Comment on "A large CO₂ sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)" by L. C. Cotovicz Jr. et al.

2 3 4

5

1

Comment 1

General comments:

- 6 The present paper under review for biogeosciences describes the surface water pCO₂
- 7 and ancillary parameters in a semi-enclosed estuarine embayment. The paper gives
- 8 interesting results (adding more studies of the carbon cycle in coastal area) and I
- 9 recognize the sampling strategy effort done by the authors. It was also been really quick
- from the last sampling period to the submission so I congratulate the first author for this
- effort. There are not mistakes in the bibliography list and spelling, attesting to the close
- 12 attention the authors paid to writing.
- Reply1: Thank you very much for this general positive evaluation of our paper.

14 15

16 Comment 2

- 17 However, I have three major concerns about the current version of the manuscript:
- 1. Statistical analysis need to be better explained and improved:
- 19 Reply/Change2: In the revised MS, we have improved and explained in more details the
- statistical analyses, as recommended. We added a new section in the material and
- 21 methods section called "2.4 Statistical Analysis". However, we did not follow all the
- numerous and detailed comments by the reviewer#1 when he/she asked for more
- 23 statistical analysis of our data. Indeed, in few cases (in particular for more quantitative
- biogeochemical analysis in the discussion section) we found that statistical analysis
- 25 would not put additional value to our MS. To the contrary, as our MS was already quiet
- long, we had to make some choices in our revisions. In fact, we found more important
- to strengthen our "biogeochemical analysis" as asked by reviewer WJ Cai, rather than
- adding more statistical analysis that we believed would add limited value to our MS –
- the few Reviewer's comments that were not accounted for are all detailed below.
- Nevertheless, important effort has been made for the description of statistics, and we
- 31 recognize that these significant changes were necessary and greatly improved our MS.

32

- 33 Comment 3
- a. There is no section on the M&M on how the stats have been carried on, which
- 35 program..
- Reply/Change3: We included a new section "Statistical Analysis" at the end of the
- 37 Material and Methods, which includes the stats description, program, etc.

38

- 39 Comment 4
- b. P-values alone (e.g.: 4685, 1) do not provide any information (need to know which
- 41 test...)
- 42 Reply/Change4: Information on the statistical test for each p-value are now provided in
- 43 the MS.

44

45 Comment 5

- c. "pCO₂ correlated with DO" (4683, 26) need to know which correlation:
- 47 Beware that standard regression is inappropriate as both variables are subject to errors.
- 48 In such cases, one should use type 2 or geometric regression.
- Reply 5. In all experimental science, variables are subject to errors. What we want to
- discuss here is that because of respiration/photosynthesis, pCO2 was minimum when

- 1 DO was maximum. Nothing more than this qualitative statement (for instance we don't
- 2 use the value of the slope of the regression in a quantitative way in order to calculate
- 3 some kind of photosynthetic/respiratory quotients)...
- 4 Change 5. We used Spearman correlation and specified this in the text in the section
- 5 statistical analysis in the text.

- 7 Comment 6
- 8 d. "Trends that mirrored" (4672, 9) need a stats background.
- 9 Reply 6. Same reply as for comment 5, see also figure R1 at the end of this comment,
- very classical trend in estuaries (Borges and Abril, 2011).
- 11 Change 6 No change in the revised MS

12

- 13 Comment 7
- e. Authors used a PCA in section 4.2 that has not been introduced before. Moreover,
- PCA is a reduction technique, it does not show any correlation (maybe need to use a
- 16 Multiple Linear Regression to show that.)...
- 17 Reply 7. We agree with the reviewer that PCA does not show correlations, but rather
- can shows patterns reducing the dimensions of the dataset through linear combinations.
- 19 We used this analysis to make data easy to explore and visualize. We agree that
- 20 Spearman Correlation matrix could also have been used in order to investigate the
- 21 physical and biological controls CO₂ dynamics. We did calculated this correlation
- 22 matrix for the same the same variables of the PCA analysis (See Table R2 in the
- response to reviewers) and we obtained the same conclusion as with the PCA. In the
- interest of brevity, we have chosen to keep the PCA analysis in Figure 8 of our MS, but
- 25 not to include the correlation matrix. If reviewer#1 and/or associated editor ask us to do
- so, we can include in the final version of the MS.
- 27 Change 7: We introduced a section "statistical analysis" in the material and methods that
- 28 explain the PCA. Also, we do not use the term "correlation" when we talk about the
- 29 PCA.

- 31 Comment 8
- 2. The paper talks a lot about residence times and net ecosystem production. I think the
- authors have everything they need to calculate both of these parameters and will
- increase the robustness of this really good paper.
- Reply8. Following the comment of both reviewers, we have used our pCO2 diurnal data
- to calculate net community production (NCP). We also added a new table that
- 37 compares various carbon fluxes in Guanabara Bay responding to the comment of W-J
- 38 Cai on biogeochemical analysis (See Table R3 in the final of this response). Concerning
- water residence time, we agree this affects the CO2 dynamics and air-water exchanges.
- 40 However, in the case of Guanabara Bay, residence time is not always easy to estimate, if
- one wants to differentiate the residence time in each sectors. According to Kjerfve et al.
- 42 (1997) the average renewal time of 50% of the bay water volume is 11.4 days, with
- 43 important spatial variations (water renewal increasing seaward). So the average
- residence time (99% renewal of water) in the whole bay is probably around one month.
- 45 Although we don't know the exact value of residence time in each sector, we know that
- sectors S4 and S5 present the longest residence times compared to S1, which is
- 47 connected to the ocean. So residence times vary between few days to one week in sector
- 48 1, and one month or more in sectors 4 and 5. We think that this semi-quantitative
- 49 characterisation of residence time (together with stratification) still allows explaining
- 50 most of CO2 spatial dynamics in Guanabara Bay.

1 Change8: we calculated NCP, insert it in materials and methods, results and discussion, 2 as well as, in the new table. Please, see the sections 2.3.3.2; 3.6 and the last paragraph 3 of the section 4.4. Reference to residence time was made in a semi-quantitative 4 approach as described above.

5 6

7

8

Comment 9

- 3. Some question I had when I read the abstract and have not been answer are:
- 9 a. Have the tide/tidal currents an effect in exchanging with open water?
- 10 Reply 9/ The tide in the bay is semidiurnal with an average range of 0.7 m (micro/meso
- tidal). Generally, the tidal currents inside the bay are lower than 0.5 m/s (except near the
- bay entrance Kjerfve et al. (1997). With an average water tidal renewal of about one
- month, the tide/tidal currents effect in exchanging with open waters are relatively small.
- 14 Change8: We mention the small impact of tidal exchange in the revised MS on the
- material and methods section, in the description of the study area.

16 17

Comment 10

- b. What is the influence of mangrove? This is really interesting point of the view of
- 19 Koné et al. works.
- 20 Reply 10. Indeed, mangrove-surrounding waters generally show large pCO2
- supersaturation (eg Kone and Borges, 2008). In Guanabara Bay, the extension of
- 22 mangrove forest is not so large, and the volume of water exchanged with the mangrove
- 23 sediments is probably moderate. This is what our data suggest, as we could not find
- supersaturated pCO2 conditions near of the mangrove (2.5 3 km). This indicates little
- export, low tidal, probably associated with a rapid consumption of mangrove-derived
- 26 DIC by the phytoplankton.
- 27 Change9- we mentioned in the MS (last paragraph of the section 4.1) the low mangrove
- influence as suggested.

29 30

Comment 11

- 31 c. Is there any other biological activity in the bay (seagrass, cultures, macrophytes...)
- Reply 11: Primary production in Guanabara Bay is dominated by phytoplankton. We
- 33 not could find researches conducted in Guanabara Bay that accounts information about
- other biological activities like seagrass, macrophytes, etc. The bay presented poorly
- 35 coverage of consolidate substrates, and does not provided ideal conditions for biological
- 36 settlement other than plankton.
- Change 11: this is now mentioned in the "study site" section.

38 39

Comment 12

- d. What happens when the summer stratification break?
- 41 Reply 12 As illustrated in figure 3, summer thermal stratification is diurnal and is
- weaker at night, due to convective cooling; in contrast, haline stratification maintains at
- anight. We never observed in the field occurrence of summer stratification break along
- 44 the sampling campaigns. Probably, the haline stratification can be broken during strong
- storms, which are not common for the region. The sectors 4 and 5 that showed the most
- prominent stratification are located in a confined and more protected region of the Bay.
- 47 making the stratification break more difficult. In general, the stratification is weaker and
- driven by the strong PAR incidence (thermal stratification).
- 49 Change 12: No change in the MS related to this comment

- 1 I use (page number, line number) or (section number) as in the friendly printed version
- 2 of BDG to locate the comments

- 4 Comment 13
- 5 Specific comments:
- 6 Abstract:
- 7 Here and elsewhere in the ms: Why the use of pCO₂ units? Community normally use
- 8 µatm.
- 9 Reply/Change 12: There is no definitive convention for pCO2 unit and ppmv or µatm
- can be used. For instance, Nature journals impose the use of ppmv.

11

- 12 Comment 14
- 13 (4672, 21-25): important message in a too long and confusing phrase. It's not clear how
- the embayment is: classic, in contrast of what?? Here and elsewhere, emitter is a
- synonym of source? Please stick to sink/source to not confuse readers. It is scientific
- writing, not literature, do not be afraid of repetition (also in 4696, 15).
- 17 Reply/Change 14: We have modified the text of this section in the abstract. Also, we
- replaced the term "emitter" to "source".

19

- 20 Comment 15
- 21 Introduction:
- 22 (4673, 25): no necessary comma before reference
- 23 Reply/Change 15: Modified as suggested.

24

- 25 Comment 16
- 26 (4673, 28): you don't use GPP again so avoid excess of abbreviation.
- 27 Reply/Change 16: Modified as suggested.

28

- 29 Comment 17
- 30 (4674, 2): you haven't defined what LOICZ stand for. In one of its manual, there's a
- 31 nice example on how to calculate residence times.
- Reply/Change 17: We defined the LOICZ abbreviation.

33

- 34 Comment 18
- 35 Materials and methods:
- 36 (4676, 11): "moderate stratified in wintertime", do not look like that in your winter
- 37 profiles, completely mixed.
- Reply/Change 18: We refer to "completely mixed" in the revised MS.

39

- 40 Comment 19
- Locate Ilha do Governador, Santos Dumont, Geleao in Fig. 1. Also add where the sea is,
- 42 it took me a while to understand the situation (for non-knowers of the area)
- 43 Reply/Change 19: We added all this information in Fig. 1

- 45 Comment 20
- 46 (4677, 24-): if I read this paragraph first, it will be easier to understand the whole study
- area section. Right now it is difficult to know where the wide entrance, which is the
- 48 inner regions...
- 49 Reply/Change 20: figure 1 was improved as recommended, so it is location is easier
- 50 now.

Comment 21

(4678, 10): caution here and everywhere else where you talk about areas. For example in (4684, 10) 75% of surface area of the Bay is wrong, is 75% of the **sampled** surface area of the Bay (67 % of the total area). Another example is (4697, 9-11): the polluted sampled area is only 10 % but the no sample 10 % might be also polluted (due to its location) and that will make 20 % of the bay. Modify Table 2 and Figure 6 a) accordingly (all/entire sampled bay) Reply/Change 21: We agree that 75 % and 10 % are related to the sampled area. We performed the modifications in the considered section, as well as, in table 2 and figure 6(a).

10 11 12

13

14 15

16

17

1 2

3

4

5 6

7

8

9

Comment 22

(4678, 29): is this probe also calibrated? Is the same as in (4679, 16)? Do you use discrete sample to calibrate for DO, temperature, salinity or only to converse chl a? Reply/Change 21: We calibrated the DO probe against saturated air. The temperature was not calibrated (we used 2 thermometers with very consistent results at +/- 0.01°C, one from the probe and from the pHmeter). The salinity probe was calibrated against

18 certified material.

19 20

Comment 23

- There is an ongoing debate about influence on filter/no filter sampling for TA and DIC.
- 22 Could you discuss some of this in your method? Did you test for this influence?
- 23 Reply/Change 23: We measured TA on filtrated water, so we removed acid-neutralizing
- particles. We did not test the difference between filtrated and non filtrated. We
- 25 calculated DIC from pCO2 and TA.

26 27

Comment 24

28 29

30

31

32

33

34 35 Which are pH and pCO₂ accuracy/precision? How are the number of the verification (4679, 26)? How often did you calibrate the sensors? pCO₂ span for long range, is the response still linear? How pCO₂ data fits with SOCAT standards? **Is there any plan to submit the dataset somewhere? Biogeosciences strongly promotes the full availability of the data sets reported in the papers that it publishes in order to facilitate future data comparison and compilation as well as meta-analysis. This can be achieved by uploading the data sets in an existing database and providing**

36 the link(s) in the paper.

- 37 Reply 24 We used 3 gas mixture standards (410, 1007 and 5035 in ppmv) to calibrate
- the LICOR before each sampling. We used N2 passing through fresh soda lime to set
- 39 the zero, and we used the standard at 1007 ppmv to set the span. We used the second
- and third standards at 410 and 5035 ppmv to check linearity. The number of
- verifications after each calibration was about 7, the licor signal was stable and linear in
- 42 the range of calibration. We also verify the drift before and after each sampling
- campaign. The measurements before and after each sampling campaign were consistent
- at precision level of about \pm 3 ppmv. The excellent agreement between the verifications
- 45 before and after each sampling campaign and the excellent agreement between the
- standards and the equipment shows that the method is robust and the pCO2 span is
- little. The precision and the accuracy of the pCO2 measurements were about 3 and 5
- 48 ppmv, respectively.
- 49 The precision of the pH measurements was about 0.01 (after 7 verifications against
- NBS standards). We performed a three-point calibration (pH 4.01, pH 7.00 and pH

- 1 10.01). As we have overdetermined the carbonate system (pCO2, pH, and TA) and we
- 2 have chosen to used direct pCO2 measurements and DIC calculated from pCO2 and
- 3 TA, we use pH measurements only for quality check.
- 4 Change 24: This is now specified in the materials and methods.

- 6 Comment 25
- 7 (2.3.3) It is nice to try a small intercomparison between pairs but it need more
- 8 quantifications (are the slopes statistically different from 1? Are the intercept
- 9 statistically different from 0?) How are the errors propagated to calculate DIC? Is this \pm
- 10 6.5 μmol kg-1 between calculated
- 11 from each pair?
- Reply 25 With the biogeochemical analysis we make in this paper, we do not use DIC
- values to perform any budget calculation. We only use pCO2 values for the CO2
- budget. Our paper is quiet long enough so we find such detailed DIC quality check
- secondary in comparison with other topics (eutrophication, stratification, etc...).
- Nevertheless, as requested, we provide to the reviewer the information on the quality of
- our data that in Figure R4 and we added few sentence in the material and methods.
- 18 Change 25: We included this information on the DIC quality check in materials and
- 19 methods.

20 21

- 22 Comment 26
- 23 Results
- 24 (3.1): Are the sampling period statistically different than the climatology? Without
- stats is difficult to compare, for example, it seems to me summer period is not warmer
- and dryer that the average; from Fig. 2 there are 2 months with more rain that
- 27 climatological and 3 dryer (same with temperature).
- 28 Reply 26: The temperature variation of the sampling period was not different from the
- climatological regime (p > 0.05; test-t), except for Dec.2013 and Jan.2014 (p < 0.001;
- 30 test-t). Especially for these two months, the period was significantly warmer than the
- 31 average.
- 32 Changes 26: We corrected the part of the text with this consideration. Please, see the
- first paragraph of the section 3.1. We also included in the graphs the standard deviation
- 34 bars.

35 36

- Comment 27
- The "driest months" is August 2013 (otherwise state driest months during summer
- period). "precipitation consistent with historical data": is that true? It seems Jul more
- rain and Aug really dry (4681, 24-26): We don't have a table for seasonal variation so
- 40 it's difficult to follow last part (I miss this table in other part of the ms (i. e.: (4686, 8)),
- 41 to allow easy follow) (4682, 5): "rainy season", remain the reader when is that.
- 42 Reply/Change27: We modified the text to "The other sampled months had air
- 43 temperature and precipitation consistent with historical data (Fig. 2), despite of some
- deviations from the historical average." It's difficult to analyse the accumulated
- 45 precipitation in this context because we didn't use the accumulated precipitation of the
- 46 month, instead, we used the accumulated precipitation of 7 days before each sampling
- 47 campaign.

48 49

Comment 28

- 1 (4682, 7): you haven't defined what's exactly eutrophic/hypertrophic and which are the
- threefold between both classifications. Readers might be familiars with eutrophic but
- 3 hypertrophic is more rear.
- 4 Reply/Change 28: This classification was based on the classical Nixon's classification
- 5 (Nixon, 1995) of 4 trophic states, from oligotrophic (< 100 g Cm-2 yr-1) to
- 6 hypertrophic (> 500 gCm-2 yr-1) according to the annual phytoplankton primary
- 7 production. In this way, Guanabara Bay presented an overall classification of
- 8 "eutrophic", whereas sectors 4 and 5 can reach the classification of "hypertrophic"
- 9 because the primary production can be higher than 500 gCm-2yr-1) (Rebello et al
- 10 1988).
- 11 Change 27: We cite Nixon (1995) in the revised MS.
- 12
- Comment 29
 (4682, 6-9): here is another example on how stats can help: cluster or any other
- grouping technique to show this difference between areas.
- Reply 29: we consider such cluster analysis would require a long description and would
- 17 unnecessarily increase the length of the MS.
- 18
- 19 Comment 30
- 20 (4682, 10): you haven't defined SD before.
- 21 Reply/Change 29: we define SD in the revised MS.
- 22
- 23 Comment 31
- 24 (4682, 15): needs stats to highly or moderate associate something.
- 25 Reply 31: Same reply as for comment 5.
- 26
- 27 Comment 32
- 28 (4682, 20-21): what do "outflow" and "inflow" means here?
- 29 Reply/Change 32: We removed the words "inflow" and "outflow" in this context.
- 30
- 31 Comment 33
- 32 (4682, 28): "well representative" is hard to believe on the light of such high diurnal
- changes. Were all done at the same time of the day? To avoid these doubts, it could be
- nice to have instead of one particular profile an average profile with mean and error
- 35 bars.
- 36 Reply/Change 33: These figures represent examples of depth profiles of Guanabara
- Bay, in summer and winter conditions, following the main channel of the Bay. The
- profiles were shown to illustrate the spatial and temporal differences in the vertical
- 39 column water structure (corroborating with Kjerfve et al 1997 results), and also the
- 40 diurnal enhancement of surface temperature in the upper parts of the bay. These profile
- are not supposed to be representative for any average conditions, they are used here to
- 42 illustrate the dynamics of stratification in the bay.
- 43
- 44 Comment 34
- 45 (4683, 27): temporally and spatially correlation need to sets of correlation values. Also
- defined what R2 is exactly. N in table 1 is different that n here? Please clarify/unify.
- 47 Reply/Change 34: We performed the Spearman correlation. The r refers to the
- 48 Spearman's rank correlation coefficient. We corrected the N (now the N in the text is the
- same with that on the table).

- 1 Comment 35
- 2 (4684, 2): unify the use of DO, AOU or Saturation (not defined) and use the units
- accordanly (right now is DO with % not correct, also in table 1). Values of 3750 ppmv
- 4 are not showed in fig (the scale didn't arrive so high)
- 5 Reply/Change 35: As stated in the material and methods, we report DO in % of
- 6 saturation. The values in the scale were corrected.

8 Comment 36

- 9 (4684, 6): "small and protected embayment" means S4, S5?
- 10 Reply/Change 36: No. This is a small region of the sector 2. We deleted this part of the
- 11 text to avoid confusion.

12

7

- 13 Comment 37
- 14 (4684, 15): here and elsewhere (also in figures) unify the date format. Can you
- clarify/rewrite brown/red bloom? I understand what you mean but I'm sure some
- biologist will have some concerns about that \blacksquare
- 17 Reply/Change 37: We unified the data format. Biologist Bastiaan Knoppers, has
- written this section and considers it is ok in its present form for such paper on carbon
- 19 biogeochemistry

20

- 21 Comment 38
- 22 (4684, 23): "open waters" might be misleading talking inside the bay.
- 23 Reply/Change 38: We changed to the bay waters.

24

- 25 Comment 39
- 26 (4684, 28): "In the latter" what? Sampling period, S1??
- 27 Reply/Change 39: "In the latter" referred to the back and forth track performed in S1.
- We rephrased this sentence.

29

- 30 Comment 40
- 31 (4685, 1): talking about night time for early morning seems contradiction. Maybe use
- 32 predawn?
- Reply/Change 40: We replaced nighttime to predawn.

34

- 35 Comment 41
- 36 (4685, 4): here and elsewhere, please unify time threshold (sometimes is 9:00, 9:30,
- 37 10:00)
- Reply/Change 41: We unified the threshold as 9:30 AM.

39

- 40 Comment 42
- 41 (4685, 5): you didn't sample September 2014
- 42 Reply/Change 42: We changed to Sep.2013.

43

- 44 Comment 43
- 45 (4685, 9): a reference is missing here.
- Reply/Change 43: We modified this part to "which apparently corresponded to the start
- 47 hour of photosynthetic activity by phytoplankton". It's an "apparently" hour, and we
- don't have a reference for this specify. Rebello et al. 1988, for example, used 10:00 AM
- as the start of phytoplankton activity.

```
1 Comment 44
```

- 2 Unify how you write night time (if you are going to keep using it)
- 3 Reply/Change 44: We unified to nighttime because is a common term in other studies.

