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Abstract 12 

 Measurements of hyperspectral canopy reflectance provide a detailed snapshot of 13 

information regarding canopy biochemistry, structure and physiology. In this study, we collected 14 

five years of repeated canopy hyperspectral reflectance measurements for a total of over 100 site 15 

visits within the flux footprints of two eddy covariance towers at a pasture and rice paddy in 16 

Northern California. The vegetation at both sites exhibited dynamic phenology, with significant 17 

inter-annual variability in the timing of seasonal patterns that propagated into inter-annual 18 

variability in measured hyperspectral reflectance. We used partial least-squares regression 19 

(PLSR) modeling to leverage the information contained within the entire canopy reflectance 20 

spectra (400-900nm) in order to investigate questions regarding the connection between 21 

measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem exchange (NEE) 22 

and gross primary productivity (GPP) across multiple timescales, from instantaneous flux to 23 

monthly-integrated flux. With the PLSR models developed from this large dataset we achieved a 24 

high level of predictability for both NEE and GPP flux in these two ecosystems, where the R2 of 25 

prediction with an independent validation dataset ranged from 0.24 to 0.69. The PLSR models 26 

achieved the highest skill at predicting the integrated GPP flux for the week prior to the 27 

hyperspectral canopy reflectance collection, whereas the NEE flux often achieved the same high 28 

predictive power at the daily- through monthly-integrated flux timescales. The high level of 29 

predictability achieved by PLSR regression in this study demonstrated the potential for using 30 

repeated hyperspectral canopy reflectance measurements to help partition NEE measurements 31 

into its component fluxes, GPP and ecosystem respiration, and for using quasi-continuous 32 

hyperspectral reflectance measurements to model regional carbon flux in future analyses.  33 

34 
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1. Introduction 35 

The development of remote sensing tools that bridge the scale of carbon flux 36 

measurements from individual eddy covariance towers to broader, continuous spatial scales has 37 

long been a goal of the earth systems science community (Bauer, 1975; Running et al., 1999; 38 

Ustin et al., 2004). This goal inspired the formation of the international research group SpecNet, 39 

developed to synthesize the collection of near-surface ground reflectance measurements at eddy 40 

covariance tower sites to provide a crucial link between the spatial scales of eddy flux towers and 41 

aircraft or satellite measurements (Gamon et al., 2010). Previous work in near-surface remote 42 

sensing has demonstrated that normalized canopy reflectance indices can yield important insights 43 

for understanding landscape-scale CO2 flux measurements, particularly for understanding 44 

patterns in CO2 uptake through photosynthesis (Gamon et al., 1997; Inoue et al., 2008). Recent 45 

work has also demonstrated the utility of using the entire reflectance spectrum to uncover new 46 

normalized near-surface reflectance indices that are correlated with ecosystem productivity and 47 

can be used to monitor canopy phenology with relatively inexpensive LED sensors (Ryu et al., 48 

2010a). Metrics based on canopy reflectance can be used as proxies for biological processes at 49 

the surface when those biological processes have corresponding features that change the 50 

reflectance and absorption of energy in the plant canopy.  The two most commonly used remote 51 

sensing metrics, the normalized difference vegetation index (NDVI) and the enhanced vegetation 52 

index (EVI), track ecosystem productivity by measuring energy absorption at the visible 53 

wavelengths where chlorophyll is active and comparing that to the reflectance or emission at 54 

near-infrared wavelengths where active plant canopies dissipate energy (Liu and Huete, 1995; 55 

Rouse et al., 1974). NDVI and EVI are widely used metrics since they can be calculated 56 

worldwide (although at coarse spatial resolution of about 250m) by reflectance measurements 57 
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from the Moderate-Resolution Imaging Spectroradiomenter (MODIS) instruments. The 58 

widespread use of normalized indices has revolutionized the predictive power of global carbon 59 

flux measurements, as they act as important proxies for photosynthetic carbon dioxide uptake in 60 

plants that can be modeled through temporally quasi-continuous satellite imagery (Justice et al., 61 

1985; Potter et al., 1993; Running and Nemani, 1988; Tucker et al., 1985).   62 

While these normalized indices have wide utility for predicting landscape-scale carbon 63 

flux at spatial scales from that of near-surface sensors to satellite remote sensing, these indices 64 

necessarily leave out much of the information provided within the entire visual and near-infrared 65 

spectrum of canopy reflectance. Modeling techniques such as partial least-squares regression 66 

(PLSR) (Wold et al., 2001) that can leverage the entire information contained within the quasi-67 

continuous canopy reflectance spectrum by reducing the regression variables to a set of fewer 68 

latent variables (i.e. modeled variables that capture information from many individual regression 69 

variables at once) are now widely used to predict traits at the leaf, plot, and canopy level. 70 

Hyperspectral reflectance measurements have been used with PLSR methods to successfully 71 

predict leaf-level traits like nitrogen (N) and carbon content, specific leaf area, protein, cellulose, 72 

and lignin content, and even leaf isotopic 15N content and Vcmax, the maximum rate of 73 

carboxylation during photosynthesis (Asner and Martin, 2008a; Bolster et al., 1996; Serbin et al., 74 

2012, 2014). PLSR has also been used with near-surface canopy hyperspectral reflectance 75 

measurements to predict biomass and nitrogen content in wheat crops (Hansen and Schjoerring, 76 

2003) and to predict pasture forage quality (Kawamura et al., 2008). Airborne hyperspectral 77 

reflectance measurements have been used with PLSR to map canopy-level chemistry (Ollinger et 78 

al., 2002; Smith et al., 2002), to predict citrus yields in orchards (Ye et al., 2009), and to map 79 

floristic gradients in grasslands (Schmidtlein et al., 2007) and species diversity in tropical forests 80 
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(Asner and Martin, 2008b). This large range of studies across a diverse set of spatial scales, from 81 

the leaf- to canopy-level, demonstrates the utility of using hyperspectral reflectance 82 

measurements in conjunction with PLSR methods to increase the predictive power of remote 83 

sensing relationships with ecological variables compared with traditional normalized indices. 84 

Despite the proven utility of PLSR methods over a wide range of spatial scales, to our 85 

knowledge no studies have yet investigated the potential for using hyperspectral reflectance 86 

measurements to directly predict landscape-scale carbon fluxes through PLSR modeling.  87 

The goal of this analysis was to investigate the ability of repeat canopy hyperspectral 88 

reflectance to directly predict landscape-scale carbon dioxide (CO2) fluxes at two short-89 

structured plant canopies. We measured replicated near-surface hyperspectral canopy reflectance 90 

on 100 different sampling dates over the course of five years from 2010-2014 within the flux 91 

footprint of two nearby eddy covariance tower sites with similar structure but different canopy 92 

phenology in Northern California. The first site was a pasture where grasses grew over the winter 93 

and the invasive pepperweed plant (Lepidium latifolium) was active throughout the summer. The 94 

second site was an irrigated rice paddy with a simple phenology, where rice plants were present 95 

only from May through October following the typical growing season pattern for agricultural 96 

crops within this region. We combined the rich information contained within these repeated 97 

hyperspectral canopy reflectance measurements with PLSR methods to predict landscape-scale 98 

patterns in net CO2 flux (net ecosystem exchange; NEE) and CO2 uptake through canopy 99 

photosynthesis (gross primary productivity; GPP).  100 

We used this five-year long-term dataset of near-surface hyperspectral canopy reflectance 101 

measurements collected at two sites in conjunction with landscape-scale eddy covariance CO2 102 

fluxes to answer the following four research questions:  103 
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1) How does canopy hyperspectral reflectance vary seasonally and inter-annually within and 104 

across sites during different phenological stages? 105 

2) How well can the quasi-continuous 400-900nm canopy reflectance spectrum predict GPP 106 

and NEE at the two sites?  107 

3) Are there significant differences in the ability to predict GPP and NEE at the pasture site 108 

compared with the rice paddy?  109 

4) At what timescale are fluxes most strongly correlated with changes in measured 110 

hyperspectral canopy reflectance? 111 

First, we examined the variability in measured hyperspectral reflectance within each site and 112 

between the two sites on individual sampling dates and across years. This provided insight into 113 

the dynamic nature of the canopy reflectance spectrum at these two study sites. The second two 114 

questions addressed the ability of the hyperspectral reflectance spectra to capture changes in GPP 115 

and NEE at the two sites, and tested whether the predictive power of hyperspectral reflectance 116 

modeling with PLSR is higher at the rice paddy site, where GPP and ER are more closely 117 

coupled than at the pasture, where GPP and ER are more decoupled due to different 118 

environmental drivers (Hatala et al., 2012; Knox et al., 2014). The final research question 119 

investigated the temporal scale at which the measured hyperspectral canopy reflectance 120 

integrated previous CO2 fluxes. The canopy traits that control hyperspectral reflectance (e.g. 121 

chlorophyll, nitrogen, and water content in leaves, leaf abundance, etc.) are the emergent, 122 

integrated response to previous ecophysiological variability. We tested the ability of the canopy 123 

reflectance to predict instantaneous fluxes, and daily-, weekly-, and monthly-integrated carbon 124 

fluxes at each of the sites to quantify the timescale at which the canopy reflectance integrated 125 

prior ecophysiology, providing insight into the system memory of canopy reflectance. These 126 
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three integrated flux timescales represented the peaks in temporal autocorrelation due to daily 127 

fluctuations in the diurnal cycle of plants and solar radiation, weekly fluctuations in synoptic 128 

weather fronts, and monthly variability due to seasonal and phenological patterns, respectively 129 

