCO_2 , pH, and TA), we have chosen 23 to use direct pCO₂ measurements and TA to calculate DIC, than we use pH measurements only for quality check. pCO₂ was measured using the marble-type equilibrator method, 24 through which seawater flowed $(1-2 \text{ Lmin}^{-1})$ from the top to the bottom of the cylinder 25 filled with marbles and air was pumped upwards (1 Lmin^{-1}) (Frankignoulle et al., 2001; 26 Abril et al., 2006). The air in the equilibrator was dried before passing to a non-dispersive 27 infrared gas analyser (LICOR®, Type LI-820). We used three gas mixture standards 28 29 (pCO₂ of 410, 1007 and 5035 ppmv) to calibrate the LICOR before each sampling (White 30 Martins Certified Material, RJ, Brazil). We used N₂ passing through fresh soda lime to set the zero, and we used the standard at 1007 ppmv to set the span. We used the standards 31 32 at 410 and 5035 ppmv to check linearity. The number of verifications after each 33 calibration was about 7. The LICOR signal was stable and linear in the range of calibration and observations in the field (0-5000 ppmv). We also verify the drift before
and after each sampling campaign. The partial pressure of atmospheric CO₂ was measured
in dry air twice a day, at the start and the end of the continuous runs. The precision and
the accuracy of the pCO₂ measurements were about 3 and 5 ppmv, respectively.

5

Solar radiation, wind velocity (U10), accumulated precipitation and atmospheric
temperature were recorded in the meteorological stations of Santos Dumont and Galeão
airports (red squares in Fig. 1), and were provided by Brazilian Institute of Aerial Space
Control (ICEA). The data sets of solar radiation (Rs) were converted into daily-averaged
photosynthetically active radiation (PAR) using a conversion factor PAR/Rs of 0.5
(Monteith, 1977).

12

13 2.3.3 Calculations

14 2.3.3.1 The Carbonate System

Dissolved inorganic carbon (DIC) was calculated using two different pairs of measured 15 parameters: pCO₂/TA and pH/TA using the carbonic acid constants sets proposed by 16 Mehrbach et al. (1973) refitted by Dickson and Millero (1987), the borate acidity constant 17 from Lee et al. (2010) and the CO_2 solubility coefficient of Weiss (1974). Calculations 18 were performed in the CO2calc 1.2.9 program (Robbins et al., 2010). Both calculations 19 gave very consistent DIC concentrations at \pm 6.5 µmol kg⁻¹. DIC calculated from 20 pCO₂/TA and pH/TA pairs gave an excellent agreement (slope: 1.008, R²=0.995). The 21 22 slope was not statistically different from 1 (p = 0.20) and the intercept was not significantly different from 0 (p = 0.86). The excess of DIC (E-DIC, µmol kg⁻¹) was 23 calculated as the difference between the in-situ DIC (DIC in situ µmol kg⁻¹) and a 24 theoretical DIC at atmospheric equilibrium (DIC equilibrium µmol kg⁻¹) according to 25 Abril et al. (2003). The DIC equilibrium was calculated from observed TA and the 26 atmospheric pCO₂ measured in the Bay. The apparent oxygen utilization (AOU, µmol kg⁻ 27 ¹) was calculated from the temperature, salinity and DO concentrations measured 28 29 continuously with the probe and the theoretical DO saturation (Benson and Krause, 1984).

Diffusive air-sea CO₂ fluxes were computed from pCO₂ measured in the water and the atmosphere and a gas transfer velocity derived from wind and other physical drivers. We used the k-wind parameterization of Raymond and Cole (2001) and Abril et al. (2009),

which are gases exchange coefficients specific for estuarine waters. The Raymond and 1 Cole (2001) (RC01) equation is based on the compilation of gas transfer velocities derived 2 from tracers in nine rivers and estuaries, only using wind speed as an entry parameter. 3 4 The Abril et al. (2009) (A09) relationship is based on chamber flux measurements in seven estuaries, and uses wind speed, estuarine surface area, and water current velocity 5 as entry parameters. We also calculated the fluxes with the parameterization of 6 7 Wanninkhof (1992) (W92), which was initially developed for open ocean waters. The gas transfer coefficients normalized to a Schmidt number of 600 obtained with the three 8 9 parameterizations were then converted to the gas transfer velocity of CO₂ at in situ temperature and salinity, following the procedure of Jähne et al. (1987). Fluxes were 10 11 computed for each sector of Guanabara Bay, using water pCO₂ representative for diurnal and seasonal variations. 12

13 **2.3.3.2** The Net Community Production (NCP)

The NCP was calculated by the changes in dissolved inorganic carbon (DIC) when we performed lateral trajectories forth and back, from dawn to dusk. In this way, we sampled the same point at different daytime, and NCP was computed from the diurnal DIC variations according to the following equation:

18 NCP =
$$((DIC_1-DIC_2)\rho d)/\Delta t - FCO_2$$

19 where NCP is the net community production (mmol m⁻² h¹), DIC₁ and DIC₂ represents 20 the salinity-normalized concentration of dissolved inorganic carbon (mmol kg⁻¹) during 21 two consecutive trajectories (from dawn to dusk), ρ is the seawater density (kg m⁻³), d is 22 the average depth (m) of the area, t represents the time interval (hours) and F is the carbon 23 dioxide flux (mmol m⁻² h⁻¹) across the water-atmosphere interface. The computations 24 were carried out with the mean values of DIC during each trajectory.

25 2.3.3.3 Temperature and biological effect on pCO2 variations

The temperature *versus* biological effect on pCO_2 variations in Guanabara Bay was verified using the Takahashi et al. (2002) approach. The relative importance of the temperature and biological effects can be expressed as a ratio between both the temperature and the biology effect. The biological component is estimated by the seasonal amplitude of the temperature-normalized pCO_2 and the temperature component is characterized by the seasonal amplitude of the annual mean pCO_2 corrected for the seasonal temperature variation. The following equations were applied (Takahashi et al.,
 2002):

3 pCO_2 at $T_{mean} = pCO_{2obs} \times exp[0.0423(T_{mean}-T_{obs})]$ (variations driven by biological 4 effect); (1)

5 pCO_2 at $T_{obs} = pCO_{2mean} x \exp[0.0423(T_{obs}-T_{mean})]$ (variations driven by thermodynamic 6 effect); (2)

7 where T is the temperature in °C, and the subscripts "mean" and "obs " indicate the 8 annual average and observed values, respectively. These equations were applied to 9 summer and winter conditions as a whole. The biologic effect on the surface-water pCO₂ 10 (ΔpCO_2) Bio is represented by the seasonal amplitude of pCO₂ values corrected by the 11 mean annual temperature, (pCO₂ at T_{mean}), using Eq. (1):

12
$$(\Delta pCO_2)Bio = (pCO_2 \text{ at } T_{mean})_{max} - (pCO_2 \text{ at } T_{mean})_{min};$$
 (3)

where the subscripts "max" and "min" indicate the seasonal maximum and minimum values. The effect of temperature changes on the mean annual pCO₂ value, (Δ pCO₂)temp, is represented by the seasonal amplitude of (pCO₂ at T_{obs}) values computed using Eq. (2):

16 $(\Delta pCO_2)Temp = (pCO_2 \text{ at } T_{obs})_{max} - (pCO_2 \text{ at } T_{obs})_{min};$ (4)

17 A ratio (ΔpCO_2)Temp/(ΔpCO_2)Bio (Temp/Bio) > 1 indicates a dominance of temperature 18 effect over mean annual pCO2 values, whereas a ratio < 1 indicates a biological effect 19 dominance (Takahashi et al., 2002).

20

21 **2.4 Statistical Analysis**

22 Normality test was carried with the Shapiro-Wilk test. If the data showed parametric 23 distribution, we used t-test to comparing averages. If the data showed non-parametric 24 distribution, we used the Mann-Whitney test. The calculations of correlation between variables were performed with the Spearman rank coefficient. Simple linear regressions 25 26 were calculated to compare calculated and measured variables (DIC and pH), and the comparison between slopes was made with one test equivalent to an Analysis of 27 28 Covariance (ANCOVA). For the principal component analysis (PCA) calculation, the sampling campaigns were taken as cases, and the parameters were taken as variables. The 29 PCA technique starts with a correlation matrix presenting the dispersion of the original 30 variables (data were normalized by z-scores with average data for each sampling 31

1 campaign), that was utilized to extracting the eigenvalues and eigenvectors. Then, the 2 principal components were obtained by multiplying an eigenvector, by the original 3 correlated variables. All statistical analysis were based on $\alpha = 0.05$. We utilized the 4 Statistic 7.0 program to perform all PCA steps and the GraphPad Prism 6 program to 5 perform the other statistical tests.

6 **3 Results**

7 3.1. Climatic, hydrological and biogeochemical conditions

8 Climatic conditions during the study period followed a classical seasonal trend (Fig. 2), with exception of Jan. 2014 and Feb. 2014, when the air temperature was warmer (2.2 °C 9 higher, p < 0.001, t-test) than the averaged reference period of 60 years (1951-2010). The 10 11 other sampled months had air temperature and precipitation consistent with historical data (Fig. 2), despite of some deviations from the historical average especially for accumulated 12 precipitation. Sector-averaged surface water temperature in Guanabara Bay (Table 1) 13 varied between 23.8 and 26.8 °C and salinity varied between 27.0 and 32.2. In the upper 14 portion of the bay (S4 and S5), salinity decreased in winter and temperature increased in 15 summer with an observed maximum of 33.9 °C. S1, at the entrance of the bay exhibited 16 lowest temperatures and highest salinities, with little seasonal variation. A maximum 17 seasonal amplitude of 3.4 °C and 2.8 °C of sector-average temperature occurred in S4 and 18 19 S5, respectively. When considering sector-averaged values, seasonal contrasts were less than 2 salinity units in all sectors. Spatially, the most confined northern sectors, which 20 21 receive more river water, showed the lowest salinity, particularly at the vicinity of river mouths, and during the rainy season, with a minimum of 14.6 in Apr. 2013 in S4. 22

23

24 Average values for pH, TA, DIC, Chl a and nutrient data reported for each sector in Table 25 1 reflect the eutrophic (S1 and S3) to hypertrophic (S2, S4 and S5) conditions prevailing in Guanabara Bay, consistent with previous works (Rebello et al., 1988; Ribeiro and 26 27 Kjerve, 2001). All water quality parameters (nutrients and Chl a) exhibited a large standard deviation (SD) to the mean. Ammonium (NH₄-N) was the dominant form of 28 dissolved inorganic nitrogen (DIN) and reached average concentrations of around 45 and 29 27 µM in S2 and S5 and 8, 9 and 5 µM in sectors S1, S3 and S4, respectively. The 30 maximum range was recorded in S5 (0.13 to 130 µM NH₄-N) and the minimum range in 31 32 the lower S1 (8.15 to 22.5 μ M NH₄-N).