- 5 Comment 45
- 6 (4685, 20): "diurnal variability": I know is logistically difficult (or sometimes
- 7 impossible) to do a proper night sampling. However, I would like to read something on
- 8 explaining this caveat. You are claiming diurnal variation is important but you are still
- 9 missing part of the day when even less data is available.
- 10 Reply/Change 45: The night sampling was not proper performed mainly due to a
- problem of security. We heard about some problems with boat assaults in the upper
- parts of the bay (and related to drugs traffic), and we thought that anchor our boat in a
- point 24 hours maybe was not a good idea. Then, we thought about the sampling with
- boat in movement, from dawn to dusk. The sampling design was within our
- possibilities. Indeed, nighttime was less sampled than daytime. However, we believe
- that logically the early morning (predawn) corresponds to the maximum surface water
- pCO2, because of the long night period before. We also have a quiet precise sampling
- between 5:00 and midday, so we could observe rapid pCO2 decrease around 9-9:30 and
- then pCO2 becomes quiet stable at low values during the whole day Then, we have used
- 20 multiple night end-members (except for S2), to diurnally integrate the fluxes.

21

- 22 Comment 46
- 23 (4685, 23-26): strange phrase, please rewrite more clear.
- 24 Reply/Change 46: We modified as suggested.

25

- 26 Comment 47
- 27 (4685, 26-4686, 4): really long phrase for an important info. Also it will be nice to see
- 28 this graph and have more quantification as it's an important result, also present in the
- 29 abstract
- Reply/Change 47: We rephrased this part in the text. Also, we attached this graph
- 31 (figure R1) in the final of this review. Furthermore, the figure 07 and related discussion
- 32 in the MS also provides information about this relationship.

33

- 34 Comment 48
- 35 (4686, 5): more than 2000 in S4 during April 2014 is not "slight"
- 36 Reply/Change 48: we removed slight.

37

- 38 Discussion
- 39 Comment 49
- 40 (4689, 23): you haven't defined PCA yet, not explain how you did...
- Reply/Change 49: We explained PCA in the material and methods section. Please see
- the reply/change 7.

43

- 44 Comment 50
- 45 (4690, 13): % of what, explain
- Reply/Change 50: We modified this part to "and showed the higher influence over the
- factor 2, which explained 19% of data variance."

- 49 Comment 51
- 50 (4690, 19): 395 ?? units

```
Reply/Change 51: Units are inserted.
 1
 2
 3
      Comment 52
 4
      (4690, 28): discuss or take care of some organism are able to uptake bicarbonate by the
     enzyme carbonic anhydrase and by the proton pump mechanism
 5
 6
     Reply/Change 52: we insert in the text a sentence about this process according to Kirk,
 7
      2011.
 8
      Kirk, J. T. O.: Light and photosynthesis in aquatic ecosystems, 3 ed., Cambridge
9
      University Press, New York, 2011.
10
     Comment 53
11
      (4691, 25-4692, 16): move to another section of the methods entitle "temperature and
12
13
     biological control in pCO<sub>2</sub> calculations". Clarify which means you are using: each
      survey independently or winter/summer as a whole. Explain the ratio (T/B =
14
      deltapCO2bio/deltapCO2temp)
15
16
      Reply/Change 53: We moved this text to the methods sections as suggested. We
      explained the ratio (T/B) in the new text, and the means were made for winter/summer
17
18
      as a whole.
19
20
     Comment 54
21
      (4693, 26): how does the turbidity influence this? (same question in 4698, 5)
22
      Reply/Change 54: We did not fully understood this comment. In Guanabara Bay water
      are clear and the phytoplankton biomass itself creates most of the turbidity
23
24
25
     Comment 55
      (4694, 11 and elsewhere): plankters = plankton?
26
27
     Reply/Change 55: Modified as suggested.
28
29
      Comment 56
      (4694, 26): During this period, space missing
30
      Reply/Change 56: Modified as suggested.
31
32
     Comment 57
33
34
      (4697, 9-10): "However this region occupies only about 10 % of the surface area of the
35
     bay". The other 10 % you could not sample seems logical to be also polluted. I
      understand the logistic problem but that will be now 20 % of the bay, just discuss the
36
     possible influence of the no sampled area.
37
38
     Reply/Change 57: S2 represents only 10 % of the sampled area. If we consider the
      unsampled region of sector 2, it still represents less than 10% of the area of the bay
39
      (because if we includes the unsampled area of this region in this context we also must
40
41
      include the other unsampled regions of the other sectors).
42
43
      Comment 58
44
      (4697, 15): at daytime at nighttime??
45
     Reply/Change 58: Modified as suggested.
```

47 Conclusions

46

48 Comment 59

49 (4698, 20): How can nutrient from sewage influence the whole bay but not carbon?

- 1 Reply/Change 59: Because carbon is mineralized and evaded to the atmosphere in the
- 2 sewage network, and in the high polluted channels. This is stated in two places in MS,
- as well as, the discussion about eutrophication and the conclusion

- 5 Tables:
- 6 Comment 60
- 7 1. Abbrevation of salinity (Sal.) has not been used during the ms. DO (%) wrong
- 8 Reply/Change 60: Modified as suggested.

9

- 10 Comment 61
- 11 2. How can U10 be different if they came only from 2 meteorological station (please
- 12 clarify)
- 13 Reply/Change 61:U10 are different because they come from 2 different meteorological
- stations, see material and method (4680, 4). For the sectors 1, 2 and 3 we used the data
- from meteorological station located at the Santos Dumont Airport, whereas for sector 4
- and 5 we used the data from the Galeao Airport, located at the Governador Island
- 17 (Figure 1).

18

- 19 Figures:
- 20 Comment 62
- 21 1. Dotted lines don't seem dotted in my file. Missing South and West in lat/long to be
- able to locate the map.

2. Dez? Mensal?

- Reply/Change 62: We change to the "black line" instead of "dotted line". We inserted
- 24 South and West in lat/long of the figure.

25

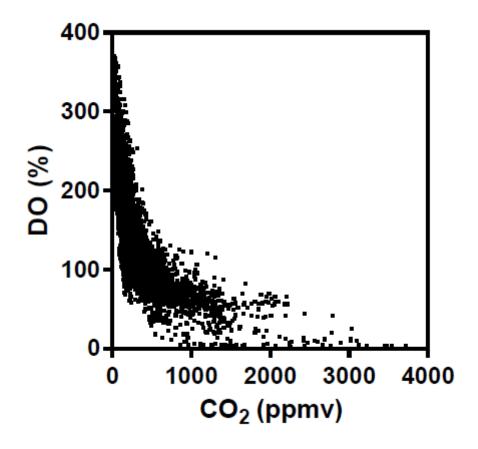
27

- 26 Comment 63
- 28 Reply/Change 63: We modified the figure and we modified the caption as suggested.
- We also included the standard deviation bars.

30

- 31 Comment 64
- 32 3. Scales are different (also in 5)
- Reply/Change 64: the scales in the figures are different to better shows the results, and
- in the figure caption we took care to alert the reader about this.

35

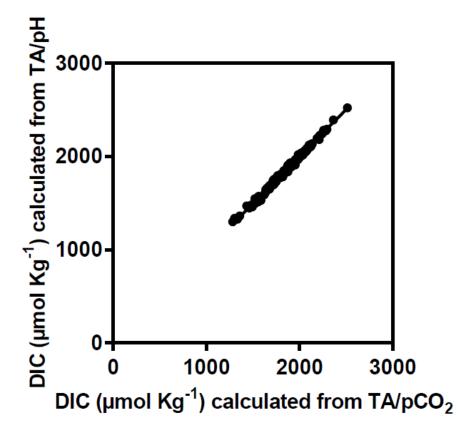

- 36 Comment 65
- 4. Rainbow scales have been under debate not to use them. In (g) it's really difficult to
- see where is super high (region 2)
- Reply/Change 65: We tested various color scales and used the best we found to show
- 40 our data.

41

- 42 Comment 66
- 5. Letters are small, difficult to read. In the small inner graphs, shadow when is "night
- 44 time". Legend >< 9:30 is confusing, better earlier, later (pre/post dawn?).
- Reply/Change 66: We increased the letters of the figure. We shadowed the small inner
- graphs. We modified to before 9:30 AM / after 9:30 AM

- 48 Comment 67
- 49 6. Unify data format and 9:00 or 9:30?
- Reply/Change 67: We unified the data format to 9:30.

2 R1: Relationship between pCO2(ppmv) vs. DO (%) for the continuous measurements of Guanabara Bay. N = 9002.


R2: Spearman correlation matrix for PAR (μmol m-2 s-1), accumulated precipitation of 7 days (Accum Prec 7; mm), wind velocity (Wind; cm s-1), dissolved oxygen (DO; %), chlorophyll a (Chl a; μg L-1), pCO2 (ppmv), salinity, temperature (Temp; °C) and CH4 (nmol L-1) in the Guanabara Bay. The values were calculated with averages for each sampling campaign.

	PAR	Accum Prec 7	Wind	DO	Chl a	pCO ₂	Salinity	Temp
PAR		0.11	0.83**	0.87**	0.87**	-0.83**	0.02	0.68*
Accum Prec 7	0.11		0.29	0.47	0.43	-0.46	-0.55	0.27
Wind	0.83**	0.29		0.88**	0.83**	-0.91**	-0.08	0.66
DO	0.87**	0.47	0.88**		0.76*	-0.93**	-0.36	0.76
Chl a	0.87**	0.43	0.83**	0.76*		-0.85**	-0.06	0.60
pCO ₂	-0.83**	-0.46	-0.91**	-0.93**	-0.85**		0.38	-0.86**
Salinity	0.02	-0.55	-0.08	-0.36	-0.06	0.38		-0.43
Temp	0.68*	0.27	0.66	0.76*	0.60	-0.86**	-0.43	

1 R3: Summary of the documented carbon fluxes in the Guanabara Bay.

Inputs of carbon to Guanabara Bay	$mmol\ C\ m^{-2}\ d^{-1}$	Comment			
CO ₂ air-water flux	26 – 49*	All bay average; This study			
CO ₂ air-water flux	33 – 102*	Sectors 3, 4 and 5; This study, strong and permanent annual CO ₂ sink area			
Organic carbon load from sewage	43	All bay average; FEEMA (1998) majority of organic carbon seems to be mineralized in sewage network			
River DIC, DOC and TOC inputs	Undocumented				
Internal Processes	$mmol\ C\ m^{-2}\ d^{-1}$	Comment			
NCP	51 – 225 (143)**	Sectors 4 and 5; This study			
NPP	60 – 300 (170)**	Sectors 2, 3 and 5; Rebello et al., (1988)			
Total Respiration	Undocumented				
Degassing / Burial / Export	mmol C m ⁻² d ⁻¹	Comment			
CO ₂ air-water flux	54 – 177*	Sector 2; This study, permanent CO ₂ degassing in a restricted area			
Total organic carbon burial	27 – 114	Sectors 3, 4 and 5; Carreira et al., (2002); Monteiro et al., (2011)			
DIC and TOC export to the coastal area	Undocumented				

R4: Linear Regression between DIC calculated from pH/TA and pCO2/TA. (R2=0.994; Slope: 1.008 ± 0.006). The slopes are not statistically different from 1 (p = 0.20) and the intercepts are not significantly different from 0 (p = 0.86). The method used is one equivalent to an Analysis of Covariance (ANCOVA), according to the GraphPad Guide User Manual 6.0.

- 2 Interactive comment on "A large CO2 sink enhanced by eutrophication in a
- 3 tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)" by L. C.
- 4 Cotovicz Jr. et al.
- 5 W-J. Cai (Referee)
- 6 wcai@udel.edu

7

- 8 Reviewer Comment 1:
- 9 The authors presented a well conducted research in Guanabara Bay, Brazil. They
- suggested their "findings of a net annual CO2 sink indicate that more field data are
- 11 needed in particular in the highly productive tropical coastal ocean, in order to
- adequately integrate estuarine CO2 fluxes at the global scale," and I agree. The paper is
- also generally well-written and easy to follow. I recommend publication with a major
- revision regarding the few points I listed below. If the first author is writing (one of)
- his/her first research papers, I must congratulate him/her. Well done!
- Reply 1: We acknowledge Dr W-J Cai for his positive evaluation of our MS and
- 17 encouraging general comments

- Reviewer Comment 2:
- 20 While the Results are very nice, I feel the Discussion lacks a rigorous analysis. The
- 21 authors provided a statistical analysis of data (which environmental and
- biogeochemistry factors is in control of pCO2 or CO2 flux); that is very good. But can
- 23 you move a step further by providing a more rigorous biogeochemical analysis. For
- example, a 1-D (seasonal) analysis on how pCO2 changes with time (from temperature,
- air-sea flux, mixing, and biological production) at few sites. NEP (or NCP) would come
- up in this analysis. If the authors feel this is too much to ask, then, they should say why
- 27 (such as this is good enough, or they need further information to do a more rigorous
- analysis, or it will be in their next paper, etc.).
- 29 Reply/Change 2: We have made some significant changes in our revised MS, in order to
- improve our biogeochemical analysis, as requested by Dr W.-J. Cai. Please note
- 31 however that the hydrodynamics of the bay is quiet complex and for instance, salinity
- 32 patterns do not allow a simple and classical mass balance analysis based on the mixing
- between fresh- and saline end-members. Here, we have quantified the influence of water
- temperature on pCO2 values at seasonal scale with the Takahashi approach (Takahashi
- et al., 2002) and we observed that the temperature effect (thermodynamic) is very small
- 36 compared to the biological effect. On the other hand, at the diurnal time scale, we
- 37 observed that the daytime formation of thermal stratification due to the strong irradiance
- 38 incidence was an important environmental factor for blooms development. We
- 39 calculated and included in the manuscript one Spearman correlation matrix with the
- 40 average values for each sampling campaign, and the pCO2 was negatively correlated to
- 41 the DO, Chl a, temperature and wind velocity (see the table R1 at the end of this
- document). The Spearman correlation was consistent with the PCA analysis. As also
- pointed by the reviewer 1, we improved the manuscript by calculating NCP (including
- information in the methods, results, discussion and conclusions), and this strengthened
- our conclusion one the autotrophic character of the bay in relation with the CO2 sink.
- 46 Finally, we are now analyzing several other biogeochemical parameters (POC, DOC,

1 13C-DOC, 13C-DIC...), and we believe these data can contribute to a more quantitative

2 biogeochemical analysis in one future paper, as suggested.

3

4 Reviewer Comment 3: This is a low wind regime. You have used two k600 models, one

- as the upper boundary and the other (RC) as the lower boundary, which is fine. But I
- 6 thought RC method provided quite high fluxes. Could you at least make a comparison
- 7 with Wanninkhof 1992 equation or his later revisions?
- 8 Reply 3: We inserted in the table 2 the values of K600 and related fluxes with the gas
- 9 exchange coefficient of Wanninkhof 1992. Now, the model of Wanninkhof can be
- 10 considered the lower boundary of the calculated fluxes as this K600 model was initially
- developed to open ocean waters, does not account for the specifies of the estuarine
- 12 environments.
- 13 Change 3: In the table 2 with the inserted Wanninkhof values (W92). Also, we included
- in the text some results and comparisons of the three k600 models in the sections
- 15 2.3.3.1; 3.6 and 4.4.

16

- 17 Reviewer Comment 4: The carbon budget: p.4697, Is there a strong reason that
- sediment burial must equal to air-water gas flux of CO2? I was expecting that this
- section would show how much of CO2 is taken from surrounding mangrove and cities,
- 20 how much is exported to the sea, how much is buried and how much is recycled, etc. I
- 21 may have asked too much. So you may ignore me; but at least don't call this section
- 22 carbon budget.
- Reply 4: The reason why sediment burial must equal to air-water gas flux of CO2 is that
- other lateral carbon inputs appear minor. However, we agree that the available data in
- 25 Guanabara Bay does not allow the construction of a full carbon "budget". However, is
- interesting the fact that the sink of CO2 at air-water interface is very near of the organic
- carbon burial in sediments (it seems like one efficient biological pump). We have some
- considerations: 1) the sediment sampling of Carreira et al (2002) was not conducted in a
- 29 well spatial design, i.e., the sampling was focused at the upper parts of the bay, and is
- 30 different of our approach that covered about 80% of the superficial area. 2) Considering
- 31 the three K600 models, the equaling of CO2 sink and organic carbon burial is visualized
- in the model of A09, whereas the other two models provided values a bit smaller than
- the burial of organic carbon. However, again, we need to keep in mind that the spatial
- sampling was very different between the two studies. If we consider the sectors fluxes,
- 35 the equality is more consistent.
- The answers to the other questions, like "how much of CO2 is taken from surrounding
- 37 mangrove and cities, how much is exported to the sea, how much is buried and how
- much is recycled" we cannot yet answer due to the scarcity of available data. We have
- only reports of the Environmental Institute of Rio de Janeiro State (FEEMA) and the
- 40 published papers of Carreira et al 2002; Rebello et al 1988 and Kalas et al 2009, which
- results are discussed in the section 4.4, however we have more questions than answers
- related to the fluxes between the compartments. The river inputs of carbon are still
- scarce, as well as, the exchanges with the open ocean.
- Change 4: We included a table in the manuscript that concise the fluxes in the bay
- 45 (please, see at the end of this review the table R2). Also, modified the title section to the
- 46 "Air-Water CO2 fluxes in Guanabara Bay"

- 1 Reviewer Comment 5: While EDIC to AOU relation is present in the last figure, DIC
- 2 and TA are hiding somewhere. Why? TA and DIC to salinity plots may illustrate an
- 3 idea whether all uptake CO2 is buried in sediment or is recycled and exported to
- 4 offshore.

- 5 Reply 5: TA and DIC to salinity plots in Guanabara Bay are shown in additional figure
- 6 R3. It can be seen that in this saline coastal embayment TA and DIC have non-
- 7 conservative behaviors. Addition of DIC can be observed in the polluted sector 2 and
- 8 addition of TA in sectors 4 and 5 (probably due to important sulfate reduction in these
- 9 most eutrophic regions). However the pCO2 versus salinity plot give no consistent
- information. In addition, the bay presents important lateral inputs that alter the
- distribution of inorganic C variables in relationship to the salinity. We think in
- Guanabara Bay, the TA and DIC to salinity plots do not help understanding whether all
- uptake CO2 is buried in sediment, or recycled and exported.
- 14 Change 5: No change related to this specific comment. We plan to publish these plots in
- a future paper that will also include 13C-DIC.
- 17 Reviewer Comment 6: pH measurement method is missing in the Method section. Since
- it is used to calculate DIC, it must be evaluated more rigorous. How much uncertainty is
- in the calculated DIC?
- 20 Reply/Change 6: The precision of the pH measurements was about 0.01 (after 7
- verifications against NBS standards). We performed a three-point calibration (pH 4.01,
- pH 7.00 and pH 10.01), and the measurements were made continuously (data logging of
- 1 minute). As we have overdetermined the carbonate system (pCO2, pH, and TA) and
- 24 we have chosen to used direct pCO2 measurements and DIC calculated from pCO2 and
- 25 TA, we use pH measurements only for quality check.
- We do not use DIC values to perform any budget calculation. We only use pCO2 values
- 27 for the CO2 budget. Our paper is quiet long enough so we find such detailed DIC
- quality check secondary in comparison with other topics (eutrophication, stratification,
- etc...). Nevertheless, as requested, we provide to the reviewer the information on the
- 30 quality of our data that in Figure R4 (comparison between DIC calculated from pH/TA
- and pCO2/TA) and we added few sentence in the material and methods.
- 33 Other points I noted as I read through.
- Reviewer Comment 7: Title: I do not see the need of the word "large." Better just say
- "A CO2 sink enhanced by: ::" Abstract: a bit repeating, can be shortened. Also in the
- last line, not clear whatyou mean by "behave specifically." uniquely (being a sink)?
- 37 Reply/Change 7: We rewrote part of the abstract. We changed "large sink" to a "strong
- 38 sink".

32

39

44

- 40 Introduction
- Reviewer Comment 8: P. 4673, line 23, "suite a lot of: ::" don't know what you mean.
- Reply/Change 8: we removed the part "and a suite a lot of anthropogenic perturbations"
- in our revised MS.
- 45 Reviewer Comment 9: P. 4674, "which"? "with"?
- Reply/Change 9: we modified to "...which are net heterotrophic..."

- 1 Reviewer Comment 10: p. 4674, line 23, may replace "incipient" with a more
- 2 commonly used word or term.
- 3 Reply/Change 10: we replaced "incipient" by "scarce".

- 5 Reviewer Comment 11: p.4674, line 27, I don't think "Amazon River plume" is an
- 6 appropriate example here. It is very different from what you are talking here.
- 7 Reply/Change 11: we excluded in our revised MS the part of the Amazon plume.

8

- 9 Reviewer Comment 12: p.4674, line 12, in this context, you may want to reference
- works from the Mississippi River plume
- 1. Guo, X., Cai, W.-J., Huang, W-J., Wang, Y., Chen, F., Murrell, M.C., Lohrenz, S.
- Dai, M., Jiang, L-Q. and Culp, R., 2012. CO2 dynamics and community metabolism in
- the Mississippi River plume. Limnology and Oceanography 57(1):1-17. And/or
- 2. Huang, W-J., Cai, W-J., Wang, Y., Lohrenz, S.E., and Murrell, M.C. 2015. The
- carbon dioxide (CO2) system on the Mississippi River–dominated continental shelf in
- the northern Gulf of Mexico I: Distribution and air-sea CO2 flux, Journal of
- Geophysical Research-Ocean (in press, paper #2014JC010498).
- 18 Reply/Change 12: we cited the two papers in our revised MS.

19 20

- 21 Reviewer Comment 13: p.4675, line 25, extremely low (not extreme low)? 2.1 Reading
- figure 1, I can't tell where is the sea? Does seawater come from S1 or S4? Mark it.
- Reading further to the 2nd paragraph and to line 26 of p. 4677, I guess then see S1 is
- 24 near bay mouth. Better make it clear.
- 25 Reply/Change 13: We performed the correction to "extremely low". We also included
- in the figure the location of the sea to better clarify the study area.