(Baldocchi et al., 2001b; Stoy et al., 2009). Together, these research questions yielded key 130 

insights into the utility and limitations of using repeated hyperspectral canopy reflectance 131 

measurements to predict landscape-scale CO2 fluxes.  132 

 133 

2. Methods 134 

2.1 Site Characteristics  135 

We collected replicated hyperspectral ground reflectance measurements of plant canopies 136 

at two sites in Northern California with similarly structured, yet phenologically different, plant 137 

canopies. The first site was a drained peatland pasture (hereafter referred to as “Pasture”) located 138 

on Sherman Island in the Sacramento-San Joaquin Delta (latitude: 38.0373; longitude: -139 

121.7536; elevation: -4m) with annual grasses growing during the winter and spring, and the 140 

invasive perennial pepperweed plant (Lepidium latifolium) active from spring through autumn 141 

(Figure 3). Pepperweed produces a dense canopy of white flowers each year from about the 142 

beginning of June through the end of August, creating increased complexity in canopy 143 

reflectance during this time (Sonnentag et al., 2011a, 2011b). The second site was a rice paddy 144 

(hereafter referred to as “Rice”) located on Twitchell Island in the Sacramento-San Joaquin Delta 145 

(latitude: 38.1055, longitude: -121.6521, elevation: -5m) with an active growing season from 146 

May through October and maintained as a fallow and flooded field for the remainder of the year 147 

(Figure 3).  148 
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The two sites were located within 10km of each other in the Sacramento San-Joaquin 149 

Delta, and as such, they experienced the same Mediterranean climate with hot and dry summer 150 

months and rainy, cool winters. The 30-year mean annual air temperature (1981-2010) recorded 151 

at a nearby climate station in Antioch, CA was 16.4°C, and mean annual precipitation was 152 

335mm. Despite their similar climatology, the difference in hydrological and agricultural 153 

management between the two sites results in ecosystems with plant canopies that are quite 154 

different in phenology (Hatala et al., 2012; Knox et al., 2014). The water table at the Pasture was 155 

maintained at a level always below the soil surface at around 50-80cm throughout the year. 156 

While the phenology of grasses at the Pasture peaked during the springtime, the pepperweed 157 

plants at the site remained relatively active throughout the summer as their roots can tap the 158 

shallow water table, creating a biologically active canopy almost year-round (Sonnentag et al., 159 

2011a). The Rice was planted and flooded through irrigation management during the summer 160 

growing season only, and the plant canopy sustained high rates of productivity during the 161 

precipitation-free summer months. The field remained fallow and flooded during the remainder 162 

of the year. Differences in the canopy phenology at both sites propagated into differences in the 163 

peak periods of photosynthesis, where peak GPP at the Pasture occurs April-May and peak GPP 164 

at the rice occurs August-September (Hatala et al., 2012; Knox et al., 2014).  165 

2.2 Hyperspectral canopy reflectance sampling 166 

At both the Pasture and Rice, hyperspectral canopy reflectance was collected with a fiber 167 

optic spectrometer (USB 2000; Ocean Optics, Dunedin, FL) with a detector range from 200-168 

1100nm at a height of 1m above the mean canopy surface. The fiber optic sensor was filtered 169 

through a cosine corrector (CC-3-UV-S Spectralon) to ensure that the bi-hemispherical 170 

reflectance from the ground surface was measured at an angle normal to the sensor surface 171 
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(Nicodemus et al., 1977; Schaepman-Strub et al., 2006). We measured bi-hemispherical 172 

reflectance to minimize the contribution of background soil surfaces to the spectral signal, and 173 

we ensured that our reflectance signal was not comprised by low Sun zenith angles by sampling 174 

near midday (Meroni et al., 2011). For this analysis we constrained our data to 400-900nm due to 175 

large levels of noise at the detection edges of this instrument. The spectrometer was mounted on 176 

a tripod approximately one meter above the canopy and was connected via USB cable to a laptop 177 

computer running the OOBase32 software (USB 2000; Ocean Optics, Dunedin, FL) to capture 178 

spectra, which internally corrected for instrument-specific calibration parameters. Each field 179 

spectrum was collected and saved by OOBase32. At the start of each site visit, the integration 180 

time within OOBase32 was adjusted to the ambient light conditions and a reference dark 181 

spectrum measurement was collected by covering the fiber optic head with two layers of black 182 

electrical tape and orienting the sensor downward.  183 

After this initial set-up, we collected a reflectance spectrum for each site replicate by first 184 

pointing the spectrometer directly skyward to record the spectrum of incoming energy, and 185 

within seconds, pointing the spectrometer directly at the ground surface to record the spectrum of 186 

reflected energy. Thus, we calculated the canopy reflectance for each replicate as the reflected 187 

spectrum normalized by the incoming spectrum. For each collection date at each site, we 188 

averaged the replicate spectra for this analysis to compute a single mean spectral reflectance per 189 

date at each site. The spectrometer records data at approximately 0.28nm intervals, and we 190 

smoothed each reflectance spectrum using a spline fit to 1nm intervals between 400-900nm in 191 

order to reduce instrumental noise in the data.  192 

We measured canopy hyperspectral reflectance from July 2010 through September 2014 193 

at both sites, collecting measurements during the entire year at the Pasture and during the 194 
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growing season at the Rice, which amounted to 100 total sampling dates at the Pasture and 71 195 

total sampling dates at the Rice (Figure 1). On each sampling date, hyperspectral reflectance 196 

measurements were collected at each site with a spatial and temporal replicate frequency suited 197 

to the individual site heterogeneity. At the Pasture, where the canopy was spatially and 198 

temporally heterogeneous, we measured hyperspectral reflectance approximately weekly, bi-199 

weekly, or monthly, with nine replicate canopy reflectances randomly sampled per visit. At the 200 

Rice, which had lower spatial variability, hyperspectral reflectance was collected weekly or bi-201 

weekly during the growing season, with five replicate canopy reflectance spectra collected per 202 

visit. We occasionally collected up to ten additional replicates at each of the sites, in order to 203 

ensure that our smaller sampling sizes were capturing broad landscape-scale patterns in spatial 204 

heterogeneity. At each site we randomly sampled canopy reflectance at locations approximately 205 

10-20m within the flux tower footprint, the area most representative of the half-hourly flux 206 

measurements. For partial least-squared regression analysis, we averaged across the 207 

hyperspectral canopy reflectance replicates for each site and day. Because leaf geometry and 208 

clumping can critically impact the interpretation of canopy reflectance measurements (Colwell, 209 

1974), these two sites provide a useful first-case study for directly connecting hyperspectral 210 

canopy reflectance measurements to CO2 flux because both ecosystems have an erectophile in 211 

leaf angle distribution for the majority of the year, minimizing shadow effects when field spectra 212 

are collected near solar noon. 213 

2.3 CO2 flux measurements 214 

 Both sites are active AmeriFlux and FLUXNET sites (Baldocchi et al., 2001a) measuring 215 

fluxes of energy, water vapor, and CO2 using standard eddy covariance methods and processing 216 

procedures described elsewhere in detail (Ameriflux site codes: US-Snd and US-Twt; Hatala et 217 
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al., 2012; Knox et al., 2014; Sonnentag et al., 2011a). The eddy covariance technique was used 218 

to measure the fluxes of CO2 at each site by collecting simultaneous 10 Hz measurements of 219 

vertical turbulence (w, m s-1), measured with a sonic anemometer (Gill WindMaster Pro; Gill 220 

Instruments Ltd, Lymington, Hampshire, England), and CO2 density (c, µmol m-3), measured 221 

with an infrared gas analyzer (LI-7500; Li-Cor Biosciences, Lincoln, NE). From these 222 

measurements we calculated the net half-hourly mean flux of CO2 (NEE, µmol m-2 s-1) between 223 

the surface and atmosphere by averaging the covariance between w and c over a half-hourly time 224 

period after applying a coordinate rotation and a set of standard air density and temperature 225 

corrections (Detto et al., 2010; Schotanus et al., 1983; Webb et al., 1980). To partition NEE into 226 

gross primary photosynthesis (GPP, µmol m-2 s-1) and ecosystem respiration (ER, µmol m-2 s-1), 227 

net CO2 fluxes were first gap-filled using artificial neural network (ANN) techniques outlined in 228 

detail within Knox et al. [2014], driven by meteorological variables (Moffat et al., 2007; Papale 229 

et al., 2006). After the net CO2 fluxes were gap-filled using the ANN technique, we separated the 230 

net flux into GPP and ER by modeling nighttime NEE measurements as ER, since GPP is 231 

assumed to be zero at night (Reichstein et al., 2005). We prescribed the nighttime temperature 232 

dependence of ER by an Arrhenius-type model (Lloyd and Taylor, 1994), and extrapolated this 233 

model to the daytime, calculating GPP as the difference between NEE and modeled ER. Net CO2 234 

flux data within this analysis are presented from the atmospheric convention, where a negative 235 

flux indicates ecosystem uptake, and a positive flux indicates release from the ecosystem to the 236 

atmosphere.  237 

  Within this analysis we examined the predictive power of hyperspectral canopy 238 

reflectance to explain patterns in instantaneous and daily-, weekly-, and monthly-integrated NEE 239 

and GPP flux. We tested these variables separately in order to determine whether the canopy 240 
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reflectance better predicted an instantaneous flux measurement at the time of collection, or a flux 241 

signal integrated over the previous day, week, or month. For instantaneous NEE and GPP flux, 242 

we matched the time of spectral collection with the nearest mean half-hourly flux measurement, 243 

where these values are presented in units of µmol m-2 s-1. For the daily-, weekly-, and monthly-244 

integrated NEE and GPP fluxes, we integrated the net CO2 and GPP flux over the course of the 245 

previous day, week, or month for the date of spectral reflectance collection, where these values 246 

are presented in units of g-C m-2 time-1. For reference regarding the magnitude and temporal 247 

dynamics of CO2 fluxes at the Pasture and Rice, the instantaneous GPP flux and daily NEE flux 248 

for both sites are plotted as Figure 2.  249 

2.4 Partial Least-Squares Regression Modeling 250 

 Partial least-squares regression is a standard method in chemometrics for modeling the 251 

ability of a set of quasi-continuous spectral variables to predict a single response (Wold et al., 252 