2 Extremely high Chl a values were associated with high pH and moderately to low nutrient 3 concentrations, indicating that nutrients were fixed into phytoplankton biomass. Average 4 Chl a concentrations followed the trophic state gradient, increasing from the mouth of the 5 bay toward its upper portion and also in the lateral embayments (Table 1). All sectors 6 showed high spatial and temporal variability in Chl a. In general, highest values were 7 recorded during summer conditions and lower values during winter. This feature has also 8 been observed by other studies (Guenther et al., 2008; Guenther et al., 2012). Sectors 3, 9 4 and 5 experienced the densest phytoplankton blooms, Chl a reaching maxima on one occasion of 537 μ g L⁻¹ in S3, 289 μ g L⁻¹ in S4 and 822 μ g L⁻¹ in S5. The highest values 10 were associated to phytoplankton blooms. 11

12

13 **3.2 Vertical structure of the water column**

14 The vertical profiles for temperature, salinity, DO and Chl a in S1, S3 and S5, shown in Figure 3 are well representative of other observations in the outer, middle and inner 15 16 regions of Guanabara Bay, both for summer and winter conditions. During winter, the water column was well mixed in all sectors. Indeed, temperature and salinity showed little 17 18 vertical variations during this season (Figs. 3a, 3c and 3e). Chl a and oxygen profiles were 19 also vertically homogeneous, except in the most confined and shallow S5, where Chl-a was typically 2.5 times higher in the first two meters compared to the bottom (Fig. 3f). 20 21 During summer, all sectors showed important thermal and saline stratification (Figs. 3g, 22 3i and 3k), halocline and thermocline being located almost at the same depth. In 20mdeep water columns (S1 and S3; Figs. 3g and 3i), a ~4m deep surface layer was ~2-3°C 23 24 warmer and had salinity ~1-2 units lower than the bottom layer; in 5m-deep water column 25 (S5; Fig. 3k), the warmer surface layer was ~2m deep with similar temperature and salinity contrasts between the surface and the bottom. The vertical water profile was also 26 27 analysed to investigate the diurnal variations of temperature and salinity (Figs. 3k and 3l). 28 Comparison between daytime and nighttime conditions revealed that stratification was 29 subject to diurnal variations, driven by temperature convection concomitant with a moderate mixing of water currents by microtidal action. Summer stratification of the 30 31 water column was accompanied by a consistent vertical distribution of Chl a and oxygen, with maximum in the surface layers and minimum at the bottom. Note that the salinity 32 varied less than the temperature along the day (> 2° C of variation in 5 hours; Fig. 3K). 33

Stratification apparently favoured phytoplankton development, as Chl *a* concentrations
 were highest (up to 240 µg L⁻¹) at the surface of the stratified water columns. These
 physical conditions were largely predominant in summer and in the shallowest, calmest
 and most confined sectors of the Bay (S4 and S5).

5

6 3.3 Spatial distributions of pCO₂ in surface waters

Spatial distributions of surface water pCO₂ measured continuously along the trajectories, 7 8 revealed strong spatial gradients between and/or inside each sector, from over- to undersaturation with respect to the atmosphere (Fig. 4). Temporally and spatially, water pCO₂ 9 was negatively correlated with dissolved oxygen (R^2 = -0.88; n=9002; p < 0.0001) and 10 Chl a (R^2 =-0.54; n=9004; p<0.0001). S1 presented pCO₂ values close to the atmospheric 11 equilibrium, with moderate temporal variation around this average $(411\pm145 \text{ ppmv})$. DO 12 and Chl-a in S1 were 103 \pm 29 % and 19 \pm 22 µg L⁻¹, respectively. S2, close to most 13 urbanized area, showed highest heterogeneity, from a maximum pCO₂ value of 3750 14 ppmv in hypoxic waters (DO=2% saturation) at the vicinity of the highly polluted urban 15 channels in Jan. 2014 (Figure 4g), to strong undersaturation, as low as 50 ppmv related 16 to a bloom formation (Chl $a = 212 \ \mu g \ L^{-1}$) in Jan.2014. In S2, the extent of pCO₂ 17 supersaturation apparently induced by the urban sewage loads was favoured by strong 18 rains the day before sampling and low PAR incidence in Jul., Aug. and Sep.2013, 19 compared to all the other cruises (Fig. 4). In S3, S4 and S5, which account for 75% of the 20 surface sampled area of Guanabara Bay, pCO₂ was predominantly below the atmospheric 21 equilibrium, particularly during daytime summer cruises (Fig. 4 and Table 1). Massive 22 23 phytoplankton blooms were sampled during our survey, characterized by extreme patchiness in summer. For example, an extreme of 22 ppmv of pCO₂, 350 % sat DO and 24 550 µg L⁻¹ Chl a was recorded in Feb.2014 in a brown/red bloom. In S3, S4 and S5, water 25 pCO₂ was lower than 150 ppmv around midday at all seasons. These blooms and 26 associated pCO₂ under-saturation occurred in S4 and S5 during winter and progressively 27 spread to the entire bay during summer months (Fig. 4). From Sep.2013 to Feb.2014, 28 29 midday undersaturation was encountered over the whole bay, except the urban impacted S2 (Fig. 4). Finally, some increases in water pCO_2 above the atmospheric equilibrium (up 30 to a maximum of 2200 ppmv) were observed in Jul.2013, Aug.2013 and Apr.2014, in the 31 32 northeastern part of S4 and S5, related to river plumes. Before reaching the bay waters of 33 S4, these riverine plumes flowed across a preserved mangrove area. However, the extent of these small plumes was limited (Fig. 4) and their contribution to the sector CO₂ balance
 was apparently negligible.

3

4 **3.4 pCO₂ diurnal variations**

5 The five back and forth tracks revealed important diurnal changes in water pCO₂ in S4 and S5, but not in S1 (Fig. 5). In the S1 in Feb.2014 (Figure 5d), nighttime (predawn) 6 pCO₂ (451 \pm 38 ppmv) was not significantly different (p > 0.05 Mann-Whitney Test) 7 8 from daytime pCO₂ (466 \pm 26 ppmv). In contrast, in S4 and S5, rapid and significant 9 decreases in water pCO₂ were recorded in the early hours of the morning, followed by a relatively stable undersaturation from 10:00 AM to all over the afternoon (Fig. 5). For 10 11 instance, in Sep.2014, pCO₂ decreased from 800 ppmv at 8:30 AM to 200 ppmv at 13:40 PM at the same geographical location (Fig. 5a). The decrease in water pCO₂ occurred 12 relatively quick on all occasions at around 9:30 AM, which apparently corresponded to 13 the hour of maximum photosynthetic activity by phytoplankton. 9:30 AM was then used 14 as the limit to separate nighttime pCO₂ from daytime pCO₂. In S4 and S5, pCO₂ changes 15 from nighttime to daytime were from 591 ± 231 to 194 ± 114 ppmv in Sep.2013, from 16 17 163 ± 40 to 116 ± 25 ppmv in Jan.2014, from 346 ± 166 to 146 ± 106 ppmv in Fev.2014, and from 637 ± 421 to 265 ± 186 ppmv in Apr. 2014. In all these cases, water pCO₂ was 18 significantly higher (p < 0.001; Mann-Whitney Test) before than after 9:30 AM. 19 Consequently, S4 and S5 shifted from a CO₂ source at nighttime to a CO₂ sink at daytime 20 21 in Sep.2013 and Apr.2014, but remained a CO₂ sink all day and night long in Jan. and 22 Feb.2014. In addition to these five back and forth tracks described in Fig. 5, we could 23 compare water pCO₂ values measured on the same day in early morning (before 9:30 AM) with those measured in late afternoon in S1, S3 and S4. Consequently, our data 24 provided a fairly good indication of the diurnal variability of pCO₂ throughout the entire 25 26 sampling period, in all sectors, except S2 (Fig. 6).

27

28 **3.5 Seasonal Variations**

Clear seasonal changes were observed in pCO₂ of surface waters (Fig. 6), with higher
values in winter (Apr.2013, Jul. 2013, Aug. 2013, Sep.2013 and Apr.2014) than in
summer (Oct.2013, Dec.2013, Jan.2014 and Feb.2014). Seasonal variation in DO and Chl *a* mirrored the pCO₂ variations, with a maximum phytoplanktonic biomass and oxygen

saturation in summer, when pCO₂ was minimum. S1 was a source of atmospheric CO₂ 1 during winter (pCO₂ of 501 \pm 98 ppmv), but a sink during summer (pCO₂ of 304 \pm 117 2 ppmv). S2 presented the highest pCO₂ differences between winter (923 \pm 484 ppmv) and 3 summer (423 \pm 530 ppmv), with high standard deviation resulting from spatial 4 heterogeneity for both periods (Fig. 4). In S3, S4 and S5, CO₂ undersaturation prevailed 5 along the year, except in winter and nighttime, where oversaturations occurred. In these 6 7 three sectors, oxygen remained oversaturated all over the year. Average measured values of pCO₂ for winter and summer respectively, were 353 ± 141 and 194 ± 127 in S3, $380 \pm$ 8 9 286 and 203 \pm 159 in S4, and 364 \pm 343 and 132 \pm 74 ppmv in S5. Note that these averages 10 are in its majority based on daytime measurements and that integrated yearly average CO_2 11 fluxes had to be quantified by accounting for both seasonal and diurnal variations (see 12 following section and discussion).

13

14 **3.6** Gas transfer velocities, CO₂ fluxes at the air-sea interface and NCP

Wind speeds (12h-averaged) varied between 1.4 and 3.9 m s⁻¹, were significantly higher during summer than during winter (p < 0.001; t-test) and significantly higher during daytime than during nighttime (p < 0.001; t-test) (Table 2). Instantaneous wind speed showed some peaks at a maximum of 15 m s⁻¹ during short (<1h) events. Wind speeds measured at the meteorological station in the southern part of the Bay were higher (S1, S2 and S3) than those recorded at the station in the northern region (S4 and S5) (Table 2).

22

23 Calculated gas transfer velocities averaged over daytime and nighttime periods varied between 0.8 and 12.3 cm h^{-1} (Table 2). k_{600} values calculated from the equation of Abril 24 25 et al. (2009) that accounts for the wind velocity, the fetch effect linked to estuarine size 26 and the current velocity, was systematically higher than those calculated from the 27 relationships of Raymond and Cole (2001) and Wannikhof (1992), which consists in exponential functions of wind velocity, with the former specific for estuarine waters and 28 the latter primarily development for open ocean waters. Average k₆₀₀ values based on 29 15min wind speed were not significantly different from k₆₀₀ based on 12h average wind 30 speed, showing that short storms had negligible impact on daily-integrated gas transfer 31 velocities. CO_2 fluxes were calculated using the measured p CO_2 in each sector during the 32

1 respective period: summer and winter, daytime and night-time. In the absence of data, we interpolated pCO₂ from surrounding areas and/or measurement periods. For S2, the only 2 sector that was not sampled at night, we applied the mean diurnal variations of S1 and 3 S3. Because of the relatively narrow range of k_{600} variation, calculated CO₂ fluxes 4 followed the pattern of surface water pCO₂, and varied between 14.6 mmol $m^{-2} h^{-1}$ in the 5 polluted S2 during winter and nighttime, to -9.7 mmol m⁻² h⁻¹ in dense phytoplanktonic 6 7 blooms of S5 during summer and daytime (Table 2). Time-integrated CO₂ fluxes, accounting for seasonal and daily variations, revealed that all sectors except S2 behaved 8 9 as CO₂ sinks on an annual basis.

The NCP estimates to Guanabara Bay encompassed four sampling campaigns (Sep.2013, Jan.2014, Feb.2014 and Apr.2014). The values ranged between 4 to 205 mmol m⁻² d⁻¹, with annual average of 107 mmol m⁻² d⁻¹. The summertime period presented average of 132 mmol m⁻² d⁻¹, whereas for wintertime the NCP was 83 mmol m⁻² d⁻¹. All values of NCP were positive indicating that upper sectors of Guanabara Bay are autotrophic.