27

- 28 Reviewer Comment 14: 2.3.1 How was pH measured? Since it is a critical parameter
- 29 that is used to calculate DIC (from pH and TA). You must document it in details.
- Reply/Change 14: Please, see the reply/change 6. Note that as we have overdetermined
- 31 the carbonate system (pCO2, pH, and TA) and we have chosen to used direct pCO2
- measurements and DIC calculated from pCO2 and TA, we use pH measurements only
- 33 for quality check.

34

- Reviewer Comment 15: 2.3.3, I think it is better just use Merbach refitted by Dickson
- and Millero (1987), rather than the composite one with Hansson data. Since DIC is
- 37 calculated, possible issues related to the calculation should be mentioned.
- Reply/Change 15: We recalculated the DIC values using Mehrbach et al., (1973) refited
- by Dickson and Millero (1987) instead of the Hansson and Mehrbach in the revised MS.
- We also included in the section 2.3.3.1 more detailed issues of the DIC calculation
- 41 (please see the R4 graph in the final of this review).

- 43 Reviewer Comment 16: Fig. 2, make the label larger and shorter (just precipitation and
- 44 temperature; leave other words such as atmosphere in figure caption). I can barely read
- 45 them.
- Reply/Change 16: We agree with the considerations. We modified the fig. 2. In
- addition, we inserted the standard deviation in the bars.

```
1
      Reviewer Comment 17: 3.3 Spatial screening???
 2
      Reply/Change 17: we changed to "Spatial distributions..."
 3
 4
 5
      Reviewer Comment 18: Fig. 4, caption. What is "superficial waters"? Does it tell a
      different meaning from the more commonly used term "surface or surficial waters"?
 6
 7
      also, p.4688, line 14.
 8
      Reply/Change 18: We performed the correction to "surface waters".
9
10
      Reviewer Comment 19: p.4685, line 4 relatively stable
      Reply/Change 19: Modified as suggested.
11
12
13
      Reviewer Comment 20: p.4685, line 8, I don't know what is the meaning of the word
14
     "activation" here.
15
      Reply/Change 20: We deleted the word "activation".
16
17
      Reviewer Comment 21: p.4689, line 1, here you may reference to low pCO2 in the
18
19
     Mississippi plume (Huang et al. 2015, above).
20
      Reply/Change 21: In this context, we inserted in the MS the part "...and on the
      Mississippi River-dominated continental shelf (Huang et al., 2015)..."
21
22
23
      Reviewer Comment 22: p.4689 lines 7-21, and figure caption. What exactly is this 1:1?
24
     Need to say this in the figure caption and probably a bit more in the text.
25
      Reply/Change 22: We included in the last paragraph of the section 4.1 the sentence:
26
      "The 1:1 line represents the quotient between CO<sub>2</sub> and O<sub>2</sub> during planktonic primary
     production and aerobic respiration (Borges and Abril 2011). The values near this ratio
27
      for Guanabara Bay suggests that gross primary production and total (autotrophic and
28
29
     heterotrophic) respiration are coupled and largely dominated the signal, with a strong
     biological control on the production/consumption of these gases." In addition, we
30
      included in the figure caption the sentence: "The 1:1 line represents the theoretical
31
32
      quotient between CO<sub>2</sub> and O<sub>2</sub> during the processes of photosynthesis and aerobic
33
     respiration".
34
35
      Reviewer Comment 23: p. 4694, line 17, (also line 1 the next page) while many
      carbonate chemists also make this mistake, you cannot say "the pCO2 concentrations."
36
      Here p, the partial pressure, already means concentration (in gas phase). I suggest
37
      "pCO2 values."
38
      Reply/Change 23: We agreed and performed the correction.
40
```

Reviewer Comment 24: p.4697, Is there a strong reason that sediment burial must equal 41 to air-water gas flux of CO2? I was expecting that this section would show how much 42

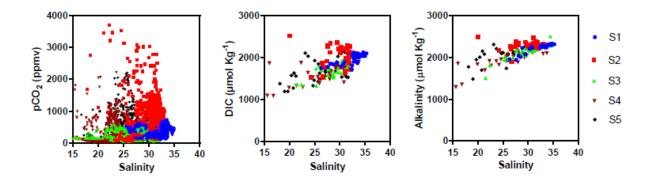
of CO2 is taken from surrounding mangrove and cities, how much is exported to the 43

sea, how much is buried and how much is recycled, etc. I may have asked too much. So 44

45 you may ignore me;

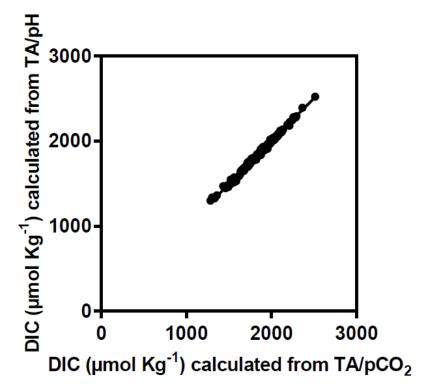
46 but at least don't call this section carbon budget.

Reply/Change 24: Please, see the reply/change 4. 47


R1: Spearman correlation matrix for PAR (μ mol m-2 s-1), accumulated precipitation of 7 days (Accum Prec 7; mm), wind velocity (Wind; cm s-1), dissolved oxygen (DO; %), chlorophyll a (Chl a; μ g L-1), pCO2 (ppmv), salinity, temperature (Temp; °C) and CH4 (nmol L-1) in the Guanabara Bay. The values were calculated with averages for each sampling campaign.

PAR	Accum Prec 7	Wind	DO	Chl a	pCO ₂	Salinity	Temp
	0.11	0.83**	0.87**	0.87**	-0.83**	0.02	0.68*
0.11		0.29	0.47	0.43	-0.46	-0.55	0.27
0.83**	0.29		0.88**	0.83**	-0.91**	-0.08	0.66
0.87**	0.47	0.88**		0.76*	-0.93**	-0.36	0.76
0.87**	0.43	0.83**	0.76*		-0.85**	-0.06	0.60
-0.83**	-0.46	-0.91**	-0.93**	-0.85**		0.38	-0.86**
0.02	-0.55	-0.08	-0.36	-0.06	0.38		-0.43
0.68*	0.27	0.66	0.76*	0.60	-0.86**	-0.43	
	0.11 0.83** 0.87** -0.87** -0.83**	0.11 0.83** 0.29 0.87** 0.47 0.87** 0.43 -0.83** -0.46 0.02 -0.55	0.11 0.83** 0.11 0.29 0.83** 0.29 0.87** 0.47 0.88** 0.87** 0.43 0.83** -0.83** -0.46 -0.91** 0.02 -0.55 -0.08	0.11 0.83** 0.87** 0.11 0.29 0.47 0.83** 0.29 0.88** 0.87** 0.47 0.88** 0.87** 0.43 0.83** 0.76* -0.83** -0.46 -0.91** -0.93** 0.02 -0.55 -0.08 -0.36	0.11 0.83** 0.87** 0.87** 0.11 0.29 0.47 0.43 0.83** 0.29 0.88** 0.83** 0.87** 0.47 0.88** 0.76* 0.87** 0.43 0.83** 0.76* -0.83** -0.46 -0.91** -0.93** -0.85** 0.02 -0.55 -0.08 -0.36 -0.06	0.11 0.83** 0.87** 0.87** -0.83** 0.11 0.29 0.47 0.43 -0.46 0.83** 0.29 0.88** 0.83** -0.91** 0.87** 0.47 0.88** 0.76* -0.93** 0.87** 0.43 0.83** 0.76* -0.85** -0.83** -0.46 -0.91** -0.93** -0.85** 0.02 -0.55 -0.08 -0.36 -0.06 0.38	0.11 0.83** 0.87** 0.87** -0.83** 0.02 0.11 0.29 0.47 0.43 -0.46 -0.55 0.83** 0.29 0.88** 0.83** -0.91** -0.08 0.87** 0.47 0.88** 0.76* -0.93** -0.36 0.87** 0.43 0.83** 0.76* -0.85** -0.06 -0.83** -0.46 -0.91** -0.93** -0.85** 0.38 0.02 -0.55 -0.08 -0.36 -0.06 0.38

R2: Summary of the documented carbon fluxes in the Guanabara Bay.


Inputs of carbon to	$mmol\ C\ m^{-2}\ d^{-1}$	Comment			
Guanabara Bay					
CO ₂ air-water flux	26 – 49*	All bay average; This study			
CO ₂ air-water flux	33 – 102*	Sectors 3, 4 and 5; This study, strong and permanent annual CO ₂ sink area			
Organic carbon load from sewage	43	All bay average; FEEMA (1998), majority of organic carbon seems to be mineralized in sewage network			
River DIC, DOC and TOC	Undocumented	2			
inputs					
Internal Processes	$mmol\ C\ m^{-2}\ d^{-1}$	Comment			
NCP	51 – 225 (143)**	Sectors 4 and 5; This study			
NPP	60 – 300 (170)**	Sectors 2, 3 and 5; Rebello et			
		al., (1988)			
Total Respiration	Undocumented				
Degassing / Burial / Export	$mmol\ C\ m^{-2}\ d^{-1}$	Comment			
CO ₂ air-water flux	54 – 177*	Sector 2; This study, permanent CO ₂ degassing in a restricted area			
Total organic carbon burial	27 – 114	Sectors 3, 4 and 5; Carreira et al., (2002); Monteiro et al., (2011)			
DIC and TOC export to the coastal area	Undocumented	·			

R3: Variations of pCO2, DIC and TA against salinity. R3A: Measured surface water pCO2 against the salinity gradient in the Guanabara Bay, N=9002; R3B: Calculated DIC against salinity gradient in the Guanabara Bay, N=195: R3B: Measured TA against salinity gradient in the Guanabara Bay, N=195. Note that the data set was classified by sectors and the results represents all the sampling campaigns.

R4: Linear Regression between DIC calculated from pH/TA and pCO2/TA. (R2=0.994; Slope: 1.008 ± 0.006). The slopes are not statistically different from 1 (p = 0.20) and the intercepts are not significantly different from 0 (p = 0.86). The method used is one equivalent to an Analysis of Covariance (ANCOVA), according to the GraphPad Guide User Manual 6.0.

REVISED MS: MARKED-UP VERSION

- 2 -A large strong CO₂ sink enhanced by eutrophication in a tropical coastal
- 3 embayment (Guanabara Bay, Rio de Janeiro, Brazil)

4

1

- 5 Luiz C. Cotovicz Jr. 1,2,*, Bastiaan A. Knoppers¹, Nilva Brandini¹, Suzan J. Costa
- 6 Santos¹, and Gwenaël Abril^{1,2}

7

- 8 [1] Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João
- 9 Batista s/n, 24020015, Niterói, RJ, Brazil.
- 10 [2] Laboratoire Environnements et Paléoenvironnements Océaniques et Continentaux
- 11 (EPOC), CNRS, Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac
- 12 Cedex France.
- 13 [*] Correspondance to Luiz C. Cotovicz Jr (lccjunior@id.uff.br)

14

16

28

15 Abstract

17 global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are significant at the global scale, but still poorly known, especially 18 19 in tropical regions. Surface water pCO₂ and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical 20 21 eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, SE-Brazil. Water pCO₂ varied between 22 and 3715 ppmv in the Bay 22 23 showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and Chlorophyll a (Chl a). Marked pCO₂ undersaturation was prevalent in the shallow, 24 25 confined and thermally stratified waters of the upper bay, whereas pCO₂ oversaturation 26 was restricted to sites close to the small river mouths and small sewage channels, which covered only 10 % of the bay's area. Substantial daily variations in pCO₂ (up to 395 ppmv 27

between dawn and dusk) were also registered and could be integrated temporally and

In contrast to its small surface area, the coastal zone plays a disproportionate role in the

spatially for the establishment of net diurnal, seasonal and annual CO₂ fluxes. In contrast 1 to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO₂, 2 a property enhanced by the concomitant effects of strong radiation intensity, thermal 3 stratification, and high availability of nutrients, which promotes phytoplankton 4 5 development and net autotrophy. The calculated CO₂ fluxes for Guanabara Bay ranged between -9.6 to -18.3 mol C m⁻² yr⁻¹, in the same order of magnitude of the organic carbon 6 burial and organic carbon inputs from the watershed. In the inner part of the bay, the 7 calculated annual CO₂ sink (- mol C m² yr⁻¹) matched the organic carbon burial in the 8 sediments reported in the literature. The positive and high net community production 9 (NCP, 52.1 mol C m⁻² yr⁻¹) confirms the high carbon production in the bay, and its 10 confirms the autotrophic metabolism status that seems amplified apparently enhanced by 11 eutrophication. The carbon sink and autotrophy of Guanabara Bay was driven by 12 planktonic primary production promoted by eutrophication, and by its typology of marine 13 embayment lacking the classical extended estuarine mixing zone, in contrast to river-14 15 dominated estuarine systems, which are generally net heterotrophic and CO₂ emitters. 16 Our results show that global CO₂ budgetary assertions still lack information on tropical, 17 marine-dominated estuarine embayments and lagoons systems, marine-dominated, which are affected by thermal stratification and eutrophication and behave specifically 18 with respect to atmospheric CO₂. 19

20 **Key words**: CO₂ fluxes, eutrophication, estuarine embayment, tropical, SE-Brazil.

22 1 Introduction

21

The rising of atmospheric CO₂ concentration in the last decades has worldwide concern, 23 24 mainly due to global atmospheric temperature increases (Allen et al., 2009; Matthews et al., 2009) and ocean acidification (Doney et al., 2009). The oceans are known to act as 25 the major sink of atmospheric CO₂, with well quantified air—sea exchange and uptake of 26 excess anthropogenic CO₂ (Takahashi et al., 2002; Sabine et al., 2004; Orr et al., 2005). 27 28 The coastal ocean, however, is still subject to controversy and poorly understood due to 29 its intrinsic intra- and inter-specific heterogeneity of its typology. The lack of sufficient studies covering the spatial and temporal variability with a common standardized 30 sampling strategy and methodology and the manifold diverse types of ecosystems types 31 (estuaries, deltas, embayments and coastal lagoons) affected by multiple external and 32 internal sources, are some of the reasons for these uncertainties (Gattuso et al., 1998; 33

Borges, 2005; Chen et al., 2013; Cloern et al., 2014). Despite the small surface area of 1 the coastal ocean of around 7 % of the global ocean, it exerts a disproportionately large 2 influence upon the carbon cycle, especially on the role of primary production, 3 remineralisation and sedimentation of organic matter (Gattuso et al., 1998; Wollast, 4 1998). Coastal ecosystems receive material from land via river inputs, submerged 5 6 groundwater discharge, atmospheric deposition, as well as from the adjacent open ocean. 7 The climatological regime has great influence over these areas, and contributes to the great variability of biogeochemical processes in space and time. In addition, 8 9 approximately 37% of human population lives within 100 km of coastline (Cohen et al., 10 2007), making this area of greatest human impact on the marine environment, and suite a 11 lot of anthropogenic perturbations, including intense loading of nutrients, suspended 12 matter, organic and inorganic matter with associated pollutants, and also overfishing. 13 (Bauer et al., 2013).

Several authors have demonstrated that the CO₂ emissions from estuaries are globally

14

15

significant (Borges and Abril, 2011; Chen et al., 2013). Total ecosystem respiration 16 17 generally exceeds gross primary production in most estuaries (Gattuso et al., 1998), which 18 are net heterotrophic ecosystems and sources of atmospheric CO₂ (Borges and Abril, 2011; Cloern et al., 2014). The Land-Ocean Interactions in the Coastal Zone Program 19 20 (LOICZ) budgetary assertions of more than 250 estuaries and lagoons have also shown that most of them are heterotrophic or may have a balanced metabolism (Knoppers, 1994; 21 22 Smith et al., 2010). CO₂ outgassing in major part of the estuaries is supported by the inputs of CO₂-enriched freshwaters, and by the CO₂ generated in the estuarine system 23 24 itself, planktonic and benthic net heterotrophy and CO₂ advection from saltmarshes and 25 mangroves (e.g. Borges and Abril, 2011; Cai, 2011). On the other hand, low pCO₂ waters 26 and autotrophic metabolism has been observed in some estuarine plumes but with small 27 percentage of surface area compared to the freshwater influence (Borges and Abril, 2011). As more systems are being included in the budgeting effort, the global estuarine CO₂ 28 29 emission estimate at the air-water interface has been declining (Borges and Abril, 2011; Guo et al., 2012; Chen et al., 2013; Huang et al 2015). The pioneer estimate of the CO₂ 30 released by estuaries was 0.51 Pg C yr⁻¹ (Borges, 2005), whereas the more recent estimate 31 32 was 0.094 Pg C yr⁻¹. (Chen et al., 2013). In fact, first budgets were based on data in systems generally located at temperate regions, being river-dominated, macrotidal and 33

turbid (Borges, 2005; Borges and Abril, 2011). The more recent estimate includes a set of new data from estuaries located at low wind regions and the Arctic Ocean, which contributed to the decrease of the carbon released (Chen et al., 2013). Additionally, Jiang et al. (2008) demonstrated that pCO₂ can be significantly lower in marine-dominated estuaries than river-dominated, and according to Maher and Eyre (2012) marine dominated estuaries with low freshwater influences can be CO₂ sink.

In tropical regions, the spatial coverage of CO₂ fluxes of estuaries is still incipientscarce. But, the few available studies also suggested that the tropical estuaries seem to be sources of carbon to the atmosphere (Souza et al., 2009; Sarma et al., 2012; Araujo et al., 2014), except for one lagoon (Koné et al., 2009) and the Amazon River plume (Körtzinger, 2003) which acted as sinks. Also, most studies are potentially biased by the lack of information on the diurnal variations of CO₂, which corresponds to a crucial component of mass balance calculations (Borges and Frankignoulle, 1999; Zhang et al., 2013; Maher et al., 2015).

The CO₂ budgets of coastal ecosystems may also be altered by eutrophication generated by the anthropogenic nutrient inputs from sewage and fertilizer usage in agriculture, which has become a widespread water quality issue (Nixon, 1995; Cloern, 2001). The consequences of eutrophication, like the development of excessive algal blooms, toxic algae, loss of submerged aquatic vegetation and increase of hypoxia and anoxia, has been well documented (Bricker et al., 2003; Rabalais et al., 2009). However, the influence of eutrophication *per se* on the CO₂ budgets is poorly documented. In fact, the response of estuarine metabolism to eutrophication seems to be type-specific. Some papers discussed that eutrophication can amplify autotrophy and favour CO₂ uptake (Gypens et al., 2009), while others show that eutrophication can reinforce heterotrophy and CO₂ degassing (Sarma et al., 2012; Chou et al., 2013; Wallace et al., 2014).

The present study addresses the question whether a tropical, marine-dominated, and eutrophic estuarine system Guanabara Bay (SE-Brazil) is a sink or a source of atmospheric CO₂. The bay, surrounded by the City of Rio de Janeiro, is the second largest Brazilian estuarine embayment (Kjerfve et al., 1997). The system is one of the most

degraded estuaries worldwide. The waters of Guanabara are eutrophic to hypertrophic (according to the classification of Nixon (1995)'s classification, Nixon 1995) and, as such, provide ideal conditions to assess the response of aquatic CO₂ metabolism under marked eutrophication. CO₂ fluxes at the air-water interface of Guanabara Bay were estimated with continuous monitoring of surface water pCO₂, taking into account different temporal (daily and seasonal) and spatial scales. Our results show a very different behaviour in terms of carbon cycling of Guanabara Bay compared to previously documented estuaries, with extremely low values of pCO₂ and a net uptake of atmospheric CO₂ annually.

2 Material and Methods

2.1 Study Site

Guanabara Bay (22°41' - 22°58' S and 43°02' - 43°18' W) is located at the SE-Brazil coast, SW-Atlantic, and embedded within the metropolitan area of Rio de Janeiro, the second most densely populated region of the Brazilian Coast (Fig. 1). The bay has a surface area of 384 km², a mean depth of about 5.7 m, and a volume of 1870 x 10⁶ m³. The main subaqueous channel runs from the bay's 1.8 km wide entrance with depths varying from 25 to 50 m up to 6 km inwards and along 24 km to the upper 20 km wide bay, with depths down to about 2 to 3 m. The lateral portions of the bay are spiked by small bays, with depths of 2 m. It is a partially mixed estuarine embayment (Kjerfve et al., 1997), being completely mixed in wintertime but can become highly stratified in summertime due to concomitant effects of sunlight (thermal stratification) and freshwater discharge (haline stratification) mostly in the central and inner regions (Bérgamo, 2010).

The Bay is subject to a semi-diurnal microtidal regime with an annual mean of 0.7 m and spring tides attaining 1.3 m. With the exception of the entrances of small rivers, salinities vary between 25 and 34. The time for renewal of 50% of the total water volume is 11.4 days and water circulation is complex, as currents are modulated by tide and abrupt changes in the geomorphological configuration (Kjerfve et al., 1997). Circulation between the central and upper western regions is hampered by the presence of a large island (Ilha do Governador, Fig. 1). At the bay's mouth, maximum water velocities vary between 0.8 - 1.5 m s⁻¹ and seawater residence time is much shorter than in most inner

- regions, particularly behind Governador Island, where maximum current velocities are
- 2 less than 0.3 m s⁻¹ (Kierfve et al., 1997).