2001). In this analysis we used PLSR methods with the hyperspectral canopy reflectance dataset 253 

to model the response of instantaneous or integrated NEE or GPP. PLSR is similar to principle 254 

components analysis (PCA), in that the modeling algorithm reduces a large predictor matrix of 255 

spectral reflectance data to a reduced set of latent variables. In our study, the large predictor 256 

matrix is the measured hyperspectral reflectance at each wavelength between 400-900 nm during 257 

each sampling event, which in our analysis was reduced to a maximum of 10 latent variables that 258 

contained the most significant sets of variables from the larger matrix for predicting 259 

instantaneous or integrated NEE or GPP. PLSR typically outperforms PCA or standard step-wise 260 

linear regression for situations where there is high co-linearity within the predictor matrix, such 261 

as within narrow-band spectral reflectance and chemometrics (Wold et al., 2001). For this 262 

analysis we used the PLS package (Mevik et al., 2013) within the R statistical environment (R 263 
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Development Core Team 2014). All the R code used to conduct this analysis is freely available 264 

on GitHub at http://github.com/jhmatthes/canreflectance_flux_plsr. 265 

 For PLSR model fitting and validation, our methods followed those of Serbin et al. 266 

(2014), which used PLSR regression modeling to determine the ability of hyperspectral 267 

reflectance data to predict a suite of leaf traits. However, in this analysis, we used repeated 268 

measurements to examine how well the repeated hyperspectral reflectance measurements could 269 

directly predict landscape-scale fluxes of NEE and GPP. We conducted one set of PLSR 270 

regression modeling for the entire spectral reflectance dataset that combined both the Pasture and 271 

Rice data, and then two additional PLSR modeling exercises with the only the Pasture data and 272 

only the Rice data, to examine whether there were significant differences between the two sites 273 

in the resulting PLSR models. For each of the three PLSR modeling exercises, we split the data 274 

into model calibration (80% of the data) and independent validation (20% of the data; hereafter 275 

referred to as “Independent Validation”), where the model calibration data were used to fit the 276 

model, and the independent validation data were used to evaluate the ability of the model to 277 

predict landscape-scale NEE and GPP outside of the PLSR model fitting exercise. As in Serbin 278 

et al. [2014], we randomly split the model calibration data into 70% for model fitting (hereafter 279 

referred to as “Calibration”) and 30% for model uncertainty evaluation (hereafter referred to as 280 

“Evaluation”) over 1000 iterations to evaluate the uncertainty in PLSR model development. So 281 

overall, we used 56% of the total data for Calibration, 24% of the data for Evaluation, and an 282 

unchanging 20% of the data for Independent Validation to test the predictive power of the final 283 

mean models. We conducted an initial optimization with a single set of Calibration data and 284 

Evaluation data to determine the total number of PLSR latent variables to include in each model 285 

by minimizing the prediction residual sum of squares, calculated through leave-one-out cross-286 
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validation (Chen et al., 2004). We used the entire 400-900nm spectrum range with these PLSR 287 

methods to fit the instantaneous and daily-, weekly-, and monthly-integrated NEE and GPP flux 288 

data.  289 

 To quantify the performance of each PLSR model we calculated the coefficient of 290 

determination (R2), the root mean square error (RMSE), and the model bias. We used the 1000 291 

iteration bootstrapping approach for each PLSR to quantify the model calibration performance as 292 

in Serbin et al. [2014]. From the random 70% to 30% split of the Calibration and Evaluation 293 

data, we generated new estimates for each iteratively removed sample. This allowed us to test the 294 

stability and generality of the models using different sets calibration data and to estimate robust 295 

errors for the prediction of flux measurements by representing the uncertainty across 296 

measurements, spectral data, and the PLSR modeling approach. For each set of 1000 modeling 297 

iterations over the random calibration/validation fit dataset split, we calculated the resulting 298 

mean PLSR model coefficients and the variable importance of projection (VIP) score associated 299 

with the reflectance measured at each wavelength. The VIP score represents the statistical 300 

contribution of each individual wavelength to the overall fitted PLSR model across all latent 301 

model components. In this way, the VIP score can be used to identify the wavelengths that 302 

contribute the most information for predicting the variable at hand (in this case, either NEE or 303 

GPP). Using the mean of the bootstrapped PLSR models, we tested each final mean model 304 

against the 20% of original data left aside for Independent Validation by linear regression.  305 

2.5 Standardized vegetation indices for GPP and NEE prediction 306 

 We analyzed the skill of standardized vegetation indices (SVIs) in predicting NEE and 307 

GPP flux at the Pasture and Rice, and compared the utility of these models to our PLSR 308 

modeling results. Due to their wide use in other studies, we tested the normalized difference 309 
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vegetation index (NDVI; [R800 – R680]/[ R800 + R680]; Rouse et al., 1974), NDVI calculated with 310 

the wavelengths from the Moderate Resolution Imaging Spectroradiometer satellite (NDVIMOD; 311 

[R841-876 – R620-670]/[ R841-876 + R620-670]), green NDVI (NDVIg; [R800 – R550]/[ R800 + R550]; 312 

Gitelson et al., 1996), red-edge NDVI (NDVIre; [R800 – R700]/[ R800 + R700]; Gitelson and 313 

Merzlyak, 1994), and the photochemical reflectance index (PRI; [R531 – R570]/[ R531 + R570]; 314 

Gamon et al., 1992), where R indicates reflectance in the subscripted wavelengths in nanometers. 315 

For all SVIs except NDVIMOD, we averaged the measured reflectance for a 10nm window 316 

centered on the reflectance value to reduce measurement noise.  317 

 We assessed the ability of SVI measurements to predict NEE and GPP fluxes for All 318 

data, the Rice only, and the Pasture only by randomly selecting 80% of the reflectance spectra 319 

for calibration, leaving 20% of the data for prediction. For GPP fluxes, we assessed the fit and 320 

prediction of SVIs with a log-linear model as this model best fit the data, and for NEE we used a 321 

simple linear model, which fit the data better than a log-linear model. To assess the ability of the 322 

SVIs to predict GPP and NEE, we performed an iterative calibration/prediction analysis where 323 

we randomly parsed the data into 80% calibration and 20% prediction for 100 iterations, and 324 

present the mean statistics for comparative analysis with the PLSR modeling results.  325 

 326 

3. Results 327 

3.1 Spatiotemporal variability in hyperspectral canopy reflectance 328 

 There was significant seasonal, inter-annual, and site-level variability across the 329 

hyperspectral canopy reflectance measurements collected over the course of five years at both 330 

sites. Intra-site variability within canopy reflectance changed due to the phenological stage of the 331 

ecosystem, whereas inter-annual variability was driven by changes in the timing of these 332 
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phenological events. The Pasture tended to be more spatially heterogeneous than the Rice, 333 

observed through the higher intra-site variability during an individual sampling event, 334 

particularly in the infrared reflectance (Figure 3). This intra-site variability at the Pasture is 335 

caused by higher spatial heterogeneity in canopy structure compared with the Rice, which is a 336 

monoculture with a simpler crop phenological cycle. During the green leaf-out stage at both the 337 

Pasture and Rice, the patterns of hyperspectral reflectance were quite similar, with a peak at the 338 

green wavelengths, absorption in the red wavelengths, and high reflectance in the near-infrared 339 

wavelengths (Figure 3a,b). Intra-site variability across the spectrum was high across at the 340 

Pasture during periods of white pepperweed flowering that produced a much higher albedo than 341 

the green canopy and obscured reflectance patterns in the green and red wavelengths, despite 342 

relatively high plant productivity during this time (Figure 3c). The closest analogous 343 

phenological stage to this period at the Rice was during the time at which the rice has seeded and 344 

the plants have dried in preparation for harvest, when the Rice experienced similar trends in 345 

increased albedo through the visible wavelengths (Figure 3d). However, the magnitude of the 346 

senescing Rice reflectance was not as large as the white pepperweed canopy at the Pasture, and 347 

in addition the reflectance spectra were not obfuscated during this time since the rice 348 

productivity was quite low at this point in the growing season.  349 

 The seasonal and inter-annual patterns in narrow-band reflectance in the green (550±5 350 

nm), red (640±5 nm), and near-infrared (NIR; 800±5 nm) wavelengths also highlighted intra-site 351 

and inter-annual variability. At the Pasture, there was low intra-site variability and inter-annual 352 

variability in green reflectance from January through the end of May, when the grass canopy was 353 

present at the site (Figure 4a). However, when pepperweed became the dominant canopy plant at 354 

the Pasture during the summer growing season, both replicate and inter-annual variability 355 
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increased as the pepperweed created a more heterogeneous cover than the grass due to its white 356 

flowers and more spatially variable structure than the winter grass canopy. The same pattern was 357 

evident in the red reflectance at the Pasture, with low variability in the second half of winter and 358 

spring, and a large increase in variability during the summer growing season and autumn (Figure 359 