15

16 **4. Discussion**

17 4.1 Estuarine Typology: Comparing Guanabara Bay with other estuaries

The results of the continuous measurements and the concomitant discrete sampling of 18 19 water quality parameters, showed that, in terms of CO_2 atmospheric exchange, Guanabara Bay does not follow the patterns of a typical drowned-river valley estuary with a marked 20 longitudinal estuarine gradient between its fresh and marine water end-member sources 21 (Pritchard, 1952). Rather, Guanabara Bay corresponds to a tropical marine dominated 22 23 system, owing to the small freshwater discharge relative to its water volume and tidal 24 exchange, maintaining 85 % of the bay with salinities always higher than 25. Its 25 geomorphological characteristics and rather complex circulation of water masses, makes the application of standard approaches to discern sources or sinks from composite plots 26 27 between salinity and material concentrations difficult (Bourton and Liss, 1976). Furthermore, Guanabara Bay has been considered as one of the world's most degraded 28 embayment characterized by constant eutrophic to hypertrophic conditions and the 29 frequent occurrence of red tides (Rebello et al., 1988; Villac and Tennenbaum, 2010; 30 Guenther et al., 2012). 31

The CO₂ behavior in Guanabara Bay was different from that in most of documented 1 estuaries worldwide. Indeed, the majority of studies that were conducted in macrotidal, 2 turbid and river-dominated estuaries reveal that these systems are heterotrophic and emit 3 large amounts of CO_2 both in temperate and tropical regions (Frankignoulle et al., 1998; 4 Borges and Abril, 2011; Sarma et al., 2012). These drowned valley, river-dominated, 5 estuaries also exhibited a significant inverse trend between salinity and pCO₂ 6 7 (Frankignoulle et al., 1998), which was not observed in Guanabara Bay. The absence of a negative relationship between pCO₂ and salinity for the range of 27 to 32 is in fact more 8 consistent with observations in some estuarine plumes (although less pronounced), where 9 pCO₂ undersaturation and diurnal variations are often reported (Borges and 10 11 Frankignoulle, 1999; Borges and Frankignoulle, 2002; Dai et al., 2009; Bozec et al., 2011). Therefore, our results in Guanabara Bay are still consistent with the comparative 12 13 analysis of CO₂ dynamics in river- and marine-dominated estuaries by Jiang et al. (2008). In Guanabara Bay, salinities lower than 27 were confined to the upper region at the 14 15 mouths of the small rivers in S4 (max. $pCO_2 = 2222 ppmv$), S5 (max. $pCO_2 = 2203 ppmv$) and some polluted channels of S2 (max. $pCO_2 = 3715$ ppmv) (Table 1 and Fig. 4). 16 17 However, these heterotrophic and strong CO₂ degassing regions are relatively small when compared to the total superficial area. In contrast, pCO₂ in S1, which is directly affected 18 by marine water intrusion, exhibited minor diurnal and seasonal variations oscillating 19 around the atmospheric value of 400 ppmv. But, sectors 3, 4 and 5 as a whole, which 20 cover around 75 % of the bay's area, behaved as a CO₂ sink on a yearly basis, with 21 concentrations even down to about 30 ppmv on some occasions (Table 2). These three 22 sectors are subject to weaker currents and higher residence times of water and 23 stratification in shallow depths, favouring CO₂ uptake by phytoplankton primary 24 production and autotrophic metabolism, especially during summer. Indeed, thermal or 25 haline stratification of estuarine waters has been identified as a determinant factor that 26 favours the ecosystem to act as a CO₂ sink (Borges 2005; Chou et al., 2013). Low pCO₂ 27 28 concentrations at surface waters were reported for the inner shelf of the Changjiang estuary (Chou et al., 2013), the outer Loire estuary (Bozec et al., 2012), the lower Pearl 29 30 River estuary (Dai et al., 2008), the Amazon river plume (Körtzinger, 2003) and on the 31 Mississippi River-dominated continental shelf (Huang et al., 2015), all with enhancement 32 of stratification stimulating phytoplankton blooms development and annually or seasonally uptake of CO₂. Low pCO₂ values were also observed in estuaries which 33

1 receive small freshwater discharge and present low water exchange with the sea (Jiang et

2 al., 2008; Koné et al., 2009; Maher and Eyre, 2012; Sarma et al., 2012).

3

4 The comparison of the E-DIC versus AOU values (Fig. 7) from our study with a 5 compilation of data obtained for 24 estuaries, in majority river-dominated estuaries 6 located in temperate regions (Borges and Abril, 2011) illustrates the specific metabolic 7 characteristics of Guanabara Bay. The negative E-DIC and AOU values found for 8 Guanabara Bay suggest the system is autotrophic. The 1:1 line represents the quotient between CO₂ and O₂ during planktonic primary production and community respiration 9 (Borges and Abril 2011). The values near of this line for Guanabara Bay suggest that 10 gross primary production and total (autotrophic and heterotrophic) respiration are 11 coupled, and largely dominated the signal, with a strong biological control on the 12 production/consumption of these gases. Many data from other estuaries lied well above 13 the 1:1 line, especially at high pCO₂ values, indicating lateral inputs of dissolved CO₂ 14 from tidal marshes or mangroves, faster equilibration of oxygen with the atmosphere than 15 carbon dioxide due to differences in solubility and the buffering capacity of the carbonate 16 system, and/or anoxic respiration in sediments (Cai et al., 1999; Abril et al., 2002; 17 18 Bouillon et al., 2008; Borges and Abril, 2011). In Guanabara Bay, mangrove forests are not so extended, and the volume of water exchanged with the mangrove sediments is 19 20 moderate due to the modest tidal amplitude. For that reason, we could not find supersaturated pCO₂ conditions near of the mangrove region, at least at about 2km 21 22 distance from the mangrove. This suggests that dissolved CO₂ export from the mangrove is low and probably associated with a rapid consumption of mangrove-derived DIC by 23 24 the phytoplankton.

25

26 4.2 Meteorological and biological control of pCO₂ in Guanabara Bay

A PCA was performed to better identify the variable contributions of the data. For each sampling day, we calculated the mean values of pCO₂, DO, pH, Chl *a*, temperature, salinity, wind velocity, PAR incidence and also the seven days of accumulated precipitation. The PCA revealed a strong meteorological control on the pCO₂ dynamics in Guanabara Bay (Fig. 8). Factor 1 explains 65% of the total variance revealing that pCO₂ was well separated and negatively related to DO, Chl *a*, temperature, wind velocity

and PAR incidence. This suggests a strong external meteorological control on 1 phytoplankton dynamics and, in turn, on the CO₂, DO and Chl a at spatial and temporal 2 scales. Indeed, the high incident light simultaneously provides energy for phytoplankton 3 growth and favors the development of thermal stratification, particularly in the shallow 4 and less hydrodynamic regions (Fig. 3). In the tropics, high light incidence combined with 5 the presence of nutrients contributes to phytoplankton blooms and CO₂ depletion both 6 7 directly, by supplying light for photosynthesis, and indirectly by favoring stratification of the water column. It is noteworthy that high wind speed in the region of Guanabara was 8 9 correlated with high PAR, and consequently, gas exchange was favored during daytime, when CO₂ depletion attained its maximum. In contrast, salinity and the 7-day 10 11 accumulated precipitation were not related to the other parameters, and dominating the factor 2, that explain about 19% of the variance in the data. This suggests that pulsated 12 13 inputs of freshwater, typical of tropical storms affects salinity in Guanabara Bay, but has little impact on the intensity of blooms and the CO₂ uptake by the phytoplankton. 14

15

Our diurnal measurements along the hypertrophic sectors 4 and 5 also showed marked 16 differences of pCO₂ concentrations between daytime and nighttime. The nighttime pCO₂ 17 values were about 30% higher than daytime (differing by up to 395 ppmv). As the PAR 18 incidence increased along the day, the surface pCO₂ decreased due to the enhancement 19 20 of photosynthesis and rapid formation of thermal stratification (Figs. 3 and 5). Our report of strong diurnal variation in pCO₂ in Guanabara Bay (Fig. 5) reveals how photosynthesis 21 22 and respiration processes vary temporally, especially in domains with high phytoplankton biomass (indicated by Chl *a* values above 50, sometimes reaching 200 μ g L⁻¹). In their 23 24 study of primary production based on oxygen incubations in Guanabara Bay, Rebello et 25 al. (1988) postulated that some intriguing very low rates in Chl a-rich samples were due 26 to the occurrence of CO₂ limitation. Indeed, the extremely low values of pCO₂ observed in S5 (ex. 24 ppm or 0.6 µmol kg⁻¹ of dissolved CO₂) confirm that CO₂ might be one of 27 28 the limiting factors for primary production. However, in such CO₂ limiting conditions, phytoplankton would need to uptake bicarbonate using the proton pump mechanism and 29 the carbonic anhydrase enzyme (Kirk, 2011). Some diurnal variations of pCO₂ controlled 30 by biological activity have been reported in several other estuarine systems worldwide 31 (Dai et al., 2009; Bozec et al., 2011; Yates et al., 2007; Zhang et al., 2013). In the Bay of 32 33 Brest, a temperate coastal embayment, the phytoplankton blooms were responsible for 10

to 60% of the seasonal pCO₂ drawdown observed during spring, equivalent to 100-200 1 ppmv (Bozec et al., 2011). In Tampa Bay, a shallow subtropical estuary, the diurnal 2 variations in pCO₂ (median of 218 ppmv) were largely influenced by primary productivity 3 and respiration of benthic communities (Yates et al. 2007). Also, Zhang et al. (2013) 4 reported diurnal pCO₂ variations mainly controlled by biological activities (maximum 5 218 ppm in autumn) in a Chinese tropical open bay dominated by fringing reefs; however, 6 7 calcification was also important driver of diurnal pCO₂ variations in winter. In one suite of different coastal ecosystems in the South China Sea, including inshore and onshore 8 9 locations, Dai et al. (2009) concluded that temperature was a major driver of pCO₂ diurnal variability in the oligotrophic and offshore regions (10-16 ppmv variations), tidal effects 10 11 in the nearshore (41-152 ppmv), and biological metabolism in the coral reef system (up to 608 ppmv of diurnal variations). Henceforth, it is clear that diurnal variations must be 12 13 accounted for in estuarine CO₂ budgets assertions, otherwise, estimates based on daytime pCO₂ measurements only, might shift the conclusions toward an overestimates of the CO₂ 14 15 sink, or an underestimate of CO₂ source. Further in this paper, we use pCO₂ measurements at different hours of the day and night in order to integrate the diurnal variations. 16