- 4 Guanabara Bay is located in the intertropical zone and its climate is characterized by a
- 5 diversity of both the annual temperature and precipitation regimes. The weather is tropical
- 6 humid (Bidone and Lacerda, 2004), with a warm and wet summer in October-March, and
- 7 a cooler and drier winter in April-November. The most frequent winds in the bay from
- 8 the N and NE in spring and summer, with monthly average velocity of 5 m s⁻¹. Winds
- 9 from the S and SE are associated with polar cold weather fronts being more common in
- autumn and winter (Amarante et al., 2002).
- The drainage basin has an area of 4080 km² and includes 35 small rivers and streams, 6
- of which flow into the upper region of the bay and contribute with up to 85% of the total
- runoff to the bay. The average annual freshwater water discharge to the bay is 100 ± 59
- 14 m³ s⁻¹ and ranges from around 40 m³ s⁻¹ in winter to 190 m³ s⁻¹ in summer. Annual
- 15 freshwater discharge is nine times smaller than the bay's volume, which also contributes
- to the two-layered gravitational circulation (the ebb-flood oscillatory tidal current),
- 17 resulting in the predominant saline (i.e. polyhaline) character of the waters (Kjerfve et al.,
- 18 1997).

19

- More than 7 million inhabitants discharge 25 m³ s⁻¹ of untreated domestic wastewaters
- into the bay (Kjerfve et al., 1997; Bidone and Lacerda, 2004), which contributes to a load
- of about 465 T day⁻¹ of organic matter (FEEMA, 1998). Small channels directly
- connected to sewage outlets are totally anoxic, but represents less than 5% of the surface
- area of the Bay. More intense cultural eutrophication since the 50's (Borges et al., 2009)
- also contributed to hypoxic conditions of bottom waters in some of the more confined
- lateral and upper regions of the bay (Paranhos et al., 1998, Ribeiro and Kjerfve, 2002).
- 27 Fluxes of phosphorous are currently 9-times higher than those estimated since the late
- 1800s (Borges et al., 2009). According to Godoy et al. (1998), sedimentation rates have
- increased up to 14 times over the last 50 years, in parallel with a 10-fold increase in the
- 30 flux of organic matter to the sediments (Carreira et al., 2002).

In this study, five sectors were defined for the treatment, computations and interpretation of the data (Fig. 1): Sector one (S1) corresponds to the region up to 3 km inwards from the narrow and deeper tidal channel, is characterized by a maximum of seawater exchange, material dispersion and is partially mixed. Sector two (S2), located towards the western part of the bay, is delimited on the north by the Governador Island, which creates a barrier for direct tidal advection of waters into the upper north-western area of the bay. It is one of the most contaminated areas of Guanabara Bay. Sector three (S3) corresponds to the deeper channel which connects S1 (i.e. the bay's outlet to the South Atlantic) with the upper region. Sector four (S4) in the upper northeastern part of the bay, is shallow, moderately impacted and bordered by a 90 km² of mangrove forest and non-urbanized land. Sector five (S5) is the most confined area of the bay, located at the northwest and behind Ilha do Governador. It is shallow, has the longest residence time of waters and also receives significant amounts of sewage waters. The small western channel connecting S2 and S5 was disregarded from our analysis, due to its difficult access and extreme degree of contamination; however, it only covers less than 10 % of the entire sampled area bay.

2.2 Sampling Strategy

Nine sampling campaigns were performed with a frequency varying between 30 to 45 days from April 2013 to April 2014. Each campaign consisted in continuous measurements of the partial pressure of CO₂ (pCO₂), salinity, temperature, Chl *a*, DO, pH and GPS position, all at a frequency of 1 minute. Sub-surface (~30cm) water was pumped alongside the boat. In addition to the spatial screening, the diurnal variations of water pCO₂ were estimated on four occasions within the upper and most eutrophic sectors (S4 and S5) and also once in S1, by performing lateral trajectories forth and back across the sectors from dawn (04:30 am) to afternoon or dusk (at the latest until 09:30 pm). Diurnal measurements were made in Aug.2013 and Jan.2014, Feb. and Apr.2014 (S4 and S5) and in S1 in Apr.2014.

In addition, discrete sampling was performed at 16 to 19 stations along the continuous tracks (Fig. 1), except in Dec.2013, when only 8 stations could be sampled due to logistical problems. Water samples were collected in sub-surface waters at a ~30cm depth

- with a Niskin bottle, and then conditioned (i.e. fixed and/or kept on ice in the dark) for
- 2 further chemical analysis in the laboratory. Vertical profiles of temperature, salinity,
- 3 fluorescence and DO were performed at all discrete stations with an YSI 6600 V2
- 4 multiparameter probe.

6

2.3 Analytical Procedures

7 2.3.1 Discrete parameters

- 8 Total alkalinity (TA) was determined on 100 ml filtrate from GF/F filtered samples, using
- 9 the classical Gran (1952) electro-titration method by an automated titration system
- 10 (Metler Toledo Mod. T50). The reproducibility of TA was 4 μmol kg⁻¹ (n=7).
- 11 Measurements were compared to certified reference material (CRM provided by A.G.
- 12 Dickson from Scripps Institution of Oceanography) and consistent at a maximum
- precision level of ± 7 µmol kg⁻¹. Dissolved inorganic nitrogen (ammonia, nitrite, and
- nitrate) and phosphate were quantified as in Grasshof et al. (1999) and Chl a as in
- Strickland and Parsons (1972). Whatman GF/F filters were used for the Chl a analyses
- and the filtrate for the nutrient analyses. All water samples were kept in the dark and on
- ice during transport to the respective laboratories and nutrient samples and Chl a filters
- 18 kept at -18 °C in a freezer prior to analyses.

19

20

2.3.2 On-Line parameters

- 21 Continuous measurement of temperature, salinity, fluorescence and DO were performed
- 22 with a calibrated YSI 6600 V2 multiparameter probe inserted in a flow-through
- 23 customized acrylic chamber. The values of the fluorescence sensor were correlated with
- 24 the discrete analysis of Chl a to derive a conversion factor. pH was measured continuously
- 25 with a pH-meter WTW 3310, equipped with one electrode Sentix 41 also inserted in the
- chamber, and calibrated with a three-point standard (pH 4.01, pH 7.00 and pH 10.01)
- 27 according to the National Bureau Standard (NBS), before each sampling campaign. The
- 28 precision of the pH measurements was about 0.01 (after 7 verifications against standards).
- 29 As we have overdetermined the carbonate system (pCO₂, pH, and TA), we have chosen
- to use direct pCO₂ measurements and TA to calculate DIC, than we use pH measurements
- 31 only for quality check. pCO₂ was measured using the marble-type equilibrator method,
- through which seawater flowed (1-2 L min⁻¹) from the top to the bottom of the cylinder

- 1 filled with marbles and air was pumped upwards (1 L min⁻¹) (Frankignoulle et al., 2001;
- 2 Abril et al., 2006). The air in the equilibrator was dried before passing to a non-dispersive
- 3 infrared gas analyser (LICOR®, Type LI-820). We used 3three gas mixture standards
- 4 (pCO₂ of 410, 1007 and 5035 ppmv) to calibrate the LICOR before each sampling (White
- 5 Martins Certified Material, RJ, Brazil). We used N₂ passing through fresh soda limne to
- 6 set the zero, and we used the standard at 1007 ppmv to set the span. We used the second
- 7 and third standards at 410 and 5035 ppmv to check linearity. The number of verifications
- 8 after each calibration was about 7. The LICOR signal was stable and linear in the range
- 9 of calibration and observations in the field (0-5000 ppmv). We also verify the drift before
- and after each sampling campaign which was calibrated using two gas mixture standards
- at 0 and 1007 ppmv, and verified with two other standards at 400 and 5300 ppmv. The
- partial pressure of atmospheric CO₂ was measured in dry air twice a day, at the start and
- the end of the continuous runs. The precision and the accuracy of the pCO₂ measurements
- were about 3 and 5 ppmv, respectively.

- Solar radiation, wind velocity (U10), accumulated precipitation and atmospheric
- temperature were recorded in the meteorological stations of Santos Dumont (red square
- in the S1, Fig. 1) and Galeão airports (red squares in the Governador Island, Fig. 1)
- 19 <u>airports</u>, located in the outer and inner regions of the Bay, respectively (red squares, Fig.
- 20 1) and were provided by Brazilian Institute of Aerial Space Control (ICEA). The data sets
- 21 of solar radiation (Rs) were converted into daily-averaged photosynthetically active
- radiation (PAR) using a conversion factor PAR/Rs of 0.5 (Monteith, 1977).

23

24

2.3.3 Calculations

25 **2.3.3.1 The Carbonate System**

- Dissolved inorganic carbon (DIC) was calculated using two different pairs of measured
- 27 parameters: pCO₂/TA and pH/TA using the carbonic acid constants sets proposed by
- Mehrbach et al. (1973) refitted by Dickson and Millero (1987), the borate acidity constant
- 29 from Lee et al. (2010) and the CO₂ solubility coefficient of Weiss (1974). Calculations
- were performed in the CO2calc 1.2.9 program (Robbins et al., 2010). Both calculations
- gave very consistent DIC concentrations at \pm 6.5 µmol kg⁻¹. DIC calculated from
- 32 pCO₂/TA and pH/TA pairs gave an excellent agreement (slope: 1.008, R²=0.995). The

slopes arewas not statistically different from 1 (p = 0.20) and the intercepts arewas not 1 significantly different from 0 (p = 0.86). The excess of DIC (E-DIC, μ mol kg⁻¹) was 2 calculated as the difference between the in-situ DIC (DIC in situ µmol kg-1) and a 3 theoretical DIC at atmospheric equilibrium (DIC equilibrium umol kg⁻¹) according to 4 Abril et al. (2003). The DIC equilibrium was calculated from observed TA and the 5 atmospheric pCO₂ measured in the Bay. The apparent oxygen utilization (AOU, µmol kg⁻¹ 6 7 1) was calculated from the temperature, salinity and DO concentrations measured continuously with the probe and the theoretical DO saturation (Benson and Krause, 1984). 8 9 Diffusive air-sea CO₂ fluxes were computed from pCO₂ measured in the water and the 10 atmosphere and a gas transfer velocity derived from wind and other physical drivers. We used the k-wind parameterization of Raymond and Cole (2001) and Abril et al. (2009), 11 12 which are gases exchange coefficients specific for estuarine waters. The Raymond and Cole (2001) (RC01) equation is based on the compilation of gas transfer velocities derived 13 from tracers in nine rivers and estuaries, only using wind speed as an entry parameter. 14 The Abril et al. (2009) (A09) relationship is based on chamber flux measurements in 15 seven estuaries, and uses wind speed, estuarine surface area, and water current velocity 16 as entry parameters. We also calculated the fluxes with the parameterization of 17 Wanninkhof (1992) (W92), which was initially developed for open ocean waters. The gas 18 19 transfer coefficients normalized to a Schmidt number of 600 obtained with the two-three parameterizations were then converted to the gas transfer velocity of CO₂ at in situ 20 21 temperature and salinity, following the procedure of Jähne et al. (1987). Fluxes were 22 computed for each sector of Guanabara Bay, using water pCO₂ representative for diurnal 23 and seasonal variations.

2.3.3.2 The Net Community Production (NCP)

- 25 The NCP was calculated by the changes in dissolved inorganic carbon (DIC) when we
- 26 performed lateral trajectories forth and back, from dawn to dusk. In this way, we sampled
- 27 the same point at different daytime, and NCP was computed from the diurnal DIC
- variations according to the following equation:
- 29 $NCP = ((DIC_1-DIC_2)\rho d)/\Delta t FCO_2$

- where NCP is the net community production (mmol m⁻² h¹), DIC₁ and DIC₂ represents
- the salinity-normalized concentration of dissolved inorganic carbon (mmol Kkg⁻¹) during
- two consecutive trajectories (from dawn to dusk), p is the seawater density (Kkg m⁻³), d

- is the average depth (m) of the area, t represents the time interval (hours) and F is the
- 2 carbon dioxide flux (mmol m⁻² h⁻¹) across the water-atmosphere interface. The
- 3 computations were carried out with the mean values of DIC during each trajectory.

2.3.3.3 Temperature and biological effect on pCO2 variations

- 5 The temperature *versus* biological effect on pCO₂ variations in Guanabara Bay was
- 6 verified using the Takahashi et al. (2002) approach. The relative importance of the
- 7 temperature and biological effects can be expressed as a ratio between both the
- 8 temperature and the biology effect. The biological component is estimated by the seasonal
- 9 amplitude of the temperature-normalized pCO₂ and the temperature component is
- 10 characterized by the seasonal amplitude of the annual mean pCO₂ corrected for the
- seasonal temperature variation. The following equations were applied (Takahashi et al.,
- 12 2002):

4

- pCO₂ at $T_{mean} = pCO_{2obs} \times exp[0.0423(T_{mean}-T_{obs})]$ (variations driven by biological
- 14 effect); (1)
- pCO₂ at $T_{obs} = pCO_{2mean} \times exp[0.0423(T_{obs}-T_{mean})]$ (variations driven by thermodynamic
- 16 effect); (2)
- where T is the temperature in °C, and the subscripts "mean" and obs indicate the
- annual average and observed values, respectively. These equations were applied to
- summer and winter conditions as a whole. The biologic effect on the surface-water pCO₂
- 20 (ΔpCO₂)Bio is represented by the seasonal amplitude of pCO₂ values corrected by the
- 21 mean annual temperature, (pCO₂ at T_{mean}), using Eq. (1):
- 22 $(\Delta pCO_2)Bio = (pCO_2 \text{ at } T_{mean})_{max} (pCO_2 \text{ at } T_{mean})_{min};$ (3)
- 23 where the subscripts "max" and "min" indicate the seasonal maximum and minimum
- values. The effect of temperature changes on the mean annual pCO₂ value, (ΔpCO_2) temp,
- is represented by the seasonal amplitude of (pCO₂ at T_{obs}) values computed using Eq. (2):
- 26 (ΔpCO_2) Temp = $(pCO_2 \text{ at } T_{obs})_{max} (pCO_2 \text{ at } T_{obs})_{min};$ (4)
- 27 A ratio (ΔpCO_2) Temp/ (ΔpCO_2) Bio (Temp/Bio) > 1 indicates a dominance of temperature
- effect over mean annual pCO2 values, whereas a ratio < 1 indicates a biological effect
- 29 <u>dominance (Takahashi et al., 2002).</u>

30

31

2.4 Statistical Analysis

Normality test was carried with the Shapiro-Wilk test. If the data showed parametric 1 distribution, we used t-test to comparing averages. If the data showed non-parametric 2 distribution, we used the Mann-Whitney test. The calculations of correlation between 3 4 variables were performed with the Spearman rank coefficient. Simple linear regressions 5 were calculated to compareing calculated and measured variables (DIC and pH), and the comparison between slopes was made with one test equivalent to an Analysis of 6 7 Covariance (ANCOVA). For the principal component analysis (PCA) calculation, the sampling campaigns were taken as cases, and the parameters were taken as variables. The 8 9 PCA technique starts with a correlation matrix presenting the dispersion of the original variables (data were normalized by z-scores with average data for each sampling 10 11 campaign), that was utilized to extracting the eigenvalues and eigenvectors. Then, the principal components were obtained by multiplying an eigenvector, by the original 12 correlated variables. All statistical analysis were based on $\alpha = 0.05$. We utilized the 13 Statistic 7.0 program to perform all PCA steps and the GraphPad Prism 6 program to 14 15 perform the other statistical tests.

16 3 Results

17 3.1. Climatic, hydrological and biogeochemical conditions

18 Climatic conditions during the study period followed a classical seasonal trend (Fig. 2), although the sampled summer period (Oct. 2013, Dec. 2013, Jan. 2014, Feb. 2014) was 19 slightly warmer and dryer than the average conditions of the reference period 1951-2010 20 21 with exception of . The two warmest and driest months of Jan. 2014 and Feb. 2014, when the air temperature was warmer $2.2 \, ^{\circ}\text{C}$ higher $(2.2 \, ^{\circ}\text{C})$ higher, p < 0.001, t-test) 22 23 precipitation was 75 % lower than the averaged reference period of 60 years (1951-2010). In contrast, the The other sampled -months sampled winter period (Apr. 2013, Jul. 2013, 24 Aug. 2013, Sep. 2013 and Apr. 2014) had air temperature and precipitation consistent 25 with historical data (Fig. 2), despite of some deviations from the historical average 26 27 especially for accumulated precipitation. Sector-averaged surface water temperature in Guanabara Bay (Table 1) varied between 23.8 and 26.8 °C and salinity varied between 28 29 27.0 and 32.2. In the upper portion of the bay (S4 and S5), salinity decreased in winter and temperature increased in summer with an observed maximum of 33.9 °C. S1, at the 30 entrance of the bay exhibited lowest temperatures and highest salinities, with little 31 32 seasonal variation. A maximum seasonal amplitude of 3.4 °C and 2.8 °C of sector-average temperature occurred in S4 and S5, respectively. When considering sector-averaged 33

- values, seasonal contrasts were less than 2 salinity units in all sectors. Spatially, the most
- 2 confined northern sectors, which receive more river water, showed the lowest salinity,
- 3 particularly at the vicinity of river mouths, and during the rainy season, with a minimum
- 4 of 14.6 in Apr. 2013 in S4.

- 6 Average values for pH, TA, DIC, Chl a and nutrient data reported for each sector in Table
- 7 1 reflect the eutrophic (S1 and S3) to hypertrophic (S2, S4 and S5) conditions prevailing
- 8 in Guanabara Bay, consistent with previous works (Rebello et al., 1988; Ribeiro and
- 9 Kjerve, 2001). All water quality parameters (nutrients and Chl a) exhibited a large
- standard deviation (SD) to the mean. Ammonium (NH₄-N) was the dominant form of
- dissolved inorganic nitrogen (DIN) and reached average concentrations of around 45 and
- 12 27 μM in S2 and S5 and 8, 9 and 5 μM in sectors S1, S3 and S4, respectively. The
- maximum range was recorded in S5 (0.13 to 130 μM NH₄-N) and the minimum range in
- 14 the lower S1 (8.15 to 22.5 μ M NH₄-N).

15

- Extremely high Chl a values were associated with high pH and moderately to low nutrient
- concentrations, indicating that nutrients were fixed into phytoplankton biomass. Average
- 18 Chl a concentrations followed the trophic state gradient, increasing from the mouth of the
- bay toward its upper portion and also in the lateral embayments (Table 1). All sectors
- showed high spatial and temporal variability in Chl a. In general, highest values were
- 21 recorded during summer and outflow conditions and lower values during inflow and
- winter-conditions. This feature has also been observed by other studies (Guenther et al.,
- 23 2008; Guenther et al., 2012). Sectors 3, 4 and 5 experienced the densest phytoplankton
- blooms, Chl a reaching maxima on one occasion of 537 µg L⁻¹ in S3, 289 µg L⁻¹ in S4
- and 822 µg L⁻¹ in S5. The highest values were associated to phytoplankton blooms.

26

27

3.2 Vertical structure of the water column

- 28 The vertical profiles for temperature, salinity, DO and Chl a in S1, S3 and S5, shown in
- 29 Figure 3 are well representative of other observations in the outer, middle and inner
- 30 regions of Guanabara Bay, both for summer and winter conditions. During winter, the
- 31 water column was well mixed in all sectors. Indeed, temperature and salinity showed little
- vertical variations during this season (Figs. 3a, 3c and 3e). Chl a and oxygen profiles were

also vertically homogeneous, except in the most confined and shallow S5, where Chl-a was typically 2.5 times higher in the first two meters compared to the bottom (Fig. 3f). During summer, all sectors showed important thermal and saline stratification (Figs. 3g, 3i and 3k), halocline and thermocline being located almost at the same depth. In 20m-deep water columns (S1 and S3; Figs. 3g and 3i), a ~4m deep surface layer was ~2-3°C warmer and had salinity ~1-2 units lower than the bottom layer; in 5m-deep water column (S5; Fig. 3k), the warmer surface layer was ~2m deep with similar temperature and salinity contrasts between the surface and the bottom. The vertical water profile was also analysed to investigate the diurnal variations of temperature and salinity (Figs. 3k and 3l). Comparison between daytime and nighttime conditions revealed that stratification was subject to diurnal variations, driven by temperature convection concomitant with a moderate mixing of water currents by microtidal action. Summer stratification of the water column was accompanied by a consistent vertical distribution of Chl a and oxygen, with maximum in the surface layers and minimum at the bottom. Note that the salinity varied less than the temperature along the day ($> 2^{\circ}$ C of variation in 5 hours; Fig. 3K). Stratification apparently favoured phytoplankton development, as Chl a concentrations were highest (up to 240 μg L⁻¹) at the surface of the stratified water columns. These physical conditions were largely predominant in summer and in the shallowest, calmest and most confined sectors of the Bay (S4 and S5).

3.3 Spatial screening distributions of pCO₂ in surface waters

Spatial distributions of surface water pCO₂ measured continuously along the trajectories, revealed strong spatial gradients between and/or inside each sector, from over- to undersaturation with respect to the atmosphere (Fig. 4). Temporally and spatially, water pCO₂ was negatively correlated with dissolved oxygen (R^2 = -0.9088; n=1799002; p < 0.0001) and Chl a (R^2 = -0.7754; n=1859004; p < 0.0001). S1 presented pCO₂ values close to the atmospheric equilibrium, with moderate temporal variation around this average (411±145 ppmv). DO and Chl-a in S1 were 103±29 % and 19±22 μ g L⁻¹, respectively. S2, close to most urbanized area, showed highest heterogeneity, from a maximum pCO₂ value of 3750 ppmv in hypoxic waters (DO=2% saturation) at the vicinity of the highly polluted urban channels in Jan. 2014 (Figure 4g), to strong undersaturation, as low as 50 ppmv related to a bloom formation in a small and protected embayment (Chl a = 212 μ g L⁻¹) in Jan.2014. In S2, the extent of pCO₂ supersaturation apparently induced by the urban

sewage loads was favoured by strong rains the day before sampling and low PAR 1 2 incidence in Jul., Aug. and Sep.2013, compared to all the other cruises (Fig. 4). In S3, S4 and S5, which account for 75% of the surface sampled area of Guanabara Bay, pCO₂ was 3 predominantly below the atmospheric equilibrium, particularly during daytime summer 4 cruises (Fig. 4 and Table 1). Massive phytoplankton blooms were sampled during our 5 survey, characterized by extreme patchiness in summer. For example, an extreme of 22 6 ppmv of pCO₂, 350 % sat DO and 550 µg L⁻¹ Chl a was recorded in Feb.2014 in a 7 brown/red bloom. In S3, S4 and S5, water pCO₂ was lower than 150 ppmv around midday 8 9 at all seasons. These blooms and associated pCO₂ under-saturation occurred in S4 and S5 10 during winter and progressively spread to the entire bay during summer months (Fig. 4). 11 From Sep.2013 to Feb.2014, midday undersaturation was encountered over the whole bay, except the urban impacted S2 (Fig. 4). Finally, some increases in water pCO₂ above 12 13 the atmospheric equilibrium (up to a maximum of 2200 ppmv) were observed in Jul. 2013, Aug.2013 and Apr.2014, in the northeastern part of S4 and S5, related to river plumes. 14 15 Before reaching the open-bay waters of S4, these riverine plumes flowed across a preserved mangrove area. However, the extent of these small plumes was limited (Fig. 4) 16 17 and their contribution to the sector CO₂ balance was apparently negligible.