4c). At the Rice, there was also large inter-annual variability in the timing of the seasonal pattern 360 

green and red reflectance, however there was a more discernible seasonal pattern of reflectance 361 

that tracks within years across the entire growing season (Figures 4b,d). For example, each year 362 

green reflectance and red reflectance started high, decreased as the growing season progressed, 363 

then eventually increased again as the rice straw dried before harvest. The NIR reflectance at the 364 

Pasture had a stable mean through the year with little inter-annual variability but large intra-site 365 

variability across the year (Figure 4e). The Rice NIR reflectance had a consistent seasonal 366 

pattern between years, with low reflectance in the early growing season and increasing NIR 367 

reflectance as the canopy developed due to the change in the rice canopy closure as the growing 368 

season progressed (Figure 4f). Although there was a consistent phenological trend in NIR 369 

reflectance at the Rice each year, there remained inter-annual variability in the timing of the NIR 370 

minimum and larger intra-site variability compared with reflectance in the visible wavelengths.   371 

3.2 Calibrated PLSR models for predicting NEE and GPP 372 

 We fit PLSR models to the hyperspectral data to predict landscape-scale NEE and GPP at 373 

four integrated flux timescales: instantaneous flux measurements, and daily-, weekly-, and 374 

monthly-integrated flux measurements for the period preceding the time of hyperspectral canopy 375 

reflectance collection. In this analysis we determined the optimal number of latent variables to 376 

include for each model by minimizing the predictive residual sum of squares. The number of 377 

optimal latent variables included in the PLSR models ranged from 2-8, which indicated that 378 
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some models could achieve the best predictive statistical fit for NEE and GPP with a much lower 379 

number of components than other models (Table 1). For the PLSR models that included the 380 

entire canopy reflectance dataset for both sites, the optimal number of latent variables was stable 381 

at six components, except for the instantaneous GPP model, which included seven components. 382 

The number of optimal components was more variable across the PLSR models for the Pasture 383 

reflectance data (2-8 components) compared with those from the Rice reflectance data (4-6 384 

components).  385 

As expected, across all models, the R2 for the PLSR Calibration was higher than the R2 386 

for the PLSR Evaluation fit, and the RMSE was lower for the Calibration and higher for the 387 

Evaluation during the model calibration step (Table 1). The fit statistics presented within Table 1 388 

show the mean fit statistics for the 1000 iterations of random 70% Calibration, 30% Validation 389 

data selection from the 80% total data used during the model development fitting process. For 390 

each PLSR model, the 1000 iterated fit statistics followed a normal distribution with low 391 

variance, which indicated only a low bias to selecting the Calibration and Evaluation data so only 392 

the mean results are presented within Table 1. Across almost all of the CO2 flux prediction 393 

variables, the PLSR models for the Rice dataset achieved the highest fit for both the Calibration 394 

(R2 = 0.77-0.92) and Evaluation (R2 = 0.58-0.68) exercises, the PLSR models with the dataset 395 

including both sites achieved a slightly lower overall fit for Calibration (R2 = 0.63-0.87) and 396 

Evaluation (R2 = 0.24-0.69), and the PLSR models for the Pasture had the lowest overall fit for 397 

Calibration (R2 = 0.38-0.97) and Evaluation (R2 = 0.29-0.56) (Table 1).  398 

 For each set of 1000 modeling iterations over the random calibration/validation fit dataset 399 

split, we calculated the resulting mean PLSR model coefficients and the variable importance of 400 

projection (VIP) statistic associated with each wavelength. Across all fitted PLSR models, as the 401 
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timescale of the fitted integrated flux increased from instantaneous to daily-, weekly-, and 402 

monthly-integrated values, the VIP statistic in the visible wavelengths (400-700nm) decreased 403 

and the VIP statistic in the near-infrared wavelengths (700-900nm) increased (Figure 5). This 404 

indicated that for flux measurements on short timescales, the reflectance in the visible 405 

wavelengths contributed the highest explanatory power to the PLSR model components, but at 406 

longer timescales structural changes in the canopy that are correlated with the NIR range became 407 

more important for predicting GPP and NEE flux. This pattern was especially apparent for the 408 

VIP scores of the GPP model using the dataset with both sites (Figure 5a), where there was a 409 

dramatic shift in VIP scores between the weekly- and monthly-integrated flux models. For the 410 

weekly-integrated GPP flux model and those at shorter timescales, the highest VIP scores were 411 

contributed by the visible wavelengths, with a peak in the red wavelengths near 700nm. However 412 

for the monthly-integrated GPP flux model, there was a dramatic difference where the highest 413 

VIP scores shifted from the visible to the NIR range, indicating that structural components of the 414 

plant canopy correlated with NIR reflectance contributed higher predictive power than 415 

reflectance in the visible part of the spectrum. There is a lower shift in VIP scores across 416 

integrated flux timescales in the models developed with only the Rice dataset (Figure 5e-f) 417 

compared against the models developed with only the Pasture dataset (Figures 5c-d), likely 418 

reflecting the increased spatial and phenological complexity of the Pasture ecosystem compared 419 

with the relatively homogeneous Rice.  420 

Across all models, the visible wavelengths that contributed the most information to the 421 

PLSR models, as determined by the magnitude of the VIP score, were within the red portion of 422 

the visible spectrum (Figure 5). Most PLSR models had VIP scores above 1.0 that correlated 423 

with reflectance at 642 and 662 nm, the wavelengths of chlorophyll absorption. Across most 424 
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PLSR models there was also a peak in the VIP score near 673 nm, the wavelength of chlorophyll 425 

fluorescence. However, the second band of chlorophyll fluorescence at 726nm, exhibited low 426 

VIP scores across all models. For both of the PLSR models developed using only the Pasture 427 

dataset, there were also high VIP scores within the violet and blue range of the visible spectrum, 428 

from 400-450nm. These high VIP scores in the violet-blue portion of the spectrum could be 429 

partly explained by the chlorophyll a and b absorption peaks at 430nm and 460nm, because 430 

slightly higher VIP scores were also observed at the Rice site for these wavelengths (Figure 5e-431 

f). However, this part of the spectrum at the Pasture site was particularly significant compared 432 

with the other models, and this could correspond to white reflectance of the pepperweed flowers 433 

at the site. When the pepperweed canopy was blooming, the bright white flowers reflected light 434 

across the entire visible spectrum, a unique characteristic to this site, where the high visible 435 

albedo in this spectral range might also have contributed to the high VIP scores within this 436 

portion of the spectrum (Figure 5c-d). 437 

3.3 Independent Validation of PLSR models for NEE and GPP  438 

 After we fit the PLSR models to 80% of the entire dataset through 1000 iterations of 439 

different random sets of Calibration and Evaluation data, we tested the mean fitted models 440 

against the Independent Validation data (the 20% of the original dataset left out of the PLSR 441 

model fitting process). In general, the fitted PLSR models achieved a good fit with the 442 

measurements for this Independent Validation dataset, where the R2 fit between the predicted 443 

and actual NEE and GPP ranged from 0.26 to 0.69 (Table 2). As was the case for the calibration 444 

and validation R2 fits during the PLSR calibration process, the Rice dataset achieved the highest 445 

R2 values (0.40-0.69), the dataset with both sites achieved the second-highest set of R2 (0.27-446 

0.62), and the Pasture dataset had the lowest R2 (0.27-0.54). As in the previous discussion for the 447 
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Calibration and Evaluation fits to these three sets of data, we believe that the lower level of 448 

predictability at the Pasture is due to the higher level of spatial heterogeneity and phenological 449 

complexity compared with the Rice.  450 

 Although all models achieved a statistically significant fit between the predicted and 451 

measured CO2 fluxes with the Independent Validation dataset with relatively high R2 values, the 452 

uncertainty in the prediction was significantly lower for the models that included all the data 453 

compared with the models that included only either the Pasture or Rice data. This pattern is 454 

clearly observed within the Independent Validation fit for the daily GPP and NEE data (Figure 455 

6). For the daily prediction of both GPP and NEE, the dataset that included all the data had a 456 

smaller range for both the 95% confidence interval and 95% prediction interval for the 457 

relationship between predicted and actual GPP and NEE. This trend likely represented an 458 

increase in predictive power achieved by including a larger dataset with a wider range of values 459 

both for NEE and GPP and for the measured hyperspectral reflectance. As the datasets that 460 

included either the Pasture and Rice data only had a lower amount of data overall as well as a 461 

narrower range of values, the confidence in the ability to predict NEE and GPP at these 462 

individual sites was lower compared with the power of using the entire combined dataset. 463 

3.4 Prediction of NEE and GPP fluxes with standardized vegetation indices 464 

 We compared the ability of a suite of commonly used SVIs to predict GPP and NEE with 465 

the skill of the mean PLSR models developed within this study. Overall, the suite of NDVI SVIs 466 

performed reasonably well at predicting both GPP and NEE, and models tested with all the 467 

reflectance data for both sites achieved predictive R2 values that ranged from 0.18 to 0.59 (Table 468 

3; Supplementary Table 1), where red-edge NDVI was the SVI that achieved the highest skill for 469 

predicting GPP and NEE for the sites in this study. PRI was not well suited to predicting CO2 470 
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fluxes at these sites, and models for this SVI achieved predictive R2 fits that ranged from 0.02 to 471 