17

18 The contributions of temperature and biological activity for Guanabara Bay were estimated as 33 and 255 ppmv, respectively, showing the strong influence of biological 19 20 productivity over pCO₂ dynamics on this tropical coastal embayment (ratio of 0.12). Some authors utilized the same approach in other estuarine systems with different 21 22 dominances between temperature and biological effect (Bozec et al., 2011; Zhang et al. 2012; Hunt et al., 2014). The temperature dominating effect were presented by in 23 Jiaozhou Bay (China Sea), Zhang et al. (2012) obtained pCO₂ variations differences of 24 25 93 and 78 ppmv for temperature and biological activity respectively (weak temperature 26 prevalence and ratio of 1.19). In the Kennebec Estuary (USA), Hunt et al. (2014) found 27 different rations according to the salinity zones and showed that, in general, higher ratios prevailed at low salinities (1.9-2.1), with higher temperature control on pCO₂ variations. 28 Bozec et al. (2011), on the other hand, in one inter-annual approach encountered a mean 29 value of 0.49, in the Bay of Brest, a temperate embayment in France, confirming that the 30 biological processes were the main driver of the seasonal pCO₂ dynamic. The ratio for 31 32 Guanabara Bay is much lower than in all these systems, and also consistent with a atypical CO₂ dynamics. 33

2 **4.3 Eutrophication and CO₂ Dynamics**

3 In several coastal systems worldwide, important CO₂ changes, either increasing or 4 decreasing have been attributed to eutrophication processes (Gypens et al., 2009; Borges 5 and Gypens, 2010; Cai et al., 2011; Sunda and Cai, 2012; Chou et al., 2013). Eutrophication occurs when massive anthropogenic inputs of both organic (mainly 6 7 domestic) and inorganic (agricultural or industrial) nutrients (sometimes during several 8 decades) have enriched estuarine waters and sediments with bioavailable nitrogen and 9 phosphorus (Rabalais et al., 2009). Increases in pCO_2 have been reported in river-10 dominated estuaries at the vicinity of megacities (Frankignoulle et al 1998; Zhai et al., 2007; Sarma et al., 2012). When sewage is discharged in such river-dominated systems, 11 heterotrophy is enhanced and CO₂ outgassing increases (Zhai et al., 2007; Sarma et al., 12 2012). Indeed, environmental conditions in these turbid estuarine waters strongly limit 13 primary production in favor of heterotrophy. Turbidity, together with stratification, is 14 indeed a key parameter that explains pCO₂ variation in estuaries (Jiang et al. 2008; Borges 15 and Abril 2011). In Guanabara Bay, sewage also predominates as source of organic 16 nutrients (Bidone and Lacerda, 2004). However, the pCO₂ spatial distribution (Fig. 4) 17 18 suggests that mineralization of this domestic organic matter occurs predominantly within 19 the sewage network itself and in small rivers and channels and their plumes that represent 20 a small surface area in the Bay. It can be noted for example that pCO₂ oversaturation was more extended in S2 in Aug. 2013, which corresponds to a sampling just after strong rains 21 22 on the city of Rio de Janeiro. Mineralization of organic matter in these extremely polluted areas leads to rapid CO₂ (and probably CH₄) outgassing, and concomitantly, contributes 23 24 to a long-term enrichment of the Bay in bioavailable nitrogen and phosphorus (Paranhos 25 et al., 1998; Ribeiro and Kjerfve, 2002).

26

Except for these peripheral zones, most sectors of Guanabara Bay experienced massive
algal blooms thanks to the optimal conditions for primary production, including nutrient,
light, and water column stratification. The driving phytoplankton assemblages of
Guanabara Bay are typical for eutrophic to hypertrophic systems, largely dominated by
bloom and also red tide forming nanoplankton, filamentous cyanobacteria and some
microplankton (Valentin et al., 1999; Santos et al., 2007; Villac and Tennenbaum, 2010).
Preliminary investigations of the collected material from this study suggests that

cyanobacteria were frequently encountered in S2, S4 and S5, during the 9 sampling 1 periods, and great deal of patchiness was observed with a succession of intense red, brown 2 and/or green colored waters, leading to the marked short spatial variability of pCO₂, DO 3 and Chl a. In the waters dominated by phytoplankton blooms the pCO₂ values were 4 always extremely low, and the sink characteristics were prevalent, with high CO₂ uptake 5 and autotrophy characteristics. It has been shown, that during summer the heterotrophic 6 7 bacterial production (BP) lied within the range of only 0.4-19 % of primary production (PP) at the surface and 5-52 % at the bottom, being nutrient dependent (Guenther et al., 8 9 2008). Our spatial and temporal pCO₂ dataset (Fig. 4) also suggests that the most confined 10 part of the inner bay apparently behaved as the "bloom genesis region" that can spread 11 phytoplanktonic production, biomass, and associate CO₂ consumption over the rest of the estuarine system. Indeed, CO₂-depleted waters were confined to S4 and S5 in October 12 13 2013, and progressively extended to all sectors (except S2) in January 2014, During this period, conditions became ideal for bloom developments with increasing air and water 14 15 temperature, and the development of water stratification (Figs. 4 and 6).

16

17 Eutrophication, thus, enhances the low surface pCO_2 concentrations in Guanabara Bay. 18 Phytoplankton uses more nutrients and dissolved CO₂ in the surface waters, and produce larger biomass of organic matter. When this additional material reaches the bottom, the 19 20 organic matter and associated nutrients are recycled, increasing pCO₂ and decreasing the oxygenation of bottom waters (Fig. 3,k,l). Some authors recently discussed the increasing 21 22 of bottom water acidification enhanced by coastal eutrophication especially in stratified ecosystems (Cai et al., 2011; Sunda and Cai, 2012). It has been shown, that water column 23 stratification and bottom water stagnation enhances the isolation of O₂ and CO₂ in deeper 24 25 waters and consequently their exchange between bottom and surface waters (Chen et al., 26 2007). Koné et al. (2009) reported a consistent CO₂ vertical distribution in Aby and Tendo 27 lagoons, in Ivory Coast, where a warmer, fresher, Chl a-rich surface layer was depleted 28 in CO₂ and nutrients, whereas a more saline and anoxic bottom layer was enriched in CO₂ 29 and nutrients. Gypens et al. (2009) developed and validated a process-based model in the Scheldt estuary plume, that revealed that eutrophication could make the system shift from 30 a net source of atmospheric CO_2 to a net sink, when anthropogenic nutrient loads 31 32 increased, stimulating the carbon fixation by autotrophs. Chou et al. (2013) also suggested that human-induced increase in nutrient loading may have stimulated primary production 33

and thus enhanced the CO₂ uptake capacity on the inner shelf off the Changjiang Estuary. 1 Our results reveal that the impact of eutrophication on estuarine systems in terms of CO₂ 2 exchange strongly depends on their typology. Drowned-valley, river-dominated, "funnel-3 type" estuaries, which are generally light-limited and heterotrophic, respond totally 4 differently from estuarine plumes, marine-dominated lagoons or embayments like 5 Guanabara Bay, where optimal condition for autotrophic primary production occur over 6 7 large surface areas. These estuarine types are different in their hydrological and geomorphological configuration, availability of light, diversity of primary producer and 8 9 heterotrophic assemblages, and their response to increasing nutrient loading (Smith et al. 2010; Cloern et al. 2004). Depending on the hydrodynamics, the additional organic 10 11 carbon produced by enhanced eutrophication can be buried, mineralized, and/or exported. In quiescent embayments like Guanabara Bay, long-term burial can be significant 12 13 (Carreira et al., 2002), resulting in a net uptake and storage of atmospheric carbon within 14 the ecosystem.

15

16 4.4 Air-Water CO₂ Fluxes in Guanabara Bay

17

18 The spatial and temporal CO₂ fluxes were integrated for the Bay, taking into account the diurnal and seasonal variations of pCO₂, wind speed, and gas exchange coefficients. 19 Efforts were made to sample all the sectors of the bay with different PAR intensities 20 (higher, medium and low intensity, for each sampling day and especially in the more 21 22 eutrophic waters). Characteristic daytime and nighttime pCO₂ where deduced from the five back and forth observations in S4 and S5, and from the comparison of early morning 23 24 (before 9:30 AM) pCO₂ data with late afternoon data in S1, S3 and S4. Compared to seasonal changes, diurnal changes were significant, surface pCO₂ sometimes shifted from 25 a sink behavior in the evening to source behavior at the end of the night, or sometimes 26 remained under-saturated all night long (Fig. 6). Except for S2, the more polluted sector, 27 and the only one acting as a CO₂ source, our data could be used to integrate diurnal 28 29 variability of pCO₂ throughout the sampling period (Fig. 6). For S2, the only region that was not sampled during the night, the values of the diurnal differences obtained in S1 and 30 S3 were applied, which seems reasonable, owing to their similar Chl a concentrations. 31

1 Comparing the three k_{600} used for the calculated fluxes, the k_{600} of Abril et al. (2009) can be considered the higher flux estimate, based on chamber measurements in 9 estuarine 2 systems, whereas the k_{600} of Wanninkhof (1992) provides a more conservative value. The 3 model of Raymond and Cole (2001) based on non-intrusive "tracers only" data, provided 4 intermediate fluxes compared to the other two models. k_{600} values varied from 0.8 to 12.3 5 cm h⁻¹, which correspond to wind speed velocities between 1.8 to 3.9 m s⁻¹. Current 6 velocity (few dozen of centimeters per second) contributed to a minor fraction of k_{600} in 7 the Abril et al. (2009) equation. On an annual basis, Guanabara Bay was a net sink of 8 atmospheric CO₂ (year-integrated flux of -9.6, -12.0 and -18.1 mol C m² yr⁻¹, for kw02, 9 k_{RC01} and k_{A09} , respectively), but with strong differences at temporal and spatial scales. 10 On a daily basis, summer CO₂ uptake was maximal in S3, S4 and S5, with daily fluxes of 11 -190, -110 and -170 mmol C m² d⁻¹, respectively), whereas in the winter fluxes decreased 12 to -14, -30 and +12 mmol C m² d⁻¹, respectively (note that S5 changed form a large sink 13 in summer to a slight source in winter). S1 was a moderate source in winter (+60 mmol 14 $C m^2 d^{-1}$) and a moderate sink in summer (-90 mmol $C m^2 d^{-1}$), as well as on an annual 15 basis (-4.45 mol C m² yr⁻¹). In the highly polluted S2 sector, where a large part of the 16 17 domestic organic matter is apparently respired, a strong annual outgassing occurred (+213 mmol C m² d⁻¹). However this region occupies only about 10% of the surface sampled 18 19 area of the bay. It is interesting to note that at the midday/afternoon periods the winds 20 were stronger than during the night/early-morning periods. This abides to the classical daily wind cycle at coastal regions guided by the thermal difference between the land and 21 the water surface (Amarante et al., 2002), which apparently favors the CO₂ sink. Higher 22 wind speed at daytime, and in summer also favored the CO_2 uptake. 23