18

19

3.4 pCO₂ diurnal variations

The five back and forth tracks revealed important diurnal changes in water pCO₂ in S4 20 21 and S5, but not in S1 (Fig. 5). In the latter-S1 in Feb.2014 (Figure 5d), nighttime (early 22 morning predawn) pCO₂ (451 ± 38 ppmv) was not significantly different (p > 0.05 Mann-23 Whitney Test 01) from daytime pCO₂ (466 \pm 26 ppmv). In contrast, in S4 and S5, rapid and significant decreases in water pCO₂ were recorded in the early hours of the morning, 24 followed by a relative relatively stable undersaturation from 10:00 AM to all over the 25 afternoon (Fig. 5). For instance, in Sep.2014, pCO₂ decreased from 800 ppmv at 8:30 AM 26 to 200 ppmv at 13:40 PM at the same geographical location (Fig. 5a). The decrease in 27 water pCO₂ occurred relatively quick on all occasions at around 9:30 AM, which 28 29 apparently corresponded to the hour of maximum activation of photosynthetic activity by 30 phytoplankton. 9:30 AM was then used as the limit to separate nighttime pCO₂ from daytime pCO₂. In S4 and S5, pCO₂ changes from nighttime to daytime were from 591 ± 31 32 231 to 194 \pm 114 ppmv in Sep.2013, from 163 \pm 40 to 116 \pm 25 ppmv in Jan.2014, from 346 ± 166 to 146 ± 106 ppmv in Fev.2014, and from 637 ± 421 to 265 ± 186 ppmv in Apr. 33

- 1 2014. In all these cases, water pCO₂ was significantly higher (p < 0.001; Mann-Whitney
- 2 Test) before than after 9:30 AM. Consequently, S4 and S5 shifted from a CO₂ source at
- 3 nighttime to a CO₂ sink at daytime in Sep.2013 and Apr.2014, but remained a CO₂ sink
- 4 all day and night long in Jan. and Feb.2014. In addition to these five back and forth tracks
- 5 described in Fig. 5, we could compare water pCO₂ values measured on the same day in
- 6 early morning (before 9:30 AM) with those measured in late afternoon in S1, S3 and S4.
- 7 Consequently, our data provided a fairly good indication of the diurnal variability of pCO₂
- 8 throughout the entire sampling period, in all sectors, except S2 (Fig. 6).

10

3.5 Seasonal Variations

- 11 Despite the significant daily variations, very eClear seasonal changes were observed in
- pCO₂ of surface waters (Fig. 6), with higher values in winter (Apr.2013, Jul. 2013, Aug.
- 13 2013, Sep.2013 and Apr.2014) than in summer (Oct.2013, Dec.2013, Jan.2014 and
- 14 Feb.2014). Seasonal variation in DO and Chl a mirrored the pCO₂ variations, with a
- maximum phytoplanktonic biomass and oxygen saturation in summer, when pCO₂ was
- minimum. S1 was a source of atmospheric CO_2 during winter (p CO_2 of 501 ± 98 ppmv),
- but a sink during summer (pCO₂ of 304 ± 117 ppmv). S2 presented the highest pCO₂
- differences between winter (923 \pm 484 ppmv) and summer (423 \pm 530 ppmv), with high
- standard deviation resulting from spatial heterogeneity for both periods (Fig. 4). In S3,
- 20 S4 and S5, CO₂ undersaturation prevailed along the year, except in winter and nighttime,
- 21 where slight oversaturations occurred. In these three sectors, oxygen remained
- 22 oversaturated all over the year. Average measured values of pCO₂ for winter and summer
- 23 respectively, were 353 ± 141 and 194 ± 127 in S3, 380 ± 286 and 203 ± 159 in S4, and
- 364 ± 343 and 132 ± 74 ppmv in S5. Note that these averages are in its majority based on
- 25 daytime measurements and that integrated yearly average CO₂ fluxes had to be quantified
- 26 by accounting for both seasonal and diurnal variations (see following section and
- 27 discussion).

28

29

3.6 Gas transfer velocities, and CO₂ fluxes at the air-sea interface and NCP

- Wind speeds (12h-averaged) varied between 1.4 and 3.9 m s⁻¹, were significantly higher
- during summer than during winter (p < 0.001; t-test) and significantly higher during
- daytime than during nighttime (p < 0.001; t-test) (Table 2). Instantaneous wind speed

- showed some peaks at a maximum of 15 m s⁻¹ during short (<1h) events. Wind speeds
- 2 measured at the meteorological station in the southern part of the Bay were higher (S1,
- 3 S2 and S3) than those recorded at the station in the northern region (S4 and S5) (Table
- 4 2).

- 6 Calculated gas transfer velocities averaged over daytime and nighttime periods varied
- between 3-0.8 and 12.32 cm h⁻¹ (Table 2). k_{600} values calculated from the equation of
- 8 Abril et al. (2009) that accounts for the wind velocity, the fetch effect linked to estuarine
- 9 size and the current velocity, was systematically higher than those calculated from the
- relationships of Raymond and Cole (2001) and Wannikhof (1992), which consists in
- exponential functions of wind velocity, with the former specific for estuarine waters and
- the latter primarily development for open ocean waters . Average k_{600} values based on
- 13 15min wind speed were not significantly different from k₆₀₀ based on 12h average wind
- speed, showing that short storms had negligible impact on daily-integrated gas transfer
- velocities. CO₂ fluxes were calculated using the measured pCO₂ in each sector during the
- respective period: summer and winter, daytime and night-time. In the absence of data, we
- interpolated pCO₂ from surrounding areas and/or measurement periods. For S2, the only
- sector that was not sampled at night, we applied the mean diurnal variations of S1 and
- 19 S3. Because of the relatively narrow range of k₆₀₀ variation, calculated CO₂ fluxes
- 20 followed the pattern of surface water pCO₂, and varied between 14.6 mmol m⁻² h⁻¹ in the
- 21 polluted S2 during winter and nighttime, to -9.7 mmol m⁻² h⁻¹ in dense phytoplanktonic
- 22 blooms of S5 during summer and daytime (Table 2). Time-integrated CO₂ fluxes,
- accounting for seasonal and daily variations, revealed that all sectors except S2 behaved
- 24 as CO_2 sinks on an annual basis.
- 25 The NCP estimates to Guanabara Bay encompassed four sampling campaigns (Sep. 2013,
- Jan.2014, Feb.2014 and Apr.2014). The values ranged between 4 to 205 mmol m⁻² d⁻¹,
- 27 with annual average of 107 mmol m⁻² d⁻¹. The summertime period presented average of
- 28 132 mmol m⁻² d⁻¹, whereas for wintertime the NCP was 83 mmol m⁻² d⁻¹. All values of
- 29 NCP were positive indicating that upper sectors of Guanabara Bay are autotrophic.

30

31

32

4. Discussion

4.1 Estuarine Typology: Comparing Guanabara Bay with other estuaries

The results of the continuous measurements and the concomitant discrete sampling of 1 2 water quality parameters, showed that, in terms of CO₂ atmospheric exchange, Guanabara Bay does not follow the patterns of a typical drowned-river valley estuary with a marked 3 longitudinal estuarine gradient between its fresh and marine water end-member sources 4 (Pritchard, 1952). Rather, Guanabara Bay corresponds to a tropical marine dominated 5 system, owing to the small freshwater discharge relative to its water volume and tidal 6 7 exchange, maintaining 85 % of the bay with salinities always higher than 25. Its geomorphological characteristics and rather complex circulation of water masses, makes 8 9 the application of standard approaches to discern sources or sinks from composite plots 10 between salinity and material concentrations difficult (Bourton and Liss, 1976). 11 Furthermore, Guanabara Bay has been considered as one of the world's most degraded embayment characterized by constant eutrophic to hypertrophic conditions and the 12 13 frequent occurrence of red tides (Rebello et al., 1988; Villac and Tennenbaum, 2010; 14 Guenther et al., 2012).

15

16 The aquatic CO₂ behavior in Guanabara Bay was different from that in most of 17 documented estuaries worldwide. Indeed, the majority of studies that were conducted in 18 macrotidal, turbid and river-dominated estuaries reveal that these systems are 19 heterotrophic and emit large amounts of CO₂ both in temperate and tropical regions 20 (Frankignoulle et al., 1998; Borges and Abril, 2011; Sarma et al., 2012). These drowned valley, river-dominated, estuaries also exhibited a significant inverse trend between 21 22 salinity and pCO₂ (Frankignoulle et al., 1998), which was not observed in Guanabara Bay. The absence of a negative relationship between pCO₂ and salinity for the range of 23 24 27 to 32 is in fact more consistent with observations in some estuarine plumes (although 25 less pronounced), where pCO₂ undersaturation and diurnal variations are often reported 26 (Borges and Frankignoulle, 1999; Borges and Frankignoulle, 2002; Dai et al., 2009; 27 Bozec et al., 2011). Therefore, our results in Guanabara Bay are still consistent with the comparative analysis of CO₂ dynamics in river- and marine-dominated estuaries by Jiang 28 et al. (2008). In Guanabara Bay, salinities lower than 27 were confined to the upper region 29 at the mouths of the small rivers in S4 (max. $pCO_2 = 2222 \text{ ppmv}$), S5 (max. $pCO_2 = 2203$ 30 ppmv) and some polluted channels of S2 (max. $pCO_2 = 3715$ ppmv) (Table 1 and Fig. 4). 31 However, these heterotrophic and strong CO₂ degassing regions are relatively small when 32 compared to the total superficial area. In contrast, pCO2 in S1, which is directly affected 33

by marine water intrusion, exhibited minor diurnal and seasonal variations oscillating around the atmospheric value of 400 ppmv. But, sectors 3, 4 and 5 as a whole, which cover around 75 % of the bay's area, behaved as a CO₂ sink on a yearly basis, with concentrations even down to about 30 ppmv on some occasions (Table 2). These three sectors are subject to weaker currents and higher residence times of water and stratification in shallow depths, favouring CO₂ uptake by phytoplankton primary production and autotrophic metabolism, especially during summer. Indeed, thermal or haline stratification of estuarine waters has been identified as a determinant factor that favours the ecosystem to act as a CO₂ sink (Borges 2005; Chou et al., 2013). Low pCO₂ concentrations at surface waters were reported for the inner shelf of the Changjiang estuary (Chou et al., 2013), the outer Loire estuary (Bozec et al., 2012), the lower Pearl River estuary (Dai et al., 2008), the and Amazon river plume (Körtzinger, 2003) and on the Mississippi River-dominated continental shelf (Huang et al., 2015), all with enhancement of stratification stimulating phytoplankton blooms development and annually or seasonally uptake of CO₂. Low pCO₂ values were also observed in estuaries which receive small freshwater discharge and present low water exchange with the sea (Jiang et al., 2008; Koné et al., 2009; Maher and Eyre, 2012; Sarma et al., 2012).

The comparison of the E-DIC versus AOU values (Fig. 7) from our study with a compilation of data obtained for 24 estuaries, in majority river-dominated estuaries located in temperate regions (Borges and Abril, 2011) illustrates the specific metabolic characteristics of Guanabara Bay. The negative E-DIC and AOU values found for Guanabara Bay suggest the system is autotrophic. In addition, data from Guanabara Bay were closer to the theoretical line (1:1) as compared to the other estuaries, which lied well outside the general positive trend, indicating heterotrophic conditions. The 1:1 line represents the quotient between CO₂ and O₂ during planktonic primary production and aerobiccommunity respiration (Borges and Abril 2011). The values near of this line for Guanabara Bay suggests that gross primary production and total (autotrophic and heterotrophic) total respiration are coupled—, and largely dominated the signal, with a strong biological control on the production/consumption of these gases. In addition, data from Guanabara Bay were closer to the theoretical line (1:1) as compared to the The most part of compiledMany data from other estuaries other estuaries, which lied well outside the general positive trend above the 1:1 line, especially at high pCO₂ values, indicating

lateral inputs of dissolved CO₂ from tidal marshes or mangroves, heterotrophic conditions (Borges and Abril, 2011). Deviation above the 1:1 line indicates allochtonous inputs of dissolved CO₂, faster equilibration of oxygen with the atmosphere than carbon dioxide due to differences in solubility and the buffering capacity of the carbonate system, and/or anoxic respiration in sediments and/or lateral inputs (intertidal marshes, mangroves) (Cai et al., 1999; Abril et al., 2002; Bouillon et al., 2008; Borges and Abril, 2011). Interesting to point that in In Guanabara Bay, mangrove forests are not so extended the extension of mangrove forest is not so large, and the volume of water exchanged with the mangrove sediments is probably moderate due to the modest tidal amplitude. For that reason, This is what our data suggest, as we could not find supersaturated pCO₂ conditions near of the mangrove region, at least at about (2.5 - 3) km distance from the mangrove. This indicates suggests that dissolved CO₂ export from the mangrove is low and little export, low tidal, and probably associated with a rapid consumption of mangrove-derived DIC by the phytoplankton. In Guanabara Bay, AOU and E-DIC also suggests that gross primary production and total (autotrophic and heterotrophic) respiration largely dominated the signal, with respiratory and photosynthetic quotients close to one.

4.2 Meteorological and biological control of pCO2 in Guanabara Bay

A PCA was performed to better identify the variable contributions of the data. For each sampling day, we calculated the mean values of pCO₂, DO, pH, Chl *a*, temperature, salinity, wind velocity, PAR incidence and also the seven days of accumulated precipitation. The PCA revealed a strong meteorological control on the pCO₂ dynamics in Guanabara Bay (Fig. 8). Factor 1 explains 65% of the total variance revealing that pCO₂ was well separated and negatively correlated related towith DO, Chl *a*, temperature, wind velocity and PAR incidence. This correlation—suggests a strong external meteorological control on phytoplankton dynamics and, in turn, on the CO₂, DO and Chl *a* at spatial and temporal scales variations. Indeed, the high incident light simultaneously provides energy for phytoplankton growth and favors the development of thermal stratification, particularly in the shallow and less hydrodynamic regions (Fig. 3). In the tropics, high light incidence combined with the presence of nutrients contributes to phytoplankton blooms and CO₂ depletion both directly, by supplying light for photosynthesis, and indirectly by favoring stratification of the water column. It is noteworthy that high wind speed in the region of Guanabara was correlated with high

PAR, and consequently, gas exchange was favored during daytime, when CO₂ depletion attained its maximum. In contrast, salinity and the 7-day accumulated precipitation were negatively correlated not related to the other to the other parameters, and dominating the factor 2, that explain about 19% of the data-variance in the data. This suggests that pulsated inputs of freshwater, typical of tropical storms affects salinity in Guanabara Bay, but has little impact on the intensity of blooms and the CO₂ uptake by the phytoplankton.

7

8 Our diurnal measurements along the hypertrophic sectors 4 and 5 also showed marked differences of pCO₂ concentrations between daytime and nighttime. The nighttime pCO₂ 9 values were about 30% higher than daytime (differing by up to 395 ppmv). As the PAR 10 incidence increased along the day, the surface pCO₂ decreased due to the enhancement 11 12 of photosynthesis and rapid formation of thermal stratification (Figs. 3 and 5). Our report of strong diurnal variation in pCO₂ in Guanabara Bay (Fig. 5) reveals how photosynthesis 13 and respiration processes vary temporally, especially in domains with high phytoplankton 14 15 biomass (indicated by Chl a values above 50, sometimes reaching 200 µg L⁻¹). In their study of primary production based on oxygen incubations in Guanabara Bay, Rebello et 16 al. (1988) postulated that some intriguing very low rates in Chl a-rich samples were due 17 to the occurrence of CO₂ limitation. Indeed, the extremely low values of pCO₂ observed 18 in S5 (ex. 24 ppm or 0.6 µmol kg⁻¹ of dissolved CO₂) confirm that CO₂ might be one of 19 the limiting factors for primary production. However, in such CO₂ limiting conditions, 20 phytoplankton would need to uptake bicarbonate using the proton pump mechanism and 21 the (carbonic anhydrase enzyme) (Kirk, 2011). Some diurnal variations of pCO₂ 22 controlled by biological activity have been reported in several other estuarine systems 23 worldwide (Dai et al., 2009; Bozec et al., 2011; Yates et al., 2007; Zhang et al., 2013). In 24 25 the Bay of Brest, a temperate coastal embayment, the phytoplankton blooms were 26 responsible to-for 10 to 60% of the seasonal pCO₂ drawdown observed during spring, 27 equivalent to 100-200 ppmv (Bozec et al., 2011). In Tampa Bay, a shallow subtropical 28 estuary According to Yates et al. (2007), the diurnal variations in pCO₂ (median of 218 ppmv) in Tampa Bay, a shallow and subtropical estuary were largely influenced by 29 primary productivity and respiration of benthic communities (Yates et al. 2007). Also, 30 Zhang et al. (2013) reported diurnal pCO₂ variations mainly controlled by biological 31 activities (maximum 218 ppm in autumn) in a Chinese tropical open bay dominated by 32 fringing reefs; however, calcification was also important driver of diurnal pCO₂ variations 33

in winter. In one suite of different coastal ecosystems in the South China Sea, including 1 2 inshore and onshore locations, Dai et al. (2009) concluded that temperature was a major driver of pCO₂ diurnal variability in the oligotrophic and offshore regions (10-16 ppmv 3 variations), tidal effects in the nearshore (41-152 ppmv), and biological metabolism in 4 the coral reef system (up to 608 ppmv of diurnal variations). Henceforth, it is clear that 5 diurnal variations must be accounted for in estuarine CO₂ budgets assertions, otherwise, 6 7 estimates based on daytime pCO₂ measurements only, might shift the conclusions toward 8 an overestimates of the CO₂ sink, or an underestimate of CO₂ source. Further in this paper, 9 we use pCO₂ measurements at different hours of the day and night in order to integrate 10 the diurnal variations.

11

12 The contributions of temperature and biological activity for Guanabara Bay were estimated as 33 and 255 ppmv, respectively, showing the strong influence of biological 13 productivity over pCO₂ dynamics on this tropical coastal embayment (ratio of 0.12). 14 Some authors utilized the same approach in other estuarine systems with different 15 dominances between temperature and biological effect (Bozec et al., 2011; Zhang et al. 16 2012; Hunt et al., 2014). The temperature dominating effect were presented by in 17 18 Jiaozhou Bay (China Sea), Zhang et al. (2012) obtained pCO₂ variations differences of 93 and 78 ppmv for temperature and biological activity respectively (weak temperature 19 20 prevalence and ratio of 1.19). In the Kennebec Estuary (USA), Hunt et al. (2014) found different rations according to the salinity zones and showed that, in general, higher ratios 21 22 prevailed at low salinities (1.9-2.1), with higher temperature control on pCO₂ variations. Bozec et al. (2011), on the other hand, in one inter-annual approach encountered a mean 23 24 value of 0.49, in the Bay of Brest, a temperate embayment in France, confirming that the 25 biological processes were the main driver of the seasonal pCO₂ dynamic. The ratio for 26 Guanabara Bay is much lower than in all these systems, and also consistent with a atypical 27 CO₂ dynamics.

28

29

4.3 Eutrophication and CO₂ Dynamics

In several coastal systems worldwide, important CO₂ changes, either increasing or decreasing have been attributed to eutrophication processes (Gypens et al., 2009; Borges and Gypens, 2010; Cai et al., 2011; Sunda and Cai, 2012; Chou et al., 2013).

Eutrophication occurs when massive anthropogenic inputs of both organic (mainly domestic) and inorganic (agricultural or industrial) nutrients (sometimes during several decades) have enriched estuarine waters and sediments with bioavailable nitrogen and phosphorus (Rabalais et al., 2009). Increases in pCO₂ have been reported in river-dominated estuaries at the vicinity of megacities (Frankignoulle et al 1998; Zhai et al., 2007; Sarma et al., 2012). When sewage is discharged in such river-dominated systems, heterotrophy is enhanced and CO₂ outgassing increases (Zhai et al., 2007; Sarma et al., 2012). Indeed, environmental conditions in these turbid estuarine waters strongly limit primary production in favor of heterotrophy. Turbidity, together with stratification, is indeed a key parameter that explains pCO₂ variation in estuaries (Jiang et al. 2008; Borges and Abril 2011). In Guanabara Bay, sewage also predominates as source of organic nutrients (Bidone and Lacerda, 2004). However, the pCO₂ spatial distribution (Fig. 4) suggests that mineralization of this domestic organic matter occurs predominantly within the sewage network itself and in small rivers and channels and their plumes that represent a small surface area in the Bay. It can be noted for example that pCO₂ oversaturation was more extended in S2 in Aug. 2013, which corresponds to a sampling just after strong rains on the city of Rio de Janeiro. Mineralization of organic matter in these extremely polluted areas leads to rapid CO₂ (and probably CH₄) outgassing, and concomitantly, contributes to a long-term enrichment of the Bay in bioavailable nitrogen and phosphorus (Paranhos et al., 1998; Ribeiro and Kjerfve, 2002).