0.22.  472 

For models that fit all the data from both sites, the predictive fit from PLSR modeling 473 

outperformed the red-edge NDVI (the best-fit SVI) at the instantaneous and weekly timescales, 474 

the two models were not significantly different at the daily timescale, and red-edge NDVI 475 

outperformed PLSR modeling at the monthly timescale (Table 3). PLSR modeling outperformed 476 

SVIs across all timescales for models that fit the Pasture data only. The performance of red-edge 477 

NDVI and PLSR models were not significantly different at instantaneous, daily, and weekly 478 

timescales when fit with the Rice data only, however red-edge NDVI was a better predictor of 479 

monthly CO2 fluxes than the PLSR models (Table 3).  480 

3.5 Prediction of NEE and GPP fluxes across different timescales 481 

 We investigated the ability of PLSR modeling with the hyperspectral canopy reflectance 482 

measurements to predict instantaneous GPP and NEE fluxes from the same half hour of spectral 483 

measurement, in addition to fluxes integrated over the previous day, week, and month. Previous 484 

work determined that sampling errors in eddy covariance flux measurements diminished when 485 

the fluxes were integrated over the course of many days (Moncrieff et al., 1996). We expected 486 

that the instantaneous flux would achieve the lowest correlation with the measured canopy 487 

reflectance since reflectance changes more slowly compared with CO2 flux, and that the fluxes 488 

integrated over longer timescales would provide a stronger signal with a higher predictive 489 

capacity. For the Calibration and Evaluation during the initial PLSR model fitting, there was no 490 

strong evidence that one timescale (instantaneous, daily, weekly, or monthly flux) was 491 

particularly better fit with the hyperspectral canopy reflectance than the other timescales (Table 492 

1). However, during the evaluation of the predictive power of the PLSR models with the 493 
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Independent Validation data, most models achieved the highest predictive R2 with GPP flux at 494 

the weekly-integrated timescale, and we found no clear optimal timescale for predicting NEE 495 

with measured hyperspectral reflectance data (Table 2; Figure 7).  496 

 497 

4. Discussion 498 

4.1 Sources of variability in measured reflectance 499 

 Variation across the measured hyperspectral canopy reflectance was dominated by inter-500 

annual variability in the timing of canopy phenology (Figures 3,4). At the Rice, transitions were 501 

typical for an agricultural crop, where canopy reflectance incorporated portions of the 502 

background flooded soil in conjunction with the emerging green plants early the in growing 503 

season, with canopy closure achieved by early July (Beget and Di Bella, 2007). After flooding 504 

when the Rice canopy closed, there was less intra-site variability in measured reflectance, until 505 

the end of the growing season when the rice plants started to senesce and dry before harvest 506 

(Figure 4). At the Pasture, canopy phenology was more complicated, marked by a transition from 507 

a green grass canopy to a green pepperweed canopy in April, followed by the white flowering of 508 

the pepperweed canopy from June through August, which increased intra-site variability in 509 

measured reflectance (Figure 4). Both the Rice and Pasture experienced significant inter-annual 510 

variability in the start and end dates of these phenological patterns, but despite this variability the 511 

sites experienced relatively low variability in the overall CO2 flux (Figure 2). The primary driver 512 

of inter-annual variability at the Pasture was the timing of summer drought in the Mediterranean 513 

climate, and canopy management (Sonnentag et al., 2011a). These primary controls agreed with 514 

the results from European syntheses of FLUXNET sites where water was a key driver of inter-515 

annual variability in NEE (Reichstein et al., 2007).  At the Rice, inter-annual variability was 516 
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driven by changes in the start and end dates of canopy phenology that were driven by changes 517 

agricultural management of the planting and harvesting dates each year and smaller changes in 518 

fertilizer management (Hatala et al., 2012; Knox et al., 2014). The timing of the planting and 519 

harvest at the Rice is controlled by logistical environmental drivers, as the field must be dry 520 

enough to drive farm equipment through the soil, and warm enough to ensure seedling survival. 521 

Differences in these variables from year to year created variability in the planting dates, and 522 

subsequent variability in the seasonal trajectory of hyperspectral canopy reflectance (Figures 523 

3,4). There are also important differences between PLSR methods using the complete spectrum 524 

and standardized vegetation indices (SVIs) that may lead to differences in interpreting which 525 

bands are best suited for correlation with CO2 fluxes. Because SVIs are normalized by a 526 

reference band, they may be better suited to reducing noise within temporal trends in reflectance 527 

time series, particularly at sites that experience a wide range of illumination conditions. While 528 

the PLSR methods used in this analysis benefit from the large information content that results 529 

from using the entire reflectance spectrum, the measurements represent relative reflectance 530 

values rather than normalized reflectance ratios, and thus likely include more noise in the 531 

measurement time series than SVIs. This is an important trade-off when considering whether to 532 

use the entire reflectance spectrum or SVIs to understand how canopy reflectance tracks CO2 533 

fluxes, but the simple canopy structure at the sites in this analysis and the collection of 534 

measurements during ideal illumination conditions limits the overall noise within the reflectance 535 

time series. 536 

4.2 Predicting NEE & GPP with PLSR models 537 

Along with the inter-annual variability experienced at both sites, there were also 538 

differences in the intra-site variability of measured reflectance within the two flux tower 539 
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footprints. The Pasture site was more spatially heterogeneous than the Rice, driving increased 540 

variability among replicate hyperspectral reflectance spectra at the site (Figure 4). The increased 541 

spatial variability at the Pasture was reflected in the lower predictive power of the PLSR models 542 

in predicting GPP and NEE with only the Pasture dataset (Tables 1,2). The lower overall fit 543 

between the hyperspectral measurements and CO2 flux at the Pasture can be explained through 544 

three possible mechanisms: 1) the hyperspectral canopy reflectance measurements at the Pasture 545 

are less representative of the entire flux footprint than the Rice data, 2) white pepperweed 546 

flowers in the Pasture canopy during summertime create an obstruction for reflectance that 547 

degrades the representativeness of measured spectra (Hestir et al., 2008; Sonnentag et al., 548 

2011b), 3) the lack of irrigation at the Pasture compared with the Rice could create conditions of 549 

water stress during which reflectance becomes temporally decoupled from CO2 flux. It is likely 550 

that all of these factors contributed to the lower PLSR predictive power at the Pasture, and in 551 

particular the obstruction by white canopy flowers presented a challenge that is somewhat 552 

unavoidable for canopy reflectance studies in complex ecosystems. Changes to future sampling 553 

efforts that address the footprint representativeness, for example increasing the number and 554 

spatial distribution of hyperspectral reflectance collected at the Pasture or flying an unmanned 555 

aerial vehicle (UAV) with a mounted hyperspectral sensor, might help to further improve the 556 

future PLSR predictive power.  557 

The most important wavelengths for the PLSR modeling with the GPP and NEE flux data 558 

in this study fell in line with previous work that has examined correlations between reflectance 559 

and traits of photosynthetic uptake (Main et al., 2011). However, we were initially surprised to 560 

find that the green wavelengths were not dominant components for prediction of either NEE or 561 

GPP across the suite of calibrated PLSR models (Figure 5). These results do parallel recent work 562 
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in oak forests that demonstrated a temporal mismatch between peak greenness and peak leaf 563 

chlorophyll content (Yang et al., 2014). This temporal mismatch could be the cause for the 564 

insignificant correlation in narrow-band green reflectance, because at both sites vegetation is a 565 

lighter green early in the growing season and develops into a darker green as the season 566 

progresses. There were particularly high VIP scores in the blue visible wavelength range, from 567 

400-450 nm, at the Pasture site (Figure 5c,d), which could be partly explained by the chlorophyll 568 

a and b absorption peaks at 430nm and 460nm since the Rice also experienced slightly higher 569 

VIP scores in this region (Figure 5e-f). However, the magnitude of the VIP scores in this region 570 

at the Pasture far exceeded those at the Rice. There are two possible explanations for this marked 571 

increase in the importance of the blue visible wavelengths at the Pasture: 1) white reflectance of 572 

the pepperweed flowers at the site could be increasing the albedo within this portion of the 573 

spectrum; 2) the more complex phenology at the site with annual grass and pepperweed 574 

senescence is periodically driving reflectance near 420 nm in response to these periods of stress 575 

(Carter and Miller, 1994). While the Pasture shifted toward much higher reflectivity across the 576 

visible wavelengths during the brief period of white flowering in late spring (Figure 3a), this site 577 

also experienced more dynamic phenology overall, with browning of the grass in early summer 578 

and of the pepperweed in late summer.  579 

Almost all of the PLSR models predicting instantaneous and daily- and weekly-integrated 580 

NEE and GPP had a peak in the VIP score at red wavelengths (Figure 5). Reflectance features 581 

within this portion of the spectrum include absorption in the red wavelengths at 642 and 662 nm 582 

correlated with chlorophyll absorption, and reflectance in the chlorophyll a fluorescence 583 

wavelengths that occurs near 673 nm. The maximum VIP score in the visible wavelengths across 584 

nearly all of the PLSR models occurred near the end of the red portion of the spectrum between 585 
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670-680 nm, indicating that these wavelengths provided critical information to the latent 586 

variables that comprised most of the PLSR models (Figure 5). This result paralleled previous 587 

work that demonstrated the importance of narrow-band reflectance at 670-680 nm for predicting 588 

chlorophyll absorption features across a diverse suite of plant canopies (Carter and Miller, 1994; 589 