24

25 The sink of CO₂ at air-sea interface showed values very close to the burial rates of organic 26 carbon in the sediments. The table 3 presents one summary of the documented carbon 27 fluxes in the Guanabara Bay. Carreira et al. (2002) found a 10-fold increase in the flux of 28 organic carbon to the sediments in the last 50 years (maximum of 114 mmol C m⁻² d⁻¹ in the S5). Our annual budget of carbon uptake at the air-water interface was 105 mmol C 29 30 $m^2 d^{-1}$ for this same region, showing that Guanabara Bay is, in fact, a strong CO₂ sink and has an autotrophic metabolism. The autotrophic nature of Guanabara Bay is also 31 32 confirmed by the relationship between autotrophic and heterotrophic communities (Guenther and Valentin, 2008; Guenther et al. 2008). Rebello et al. (1988) estimated 33

phytoplankton primary production rates from monthly measurements over an annual 1 cycle to vary between 60 to 300 mmol C m⁻² d⁻¹, with highest rates in the lateral and upper 2 regions of the bay. The bacterial production used only a small fraction of the dissolved 3 organic carbon pool, which had a turnover between 23 to 71 days in waters of the Bay 4 (Guenther et al., 2008). Average net primary production (NPP) was 170 mmol C m⁻² d⁻¹. 5 Comparing with our results, the NPP values are very close to those found for the carbon 6 7 uptake at air-water interface for summer conditions in the S3, S4 and S5, being 200, 149 and 189 mmol C m⁻² d⁻¹, respectively. After normalization to the total surface area of 8 Guanabara Bay, the total average organic load from sewage and rivers is about 43 mmol 9 OrgC $m^2 d^{-1}$ (FEEMA, 1998), compared to the annual CO₂ uptake at the air-water 10 interface of 49 mmol C m² d⁻¹. However, the pCO₂ spatial distribution supports the idea 11 that most of the sewage-derived organic carbon is respired at the vicinity of the urban 12 13 area, and little contributes to the carbon budget in the rest of the bay, except the Sector 2. In addition, molecular and isotopic characterization of the particulate organic matter of 14 15 Guanabara Bay revealed the predominance of autochthonous organic matter (Kalas et al., 2009). Other fact that converges to the conclusion that Guanabara Bay behaves as a net 16 17 autotrophic system is the high positive values of NCP in sectors 4 and 5. The annual average NCP was 143 mmol m⁻² d⁻¹, and is the highest value compared to the compiled 18 data set of Borges and Abril (2011) that included 79 estuaries, where 66 are net 19 20 heterotrophic, 12 net autotrophic, and one balanced. The summertime period showed the highest values of NCP and coincides with the strongest sink of CO₂ at air-water interface. 21 22 Guanabara Bay showed NCP values near that found in the tropical eutrophic Bojorquez Lagoon (Mexico) at the annual scale (Reyes and Merino, 1991) and in the subtropical 23 coastal waters of Hong Kong at summertime (Yuan et al., 2011), both systems highly 24 impacted by sewage discharge. 25

26

27 **5** Conclusions

In Guanabara Bay, annual uptake of atmospheric CO₂ associated with a net burial of organic matter in sediments was due to the synergic and cumulative effects of three factors: (i) an estuarine typology of marine dominated embayment with fairly long residence times of saline waters together with nutrient inputs in its upper sectors permitting phytoplanktonic developments; (ii) the tropical climatic conditions that increase light availability and favor the stratification of the water column; (iii) a long-

term discharge of untreated domestic waters that have enriched the bay in nutrients and 1 2 led to eutrophication. Eutrophication has also modified the phytoplanktonic assemblages toward smaller, more productive and short-live groups (Villac and Tennenbaum, 2010), 3 including some nitrogen-fixing species (cyanobacteria). A net autotrophic metabolism of 4 Guanabara Bay is attested by the annual CO₂ uptake at the air-water interface, the positive 5 and high NCP values, the low bacterial production relative to the primary production 6 7 (Guenther et al., 2008), and the large burial of autochthonous organic carbon to the 8 sediments (Carreira et al., 2002). It is the first estuarine system where the synergy of these 9 three factors is clearly identified as the predominant driver of CO₂ dynamics and of 10 carbon balance. Indeed, some other cases of net CO₂ uptake have been reported in some 11 relatively polluted tropical coastal lagoons in Ivory Coast (Koné et al., 2010), in three temperate and marine-dominated Australian estuaries (Maher and Eyre, 2012), in 12 13 temperate and tropical estuarine plumes either preserved (Körtzinger, 2003) or humanimpacted (Cai, 2003; Zhai and Dai, 2009; Bozec et al., 2012), and in some pristine arctic 14 15 and sub-artic fjords (Rysgaard et al., 2012; Ruiz-Halpern et al. 2010). In contrast, inner and low salinity regions of most river-dominated, drowned valley, "funnel-type" 16 17 estuaries, which are generally well-mixed and relatively turbid environments, have been documented as heterotrophic and CO₂ emitters under tropical (Araujo et al., 2014), 18 temperate (Frankignoulle et al. 1998) and boreal (Silveneoieen et al., 2008) climates and 19 whatever the anthropogenic pressure (Abril et al., 2003; 2004; Zhai et al., 2007; Borges 20 and Abril, 2011; Cai, 2011; Sarma et al., 2012). 21

22

Our findings of a net annual CO₂ sink in Guanabara Bay indicate that more field data are 23 24 needed in particular in the highly productive tropical coastal ocean, in order to adequately 25 integrate estuarine CO₂ fluxes at the global scale. In Brazil, most previous studies 26 concerned river dominated estuaries, especially along the northern and northeastern coast, 27 which all behave as CO₂ sources (Souza et al., 2009; Araujo et al., 2014; Noriega and Araujo, 2014). In contrast to Guanabara Bay, highest CO₂ fluxes correspond to denser 28 population in the watersheds of these net heterotrophic systems (Noriega et al. 2014). In 29 fact, the Brazilian coast presents several estuarine types (river estuarine deltas, estuaries, 30 lagoons and large embayments) which have very different metabolisms (Bernardes et al., 31 2012), but where CO_2 fluxes have as yet to established. Large p CO_2 temporal variations 32 can be expected for instance in a phytoplankton-dominated coastal lagoon in Brazil that 33

exhibited an annually balanced metabolism, but with seasonal shifts between autotrophic 1 and heterotrophic conditions (Carmouze et al., 1991; Knoppers et al. 1999a,b). Lagoons 2 dominated by macroalgae or microphytobenthos exhibited different metabolic trends, but 3 still with a significant potential for a net uptake of atmospheric CO_2 (Knoppers, 1994). 4 Undersampling coastal embayments and lagoons with clear and stratified waters, 5 compared to turbid and well-mixed river-dominated estuaries, would potentially lead to 6 7 an overestimation of the regional estuarine CO₂ budget. In addition, diurnal variations might impact the net CO₂ budget more significantly in autotrophic systems than in 8 9 heterotrophic systems, and need to be assessed in the field. Continuous pCO₂ measurements on autonomous buoys (e.g. Frankignoulle et al., 2003; Bozec et al., 2011) 10 11 are very promising tools to reach sufficient temporal resolution. We also showed that pCO2 dynamics were strongly correlated with meteorological conditions. Taking into 12 13 account that the last projections of Intergovernmental Panel on Climate Change (IPCC) include unequivocal predictions of the climate system warming for the next years 14 15 (Stocker et al., 2013), the increase of water temperature can reinforce the net sink of Guanabara Bay. 16

17

18 Acknowledgments

This research was funded by the Science without border program of the Brazilian National Council of Research and Development (CNPq-PVE 401726-6). This project supported G.A. with a Senior Scientist grant, N.B. with a Post-Doc grant and LCCJr with a PhD grant for visiting EPOC. B.K. is a Senior Scientist of CNPq (Proc. Nr. 301572/2010-0). The meteorological data were kindly provided by the Brazilian Institute of Aerial Space Control (ICEA, Ministério da Defesa, Comando da Aeronáutica, Org. 2° SGT. BMT Antonio Carlos), and the global estuarine data by Dr Alberto Borges (Liège University).

- 27
- 29

- ----
- 30
- 31

1 **References**

- Abril, G., Nogueira, E., Hetcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M.:
 Behaviour of organic carbon in nine contrasting European estuaries, Estuar. Coast. Shelf
 S., 54, 241–262, 2002.
- Abril, G., Etcheber, H., Delille, B., Frankignoulle, M., and Borges, A.V.: Carbonate
 dissolution in the turbid and eutrophic Loire estuary, Mar. Ecol-Prog. Ser., 259, 129–138,
 2003.
- Abril G., Commarieu M., Maro D., Fontugne M., Guérin F., and Etcheber, H.: A massive
 dissolved inorganic carbon release at spring tide in a highly turbid estuary, Geophys. Res.
 Lett., 31, L09316, doi:10.1029/2004GL019714, 2004.
- 11 Abril, G., Richard, S., and Guérin, F.: In-situ measurements of dissolved gases (CH₄ and

12 CO_2) in a wide range of concentrations in a tropical reservoir using an equilibrator, Sci.

- 13 Total Environ, 354, 246–251, 2006.
- 14 Abril, G., Commarieu, M., Sottolichio, A., Bretel, P., and Guérin, F.: Turbidity limits gas
- exchange in a large macrotidal estuary, Estuar. Coast. Shelf Sci., 83, 342–348, 2009.
- 16 Allen, M. R., Frame, D. J., Huntingford, C., Jones, C., Lowe, J. A., Meinshausen, M., and
- 17 Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth
- tonne, Nature, 458, 1163-1166, 2009.
- 19 Araujo, M., Noriega, C., and Lefèvre, N.: Nutrients and carbon fluxes in the estuaries of
- major rivers flowing into the tropical Atlantic, Frontiers in Marine Science, 1, 1–16,
 doi:10.3389/fmars.2014.00010, 2014.
- 22 Amarante, O. A., Silva, F. J., and Rios Filho, L. G.: Atlas Eólico, Estado do Rio de
- 23 Janeiro, Secretaria de Estado da Energia, da Indústria Naval e do Petróleo, Rio de
- 24 Janeiro, 64 pp., available at
- 25 http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/AtlasEolicoRJ.pdf,
- 26 2002.
- 27 Bauer, J. E., Cai, W.J., Raymond, P., Bianchi, T. S., Hopkinson, C. S., and Regnier, P.
- 28 G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61-70,
- 29 doi:10.1038/nature12857, 2013.

- Benson, B.B. and Krause, D.: The concentration and isotopic fractionation of oxygen
 dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol.
- 3 Oceanogr., 29, 620-632, 1984.
- 4 Bérgamo, A.S. 2010.: Caracteristicas hidrograficaz, da circulacao, e dos transportes de
- 5 volume e sal na Baia de Guanabara (RJ) : variacoes sazonais e moduladas pela mare,
- 6 Ph.D. thesis, Universidade de Sao Paulo, Sao Paulo, 200 pp., 2010.
- 7 Bernardes, M. C., Knoppers, B. A., Rezende, C. E., Souza, W. F., and Ovalle, A. R.:
- 8 Land-sea interface features of four estuaries on the South America Atlantic coast, Braz.
- 9 J. Biol., 72, 761-774, 2012.
- 10 Bidone, E. D. and Lacerda, L. D.: The use of DPSIR framework to evaluate sustainability
- 11 in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil, Reg. Environ.
- 12 Change, 4, 5-16, 2004.
- 13 Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., and
- 14 Patchineelam, S. R.: Eutrophication history of Guanabara Bay (SE Brazil) recorded by
- phosphorus flux to sediments from a degraded mangrove area, Mar. Pollut. Bull., 58,
- 16 1750–1754, doi:10.1016/j.marpolbul.2009.07.025, 2009.
- 17 Borges, A. V. and Frankignoulle, M.: Daily and seasonal variations of the partial pressure
- 18 of CO₂ in surface seawater along Belgian and southern Dutch coastal areas, J. Mar. Syst.,

19 19, 251–266, doi:10.1016/S0924-7963(98)00093-1, 1999.