Except for these peripheral zones, most sectors of Guanabara Bay experienced massive algal blooms thanks to the optimal conditions for primary production, including nutrient, light, and water column stratification. The driving phytoplankton assemblages of Guanabara Bay are typical for eutrophic to hypertrophic systems, largely dominated by bloom and also red tide forming nanoplankton, filamentous cyanobacteria and some microplankters-microplanktons (Valentin et al., 1999; Santos et al., 2007; Villac and Tennenbaum, 2010). Preliminary investigations of the collected material from this study suggests that cyanobacteria were frequently encountered in S2, S4 and S5, during the 9 sampling periods, and great deal of patchiness was observed with a succession of intense red, brown and/or green colored waters, leading to the marked short spatial variability of pCO₂, DO and Chl *a*. In the waters dominated by phytoplankton blooms the pCO₂ concentrations-values were always extremely low, and the sink characteristics were

prevalent, with high CO₂ uptake and autotrophy characteristics. It has been shown, that during summer the heterotrophic bacterial production (BP) lied within the range of only 0.4-19 % of primary production (PP) at the surface and 5-52 % at the bottom, being nutrient dependent (Guenther et al., 2008). Our spatial and temporal pCO₂ dataset (Fig. 4) also suggests that the most confined part of the inner bay apparently behaved as the "bloom genesis region" that can spread phytoplanktonic production, biomass, and associate CO₂ consumption over the rest of the estuarine system. Indeed, CO₂-depleted waters were confined to S4 and S5 in October 2013, and progressively extended to all sectors (except S2) in January 2014, During this period, conditions became ideal for bloom developments with increasing air and water temperature, and the development of water stratification (Figs. 4 and 6).

Eutrophication, thus, enhances the low surface pCO₂ concentrations in Guanabara Bay. Phytoplankton uses more nutrients and dissolved CO₂ in the surface waters, and produce larger biomass of organic matter. When this additional material reaches the bottom, the organic matter and associated nutrients are recycled, increasing pCO₂ and decreasing the oxygenation of bottom waters (Fig. 3,k,l). Some authors recently discussed the increasing of bottom water acidification enhanced by coastal eutrophication especially in stratified ecosystems (Cai et al., 2011; Sunda and Cai, 2012). It has been shown, that water column stratification and bottom water stagnation enhances the isolation of O₂ and CO₂ in deeper waters and consequently their exchange between bottom and surface waters (Chen et al., 2007). Koné et al. (2009) reported a consistent CO₂ vertical distribution in Aby and Tendo lagoons, in Ivory Coast, where a warmer, fresher, Chl a-rich surface layer was depleted in CO₂ and nutrients, whereas a more saline and anoxic bottom layer was enriched in CO₂ and nutrients. Gypens et al. (2009) developed and validated a process-based model in the Scheldt estuary plume, that revealed that eutrophication could make the system shift from a net source of atmospheric CO₂ to a net sink, when anthropogenic nutrient loads increased, stimulating the carbon fixation by autotrophs. Chou et al. (2013) also suggested that human-induced increase in nutrient loading may have stimulated primary production and thus enhanced the CO₂ uptake capacity on the inner shelf off the Changjiang Estuary. Our results reveal that the impact of eutrophication on estuarine systems in terms of CO₂ exchange strongly depends on their typology. Drowned-valley, river-dominated, "funneltype" estuaries, which are generally light-limited and heterotrophic, respond totally

differently from estuarine plumes, marine-dominated lagoons or embayments like Guanabara Bay, where optimal condition for autotrophic primary production occur over large surface areas. These estuarine types are different in their hydrological and geomorphological configuration, availability of light, diversity of primary producer and heterotrophic assemblages, and their response to increasing nutrient loading (Smith et al. 2010; Cloern et al. 2004). Depending on the hydrodynamics, the additional organic carbon produced by enhanced eutrophication can be buried, mineralized, and/or exported. In quiescent embayments like Guanabara Bay, long-term burial can be significant (Carreira et al., 2002), resulting in a net uptake and storage of atmospheric carbon within the ecosystem.

4.4 Carbon Budgets in Guanabara Bay Air-Water CO2 Fluxes in Guanabara Bay

The spatial and temporal CO₂ fluxes were integrated for the Bay, taking into account the diurnal and seasonal variations of pCO₂, wind speed, and gas exchange coefficients. Efforts were made to sample all the sectors of the bay with different PAR intensities (higher, medium and low intensity, for each sampling day and especially in the more eutrophic waters). Characteristic daytime and nighttime pCO₂ where deduced from the five back and forth observations in S4 and S5, and from the comparison of early morning (before 9:30 AM) pCO₂ data with late afternoon data in S1, S3 and S4. Compared to seasonal changes, diurnal changes were significant, surface pCO₂ sometimes shifted from a sink behavior in the evening to source behavior at the end of the night, or sometimes remained under-saturated all night long (Fig. 6). Except for S2, the more polluted sector, and the only one acting as a CO₂ emittersource, our data could be used to integrate diurnal variability of pCO₂ throughout the sampling period (Fig. 6). For S2, the only region that was not sampled during the night, the values of the diurnal differences obtained in S1 and S3 were applied, which seems reasonable, owing to their similar Chl *a* concentrations.

Comparing the two three k_{600} used for the calculated fluxes, the k_{600} of Abril et al. (2009) can be considered the higher flux estimate, based on chamber measurements in 9 estuarine systems, whereas the k_{600} of Wanninkhof (1992) provides a more conservative value. The model of Raymond and Cole (2001) provides a more conservative value, based on non-

intrusive "tracers only" data, provided intermediate fluxes compared to the other two models. k_{600} values varied from 0.8 to 12.3 cm h⁻¹, which correspond to wind speed velocities between 1.8 to 3.9 m s⁻¹. Current velocity (few dozen of centimeters per second) contributed to a minor fraction of k_{600} in the Abril et al. (2009) equation. On an annual basis, Guanabara Bay was a net sink of atmospheric CO₂ (year-integrated flux of -9.6, -12.0 and -18.1 mol C m² yr⁻¹, for kw₀₂, k_{RC01} and k_{A09}, respectively), but with strong differences at temporal and spatial scales. On a daily basis, summer CO2 uptake was maximal in S3, S4 and S5, with daily fluxes of -190, -110 and -170 mmol C m² d⁻¹, respectively), whereas in the winter fluxes decreased to -14, -30 and +12 mmol C m² d⁻¹, respectively (note that S5 changed form a large sink in summer to a slight source in winter). S1 was a moderate source in winter (+60 mmol C m² d⁻¹) and a moderate sink in summer (-90 mmol C m² d⁻¹), as well as on an annual basis (-4.45 mol C m² yr⁻¹). In the highly polluted S2 sector, where a large part of the domestic organic matter is apparently respired, a strong annual outgassing occurred (+213 mmol C m² d⁻¹). However this region occupies only about 10% of the surface sampled area of the bay. It is interesting to note that at the midday/afternoon periods the winds were stronger than during the night/early-morning periods. This abides to the classical daily wind cycle at coastal regions guided by the thermal difference between the land and the water surface (Amarante et al., 2002), which apparently favors the CO₂ sink. Higher wind speed at daytime, and in summer than in winter (Amarante et al., 2002), also favored the CO₂ uptake.

The sink of CO₂ at air-sea interface showed values very close to the burial rates of organic carbon in the sediments. The table 3 presents one summary of the documented carbon fluxes in the Guanabara Bay. Carreira et al. (2002) found a 10-fold increase in the flux of organic carbon to the sediments in the last 50 years (maximum of 114 mmol C m⁻² d⁻¹ in the S5). Our annual budget of carbon uptake at the air-water interface was 105 mmol C m² d⁻¹ for this same region, showing that Guanabara Bay is, in fact, a strong CO₂ sink and has an ve-autotrophic metabolism. The autotrophic nature of Guanabara Bay is also indicated—confirmed by the relationship between autotrophic and heterotrophic communities (Guenther and Valentin, 2008; Guenther et al. 2008). Rebello et al. (1988) estimated phytoplankton primary production rates from monthly measurements over an annual cycle to vary between 60 to 300 mmol C m⁻² d⁻¹, with highest rates in the lateral and upper regions of the bay. The bacterial production used only a small fraction of the

1 dissolved organic carbon pool, which had a turnover between 23 to 71 days in waters of the Bay (Guenther et al., 2008). Average net primary production (NPP) was 170 mmol C 2 m⁻² d⁻¹. Comparing with our results, the NPP values are very close to those found for the 3 carbon uptake at air-water interface for summer conditions in the S3, S4 and S5, being 4 200, 149 and 189 mmol C m⁻² d⁻¹, respectively. After anormalization to the total surface 5 6 area of Guanabara Bay, the total average organic load from sewage and rivers is about 43 mmol OrgC m² d⁻¹ (FEEMA, 1998), compared to the annual CO₂ uptake at the air-water 7 interface of 54-49 mmol C m² d⁻¹. However, our the observations pCO₂ spatial distribution 8 9 supports the idea that most of the sewage-derived organic carbon is respired at the vicinity of the urban area, and little constitutes contributes to the carbon budget in the rest 10 11 of the bay, except the Sector 2. In addition, molecular and isotopic characterization of the particulate organic matter of Guanabara Bay stable carbon and nitrogen isotopes revealed 12 that the suggested revealed the predominance of autochthonous organic matter organic 13 matter buried in the sediments was autochthonous material of phytoplanktonic origin 14 15 (Kalas et al., 2009). All these quantitative informations Other fact that converge fact that converges to the conclusion that Guanabara Bay behaves as a net autotrophic CO2 16 17 sinksystem that efficiently stores atmospheric carbon in its sediments is the high positive values of NCP encountered in summer and wintertime in sectors 4 and 5. The annual 18 average NCP was 143 mmol m⁻² d⁻¹, and is the highest value compared to the compiled 19 data set of Borges and Abril (2011) that included 79 estuaries, where 66 are net 20 heterotrophic, 12 net autotrophic, and one balanced. The summertime period showed the 21 highest values of NCP and coincides with the strongest sink of CO₂ at air-water interface. 22 The annual average of NCP for Guanabara Bay was 143 mmol m⁻² d⁻¹, and is the highest 23 value compared to the compiled data set of Borges and Abril (2011) that included. 79 24 estuaries, where 66 are net heterotrophic, 12 net autotrophic, and one balanced. 25 Guanabara Bay showed NCP values near that found in athe tropical eutrophic Bojorquez 26 27 Lagoon (Mexico) lagoon at the annual scale (Bojorquez Lagoon Mexico) (Reyes and 28 Merino, 1991) and in the subtropical coastal waters of Hong Kong at summertime (Yuan et al., 2011), both systems highly impacted by sewage discharge. 29

30

31

5 Conclusions

In Guanabara Bay, annual uptake of atmospheric CO₂ associated with a net burial of organic matter in sediments was due to the synergic and cumulative effects of three

factors: (i) an estuarine typology of marine dominated embayment with fairly long 1 residence times of saline waters together with nutrient inputs in its upper sectors 2 permitting phytoplanktonic developments; (ii) the tropical climatic conditions that 3 4 increase light availability and favor the stratification of the water column; (iii) a longterm discharge of untreated domestic waters that have enriched the bay in nutrients and 5 6 led to eutrophication. Eutrophication has also modified the phytoplanktonic assemblages 7 toward smaller, more productive and short-live groups (Villac and Tennenbaum, 2010), including some nitrogen-fixing species (cyanobacteria). A net autotrophic metabolism of 8 9 Guanabara Bay is attested by the annual CO₂ uptake at the air-water interface, the positive 10 and high NCP values, the low bacterial production relative to the primary production 11 (Guenther et al., 2008), and the large burial of autochthonous organic carbon to the sediments (Carreira et al., 2002). It is the first estuarine system where the synergy of these 12 13 three factors is clearly identified as the predominant driver of CO₂ dynamics and of carbon balance. Indeed, some other cases of net CO₂ uptake have been reported in some 14 15 relatively polluted tropical coastal lagoons in Ivory Coast (Koné et al., 2010), in three temperate and marine-dominated Australian estuaries (Maher and Eyre, 2012), in 16 17 temperate and tropical estuarine plumes either preserved (Körtzinger, 2003) or humanimpacted (Cai, 2003; Zhai and Dai, 2009; Bozec et al., 2012), and in some pristine arctic 18 and sub-artic fjords (Rysgaard et al., 2012; Ruiz-Halpern et al. 2010). In contrast, inner 19 and low salinity regions of most river-dominated, drowned valley, "funnel-type" 20 estuaries, which are generally well-mixed and relatively turbid environments, have been 21 22 documented as heterotrophic and CO₂ emitters under tropical (Araujo et al., 2014), temperate (Frankignoulle et al. 1998) and boreal (Silveneoieen et al., 2008) climates and 23 whatever the anthropogenic pressure (Abril et al. 2003; 2004; Zhai et al., 2007; Borges 24 and Abril, 2011; Cai 2011; Sarma et al., 2012). 25

26

27

28

29

30

31

32

33

Our findings of a net annual CO₂ sink in Guanabara Bay indicate that more field data are needed in particular in the highly productive tropical coastal ocean, in order to adequately integrate estuarine CO₂ fluxes at the global scale. In Brazil, most previous studies concerned river dominated estuaries, especially along the northern and northeastern coast, which all behave as CO₂ sources (Souza et al., 2009; Araujo et al., 2014; Noriega and Araujo, 2014). In contrast to Guanabara Bay, highest CO₂ fluxes correspond to denser population in the watersheds of these net heterotrophic systems (Noriega et al. 2014). In

fact, the Brazilian coast presents several estuarine types (river estuarine deltas, estuaries, 1 2 lagoons and large embayments) which have very different metabolisms (Bernardes et al., 2012), but where CO₂ fluxes have as yet to established. Large pCO₂ temporal variations 3 can be expected for instance in a phytoplankton-dominated coastal lagoon in Brazil that 4 exhibited an annually balanced metabolism, but with seasonal shifts between autotrophic 5 and heterotrophic conditions (Carmouze et al., 1991; Knoppers et al. 1999a,b). Lagoons 6 7 dominated by macroalgae or microphytobenthos exhibited different metabolic trends, but still with a significant potential for a net uptake of atmospheric CO₂ (Knoppers, 1994). 8 9 Undersampling coastal embayments and lagoons with clear and stratified waters, compared to turbid and well-mixed river-dominated estuaries, would potentially lead to 10 11 an overestimation of the regional estuarine CO₂ budget. In addition, diurnal variations might impact the net CO₂ budget more significantly in autotrophic systems than in 12 13 heterotrophic systems, and need to be assessed in the field. Continuous pCO₂ measurements on autonomous buoys (e.g. Frankignoulle et al 2003; Bozec et al. 2011) 14 15 are very promising tools to reach sufficient temporal resolution. We also showed that pCO2 dynamics were strongly correlated with meteorological conditions. Taking into 16 17 account that the last projections of Intergovernmental Panel on Climate Change (IPCC) include unequivocal predictions of the climate system warming for the next years 18 (Stocker et al., 2013), the increase of water temperature can reinforce the net sink of 19 Guanabara Bay. 20

21

22

Acknowledgments

This research was funded by the Science without border program of the Brazilian National Council of Research and Development (CNPq-PVE 401726-6). This project supported G.A. with a Senior Scientist grant, N.B. with a Post-Doc grant and LCCJr with a PhD grant for visiting EPOC. B.K. is a Senior Scientist of CNPq (Proc. Nr. 301572/2010-0). The meteorological data were kindly provided by the Brazilian Institute of Aerial Space Control (ICEA, Ministério da Defesa, Comando da Aeronáutica, Org. 2° SGT. BMT

Antonio Carlos), and the global estuarine data by Dr Alberto Borges (Liège University).

30

29

31

References

- 3 Abril, G., Nogueira, E., Hetcheber, H., Cabeçadas, G., Lemaire, E., and Brogueira, M.:
- 4 Behaviour of organic carbon in nine contrasting European estuaries, Estuar. Coast. Shelf
- 5 S., 54, 241–262, 2002.
- 6 Abril, G., Etcheber, H., Delille, B., Frankignoulle, M., and Borges, A.V.: Carbonate
- 7 dissolution in the turbid and eutrophic Loire estuary, Mar. Ecol-Prog. Ser., 259, 129–138,
- 8 2003.
- 9 Abril G., Commarieu M., Maro D., Fontugne M., Guérin F., and Etcheber, H.: A massive
- dissolved inorganic carbon release at spring tide in a highly turbid estuary, Geophys. Res.
- 11 Lett., 31, L09316, doi:10.1029/2004GL019714, 2004.
- Abril, G., Richard, S., and Guérin, F.: In-situ measurements of dissolved gases (CH₄ and
- 13 CO₂) in a wide range of concentrations in a tropical reservoir using an equilibrator, Sci.
- 14 Total Environ, 354, 246–251, 2006.
- Abril, G., Commarieu, M., Sottolichio, A., Bretel, P., and Guérin, F.: Turbidity limits gas
- exchange in a large macrotidal estuary, Estuar. Coast. Shelf Sci., 83, 342–348, 2009.
- Allen, M. R., Frame, D. J., Huntingford, C., Jones, C., Lowe, J. A., Meinshausen, M., and
- 18 Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth
- 19 tonne, Nature, 458, 1163-1166, 2009.
- Araujo, M., Noriega, C., and Lefèvre, N.: Nutrients and carbon fluxes in the estuaries of
- 21 major rivers flowing into the tropical Atlantic, Frontiers in Marine Science, 1, 1–16,
- doi:10.3389/fmars.2014.00010, 2014.
- Amarante, O. A., Silva, F. J., and Rios Filho, L. G.: Atlas Eólico, Estado do Rio de
- Janeiro, Secretaria de Estado da Energia, da Indústria Naval e do Petróleo, Rio de
- 25 Janeiro, 64 pp., available at
- 26 http://www.cresesb.cepel.br/publicacoes/download/atlas_eolico/AtlasEolicoRJ.pdf,
- 27 2002.
- Bauer, J. E., Cai, W.J., Raymond, P., Bianchi, T. S., Hopkinson, C. S., and Regnier, P.
- 29 G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70,
- 30 doi:10.1038/nature12857, 2013.

- 1 Benson, B.B. and Krause, D.: The concentration and isotopic fractionation of oxygen
- 2 dissolved in freshwater and seawater in equilibrium with the atmosphere, Limnol.
- 3 Oceanogr., 29, 620-632, 1984.
- 4 Bérgamo, A.S. 2010.: Caracteristicas hidrograficaz, da circulação, e dos transportes de
- 5 volume e sal na Baia de Guanabara (RJ) : variacoes sazonais e moduladas pela mare,
- 6 Ph.D. thesis, Universidade de Sao Paulo, Sao Paulo, 200 pp., 2010.
- 7 Bernardes, M. C., Knoppers, B. A., Rezende, C. E., Souza, W. F., and Ovalle, A. R.:
- 8 Land-sea interface features of four estuaries on the South America Atlantic coast, Braz.
- 9 J. Biol., 72, 761-774, 2012.
- 10 Bidone, E. D. and Lacerda, L. D.: The use of DPSIR framework to evaluate sustainability
- in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil, Reg. Environ.
- 12 Change, 4, 5-16, 2004.
- 13 Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., and
- Patchineelam, S. R.: Eutrophication history of Guanabara Bay (SE Brazil) recorded by
- phosphorus flux to sediments from a degraded mangrove area, Mar. Pollut. Bull., 58,
- 16 1750–1754, doi:10.1016/j.marpolbul.2009.07.025, 2009.
- Borges, A. V. and Frankignoulle, M.: Daily and seasonal variations of the partial pressure
- 18 of CO₂ in surface seawater along Belgian and southern Dutch coastal areas, J. Mar. Syst.,
- 19 19, 251–266, doi:10.1016/S0924-7963(98)00093-1, 1999.
- 20 Borges, A. V.: Do we have enough pieces of the jigsaw to integrate CO₂ fluxes in the
- 21 coastal ocean?, Estuaries, 28, 3–27, doi:10.1007/BF02732750, 2005.
- Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more
- strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353,
- 24 doi:10.4319/lo.2010.55.1.0346, 2010.
- Borges, A.V. and G. Abril.: Carbon Dioxide and Methane Dynamics in Estuaries, in:
- Treatise on Estuarine and Coastal Science, Eric, W. and Donald, M. (eds.), Academic
- 27 Press, Amsterdam, 119–161, 2011.
- Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C,
- Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V., Smith T.
- 30 J., and Twilley, R. R.: Mangrove production and carbon sinks: a revision of global budget
- 31 estimates. Global Biogeochem. Cy., 22, GB2013, doi:10.1029/2007GB003052, 2008.