Dawson et al., 1999; Gitelson and Merzlyak, 1997; Main et al., 2011).  590 

The differences among the predictive power of the PLSR models that included all the 591 

data compared with the models developed at individual sites highlighted important 592 

considerations for future work in this area. The predictive models with the smallest 95% 593 

prediction intervals originated from the models that included all of the data from both sites 594 

(Table 2), demonstrating the power of using larger datasets, with a wider range of values, to 595 

develop the predictive capacity of PLSR models. Further improvements in PLSR predictive 596 

power might be achieved by building upon this data to include paired hyperspectral-eddy flux 597 

datasets from additional sites that can expand and refine the connection between reflectance and 598 

CO2 flux. This approach has particular promise for sites with automated hyperspectral sensing 599 

systems in conjunction with eddy covariance measurements (Balzarolo et al., 2011; Hilker et al., 600 

2007; Leuning et al., 2006; Rossini et al., 2010). However, we do emphasize that changes in the 601 

canopy complexity and clumping are important consideration for such work at other sites, 602 

compared with the short-statured canopies with low clumping indices (Ryu et al., 2010b) 603 

included in this study. In canopies with more complex leaf and branch clumping, hyperspectral 604 

canopy reflectance measurements will need to be combined with radiative transfer modeling in 605 

order to accurately model the energy reflectance spectrum (Knyazikhin et al., 2013; Verhoef and 606 

Bach, 2007). 607 
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In testing the ability of common SVIs used in the literature to predict GPP and NEE, the 608 

skill of some NDVI models were on par with that of the PLSR models when developed using all 609 

the data from both sites or the Rice data only (Table 3). We believe that SVIs well-predicted 610 

GPP and NEE at the Rice due to its simple annual phenology and corresponding seasonal pattern 611 

in CO2 flux. However, PLSR modeling significantly outperformed SVI models for predicting 612 

GPP and NEE flux when developed using only the Pasture data, due to the increased canopy 613 

complexity at the Pasture site. At the Pasture, the PLSR approach captured more variance within 614 

the dataset through its ability to model more complex relationships across the entire spectrum 615 

compared with SVIs, which focus only on two spectral areas. This highlights the improved utility 616 

for PLSR modeling compared with the use of SVIs to predict ecosystem CO2 fluxes from 617 

canopies with complex phenological shifts.  618 

4.3 CO2 flux prediction at various timescales 619 

Across all sets of PLSR models, there was an interesting shift in VIP scores from the 620 

visible wavelengths to the NIR wavelengths as the timescale of NEE and GPP integration 621 

increased (Figure 5). An increase in structural complexity drives higher NIR reflectivity (Main et 622 

al., 2011), and the VIP scores across the suite of PLSR models showed that this structural 623 

components of the canopy driving NIR reflectance became increasingly important to predicting 624 

both NEE and GPP as the integrated timescale increased. This demonstrated that reflectance in 625 

visible wavelengths correlated with chlorophyll content was most important for short-term flux 626 

prediction, but canopy structural changes in the NIR wavelengths was most important for longer-627 

term flux prediction. These results are analogous with those from a modeling study across a 628 

network of European grassland sites that found a strong correlation between GPP and NIR 629 

reflectance indicative of phenological shifts in structural canopy components independent of 630 
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changes in chlorophyll reflectance (Balzarolo et al., 2015). An important constraint of our 631 

analysis is that the field spectrometer used only measured wavelengths up to 900 nm reliably, 632 

making analysis at longer wavelengths in the infrared area correlated with leaf structural 633 

components such as fiber, lignin, and cellulose content impossible (Serbin et al., 2014). 634 

However, this same approach of canopy-level PLSR modeling could be used in conjunction with 635 

a spectrometer capable of making wider spectral reflectance measurements at eddy covariance 636 

sites to evaluate longer wavelength areas of the short-wave IR (SWIR) spectrum, for example 637 

with the newly developed WhiteRef automated sensor for quasi-continuous SWIR hyperspectral 638 

measurements (Sakowska et al., 2015). 639 

Comparing the predictive fit achieved with the PLSR models across different CO2 flux 640 

timescales with the Independent Validation dataset provided important insights into the temporal 641 

scale of CO2 flux integration represented by the hyperspectral canopy reflectance collection at a 642 

moment in time. Almost all of the final PLSR models achieved the highest predictive fit with the 643 

weekly-integrated GPP fluxes (Figure 7). The changes in the PLSR predictive power for NEE 644 

and GPP at different timescales provided important information for considering what exactly is 645 

represented by measured hyperspectral reflectance in the field, as canopy biochemistry is in fact 646 

an emergent response to biological and environmental drivers that are integrated through time. 647 

The fact that all three models achieved the best predictive fit with the Independent Validation 648 

data for GPP at the weekly timescale yielded support for modeling efforts that determine carbon 649 

fluxes from MODIS satellite reflectance, which is aggregated into an 8-day timescale. The 650 

results of this flux timescale analysis are congruous with those from previous work, which found 651 

a good correlation between gross CO2 flux and the 8-day MODIS data timescale (Sims et al., 652 

2005). While there was a clear signal in the higher predictive power for estimating the weekly-653 
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integrated GPP flux compared with other timescales, there was less consistency within the best 654 

predictive timescale for estimating NEE (Figure 7). This is likely due to the fact that NEE is a 655 

combination of both GPP and ER, which change on different timescales in response to different 656 

environmental drivers and are more highly coupled at the Rice than they are at the Pasture 657 

(Hatala et al., 2012; Knox et al., 2014). The fact that NEE achieved a good fit with canopy 658 

hyperspectral reflectance through the monthly timescale for the models developed with all the 659 

data (Figure 7a) could indicate that the system memory in carbon flux at these sites is integrated 660 

over a longer timescale than was tested in this analysis, and that canopy biochemistry collected at 661 

one moment reflects at least the previous month of integrated NEE flux.  662 

 663 

5. Conclusions 664 

This analysis demonstrated that using PLSR modeling with repeated near-surface 665 

hyperspectral canopy reflectance created reliable predictive models of NEE and GPP flux for 666 

two short-structured plant canopies with different phenology and significant intra-site and inter-667 

annual variability in canopy reflectance. The PLSR models developed from hyperspectral canopy 668 

reflectance collected during 100 site visits from 2010-2014 at a Pasture and a Rice paddy 669 

achieved a high level of predictability for both NEE and GPP flux where the predictive R2 670 

ranged from 0.24 to 0.69 using an independent validation dataset. The higher variability in 671 

measured hyperspectral reflectance at the Pasture did decrease the predictive power of the PLSR 672 

models when compared against those developed at the Rice site with a more homogeneous 673 

canopy. The PLSR models were most skilled at predicting the GPP flux for the integrated week 674 

prior to the collection of canopy reflectance. Although the use of PLSR methods with 675 

hyperspectral field reflectance such as those presented within this analysis need to be rigorously 676 
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tested with a much larger dataset and in more diverse ecosystems, the results from this analysis 677 

showed promise for using repeated hyperspectral canopy reflectance to directly predict 678 

landscape-scale carbon flux. Use of this method, particularly if developed with large datasets 679 

collected over several years, might help to constrain GPP estimates through the integration of 680 

additional datasets into the modeling efforts that partition NEE into GPP and ER at flux sites 681 

(Hilker et al., 2014). The development of PLSR models to predict NEE and GPP from 682 

hyperspectral canopy reflectance collected within flux tower footprints is a promising avenue of 683 

future research, particularly with the development and deployment of hyperspectral satellite 684 

sensors such as NASA’s Hyperspectral and InfraRed Imager (HyspIRI; http://	
  685 

http://hyspiri.jpl.nasa.gov), which will provide continuous spatial coverage of measured 686 

hyperspectral reflectance. 687 

 688 

6. Author Contributions 689 

D.D.B., J.H.M., and O.S. designed the experiment, all co-authors collected, processed, and 690 

analyzed the reflectance and eddy covariance measurements, J.H.M. designed and conducted 691 

PLSR modeling, and J.H.M. wrote the manuscript with input from all co-authors. 692 

 693 

7. Acknowledgements 694 

The authors would like to thank Bryan Brock and the California Department of Water Resources 695 

for funding through DWR contract 4600008849. This research was also supported by the United 696 

States Department of Agriculture NIFA grant number 2011-67003-30371, and the National 697 

Science Foundation Atmospheric and Geospace Science Program grant AGS-0628720. J.H.M. 698 



	
  

32	
  

thanks the National Science Foundation Graduate Research Fellowship program for support 699 

through grant DGE-1106400. 700 

 701 

  702 



	
  

33	
  

8. Bibliography 703 

Asner, G. and Martin, R.: Spectral and chemical analysis of tropical forests: Scaling from leaf to 704 
canopy levels, Remote Sens. Environ., 112(10), 3958–3970, doi:10.1016/j.rse.2008.07.003, 705 
2008a. 706 

Asner, G. P. and Martin, R. E.: Airborne spectranomics: mapping canopy chemical and 707 
taxonomic diversity in tropical forests, Front. Ecol. Environ., 7(5), 269–276, 708 
doi:10.1890/070152, 2008b. 709 

Baldocchi, D. D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., 710 
Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., 711 
Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., 712 
Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S.: FLUXNET: A new tool to study 713 
the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy 714 
flux densities, Bull. Am. Meteorol. Soc., 82(11), 2415–2434 [online] Available from: <Go to 715 
ISI>://000171929700004, 2001a. 716 

Baldocchi, D., Falge, E. and Wilson, K.: A spectral analysis of biosphere-atmosphere trace gas 717 
flux densities and meteorological variables across hour to multi-year time scales, Agric. For. 718 
Meteorol., 107(1), 1–27, doi:10.1016/s0168-1923(00)00228-8, 2001b. 719 