- 20 Borges, A. V.: Do we have enough pieces of the jigsaw to integrate CO_2 fluxes in the
- coastal ocean?, Estuaries, 28, 3–27, doi:10.1007/BF02732750, 2005.
- 22 Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more
- strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353,
 doi:10.4319/lo.2010.55.1.0346, 2010.
- 25 Borges, A.V. and G. Abril.: Carbon Dioxide and Methane Dynamics in Estuaries, in:
- 26 Treatise on Estuarine and Coastal Science, Eric, W. and Donald, M. (eds.), Academic
- 27 Press, Amsterdam, 119–161, 2011.
- 28 Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C,
- 29 Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V., Smith T.
- 30 J., and Twilley, R. R.: Mangrove production and carbon sinks: a revision of global budget
- stimates. Global Biogeochem. Cy., 22, GB2013, doi:10.1029/2007GB003052, 2008.

- 1 Bozec, Y., Merlivat, L., Baudoux, A. C., Beaumont, L., Blain, S., Bucciarelli, E.,
- 2 Danguy, T., Grossteffan, E., Guillot, A., Guillou, J., Répécaud, M., and Tréguer, P.:
- 3 Diurnal to inter-annual dynamics of pCO₂ recorded by a CARIOCA sensor in a
- 4 temperate coastal ecosystem (2003–2009), Mar. Chem., 126, 13–26,
- 5 doi:10.1016/j.marchem.2011.03.003, 2011.
- 6 Bozec, Y., Cariou, T., Macé, E., Morin, P., Thuillier, D., and Vernet, M.: Seasonal
- 7 dynamics of air-sea CO₂ fluxes in the inner and outer Loire estuary (NW Europe), Estuar.
- 8 Coast. Shelf Sci., 100, 58–71, doi:10.1016/j.ecss.2011.05.015, 2012.
- 9 Bricker, S., Ferreira, J., and Simas, T.: An integrated methodology for assessment of
- 10 estuarine trophic status, Ecol. Modell., 169, 39–60, doi:10.1016/S0304-3800(03)00199-
- **11** 6, 2003.
- 12 Bourton J. D. and Liss, P. S.: Estuarine Chemistry, Academic Press, London, 1976.
- 13 Cai, W. -J., Pomeroy, L. R., Moran, M. A., and Wang, Y. C.: Oxygen and carbon dioxide
- 14 mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern
- 15 US, Limnol. Oceanogr., 44, 639–649, 1999.
- 16 Cai, W.-J.: Riverine inorganic carbon flux and rate of biological uptake in the Mississippi
- 17 River plume, Geophys. Res. Lett., 30, 1032, doi:10.1029/2002GL016312, 2003.
- Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial
 carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, 2011.
- 20 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou,
- 21 W.-C., Zhai, W., Hollibaugh, J. T., and Wang, Y.: Acidification of subsurface coastal
- waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, 2011.
- Carmouze, J., Knoppers, B. A., and Vasconcelos, P. A.: Metabolism of Saquarema
 Lagoon, Brazil, Biogeochemistry, 2, 14, 129-148, 1991.
- 25 Carreira, R. S., Wagener, A. L. R., Readman, J. W., Fileman, T. W., Macko, S. A., and
- 26 Veiga, Á.: Changes in the sedimentary organic carbon pool of a fertilized tropical estuary,
- 27 Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach, Mar.
- 28 Chem., 79, 207–227, doi:10.1016/S0304-4203(02)00065-8, 2002.
- 29 Chen, C. C., Gong, G. C., and Shiah, F. K.: Hypoxia in the East China Sea: One of the
- 30 largest coastal low oxygen areas in the world, Mar. Environ. Res., 64, 399–408,

- 1 doi:10.1016/j.marenvres.2007.01.007, 2007.
- 2 Chen, C.T.A., Huang, T.H., Chen, Y.C., Bai, Y., He, X., and Kang, Y.: Air-sea exchanges
- of CO_2 in the world's coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-

4 6509, 2013.

5 Chou, W. C., Gong, G. C., Cai, W. J., and Tseng, C. M.: Seasonality of CO₂ in coastal

6 oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence

- 7 from the Changjiang-East China Sea system, Biogeosciences, 10, 3889-3899,
- 8 doi:10.5194/bg-103889-2013, 2013.
- 9 Cloern, J.: Our evolving conceptual model of the coastal eutrophication problem, Mar.
- 10 Ecol. Prog. Ser., 210, 223–253, doi:10.3354/meps210223, 2001.
- 11 Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the
- 12 world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, doi:10.5194/bg-
- 13 11-2477-2014, 2014.
- Cohen, J. E., Small, C., Mellinger, A., Gallup, J., and Jeffrey S.: Estimates of coastal
 populations, Science, 278, 1209-1213, 1997.
- 16 Dai, M., Zhai, W., Cai, W.-J., Callahan, J., Huang, B., Shang, S., Huang, T., Li, X., Lu, Z.,
- 17 Chen,W., Chen, Z.: Effects of an estuarine plume-associated bloom on the carbonate

18 system in the lower reaches of the Pearl River estuary and the coastal zone of the northern

- 19 South China Sea, Cont. Shelf Res, 28, 1416–1423, 2008.
- 20 Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Cai, W., and Chen, C. A.: Diurnal
- variations of surface seawater pCO_2 in contrasting coastal environments, Limnol.
- 22 Oceanogr., 54, 735–745, 2009.
- Dickson, A.G. and Millero, F.J.: A comparison of the equilibrium constants for the
 dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
- 25 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The
- 26 Other CO 2 Problem, Annual Review of Marine Science, 1, 169–192,
- 27 doi:10.1146/annurev.marine.010908.163834, 2009.
- FEEMA:. Qualidade da agua da Baia da Guanabara—1990 a 1997. Secretaria de Estado
- 29 de Meio Ambiente, Fundação Estadual de Engenharia do Meio Ambiente, Rio de Janeiro,
- 30 187 pp., 1998.

- 1 Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E.,
- 2 and Theate, J. M.: Carbon Dioxide Emission from European Estuaries, Science, 282, 434–
- 3 436, 1998.
- 4 Frankignoulle, M., Borges A., and Biondo R.: A new design of equilibrator to monitor
- 5 carbon dioxide in highly dynamic and turbid environments, Water Res., 35, 344 7, 2001.
- 6 Frankignoulle, M., Biondo, R., Théate, J. M., and Borges, A. V.: Carbon dioxide daily
- 7 variations and atmospheric fluxes over the Great Bahama Bank using a novel autonomous
- 8 measuring system. Caribb. J. Sci., 39, 257-264, 2003.
- 9 Gattuso J. P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate metabolism in
- 10 coastal aquatic ecosystems, Annu. Rev. Ecol. Syst., 29, 405-434, 1998.
- 11 Godoy, J. M., Moreira, I., Bragan, M. J., Wanderley, C., and Mendes, L. B.: A study of
- 12 Guanabara Bay sedimentation rates, J. Radioanal. Nucl. Ch., 227, 157-160, 1998.
- Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds.): Methods of Seawater Analysis,
 third ed., Wiley-VCH, Weinhein, 1999.
- Guenther, M., Paranhos, R., Rezende, C., Gonzalez-Rodriguez, E., and Valentin, J.: 15 Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay 16 17 influenced by tidal oscillation, Aquat. Microb. Ecol., 50. 123-133, doi:10.3354/ame01154, 2008. 18
- Guenther, M. and Valentin, J.L. Bacterial and phytoplankton production in two coastal
 systems influenced by distinct eutrophication processes, Oecologia Brasiliensis, 12, 172178, 2008.
- 22 Guenther, M., Lima, I., Mugrabe, G., Tenenbaum, D. R., Gonzalez-Rodriguez, E., and
- 23 Valentin, J. L.: Small time scale plankton structure variations at the entrance of a tropical
- eutrophic bay (Guanabara Bay, Brazil), Braz. J. Oceanogr., 60, 405–414, 2012.
- Guo, X., Cai, W.-J., Huang, W-J., Wang, Y., Chen, F., Murrell, M.C., Lohrenz, S. Dai,
- M., Jiang, L-Q. and Culp, R.: CO₂ dynamics and community metabolism in the
 Mississippi River plume. Limnol. Oceanogr., 57, 1-17, 2012.
- 28 Gypens, N., Borges, A. V., and Lancelot, C.: Effect of eutrophication on air-sea CO₂
- 29 fluxes in the coastal Southern North Sea: a model study of the past 50 years, Glob. Chang.
- 30 Biol., 15, 1040–1056, doi:10.1111/j.1365-2486.2008.01773.x, 2009.

- 1 Huang, W-J., Cai, W-J., Wang, Y., Lohrenz, S.E., and Murrell, M.C.: The carbon dioxide
- 2 (CO2) system on the Mississippi River–dominated continental shelf in the northern Gulf
- 3 of Mexico I: Distribution and air-sea CO2 flux, J. Geophy. Res., 120, 1429-1445, doi:
- 4 10.1002/2014JC010498, 2015.

Hunt, C. W., Salisbury, J. E., and Vandemark, D.: CO₂ Input Dynamics and Air–Sea
Exchange in a Large New England Estuary, Estuar. Coast., 37, 1078–1091,
doi:10.1007/s12237-013-9749-2, 2014.

- Jiang, L. Q., Cai, W. J., and Wang, Y. C.: A comparative study of carbon dioxide
 degassing in river- and marinedominated estuaries, Limnol. Oceanogr., 53, 2603–2615,
 doi:10.4319/lo.2008.53.6.2603, 2008.
- Jähne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P. On
 parameters influencing air-water exchange, J. Geophys. Res., 92, 1937–1949, 1987.
- 13 Kalas, F. A., Carreira, R. S., Macko, S. A., and R. Wagener, A. L.: Molecular and isotopic
- 14 characterization of the particulate organic matter from an eutrophic coastal bay in SE
- 15 Brazil, Cont. Shelf Res., 29, 2293–2302, doi:10.1016/j.csr.2009.09.007, 2009.
- 16 Kirk, J. T. O.: Light and Photosynthesis in Aquatic Ecosystems, 3rd edition, Cambridge17 University Press, New York, 2011.
- 18 Kjerfve, B., Ribeiro, C. A., Dias, G. T. M., Filippo, A., and Quaresma, V. S.:
- 19 Oceanographic characteristics of an impacted coastal bay: Baia de Guanabara, Rio de
- 20 Janeiro, Brazil, Cont. Shelf Res., 17, 1609–1643, 1997.
- Knoppers, B.: Aquatic primary production in coastal lagoons, in: Coastal lagoon
 processes, Kjerfve, B., (Ed), Elsevier Science Publishers, Amsterdam, 243-286, 1994.
- Knoppers, B. A., Carmouze, J. P., and Moreira-Turcqo, P. F.: Nutrient dynamics,
 metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio
 de Janeiro, Brazil, in: Environmental geochemistry of coastal lagoon systems of Rio de
- Janeiro, Brazil, Knoppers, B. A., Bidone, E. D., and Abrão, J. J., (Eds.), FINEP, Rio de
- 27 Janeiro, 123-154, 1999a.
- 28 Knoppers, B., Ekau, W., and Figueiredo, A. G.: The coast and shelf of east and northeast
- 29 Brazil and material transport, Geo-Mar. Lett., 19, 171-178, 1999b.