- Bozec, Y., Merlivat, L., Baudoux, A. C., Beaumont, L., Blain, S., Bucciarelli, E.,
- 2 Danguy, T., Grossteffan, E., Guillot, A., Guillou, J., Répécaud, M., and Tréguer, P.:
- 3 Diurnal to inter-annual dynamics of pCO₂ recorded by a CARIOCA sensor in a
- 4 temperate coastal ecosystem (2003–2009), Mar. Chem., 126, 13–26,
- 5 doi:10.1016/j.marchem.2011.03.003, 2011.
- 6 Bozec, Y., Cariou, T., Macé, E., Morin, P., Thuillier, D., and Vernet, M.: Seasonal
- 7 dynamics of air-sea CO₂ fluxes in the inner and outer Loire estuary (NW Europe), Estuar.
- 8 Coast. Shelf Sci., 100, 58–71, doi:10.1016/j.ecss.2011.05.015, 2012.
- 9 Bricker, S., Ferreira, J., and Simas, T.: An integrated methodology for assessment of
- 10 estuarine trophic status, Ecol. Modell., 169, 39–60, doi:10.1016/S0304-3800(03)00199-
- 11 6, 2003.
- Bourton J. D. and Liss, P. S.: Estuarine Chemistry, Academic Press, London, 1976.
- 13 Cai, W.-J., Pomeroy, L. R., Moran, M. A., and Wang, Y. C.: Oxygen and carbon dioxide
- mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern
- 15 US, Limnol. Oceanogr., 44, 639–649, 1999.
- 16 Cai, W.-J.: Riverine inorganic carbon flux and rate of biological uptake in the Mississippi
- 17 River plume, Geophys. Res. Lett., 30, 1032, doi:10.1029/2002GL016312, 2003.
- 18 Cai, W.-J.: Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial
- carbon incineration?, Annu. Rev. Mar. Sci., 3, 123–145, 2011.
- 20 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou,
- 21 W.-C., Zhai, W., Hollibaugh, J. T., and Wang, Y.: Acidification of subsurface coastal
- waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, 2011.
- 23 Carmouze, J., Knoppers, B. A., and Vasconcelos, P. A.: Metabolism of Saquarema
- 24 Lagoon, Brazil, Biogeochemistry, 2, 14, 129-148, 1991.
- 25 Carreira, R. S., Wagener, A. L. R., Readman, J. W., Fileman, T. W., Macko, S. A., and
- Veiga, Á.: Changes in the sedimentary organic carbon pool of a fertilized tropical estuary,
- 27 Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach, Mar.
- 28 Chem., 79, 207–227, doi:10.1016/S0304-4203(02)00065-8, 2002.
- 29 Chen, C. C., Gong, G. C., and Shiah, F. K.: Hypoxia in the East China Sea: One of the
- largest coastal low oxygen areas in the world, Mar. Environ. Res., 64, 399–408,

- doi:10.1016/j.marenvres.2007.01.007, 2007.
- 2 Chen, C.T.A., Huang, T.H., Chen, Y.C., Bai, Y., He, X., and Kang, Y.: Air–sea exchanges
- of CO₂ in the world's coastal seas, Biogeosciences, 10, 6509–6544, doi:10.5194/bg-10-
- 4 6509, 2013.
- 5 Chou, W. C., Gong, G. C., Cai, W. J., and Tseng, C. M.: Seasonality of CO₂ in coastal
- 6 oceans altered by increasing anthropogenic nutrient delivery from large rivers: evidence
- 7 from the Changiang-East China Sea system, Biogeosciences, 10, 3889–3899,
- 8 doi:10.5194/bg-103889-2013, 2013.
- 9 Cloern, J.: Our evolving conceptual model of the coastal eutrophication problem, Mar.
- 10 Ecol. Prog. Ser., 210, 223–253, doi:10.3354/meps210223, 2001.
- 11 Cloern, J. E., Foster, S. Q., and Kleckner, A. E.: Phytoplankton primary production in the
- world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477–2501, doi:10.5194/bg-
- 13 11-2477-2014, 2014.
- 14 Cohen, J. E., Small, C., Mellinger, A., Gallup, J., and Jeffrey S.: Estimates of coastal
- populations, Science, 278, 1209-1213, 1997.
- Dai, M., Zhai, W., Cai, W.-J., Callahan, J., Huang, B., Shang, S., Huang, T., Li, X., Lu, Z.,
- 17 Chen, W., Chen, Z.: Effects of an estuarine plume-associated bloom on the carbonate
- system in the lower reaches of the Pearl River estuary and the coastal zone of the northern
- 19 South China Sea, Cont. Shelf Res, 28, 1416–1423, 2008.
- Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Cai, W., and Chen, C. A.: Diurnal
- variations of surface seawater pCO₂ in contrasting coastal environments, Limnol.
- 22 Oceanogr., 54, 735–745, 2009.
- Dickson, A.G. and Millero, F.J.: A comparison of the equilibrium constants for the
- 24 dissociation of carbonic acid in seawater media, Deep-Sea Res., 34, 1733–1743, 1987.
- Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean Acidification: The
- Other CO 2 Problem, Annual Review of Marine Science, 1, 169–192,
- 27 doi:10.1146/annurev.marine.010908.163834, 2009.
- FEEMA:. Qualidade da agua da Baia da Guanabara—1990 a 1997. Secretaria de Estado
- 29 de Meio Ambiente, Fundação Estadual de Engenharia do Meio Ambiente, Rio de Janeiro,
- 30 187 pp., 1998.

- 1 Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E.,
- and Theate, J. M.: Carbon Dioxide Emission from European Estuaries, Science, 282, 434–
- 3 436, 1998.
- 4 Frankignoulle, M., Borges A., and Biondo R.: A new design of equilibrator to monitor
- 5 carbon dioxide in highly dynamic and turbid environments, Water Res., 35, 344 7, 2001.
- 6 Frankignoulle, M., Biondo, R., Théate, J. M., and Borges, A. V.: Carbon dioxide daily
- 7 variations and atmospheric fluxes over the Great Bahama Bank using a novel autonomous
- 8 measuring system. Caribb. J. Sci., 39, 257-264, 2003.
- 9 Gattuso J. P., Frankignoulle, M., and Wollast, R.: Carbon and carbonate metabolism in
- coastal aquatic ecosystems, Annu. Rev. Ecol. Syst., 29, 405-434, 1998.
- 11 Godoy, J. M., Moreira, I., Bragan, M. J., Wanderley, C., and Mendes, L. B.: A study of
- Guanabara Bay sedimentation rates, J. Radioanal. Nucl. Ch., 227, 157-160, 1998.
- 13 Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds.): Methods of Seawater Analysis,
- third ed., Wiley-VCH, Weinhein, 1999.
- Guenther, M., Paranhos, R., Rezende, C., Gonzalez-Rodriguez, E., and Valentin, J.:
- Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay
- 17 influenced by tidal oscillation, Aquat. Microb. Ecol., 50, 123-133,
- doi:10.3354/ame01154, 2008.
- 19 Guenther, M. and Valentin, J.L. Bacterial and phytoplankton production in two coastal
- 20 systems influenced by distinct eutrophication processes, Oecologia Brasiliensis, 12, 172-
- 21 178, 2008.
- Guenther, M., Lima, I., Mugrabe, G., Tenenbaum, D. R., Gonzalez-Rodriguez, E., and
- Valentin, J. L.: Small time scale plankton structure variations at the entrance of a tropical
- eutrophic bay (Guanabara Bay, Brazil), Braz. J. Oceanogr., 60, 405–414, 2012.
- 25 Guo, X., Cai, W.-J., Huang, W-J., Wang, Y., Chen, F., Murrell, M.C., Lohrenz, S. Dai,
- 26 M., Jiang, L-Q. and Culp, R.: CO₂ dynamics and community metabolism in the
- 27 <u>Mississippi River plume. Limnol. Oceanogr., 57, 1-17, 2012.</u>
- 28 Gypens, N., Borges, A. V., and Lancelot, C.: Effect of eutrophication on air-sea CO₂
- 29 fluxes in the coastal Southern North Sea: a model study of the past 50 years, Glob. Chang.
- 30 Biol., 15, 1040–1056, doi:10.1111/j.1365-2486.2008.01773.x, 2009.

- 1 Huang, W-J., Cai, W-J., Wang, Y., Lohrenz, S.E., and Murrell, M.C.: The carbon dioxide
- 2 (CO2) system on the Mississippi River–dominated continental shelf in the northern Gulf
- 3 of Mexico I: Distribution and air-sea CO2 flux, J. Geophy. Res., 120, 1429-1445, doi:
- 4 10.1002/2014JC010498, 2015.
- 5 Hunt, C. W., Salisbury, J. E., and Vandemark, D.: CO₂ Input Dynamics and Air-Sea
- 6 Exchange in a Large New England Estuary, Estuar. Coast., 37, 1078-1091,
- 7 doi:10.1007/s12237-013-9749-2, 2014.
- 8 Jiang, L. Q., Cai, W. J., and Wang, Y. C.: A comparative study of carbon dioxide
- 9 degassing in river- and marinedominated estuaries, Limnol. Oceanogr., 53, 2603–2615,
- 10 doi:10.4319/lo.2008.53.6.2603, 2008.
- Jähne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W., and Libner, P. On
- parameters influencing air-water exchange, J. Geophys. Res., 92, 1937–1949, 1987.
- Kalas, F. A., Carreira, R. S., Macko, S. A., and R. Wagener, A. L.: Molecular and isotopic
- characterization of the particulate organic matter from an eutrophic coastal bay in SE
- 15 Brazil, Cont. Shelf Res., 29, 2293–2302, doi:10.1016/j.csr.2009.09.007, 2009.
- 16 Kjerfve, B., Ribeiro, C. A., Dias, G. T. M., Filippo, A., and Quaresma, V. S.:
- 17 Oceanographic characteristics of an impacted coastal bay: Baia de Guanabara, Rio de
- 18 Janeiro, Brazil, Cont. Shelf Res., 17, 1609–1643, 1997.
- 19 Knoppers, B.: Aquatic primary production in coastal lagoons, in: Coastal lagoon
- processes, Kjerfve, B., (Ed), Elsevier Science Publishers, Amsterdam, 243-286, 1994.
- 21 Knoppers, B. A., Carmouze, J. P., and Moreira-Turcqo, P. F.: Nutrient dynamics,
- 22 metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio
- de Janeiro, Brazil, in: Environmental geochemistry of coastal lagoon systems of Rio de
- Janeiro, Brazil, Knoppers, B. A., Bidone, E. D., and Abrão, J. J., (Eds.), FINEP, Rio de
- 25 Janeiro, 123-154, 1999a.
- 26 Knoppers, B., Ekau, W., and Figueiredo, A. G.: The coast and shelf of east and northeast
- 27 Brazil and material transport, Geo-Mar. Lett., 19, 171-178, 1999b.
- 28 Koné, Y. J. M., Abril, G., Kouadio, K. N., Delille, B., and Borges, A. V.: Seasonal
- 29 variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa),
- 30 Estuar. Coast., 32, 246–260, doi:10.1007/s12237-008-9121-0, 2009.

- 1 Körtzinger, A.: A significant CO₂ sink in the tropical Atlantic Ocean associated with the
- 2 Amazon River plume, Geophys. Res. Lett., 30, 2287, doi:10.1029/2003GL018841, 2003.
- 3 Lee, K., Kim, T.W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.M.: The
- 4 universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans,
- 5 Geochim. Cosmochim. Ac., 74, 1801–1811, doi:10.1016/j.gca.2009.12.027, 2010.
- 6 Maher, D. T. and Eyre, B. D.: Carbon budgets for three autotrophic Australian estuaries:
- 7 Implications for global estimates of the coastal air-water CO₂ flux, Global Biogeochem.
- 8 Cy., 26, GB1032, doi:10.1029/2011GB004075, 2012.
- 9 Maher, D. T., Cowley, K., Santos, I., Macklin, P., and Eyre, B.: Methane and carbon
- dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in
- situ radioactive and stable isotope measurements, Mar. Chem., 168, 69-79, 2015.
- Matthews, H. D., Gillett, N. P., Stott, P. A., and, Zickfeld, K.: The proportionality of
- 13 global warming to cumulative carbon emissions, Nature, 459, 829-832, 2009.
- Mehrbach, C., Cuberson, C. H., Hawley, J.E., and Pytkowicz, R. M.: Measurements of
- the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.
- 16 <u>Limnol. Oceanog., 18, 897-907, 1973.</u>
- Monteiro, F., Cordeiro, R. C., Santelli, R. E., Machado, W., Evangelista, H., Villar, L. S.,
- 18 Viana, L. C. A., and Bidone, E. D.: Sedimentary geochemical record of historical
- 19 anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality,
- 20 Environ. Earth Sci., doi: 10.1007/s12665-011-1143-4, 2011.
- 21 Monteith, J. L.: Climate and the efficiency of crop production in Britain, Philos. Trans.
- 22 R. Soc. Lond. Ser. B, 281, 277–294, 1977.
- Nixon, S. W.: Coastal marine eutrophication: a definition, social causes, and future
- 24 concerns, Ophelia, 41, 199–219, 1995.
- Noriega, C. and Araujo, M.: Carbon dioxide emissions from estuaries of northern and
- northeastern Brazil., Scientific Reports, 4, 6164, doi:10.1038/srep06164, 2014.
- 27 Noriega, C., Araujo, M., Lefèvre, N., Montes, M. F., Gaspar, F., and Veleda, D.: Spatial
- and temporal variability of CO₂ fluxes in tropical estuarine systems near areas of high
- 29 population density in Brazil, Reg. Environ. Chang., 15, doi:10.1007/s10113-014-0671-3,
- 30 2014.

- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. a, Gnanadesikan,
- 2 A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear,
- 3 R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C.
- 4 L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka,
- 5 Y. and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its
- 6 impact on calcifying organisms., Nature, 437, 681–6, 2005.
- 7 Paranhos, R., Pereira, A. P., and Mayr, L. M.: Diel variability of water quality in a tropical
- 8 polluted bay, Environ. Monit. Assess., 50, 131–141, 1998.
- 9 Pritchard, D.W.: Estuarine Hydrography, Adv. Geophys., 1, 243-280, 1952.
- 10 Rabalais, N. N., Turner, R. E., Diaz, R. J., and Justic, D.: Global change and
- eutrophication of coastal waters, ICES J. Mar. Sci., 66, 1528–1537, 2009.
- Raymond, P.A. and Cole, J.J.: Gas exchange in rivers and estuaries: choosing a gas
- transfer velocity, Estuaries, 24, 312–317, 2001.
- Rebello, A. L., Ponciano, C. R., and Melges, L. H.: Avaliacao da produtividade primaria
- e da disponibilidade de nutrientes na Baia de Guanabara, An. Acad. Bras. Cienc., 60,
- 16 419–430, 1988.
- 17 Ribeiro, C. H. A. and Kjerfve, B.: Anthropogenic influence on the water quality in
- Guanabara Bay, Rio de Janeiro, Brazil, Reg. Env. Chan., 3, 13-19, 2001.
- 19 Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan. S. C.: CO2 Calc: a user-
- 20 friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone), U.S.
- 21 Geological Survey Open-File Report, 2010–1280, 1–17, Available at:
- 22 http://pubs.usgs.gov/of/2010/1280/, last access : 6 January 2013, 2010.
- Ruiz-Halpern, S., Sejr, M. K., Duarte, C. M., Krause-Jensen, D., Dalsgaard, T., Dachs,
- 24 J., and Rysgaard, S.: Air-water exchange and vertical profiles of organic carbon in a
- 25 subarctic fjord, Limnol. Oceanogr., 55, 1733–1740, doi:10.4319/lo.2010.55.4.1733,
- 26 2010.
- 27 Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sorensen, L. L., Lennert, K., Sogaard, D.
- 28 H., Arendt, K. E., Blicher, M. E., Sejr, M. K., and Bendtsen, J.: High air-sea CO₂ uptake
- 29 rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability,
- 30 Mar. Chem., 128, 26–33, doi:10.1016/j.marchem.2011.11.002, 2012.

- Sabine, C. L., Feely, R. a, Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof,
- 2 R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A.,
- 3 Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO₂, Science, 305, 367–71,
- 4 doi:10.1126/science.1097403, 2004.
- 5 Santos, V. S., Villac, M. C., Tenenbaum, D. R., and Paranhos, R.: Auto-and heterotrophic
- 6 nanoplankton and filamentous bactéria of Guanabara Bay (RJ, Brazil): estimates of cell/
- 7 filament numbers versus carbon content, Braz. J. Oceanogr., 55, 133-143, 2007.
- 8 Sarma, V., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S. K., Naidu, S. A.,
- 9 Kumar, N. A., Rao, D. B., Sridevi, T., Krishna, M. S., Reddy, N. P. C., Sadhuram, Y.,
- and Murty, T. V. R.: Carbon dioxide emissions from Indian monsoonal estuaries,
- 11 Geophys. Res. Lett., 39, L03602, doi:10.1029/2011gl050709, 2012.
- Silvennoinen, H., Liikanen, A., Rintala, J., and Martikainen, P. J.: Greenhouse gas fluxes
- from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic
- 14 Sea), Biogeochemistry, 90, 193–208, doi:10.1007/s10533-008-9244-1, 2008.
- Smith, S.V.; Swaney, D.P., Talaue-McManus, L. Carbon-Nitrogen-Phosphorus fluxes in
- the coastal zone: The LOICZ approach to global assessment, in: Carbon and nutrient
- 17 fluxes in continental margins, Liu, K., Atkinson, L., Quiñones, R., Talaue-McManus, L.,
- 18 (Eds.), Springer-Verlag Berlin Heidelberg, Berlin, 575-586, 2010.
- 19 Souza, M., Gomes, V., Freitas, S., Andrade, R., and Knoppers, B.: Net ecosystem
- 20 metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary,
- 21 Piauí River (NE of Brazil), Estuar. Coast., 32, 111–122, doi:10.1007/s12237-008-9104-
- 22 1, 2009.
- Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels,
- A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change 2013: The Physical
- 25 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
- 26 Intergovernmental Panel on Climate Change, Cambridge University Press, United
- 27 Kingdom, 2013.
- 28 Strickland J. D. H. and Parsons T.R.: A practical handbook of seawater analysis, second
- ed., Fisheries Research Board of Canada Bulletin, Ottawa, Canada, 1972.

- 1 Sunda, W. G. and Cai, W.J.: Eutrophication Induced CO₂-Acidification of Subsurface
- 2 Coastal Waters: Interactive Effects of Temperature, Salinity, and Atmospheric pCO₂.
- 3 Environ. Sci. Technol., 46, 10651–10659, doi: 10.1021/es300626f, 2012.
- 4 Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates,
- 5 N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y.: Global sea-air
- 6 CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and
- temperature effects, Deep-Sea Res. Part II, 49, 1601–1622, 2002.
- 8 Valentin, J. L., Tenenbaum, D. R., Bonecker, A. C. T., Bonecker, S. L. C., Nogueira, C.
- 9 R., and Villac, M. C.: O sistema planctônico da Baía de Gaunabara: Síntese do
- conheciemnto. In: Silva, S.H.G.; Lavrado, H.P. (Eds). Ecologia dos Ambientes Costeiros
- do estado do Rio de Janeiro, Oecologia Brasiliensis, 7, 35-59, 1999.
- 12 Villac, M. C. and Tenenbaum, D. R.: The phytoplankton of Guanabara Bay, Brazil. I.
- Historical account of its biodiversity, Biota Neotropic, 10, 271-293, 2010.
- Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J.: Coastal ocean
- acidification: The other eutrophication problem, Estuar. Coast Shelf S., 148, 1-13, 2014.
- Wollast, R.: Evaluation and comparison of the global carbon cycle in the coastal zone and
- in the open ocean, in: The Sea, Vol. 10, Brink, K. H. and Robinson, A. R. (Eds.), John
- 18 Wiley & Sons, New York, 213–252, 1998.
- 19 Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar.
- 20 Chem., 2, 203–215, 1974.
- Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B.: Diurnal variation of
- 22 oxygen and carbonate system parameters in Tampa Bay and Florida Bay, Mar. Chem.,
- 23 104, 110–124, doi:10.1016/j.marchem.2006.12.008, 2007.
- 24 Zhai, W., Dai, M., and Guo, X.: Carbonate system and CO₂ degassing fluxes in the inner
- estuary of Changjiang (Yangtze) River, China, Mar. Chem., 107, 342-356,
- 26 doi:10.1016/j.marchem.2007.02.011, 2007.
- 27 Zhai, W. D. and Dai, M. H.: On the seasonal variation of air-sea CO₂ fluxes in the outer
- 28 Changjiang (Yangtze River) Estuary, East China Sea, Mar. Chem., 117, 2–10,
- 29 doi:10.1016/j.marchem.2009.02.008, 2009.

- 1 Zhang, L., Xue, M. and Liu, Q.: Distribution and seasonal variation in the partial pressure
- 2 of CO₂ during autumn and winter in Jiaozhou Bay, a region of high urbanization., Mar.
- 3 Pollut. Bull., 64, 56–65, doi:10.1016/j.marpolbul.2011.10.023, 2012.
- 4 Zhang, C., Huang, H., Ye, C., Huang, L., Li, X., Lian, J. and Liu, S.: Diurnal and seasonal
- 5 variations of carbonate system parameters on Luhuitou fringing reef, Sanya Bay, Hainan
- 6 Island, South China Sea, Deep Sea Res. Part II Top. Stud. Oceanogr., 96, 65-74,
- 7 doi:10.1016/j.dsr2.2013.02.013, 2013

Table 1. Mean (± standard deviation), minimum, maximum and number of observations (N) of the principal physicochemical properties of the waters of Guanabara Bay for the sampling period separated by sectors.