Balzarolo, M., Anderson, K., Nichol, C., Rossini, M., Vescovo, L., Arriga, N., Wohlfahrt, G., 720 
Calvet, J.-C., Carrara, A., Cerasoli, S., Cogliati, S., Daumard, F., Eklundh, L., Elbers, J. A., 721 
Evrendilek, F., Handcock, R. N., Kaduk, J., Klumpp, K., Longdoz, B., Matteucci, G., Meroni, 722 
M., Montagnani, L., Ourcival, J.-M., Sánchez-Cañete, E. P., Pontailler, J.-Y., Juszczak, R., 723 
Scholes, B. and Martín, M. P.: Ground-Based Optical Measurements at European Flux Sites: A 724 
Review of Methods, Instruments and Current Controversies, Sensors, 11(12), 7954–7981, 725 
doi:10.3390/s110807954, 2011. 726 

Balzarolo, M., Vescovo, L., Hammerle, A., Gianelle, D., Papale, D., Tomelleri, E. and 727 
Wohlfahrt, G.: On the relationship between ecosystem-scale hyperspectral reflectance and 728 
CO_{2} exchange in European mountain grasslands, Biogeosciences, 12(10), 3089–3108, 729 
doi:10.5194/bg-12-3089-2015, 2015. 730 

Bauer, M. E.: The role of remote sensing in determining the distribution and yield of crops, Adv. 731 
Agron., 27, 271–304, doi:10.1016/s0065-2113(08)70012-9, 1975. 732 

Beget, M. E. and Di Bella, C. M.: Flooding: The effect of water depth on the spectral response of 733 
grass canopies, J. Hydrol., 335(3-4), 285–294, doi:10.1016/j.jhydrol.2006.11.018, 2007. 734 

Bolster, K. L., Martin, M. E. and Aber, J. D.: Determination of carbon fraction and nitrogen 735 
concentration in tree foliage by near infrared reflectances: a comparison of statistical methods, 736 
Can. J. For. Res., 26(4), 590–600, doi:10.1139/x26-068, 1996. 737 



	
  

34	
  

Carter, G. A. and Miller, R. L.: Early detection of plant stress by digital imaging within narrow 738 
stress-sensitive wavebands, Remote Sens. Environ., 50(3), 295–302, doi:10.1016/0034-739 
4257(94)90079-5, 1994. 740 

Chen, S., Hong, X., Harris, C. J. and Sharkey, P. M.: Spare modeling using orthogonal forest 741 
regression with PRESS statistic and regularization, IEEE Trans. Syst. Man Cybern., 34, 898–742 
911, 2004. 743 

Colwell, J. E.: Vegetation canopy reflectance, Remote Sens. Environ., 3(3), 175–183, 744 
doi:10.1016/0034-4257(74)90003-0, 1974. 745 

Dawson, T. P., Curran, P. J., North, P. R. J. and Plummer, S. E.: The Propagation of Foliar 746 
Biochemical Absorption Features in Forest Canopy Reflectance, Remote Sens. Environ., 67(2), 747 
147–159, doi:10.1016/S0034-4257(98)00081-9, 1999. 748 

Detto, M., Baldocchi, D. and Katul, G. G.: Scaling Properties of Biologically Active Scalar 749 
Concentration Fluctuations in the Atmospheric Surface Layer over a Managed Peatland, 750 
Boundary-Layer Meteorol., 136(3), 407–430, doi:10.1007/s10546-010-9514-z, 2010. 751 

Gamon, J. A., Coburn, C., Flanagan, L. B., Huemmrich, K. F., Kiddle, C., Sanchez-Azofeifa, G. 752 
A., Thayer, D. R., Vescovo, L., Gianelle, D., Sims, D. A., Rahman, A. F. and Pastorello, G. Z.: 753 
SpecNet revisited: bridging flux and remote sensing communities, Can. J. Remote Sens., 36(S2), 754 
S376–S390, doi:10.5589/m10-067, 2010. 755 

Gamon, J. A., Penuelas, J. and Field, C. B.: A narrow-waveband spectral index that tracks 756 
diurnal changes in photosynthetic efficiency , Remote Sens. Environ., 41(1), 35–44, 757 
doi:10.1016/0034-4257(92)90059-s, 1992. 758 

Gamon, J. A., Serrano, L. and Surfus, J. S.: The Photochemical Reflectance Index: An Optical 759 
Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and 760 
Nutrient Levels, Oecologia, 112(4), 492–501, doi:10.2307/4221805, 1997. 761 

Gitelson, A. A., Kaufman, Y. J. and Merzlyak, M. N.: Use of a green channel in remote sensing 762 
of global vegetation from EOS-MODIS, Remote Sens. Environ., 58(3), 289–298, 763 
doi:http://dx.doi.org/10.1016/S0034-4257(96)00072-7, 1996. 764 

Gitelson, A. A. and Merzlyak, M. N.: Remote estimation of chlorophyll content in higher plant 765 
leaves, Int. J. Remote Sens., 18(12), 2691–2697, doi:10.1080/014311697217558, 1997. 766 

Gitelson, A. and Merzlyak, M. N.: Spectral Reflectance Changes Associated with Autumn 767 
Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features 768 
and Relation to Chlorophyll Estimation, J. Plant Physiol., 143(3), 286–292, 769 
doi:http://dx.doi.org/10.1016/S0176-1617(11)81633-0, 1994. 770 

Hansen, P. M. and Schjoerring, J. K.: Reflectance measurement of canopy biomass and nitrogen 771 
status in wheat crops using normalized difference vegetation indices and partial least squares 772 



	
  

35	
  

regression, Remote Sens. Environ., 86(4), 542–553, doi:http://dx.doi.org/10.1016/S0034-773 
4257(03)00131-7, 2003. 774 

Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J. and Baldocchi, D.: 775 
Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the 776 
Sacramento-San Joaquin Delta, Agric. Ecosyst. Environ., 150, 1–18, 2012. 777 

Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A., Rajapakse, 778 
S. S. and Ustin, S. L.: Identification of invasive vegetation using hyperspectral remote sensing in 779 
the California Delta ecosystem, Remote Sens. Environ., 112(11), 4034–4047, 780 
doi:10.1016/j.rse.2008.01.022, 2008. 781 

Hilker, T., Coops, N. C., Nesic, Z., Wulder, M. A. and Black, A. T.: Instrumentation and 782 
approach for unattended year round tower based measurements of spectral reflectance, Comput. 783 
Electron. Agric., 56(1), 72–84, doi:10.1016/j.compag.2007.01.003, 2007. 784 

Hilker, T., Hall, F. G., Coops, N. C., Black, A. T., Jassal, R., Mathys, A. and Grant, N.: 785 
Potentials and limitations for estimating daytime ecosystem respiration by combining tower-786 
based remote sensing and carbon flux measurements, Remote Sens. Environ., 150, 44–52, 787 
doi:10.1016/j.rse.2014.04.018, 2014. 788 

Inoue, Y., Peñuelas, J., Miyata, A. and Mano, M.: Normalized difference spectral indices for 789 
estimating photosynthetic efficiency and capacity at a canopy scale derived from hyperspectral 790 
and CO2 flux measurements in rice, Remote Sens. Environ., 112(1), 156–172, 791 
doi:10.1016/j.rse.2007.04.011, 2008. 792 

Justice, C. O., Townshend, J. R. G., Holben, B. N. and Tucker, C. J.: Analysis of the phenology 793 
of global vegetation using meteorological satellite data, Int. J. Remote Sens., 6(8), 1271–1318, 794 
doi:10.1080/01431168508948281, 1985. 795 

Kawamura, K., Watanabe, N., Sakanoue, S. and Inoue, Y.: Estimating forage biomass and 796 
quality in a mixed sown pasture based on partial least squares regression with waveband 797 
selection, Grassl. Sci., 54(3), 131–145, doi:10.1111/j.1744-697X.2008.00116.x, 2008. 798 

Knox, S. H., Sturtevant, C., Matthes, J. H., Koteen, L., Verfaillie, J. and Baldocchi, D.: 799 
Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) 800 
fluxes in the Sacramento-San Joaquin Delta, Glob. Chang. Biol., online ear, 801 
doi:10.1111/gcb.12745, 2014. 802 

Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., Marshak, A., 803 
Latorre Carmona, P., Kaufmann, R. K., Lewis, P., Disney, M. I., Vanderbilt, V., Davis, A. B., 804 
Baret, F., Jacquemoud, S., Lyapustin, A. and Myneni, R. B.: Hyperspectral remote sensing of 805 
foliar nitrogen content, Proc. Natl. Acad. Sci., 110(3), E185–E192, 806 
doi:10.1073/pnas.1210196109, 2013. 807 



	
  

36	
  

Leuning, R., Hughes, D., Daniel, P., Coops, N. and Newnham, G.: A multi-angle spectrometer 808 
for automatic measurement of plant canopy reflectance spectra, Remote Sens. Environ., 103(3), 809 
236–245, doi:10.1016/j.rse.2005.06.016, 2006. 810 

Liu, H. Q. and Huete, A.: A feedback based modification of the NDVI to minimize canopy 811 
background and atmospheric noise, Ieee Trans. Geosci. Remote Sens., 33(3), 814 [online] 812 
Available from: <Go to ISI>://WOS:A1995RB11400033, 1995. 813 