- Koné, Y. J. M., Abril, G., Kouadio, K. N., Delille, B., and Borges, A. V.: Seasonal
 variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa),
- 3 Estuar. Coast., 32, 246–260, doi:10.1007/s12237-008-9121-0, 2009.
- 4 Körtzinger, A.: A significant CO₂ sink in the tropical Atlantic Ocean associated with the
- 5 Amazon River plume, Geophys. Res. Lett., 30, 2287, doi:10.1029/2003GL018841, 2003.
- 6 Lee, K., Kim, T.W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.M.: The
- 7 universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans,
- 8 Geochim. Cosmochim. Ac., 74, 1801–1811, doi:10.1016/j.gca.2009.12.027, 2010.
- 9 Maher, D. T. and Eyre, B. D.: Carbon budgets for three autotrophic Australian estuaries:
- 10 Implications for global estimates of the coastal air-water CO₂ flux, Global Biogeochem.
- 11 Cy., 26, GB1032, doi:10.1029/2011GB004075, 2012.
- 12 Maher, D. T., Cowley, K., Santos, I., Macklin, P., and Eyre, B.: Methane and carbon
- 13 dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in
- situ radioactive and stable isotope measurements, Mar. Chem., 168, 69-79, 2015.
- 15 Matthews, H. D., Gillett, N. P., Stott, P. A., and, Zickfeld, K.: The proportionality of
- 16 global warming to cumulative carbon emissions, Nature, 459, 829-832, 2009.
- 17 Mehrbach, C., Cuberson, C. H., Hawley, J.E., and Pytkowicz, R. M.: Measurements of
- 18 the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.
- 19 Limnol. Oceanog., 18, 897-907, 1973.
- Monteiro, F., Cordeiro, R. C., Santelli, R. E., Machado, W., Evangelista, H., Villar, L. S.,
 Viana, L. C. A., and Bidone, E. D.: Sedimentary geochemical record of historical
 anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality,
- 23 Environ. Earth Sci., doi: 10.1007/s12665-011-1143-4, 2011.
- 24 Monteith, J. L.: Climate and the efficiency of crop production in Britain, Philos. Trans.
- 25 R. Soc. Lond. Ser. B, 281, 277–294, 1977.
- Nixon, S. W.: Coastal marine eutrophication: a definition, social causes, and future
 concerns, Ophelia, 41, 199–219, 1995.
- 28 Noriega, C. and Araujo, M.: Carbon dioxide emissions from estuaries of northern and
- 29 northeastern Brazil., Scientific Reports, 4, 6164, doi:10.1038/srep06164, 2014.

- Noriega, C., Araujo, M., Lefèvre, N., Montes, M. F., Gaspar, F., and Veleda, D.: Spatial
 and temporal variability of CO₂ fluxes in tropical estuarine systems near areas of high
 population density in Brazil, Reg. Environ. Chang., 15, doi:10.1007/s10113-014-0671-3,
 2014.
- 5 Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. a, Gnanadesikan,
- 6 A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear,
- 7 R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C.
- 8 L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka,
- 9 Y. and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its
- 10 impact on calcifying organisms., Nature, 437, 681–6, 2005.
- Paranhos, R., Pereira, A. P., and Mayr, L. M.: Diel variability of water quality in a tropical
 polluted bay, Environ. Monit. Assess., 50, 131–141, 1998.
- 13 Pritchard, D.W.: Estuarine Hydrography, Adv. Geophys., 1, 243-280, 1952.
- Rabalais, N. N., Turner, R. E., Diaz, R. J., and Justic, D.: Global change and
 eutrophication of coastal waters, ICES J. Mar. Sci., 66, 1528–1537, 2009.
- Raymond, P.A. and Cole, J.J.: Gas exchange in rivers and estuaries: choosing a gas
 transfer velocity, Estuaries, 24, 312–317, 2001.
- 18 Rebello, A. L., Ponciano, C. R., and Melges, L. H.: Avaliacao da produtividade primaria
- e da disponibilidade de nutrientes na Baia de Guanabara, An. Acad. Bras. Cienc., 60,
 419-430, 1988.
- 21 Ribeiro, C. H. A. and Kjerfve, B.: Anthropogenic influence on the water quality in
- Guanabara Bay, Rio de Janeiro, Brazil, Reg. Env. Chan., 3, 13-19, 2001.
- 23 Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan. S. C.: CO2 Calc: a user-
- friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone), U.S.
- 25 Geological Survey Open-File Report, 2010–1280, 1–17, Available at:
- 26 http://pubs.usgs.gov/of/2010/1280/, last access : 6 January 2013, 2010.
- 27 Ruiz-Halpern, S., Sejr, M. K., Duarte, C. M., Krause-Jensen, D., Dalsgaard, T., Dachs,
- 28 J., and Rysgaard, S.: Air-water exchange and vertical profiles of organic carbon in a
- 29 subarctic fjord, Limnol. Oceanogr., 55, 1733–1740, doi:10.4319/lo.2010.55.4.1733,
- 30 2010.

- 1 Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sorensen, L. L., Lennert, K., Sogaard, D.
- 2 H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and Bendtsen, J.: High air-sea CO₂ uptake
- 3 rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability,

4 Mar. Chem., 128, 26–33, doi:10.1016/j.marchem.2011.11.002, 2012.

5 Sabine, C. L., Feely, R. a, Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof,

6 R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A.,

7 Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO₂, Science, 305, 367–71,

- 8 doi:10.1126/science.1097403, 2004.
- 9 Santos, V. S., Villac, M. C., Tenenbaum, D. R., and Paranhos, R.: Auto-and heterotrophic

10 nanoplankton and filamentous bactéria of Guanabara Bay (RJ, Brazil): estimates of cell/

filament numbers versus carbon content, Braz. J. Oceanogr., 55, 133-143, 2007.

12 Sarma, V., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S. K., Naidu, S. A.,

13 Kumar, N. A., Rao, D. B., Sridevi, T., Krishna, M. S., Reddy, N. P. C., Sadhuram, Y.,

14 and Murty, T. V. R.: Carbon dioxide emissions from Indian monsoonal estuaries,

15 Geophys. Res. Lett., 39, L03602, doi:10.1029/2011gl050709, 2012.

16 Silvennoinen, H., Liikanen, A., Rintala, J., and Martikainen, P. J.: Greenhouse gas fluxes

17 from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic

18 Sea), Biogeochemistry, 90, 193–208, doi:10.1007/s10533-008-9244-1, 2008.

- 19 Smith, S.V.; Swaney, D.P., Talaue-McManus, L. Carbon–Nitrogen–Phosphorus fluxes in
- 20 the coastal zone: The LOICZ approach to global assessment, in: Carbon and nutrient
- 21 fluxes in continental margins, Liu, K., Atkinson, L., Quiñones, R., Talaue-McManus, L.,

22 (Eds.), Springer-Verlag Berlin Heidelberg, Berlin, 575-586, 2010.

- Souza, M., Gomes, V., Freitas, S., Andrade, R., and Knoppers, B.: Net ecosystem
 metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary,
 Piauí River (NE of Brazil), Estuar. Coast., 32, 111–122, doi:10.1007/s12237-008- 9104-
- **26** 1, 2009.
- 27 Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels,
- A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change 2013: The Physical
- 29 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 30 Intergovernmental Panel on Climate Change, Cambridge University Press, United
- 31 Kingdom, 2013.

- 1 Strickland J. D. H. and Parsons T.R.: A practical handbook of seawater analysis, second
- 2 ed., Fisheries Research Board of Canada Bulletin, Ottawa, Canada, 1972.
- 3 Sunda, W. G. and Cai, W.J.: Eutrophication Induced CO₂-Acidification of Subsurface
- 4 Coastal Waters: Interactive Effects of Temperature, Salinity, and Atmospheric pCO₂.
- 5 Environ. Sci. Technol., 46, 10651–10659, doi: 10.1021/es300626f, 2012.
- 6 Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates,
- 7 N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y.: Global sea-air
- 8 CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and
- 9 temperature effects, Deep-Sea Res. Part II, 49, 1601–1622, 2002.
- 10 Valentin, J. L., Tenenbaum, D. R., Bonecker, A. C. T., Bonecker, S. L. C., Nogueira, C.
- 11 R., and Villac, M. C.: O sistema planctônico da Baía de Gaunabara: Síntese do
- 12 conheciemnto. In: Silva, S.H.G.; Lavrado, H.P. (Eds). Ecologia dos Ambientes Costeiros
- 13 do estado do Rio de Janeiro, Oecologia Brasiliensis, 7, 35-59, 1999.
- Villac, M. C. and Tenenbaum, D. R.: The phytoplankton of Guanabara Bay, Brazil. I.
 Historical account of its biodiversity, Biota Neotropic, 10, 271-293, 2010.
- 16 Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J.: Coastal ocean
- acidification: The other eutrophication problem, Estuar. Coast Shelf S., 148, 1-13, 2014.
- 18 Wollast, R.: Evaluation and comparison of the global carbon cycle in the coastal zone and
- 19 in the open ocean, in: The Sea, Vol. 10, Brink, K. H. and Robinson, A. R. (Eds.), John
- 20 Wiley & Sons, New York, 213–252, 1998.
- Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar.
 Chem., 2, 203–215, 1974.
- 23 Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B.: Diurnal variation of
- 24 oxygen and carbonate system parameters in Tampa Bay and Florida Bay, Mar. Chem.,
- 25 104, 110–124, doi:10.1016/j.marchem.2006.12.008, 2007.
- Zhai, W., Dai, M., and Guo, X.: Carbonate system and CO₂ degassing fluxes in the inner
 estuary of Changjiang (Yangtze) River, China, Mar. Chem., 107, 342–356,
 doi:10.1016/j.marchem.2007.02.011, 2007.
- Zhai, W. D. and Dai, M. H.: On the seasonal variation of air-sea CO₂ fluxes in the outer
 Changjiang (Yangtze River) Estuary, East China Sea, Mar. Chem., 117, 2–10,
 doi:10.1016/j.marchem.2009.02.008, 2009.

1	Zhang, L., Xue, M. and Liu, Q.: Distribution and seasonal variation in the partial pressure					
2	of CO ₂ during autumn and winter in Jiaozhou Bay, a region of high urbanization., Mar.					
3	Pollut. Bull., 64, 56-65, doi:10.1016/j.marpolbul.2011.10.023, 2012.					
4	Zhang, C., Huang, H., Ye, C., Huang, L., Li, X., Lian, J. and Liu, S.: Diurnal and seasonal					
5	variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan					
6	Island, South China Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., 96, 65-74,					
7	doi:10.1016/j.dsr2.2013.02.013, 2013					
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						

- 1 Table 1. Mean (± standard deviation), minimum, maximum and number of observations (N) of
- 2 the principal physicochemical properties of the waters of Guanabara Bay for the sampling period
- 3 separated by sectors.