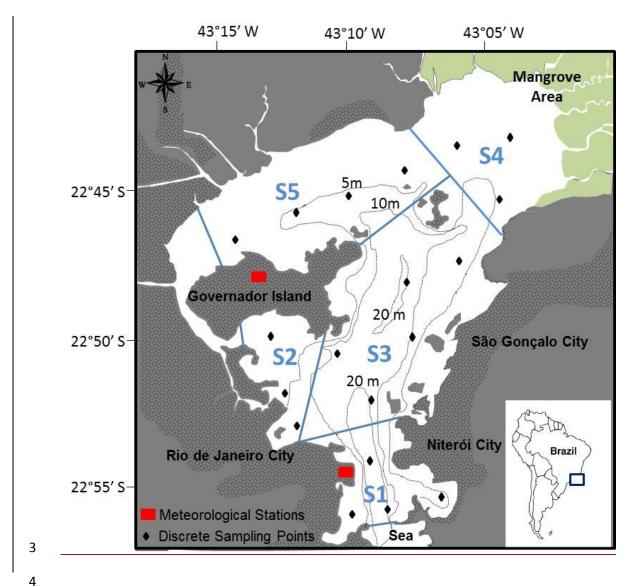
	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5
Temp.	23.8 ± 1.7	25.5 ± 2.2	25.4 ± 2.1	26.8 ± 2.6	26.7 ± 2.2
(°C)	(21.0 - 29.3)	(22.1 - 32.4)	(22.1 - 31.5)	(22.0 - 32.3)	(22.6 - 33.9)
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397
Salinity	32.2 ± 2.1	30.3 ± 2.4	29.8 ± 3.0	27.0 ± 4.3	27.2 ± 3.5
	(25.4 - 34.9)	(17.7 - 33.7)	(15.1 - 33.8)	(14.6 - 33.2)	(16.6 - 32.9)
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397
DO	103 ± 29	97 ± 59	138 ± 51	142 ± 62	160 ± 69
(%)	(48 - 221)	(2 - 263)	(56 - 357)	(30 - 361)	(46 - 370)
	N = 1918	N = 1047	N = 2035	N = 1594	N = 2397
pCO_2	411 ± 145	711 ± 561	286 ± 157	307 ± 256	272 ± 293
(ppmv)	(104 - 747)	(50 - 3715)	(41 - 660)	(29 - 2222)	(22 - 2203)
	N = 1918	N = 1046	N = 2035	N = 1594	N = 2397
pН	8.20 ± 0.16	8.15 ± 0.32	8.35 ± 0.23	8.34 ± 0.29	8.44 ± 0.31
(NBS)	(7.90 - 8.71)	(7.33 - 8.96)	(7.88 - 8.96)	(7.39 - 9.01)	(7.51 - 9.23)
	N = 1581	N = 910	N = 1790	N = 1490	N = 2225
TA	2240 ± 92	2291 ± 99	2168 ± 177	2045 ± 369	2137 ± 166
(µmol.kg ⁻¹)	(1942 - 2320)	(1890 - 2488)	(1507 - 2500)	(2111 - 3920)	(1479 - 2314)
	N = 44	N = 32	N = 40	N = 39	N = 53
DIC	1985 ± 120	2044 ± 268	1847 ± 257	1658 ± 259	1758 ± 264
(µmol.kg ⁻¹)	(1720 - 2127)	(1526 - 2523)	(1332 - 2290)	(1095 - 2118)	(1198 - 2190)
	N = 44	N = 32	N = 32	N = 35	N = 52
Chl-a	19.1 ± 22.0	46.2 ± 51.4	57.6 ± 90.0	69.2 ± 60.2	107.7 ± 101.8
$(\mu g.L^{-1})$	(2.0 - 128.0)	(3.3 - 212.9)	(1.6 - 537.2)	(13.1 - 288.8)	(1.5 - 822.1)
	N = 34	N = 33	N = 33	N = 32	N= 47
NO_3 -N	3.50 ± 3.30	3.72 ± 4.93	4.12 ± 5.27	2.14 ± 3.29	1.92 ± 2.08
(μM)	(0.13 - 12.50)	(< LD - 18.63)	(0.16 - 19.12)	(< LD - 14.74)	(0.04 - 9.20)
	N= 34	N = 33	N = 32	N = 33	N= 47
NO_2 -N	1.60 ± 1.92	2.59 ± 2.89	1.81 ± 2.58	1.46 ± 2.74	1.71 ± 1.98
(μM)	(0.05 - 7.30)	(0.10 - 10.67)	(< LD - 10.79)	(0.03 - 9.37)	(0.03 - 7.08)
	N = 36	N = 33	N = 33	N = 33	N= 47
NH ₄ -N	8.15 ± 6.26	44.9 ± 25.2	9.10 ± 9.48	4.96 ± 6.92	26.82 ± 27.67
(μM)	(0.09 - 22.50)	(0.15 - 94.73)	(0.04 - 37.95)	(0.04 - 29.29)	(0.13 - 130.12)
	N=37	N = 33	N = 33	N = 33	N= 47
PO ₄ -P	1.11 ± 0.60	5.28 ± 3.88	1.51 ± 1.07	1.10 ± 0.79	2.23 ± 2.17
(µM)	(0.11 - 2.44)	(0.17 - 20.79)	(0.17 - 1.10)	(0.03 - 2.96)	(0.02 - 8.72)
(1111)	(- ')	` ,			,

Table 2 Summary of calculated mean values for wind speed (U_{10}), gas exchange coefficient (k_{600}) and CO_2 fluxes at the air-sea interface in each sectors and entire Guanabara Bay. Diurnal variations (nighttime < 9:30 AM; daytime > 9:30 PM) seasonal means (winter and summer) and time-integrated values are reported. W92 are the data calculated according to k_{600} of Wanninkhof (1992), RC01 are the data calculated according to k_{600} of Raymond and Cole (2001), and A09 are data calculated according to k_{600} of Abril et al. (2009).

			$\underline{\mathbf{U}}_{10}$		<u>k</u> 600			O ₂ Flux	
			$(m s^{-1})$			$(\text{mmol } \text{m}^{-2} \text{h}^{-1})$			
				<u>W92</u>	<u>RC01</u>	<u>A09</u>	<u>W92</u>	<u>RC01</u>	<u>A09</u>
Sector 1	Winter	Nightime	1.8	1.2	3.5	<u>7.2</u>	0.55	1.59	3.37
(47Km^2)		Daytime	2.5 2.5	<u>2.6</u>	47	9.0	0.50	<u>1.19</u>	2.33
	<u>Summer</u>	Nightime	<u>2.5</u>	<u>2.7</u>	<u>4.8</u>	<u>9.2</u>	<u>-0.84</u>	-1.27	<u>-2.35</u>
		<u>Daytime</u>	<u>3.8</u>	<u>6.6</u>	<u>8.5</u>	12.3	<u>-1.23</u>	<u>-3.88</u>	<u>-5.42</u>
	Time-integ		<u>2.6</u>	<u>3.2</u>	4.8 8.5 5.3	<u>9.4</u>	<u>-0.25</u>	<u>-0.57</u>	<u>-0.51</u>
Sector 2	<u>Winter</u>	<u>Nightime</u>	1.9	<u>1.9</u>	<u>3.7</u>	<u>7.5</u>	<u>5.19</u>	<u>7.74</u>	<u>14.61</u>
(32Km^2)		<u>Daytime</u>	2.4 2.5	2.3	<u>4.4</u>	<u>8.8</u>	<u>3.29</u>	<u>4.99</u>	<u>10.29</u>
	<u>Summer</u>	<u>Nightime</u>	<u>2.5</u>	3.1	4.8	<u>9.2</u>	<u>1.75</u>	<u>1.97</u>	2.87
		<u>Daytime</u>	3.3 2.5	<u>4.4</u>	6.2 4.7	<u>10.9</u>	<u>1.12</u>	1.28	2.02
	Time-integ			<u>2.9</u>		<u>9.1</u>	<u>2.27</u>	<u>4.00</u>	<u>7.44</u>
Sector 3	<u>Winter</u>	<u>Nightime</u>	<u>1.4</u>	0.8	3.0	<u>6.1</u>	<u>-0.13</u>	0.06	0.34
(96Km ²)		<u>Daytime</u>	2.6	<u>2.8</u>	<u>4.9</u>	9.2 9.7	<u>-0.19</u>	<u>-0.79</u>	<u>-1.53</u>
	<u>Summer</u>	<u>Nightime</u>	<u>2.8</u>	<u>3.0</u>	<u>5.0</u>	<u>9.7</u>	<u>-1.97</u>	<u>-3.28</u>	<u>-6.37</u>
		<u>Daytime</u>	3.9 2.6	<u>6.7</u>	8.4 5.3	<u>12.2</u>	<u>-4.82</u>	<u>-6.22</u>	<u>-9.65</u>
	Time-integ		<u>2.6</u>	3.3	<u>5.3</u>	<u>9.3</u>	<u>-1.77</u>	<u>-2.56</u>	<u>-4.29</u>
Sector 4	Winter	Nightime	1.5	<u>0.9</u>	3.2	<u>6.2</u>	<u>-0.10</u>	<u>-0.33</u>	<u>-0.59</u>
(55Km^2)		<u>Daytime</u>	2.3 2.1	<u>2.3</u>	<u>4.4</u>	<u>7.8</u>	<u>-1.04</u>	<u>-1.26</u>	<u>-2.00</u>
	<u>Summer</u>	Nightime	<u>2.1</u>	1.7	4.0	<u>7.4</u>	<u>-0.24</u>	<u>-0.43</u>	<u>-0.76</u>
		<u>Daytime</u>	3.2	<u>4.6</u>	<u>6.4</u>	<u>9.9</u>	<u>-4.28</u>	<u>-5.90</u>	<u>-9.13</u>
	Time-integ		2.2	<u>2.3</u>	4.5	<u>7.8</u>	<u>-1.41</u>	<u>-1.97</u>	<u>-3.12</u>
Sector 5	<u>Winter</u>	Nightime	1.5	0.9	3.2	<u>6.1</u>	0.83	3.32	5.88
(80Km^2)	_	<u>Daytime</u>	2.4	2.4	<u>4.5</u>	8.0	<u>-1.61</u>	<u>-2.67</u>	<u>-4.87</u>
	<u>Summer</u>	Nightime	<u>2.1</u>	<u>1.8</u>	<u>4.0</u>	<u>7.4</u>	<u>-2.67</u>	<u>-3.25</u>	<u>-4.99</u>
		<u>Daytime</u>	<u>3.1</u>	<u>4.2</u>	<u>6.0</u>	<u>9.6</u>	<u>-4.27</u>	<u>-6.21</u>	<u>-9.73</u>
	Time-integ		<u>2.2</u>	<u>2.3</u>	<u>4.4</u>	<u>7.7</u>	<u>-1.93</u>	-2.20	<u>-3.42</u>
All Bay	<u>Winter</u>	<u>Nightime</u>					0.78	1.86	3.53
(310Km^2)	~	<u>Daytime</u>					<u>-0.24</u>	<u>-0.46</u>	<u>-0.67</u>
	<u>Summer</u>	Nightime					<u>-1.29</u>	<u>-1.92</u>	<u>-3.45</u>
	m: ·	<u>Daytime</u>					<u>-3.42</u>	<u>-5.02</u>	<u>-7.73</u>
	Time-integ	<u>rated</u>					<u>-1.10</u>	<u>-1.38</u>	<u>-2.07</u>

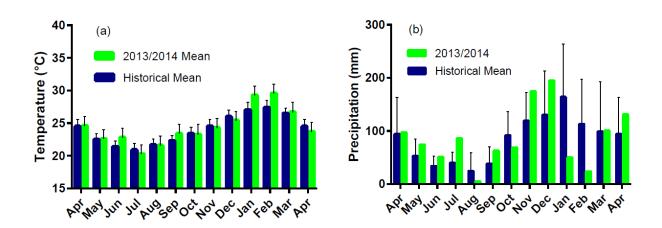
Table 3 Summary of the documented carbon fluxes in the Guanabara Bay.

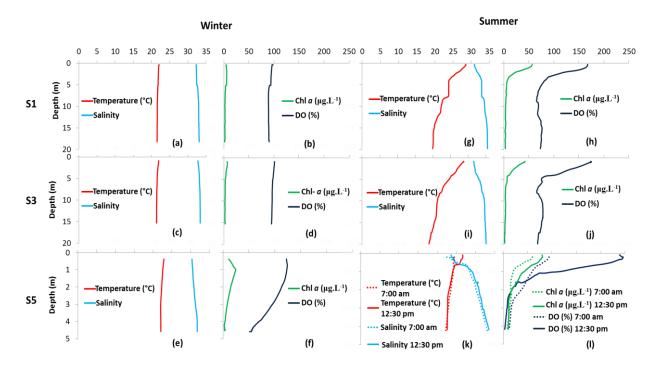
<u>Inputs</u>	$\underline{mmol\ C\ m^{-2}\ d^{-1}}$	<u>Comment</u>
CO ₂ air-water flux	<u>26 – 49*</u>	All bay average; This study
<u>CO₂ air-water flux</u>	<u>33 – 102*</u>	Sectors 3, 4 and 5; This study
Organic carbon load from sewage	<u>43</u>	All bay average; FEEMA (1998), majority of organic carbon seems to be mineralized in sewage network
River DIC, DOC and TOC inputs	<u>Undocumented</u>	
Internal Processes	$mmol\ C\ m^{-2}\ d^{-1}$	<u>Comment</u>
NCP	51 – 225 (143)**	Sectors 4 and 5; This study
<u>NPP</u>	60 – 300 (170)**	Sectors 2, 3 and 5; Rebello et al., (1988)
Total Respiration	<u>Undocumented</u>	
<u>Outputs</u>	$\underline{mmol\ C\ m^{-2}\ d^{-1}}$	<u>Comment</u>
Organic carbon burial	<u>27 – 114</u>	Sectors 3, 4 and 5; Carreira et al., (2002); Monteiro et al., (2011)
DIC and TOC export to the coastal area	<u>Undocumented</u>	

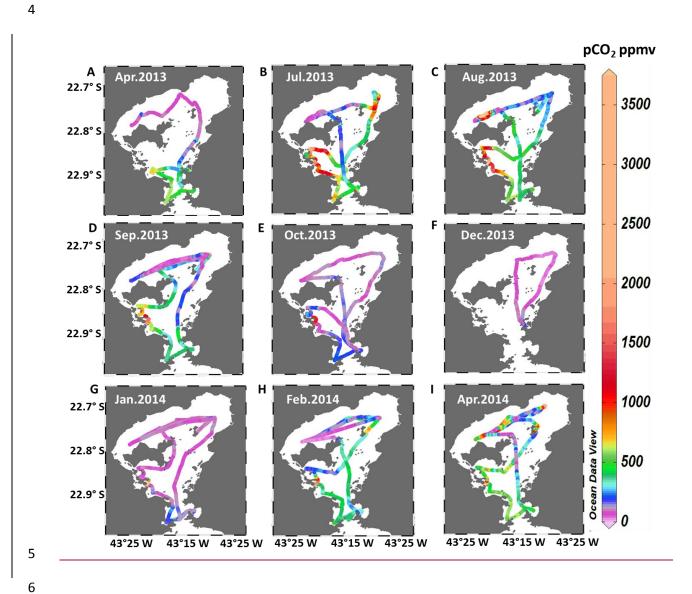

^{*}Annual average according to the k600 model parameterizations of Wanninkhof (1992) and

Abril et al., (2009). The lower value refers to the model of Wanninkhof (1992), whereas the

⁸ higher value refers to the model of Abril et al. (2009).

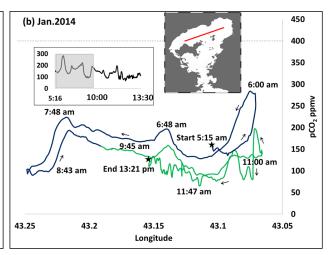

^{9 **} Range and annual average (in parenthesis).

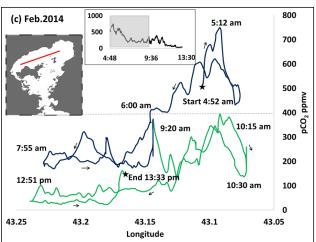

- 1 Figure Captions
- 2 Figure 1. Map of Guanabara Bay. Dark grey color indicates the urbanized areas. Green color
- 3 shows the mangrove localization. Black points represent the locations of the discrete sampling,
- 4 dotted black lines are isobaths, red squares represent the locations of the airports with the
- 5 meteorological stations, and blue lines delimit the different sectors in the bay (sectors S1 to S5).
- 6 Figure 2. Meteorological conditions during the sampling period (in green) compared with
- 7 historical values (1951-2014, in blue). 2a presents the mensal-monthly accumulated precipitation;
- 8 2b presents the means monthly average of of mensal atmospheric temperature.
- 9 Figure 3. Typical vertical profiles of salinity, temperature, dissolved oxygen (DO) and
- 10 chrollophyll a (Chl a) in the water column. Profiles are showed for S1, S3 and S5, in summer and
- winter conditions. Note the different depth scale for the S5. Dotted line in 3k and 3l shows
- nighttime profile (7:00 AM), whereas full line shows a daytime profile (12:30 PM) the same day
- 13 at the same station.
- 14 Figure 4. Concentration maps of continuous pCO₂ measurements in superficial surface waters of
- 15 Guanabara Bay for all the sampling campaigns.
- Figure 5. Diurnal variations of pCO₂ concentrations. The ship back and forth tracks are indicated
- as red lines in small maps. Arrows show the boat direction and sampling time are indicated along
- each track. Blue parts of the tracks are considered as nighttime (< 9:30 AM) and green parts as
- daytime (> 9:30 AM). Inserted small graphs also show the water pCO₂ evolution versus time, and
- 20 <u>shadow area represents the sampling before 9:30 AM (nighttime)</u>. The grey lines indicate the
- 21 atmospheric pCO₂ (400 ppmv). Note the different pCO₂ scales for each survey.
- Figure 6. Box plots (maximum, percentile 75%, median, percentile 25% and minimum) of pCO₂
- data for all the campaigns (a), and for each individual sectors (b, c, d, e and f). Black box plots
- represents the nighttime data (< 9:00-30 AM), when available, and white box plots represent
- 25 daytime data (> 9:30 AM).
- Figure 7. Relationship between the excess dissolved inorganic carbon (E-DIC) and apparent
- 27 utilization of oxygen (AOU) in Guanabara Bay (green dots) compared to those reported in 24
- 28 estuarine environments (red dots, Borges and Abril, 2011). The 1:1 line represents the quotient
- 29 <u>between CO₂ and O₂ during the processes of photosynthesis and aerobic respiration.</u>
- 30 Figure 8. Principal Components Analysis (PCA) based on mean values for each sampling
- campaign of the physical and biogeochemical properties of the water (temperature, salinity, pCO₂,
- 32 DO and Chl a) and meteorological conditions (wind velocity and accumulated precipitation of 7
- days before each survey). The data-set was normalized by z-scores.

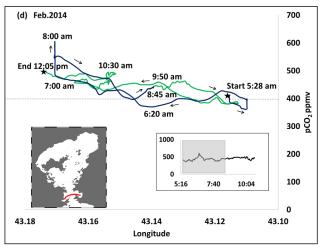


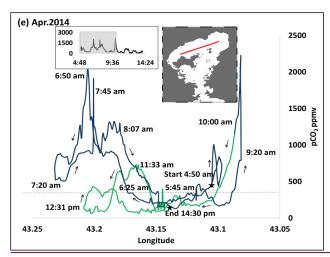
1 Figure 2

43.25


1


3

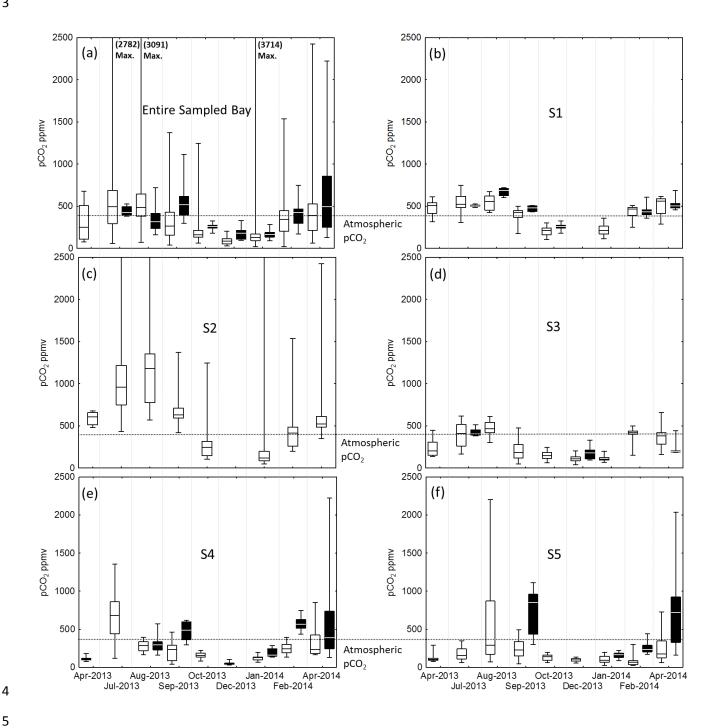

1200 (a) Sep.2013 1500 1000 500 9:36 14:24 800 pCO₂ ppm 6:43 am 8:24 am 600 8:24 am 400 13:41 pm 200 14:33 pm ★End 15:30 pm 0 43.2 43.15 43.05

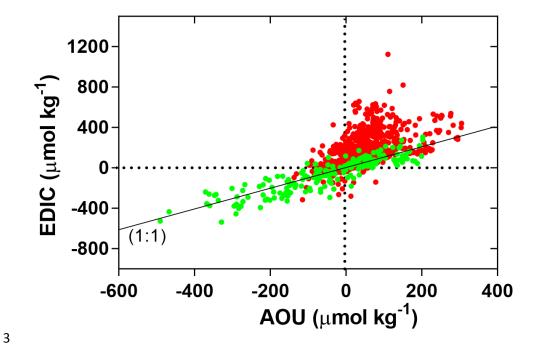

Longitude

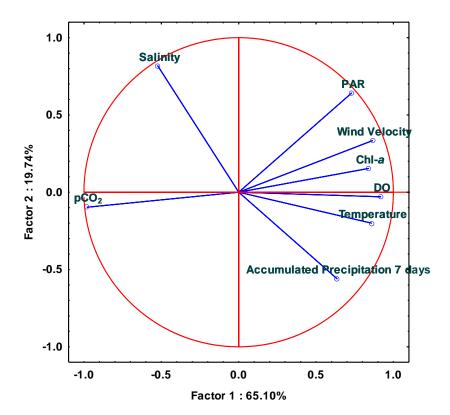
43.1

Continuous pCO₂ measured before 9:30 AM

Continuous pCO₂ measured after 9:30 AM


5


4


Figure 6