	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	
Temp.	23.8 ± 1.7	25.5 ± 2.2	25.4 ± 2.1	26.8 ± 2.6	26.7 ± 2.2	
(°C)	(21.0 - 29.3) $(22.1 - 32.4)$		(22.1 - 31.5)	(22.0 - 32.3)	(22.6 - 33.9)	
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397	
Salinity	32.2 ± 2.1	30.3 ± 2.4	29.8 ± 3.0	27.0 ± 4.3	27.2 ± 3.5	
·	(25.4 - 34.9)	(17.7 - 33.7)	(15.1 - 33.8)	(14.6 - 33.2)	(16.6 - 32.9)	
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397	
DO	103 ± 29	97 ± 59	138 ± 51	142 ± 62	160 ± 69	
(%)	(48 - 221)	(2 - 263)	(56 - 357)	(30 - 361)	(46 - 370)	
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397	
pCO ₂	411 ± 145	711 ± 561	286 ± 157	307 ± 256	272 ± 293	
(ppmv)	(104 - 747)	(50 - 3715)	(41 - 660)	(29 - 2222)	(22 - 2203)	
	N = 1918	N = 1046	N = 2035	N = 1594	N = 2397	
pН	8.20 ± 0.16	8.15 ± 0.32	8.35 ± 0.23	8.34 ± 0.29	8.44 ± 0.31	
(NBS)	(7.90 - 8.71)	(7.33 - 8.96)	(7.88 - 8.96)	(7.39 - 9.01)	(7.51 - 9.23)	
	N = 1581	N = 910	N = 1790	N = 1490	N = 2225	
ТА	2240 ± 92	2291 ± 99	2168 ± 177	2045 ± 369	2137 ± 166	
(µmol.kg ⁻¹)	(1942 - 2320)	(1890 - 2488)	(1507 - 2500)	(2111 - 3920)	(1479 - 2314)	
	N = 44	N = 32	N = 40	N = 39	N = 53	
DIC	1985 ± 120	2044 ± 268	1847 ± 257	1658 ± 259	1758 ± 264	
(µmol.kg ⁻¹)	$mol.kg^{-1}$ (1720 - 2127) (1526 - 2523)		(1332 - 2290)	(1095 - 2118)	(1198 - 2190)	
	N = 44	N = 32	N = 32	N = 35	N = 52	
Chl-a	19.1 ± 22.0	46.2 ± 51.4	57.6 ± 90.0	69.2 ± 60.2	107.7 ± 101.8	
(µg.L ⁻¹)	(2.0 - 128.0)	(3.3 - 212.9)	(1.6 - 537.2)	(13.1 - 288.8)	(1.5 - 822.1)	
	N= 34	N= 33	N= 33	N= 32	N= 47	
NO ₃ -N	3.50 ± 3.30	3.72 ± 4.93	4.12 ± 5.27	2.14 ± 3.29	1.92 ± 2.08	
(µM)	(0.13 - 12.50)	(< LD - 18.63)	(0.16 - 19.12)	(< LD - 14.74)	(0.04 - 9.20)	
	N= 34	N= 33	N= 32	N= 33	N=47	
NO ₂ -N	1.60 ± 1.92	2.59 ± 2.89	1.81 ± 2.58	1.46 ± 2.74	1.71 ± 1.98	
(µM)	(0.05 - 7.30)	(0.10 - 10.67)	(< LD - 10.79)	(0.03 - 9.37)	(0.03 - 7.08)	
	N= 36	N= 33	N= 33	N= 33	N=47	
NH ₄ -N	8.15 ± 6.26	44.9 ± 25.2	9.10 ± 9.48	4.96 ± 6.92	26.82 ± 27.67	
(µM)	(0.09 - 22.50)	(0.15 - 94.73)	(0.04 - 37.95)	(0.04 - 29.29)	(0.13 - 130.12)	
	N=37	N= 33	N= 33	N= 33	N= 47	
PO ₄ -P	$1.\overline{11 \pm 0.60}$	$5.\overline{28 \pm 3.88}$	1.51 ± 1.07	$1.\overline{10\pm0.79}$	$2.2\overline{3 \pm 2.17}$	
(µM)	(0.11-2.44)	(0.17 - 20.79)	(0.17 - 1.10)	(0.03 - 2.96)	(0.02 - 8.72)	
	N= 37	N= 33	N= 33	N= 33	N=47	

Table 2 Summary of calculated mean values for wind speed (U10), gas exchange2coefficient (k_{600}) and CO2 fluxes at the air-sea interface in each sectors and entire3Guanabara Bay. Diurnal variations (nighttime < 9:30 AM; daytime > 9:30 PM) seasonal4means (winter and summer) and time-integrated values are reported. W92 are the data5calculated according to k_{600} of Wanninkhof (1992), RC01 are the data calculated6according to k_{600} of Raymond and Cole (2001), and A09 are data calculated according to7 k_{600} of Abril et al. (2009).

			U_{10}	k ₆₀₀		CO ₂ Flux			
			$(m s^{-1})$	$(cm h^{-1})$			$(mmol m^{-2} h^{-1})$		
				W92	RC01	A09	W92	RC01	A09
Sector 1	Winter	Nightime	1.8	1.2	3.5	7.2	0.55	1.59	3.37
(47Km^2)		Daytime	2.5	2.6	4.7	9.0	0.50	1.19	2.33
	Summer	Nightime	2.5	2.7	4.8	9.2	-0.84	-1.27	-2.35
		Daytime	3.8	6.6	8.5	12.3	-1.23	-3.88	-5.42
	Time-integ	grated	2.6	3.2	5.3	9.4	-0.25	-0.57	-0.51
Sector 2	Winter	Nightime	1.9	1.9	3.7	7.5	5.19	7.74	14.61
(32Km ²)		Daytime	2.4	2.3	4.4	8.8	3.29	4.99	10.29
	Summer	Nightime	2.5	3.1	4.8	9.2	1.75	1.97	2.87
		Daytime	3.3	4.4	6.2	10.9	1.12	1.28	2.02
	Time-integ	grated	2.5	2.9	4.7	9.1	2.27	4.00	7.44
Sector 3	Winter	Nightime	1.4	0.8	3.0	6.1	-0.13	0.06	0.34
(96Km ²)		Daytime	2.6	2.8	4.9	9.2	-0.19	-0.79	-1.53
	Summer	Nightime	2.8	3.0	5.0	9.7	-1.97	-3.28	-6.37
		Daytime	3.9	6.7	8.4	12.2	-4.82	-6.22	-9.65
	Time-integ	grated	2.6	3.3	5.3	9.3	-1.77	-2.56	-4.29
Sector 4	Winter	Nightime	1.5	0.9	3.2	6.2	-0.10	-0.33	-0.59
(55Km^2)		Daytime	2.3	2.3	4.4	7.8	-1.04	-1.26	-2.00
	Summer	Nightime	2.1	1.7	4.0	7.4	-0.24	-0.43	-0.76
		Daytime	3.2	4.6	6.4	9.9	-4.28	-5.90	-9.13
	Time-integ	grated	2.2	2.3	4.5	7.8	-1.41	-1.97	-3.12
Sector 5	Winter	Nightime	1.5	0.9	3.2	6.1	0.83	3.32	5.88
(80Km ²)		Daytime	2.4	2.4	4.5	8.0	-1.61	-2.67	-4.87
	Summer	Nightime	2.1	1.8	4.0	7.4	-2.67	-3.25	-4.99
		Daytime	3.1	4.2	6.0	9.6	-4.27	-6.21	-9.73
	Time-integ	grated	2.2	2.3	4.4	7.7	-1.93	-2.20	-3.42
All Bay	Winter	Nightime					0.78	1.86	3.53
(310Km^2)		Daytime					-0.24	-0.46	-0.67
	Summer	Nightime					-1.29	-1.92	-3.45
		Daytime					-3.42	-5.02	-7.73
	Time-integ	grated					-1.10	-1.38	-2.07

Table 3 Summary of the documented carbon fluxes in the Guanabara Bay.

Inputs	$mmol \ C \ m^{-2} \ d^{-1}$	Comment
CO ₂ air-water flux	26-49*	All bay average; This study
CO ₂ air-water flux	33 - 102*	Sectors 3, 4 and 5; This study
Organic carbon load from sewage	43	All bay average; FEEMA (1998), majority of organic carbon seems to be mineralized in sewage network
River DIC, DOC and TOC inputs	Undocumented	
Internal Processes	$mmol \ C \ m^{-2} \ d^{-1}$	Comment
NCP	51 - 225 (143)**	Sectors 4 and 5; This study
NPP	60 - 300 (170)**	Sectors 2, 3 and 5; Rebello et al., (1988)
Total Respiration	Undocumented	
Outputs	$mmol \ C \ m^{-2} \ d^{-1}$	Comment
Organic carbon burial	27 – 114	Sectors 3, 4 and 5; Carreira et al., (2002); Monteiro et al., (2011)
DIC and TOC export to the coastal area	Undocumented	

6 *Annual average according to the k600 model parameterizations of Wanninkhof (1992) and

7 Abril et al., (2009). The lower value refers to the model of Wanninkhof (1992), whereas the

8 higher value refers to the model of Abril et al. (2009).

9 ** Range and annual average in parenthesis.

1 Figure Captions

2 Figure 1. Map of Guanabara Bay. Dark grey color indicates the urbanized areas. Green color

3 shows the mangrove localization. Black points represent the locations of the discrete sampling,

4 black lines are isobaths, red squares represent the locations of the airports with the meteorological

5 stations, and blue lines delimit the different sectors in the bay (sectors S1 to S5).

Figure 2. Meteorological conditions during the sampling period (in green) compared with
historical values (1951-2014, in blue). 2a presents the monthly accumulated precipitation; 2b
presents the monthly average of atmospheric temperature.

- 9 Figure 3. Typical vertical profiles of salinity, temperature, dissolved oxygen (DO) and
 10 chrollophyll *a* (Chl *a*) in the water column. Profiles are showed for S1, S3 and S5, in summer and
 11 winter conditions. Note the different depth scale for the S5. Dotted line in 3k and 3l shows
 12 nighttime profile (7:00 AM), whereas full line shows a daytime profile (12:30 PM) the same day
 13 at the same station.
- Figure 4. Concentration maps of continuous pCO₂ measurements in surface waters of Guanabara
 Bay for all the sampling campaigns.
- Figure 5. Diurnal variations of pCO₂ concentrations. The ship back and forth tracks are indicated as red lines in small maps. Arrows show the boat direction and sampling time are indicated along each track. Blue parts of the tracks are considered as nighttime (< 9:30 AM) and green parts as daytime (> 9:30 AM). Inserted small graphs also show the water pCO₂ evolution *versus* time, and shadow area represents the sampling before 9:30 AM (nighttime). The grey lines indicate the atmospheric pCO₂ (400 ppmv). Note the different pCO₂ scales for each survey.
- atmospheric pCO_2 (400 ppinv). Note the different pCO_2 scales for each survey.
- Figure 6. Box plots (maximum, percentile 75%, median, percentile 25% and minimum) of pCO₂
- 23 data for all the campaigns (a), and for each individual sectors (b, c, d, e and f). Black box plots
- represents the nighttime data (< 9:30 AM), when available, and white box plots represent daytime
 data (> 9:30 AM).
- Figure 7. Relationship between the excess dissolved inorganic carbon (E-DIC) and apparent utilization of oxygen (AOU) in Guanabara Bay (green dots) compared to those reported in 24 estuarine environments (red dots, Borges and Abril, 2011). The 1:1 line represents the quotient between CO₂ and O₂ during the processes of photosynthesis and respiration.
- 30 Figure 8. Principal Components Analysis (PCA) based on mean values for each sampling
- campaign of the physical and biogeochemical properties of the water (temperature, salinity, pCO₂,
- 32 DO and Chl *a*) and meteorological conditions (wind velocity and accumulated precipitation of 7
- days before each survey). The data-set was normalized by z-scores.
- 34

Figure 1

- 1 Figure 2

- ~~

3 Figure 3

- 3 Figure 4

2 Figure 5

- Figure 6


```
Figure 8
1
```