Lloyd, J. and Taylor, J. A.: On the temperature-dependence of soil respiration, Funct. Ecol., 8(3), 814 
315–323, doi:10.2307/2389824, 1994. 815 

Main, R., Cho, M. A., Mathieu, R., O’Kennedy, M. M., Ramoelo, A. and Koch, S.: An 816 
investigation into robust spectral indices for leaf chlorophyll estimation, Isprs J. Photogramm. 817 
Remote Sens., 66(6), 751–761, doi:10.1016/j.isprsjprs.2011.08.001, 2011. 818 

Meroni, M., Barducci, A., Cogliati, S., Castagnoli, F., Rossini, M., Busetto, L., Migliavacca, M., 819 
Cremonese, E., Galvagno, M., Colombo, R. and Morra di Cella, U.: The hyperspectral 820 
irradiometer, a new instrument for long-term and unattended field spectroscopy measurements, 821 
Rev. Sci. Instrum., 82, 043106, 2011. 822 

Mevik, B.-H., Wehrens, R. and Liland, K. H.: pls, [online] Available from: http://cran.r-823 
project.org/web/packages/pls/pls.pdf, 2013. 824 

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., 825 
Beckstein, C., Braswell, B. H., Churkina, G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., 826 
Hui, D. F., Jarvis, A. J., Kattge, J., Noormets, A. and Stauch, V. J.: Comprehensive comparison 827 
of gap-filling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147(3-4), 828 
209–232, doi:10.1016/j.agrformet.2007.08.011, 2007. 829 

Moncrieff, J. B., Malhi, Y. and Leuning, R.: Biosphere-atmosphere exchange of CO2 in relation 830 
to climate: a cross-biome analysis across multiple time scales, Glob. Chang. Biol., 2(3), 231–831 
240, doi:10.1111/j.1365-2486.1996.tb00075.x, 1996. 832 

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W. and Limeris, T.: Geometrical 833 
Considerations and Nomenclature for Reflectance, Washington, DC., 1977. 834 

Ollinger, S. V, Smith, M. L., Martin, M. E., Hallett, R. A., Goodale, C. L. and Aber, J. D.: 835 
Regional variation in foliar chemistry and N cycling among forests of diverse history and 836 
composition, Ecology, 83(2), 339–355, doi:10.1890/0012-837 
9658(2002)083[0339:RVIFCA]2.0.CO;2, 2002. 838 

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., 839 
Rambal, S., Valentini, R., Vesala, T. and Yakir, D.: Towards a standardized processing of Net 840 
Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty 841 
estimation, Biogeosciences, 3(4), 571–583 [online] Available from: <Go to 842 
ISI>://WOS:000243785300013, 2006. 843 



	
  

37	
  

Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A. and 844 
Klooster, S. A.: Terrestrial ecosystem production: A process model based on global satellite and 845 
surface data, Global Biogeochem. Cycles, 7(4), 811–841, doi:10.1029/93GB02725, 1993. 846 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., 847 
Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., 848 
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, 849 
F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., 850 
Vaccari, F., Vesala, T., Yakir, D. and Valentini, R.: On the separation of net ecosystem exchange 851 
into assimilation and ecosystem respiration: review and improved algorithm, Glob. Chang. Biol., 852 
11(9), 1424–1439, doi:10.1111/j.1365-2486.2005.001002.x, 2005. 853 

Reichstein, M., Papale, D., Valentini, R., Aubinet, M., Bernhofer, C., Knohl, A., Laurila, T., 854 
Lindroth, A., Moors, E., Pilegaard, K. and Seufert, G.: Determinants of terrestrial ecosystem 855 
carbon balance inferred from European eddy covariance flux sites, Geophys. Res. Lett., 34(1), 856 
n/a–n/a, doi:10.1029/2006GL027880, 2007. 857 

Rossini, M., Meroni, M., Migliavacca, M., Manca, G., Cogliati, S., Busetto, L., Picchi, V., 858 
Cescatti, A., Seufert, G. and Colombo, R.: High resolution field spectroscopy measurements for 859 
estimating gross ecosystem production in a rice field, Agric. For. Meteorol., 150(9), 1283–1296, 860 
doi:10.1016/j.agrformet.2010.05.011, 2010. 861 

Rouse, J. W., Haas, R. H., Schell, J. A. and Deering, D. W.: Monitoring vegetation systems in 862 
the Great Plains with ERTS, in 3rd ERTS Symposium, pp. 309–317, NASA SP-351 I., 1974. 863 

Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S. and Hibbard, K. A.: 864 
A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem 865 
modeling and EOS satellite data, Remote Sens. Environ., 70(1), 108–127, doi:10.1016/s0034-866 
4257(99)00061-9, 1999. 867 

Running, S. W. and Nemani, R. R.: Relating seasonal patterns of the AVHRR vegetation index 868 
to simulated photosynthesis and transpiration of forests in different climates, Remote Sens. 869 
Environ., 24(2), 347–367, 1988. 870 

Ryu, Y., Baldocchi, D. D., Verfaillie, J., Ma, S., Falk, M., Ruiz-Mercado, I., Hehn, T. and 871 
Sonnentag, O.: Testing the performance of a novel spectral reflectance sensor, built with light 872 
emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function, Agric. For. 873 
Meteorol., 150(12), 1597–1606, doi:http://dx.doi.org/10.1016/j.agrformet.2010.08.009, 2010a. 874 

Ryu, Y., Nilson, T., Kobayashi, H., Sonnentag, O., Law, B. E. and Baldocchi, D. D.: On the 875 
correct estimation of effective leaf area index: Does it reveal information on clumping effects?, 876 
Agric. For. Meteorol., 150(3), 463–472, doi:10.1016/j.agrformet.2010.01.009, 2010b. 877 

Sakowska, K., Gianelle, D., Zaldei, A., MacArthur, A., Carotenuto, F., Miglietta, F., Zampedri, 878 
R., Cavagna, M. and Vescovo, L.: WhiteRef: A new tower-based hyperspectral system for 879 
continuous reflectance measurements, Sensors, 15, 1088–1105, doi:10.3390/s150101088, 2015. 880 



	
  

38	
  

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S. and Martonchik, J. V.: 881 
Reflectance quantities in optical remote sensing—definitions and case studies, Remote Sens. 882 
Environ., 103(1), 27–42, doi:10.1016/j.rse.2006.03.002, 2006. 883 

Schmidtlein, S., Zimmermann, P., Schüpferling, R. and Weiß, C.: Mapping the floristic 884 
continuum: Ordination space position estimated from imaging spectroscopy, J. Veg. Sci., 18(1), 885 
131–140, doi:10.1111/j.1654-1103.2007.tb02523.x, 2007. 886 

Schotanus, P., Nieuwstadt, F. T. M. and Debruin, H. A. R.: Temperature measurement with a 887 
sonic anemometer and its application to heat and moisture fluxes, Boundary-Layer Meteorol., 888 
26(1), 81–93 [online] Available from: <Go to ISI>://WOS:A1983QX37400006, 1983. 889 

Serbin, S. P., Dillaway, D. N., Kruger, E. L. and Townsend, P. A.: Leaf optical properties reflect 890 
variation in photosynthetic metabolism and its sensitivity to temperature, J. Exp. Bot., 63(1), 891 
489–502, doi:10.1093/jxb/err294, 2012. 892 

Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. and Townsend, P. A.: Spectroscopic 893 
determination of leaf morphological and biochemical traits for northern temperate and boreal tree 894 
species, Ecol. Appl., doi:10.1890/13-2110.1, 2014. 895 

Sims, D. A., Rahman, A. F., Cordova, V. D., Baldocchi, D. D., Flanagan, L. B., Goldstein, A. H., 896 
Hollinger, D. Y., Misson, L., Monson, R. K., Schmid, H. P., Wofsy, S. C. and Xu, L.: Midday 897 
values of gross CO2 flux and light use efficiency during satellite overpasses can be used to 898 
directly estimate eight-day mean flux, Agric. For. Meteorol., 131(1-2), 1–12, 899 
doi:10.1016/j.agrformet.2005.04.006, 2005. 900 

Smith, M.-L., Ollinger, S. V, Martin, M. E., Aber, J. D., Hallett, R. A. and Goodale, C. L.: Direct 901 
estimation of aboveground forest productivity through hyperspectral remote sensing of canopy 902 
nitrogen, Ecol. Appl., 12(5), 1286–1302, doi:10.1890/1051-903 
0761(2002)012[1286:DEOAFP]2.0.CO;2, 2002. 904 

Sonnentag, O., Detto, M., Runkle, B. R. K., Teh, Y. A., Silver, W. L., Kelly, M. and Baldocchi, 905 
D. D.: Carbon dioxide exchange of a pepperweed (Lepidium latifoliumL.) infestation: How do 906 
flowering and mowing affect canopy photosynthesis and autotrophic respiration?, J. Geophys. 907 
Res., 116(G1), doi:10.1029/2010jg001522, 2011a. 908 

Sonnentag, O., Detto, M., Vargas, R., Ryu, Y., Runkle, B. R. K., Kelly, M. and Baldocchi, D. D.: 909 
Tracking the structural and functional development of a perennial pepperweed (Lepidium 910 
latifolium L.) infestation using a multi-year archive of webcam imagery and eddy covariance 911 
measurements, Agric. For. Meteorol., 151(7), 916–926, doi:10.1016/j.agrformet.2011.02.011, 912 
2011b. 913 

Stoy, P. C., Richardson, A. D., Baldocchi, D. D., Katul, G. G., Stanovick, J., Mahecha, M. D., 914 
Reichstein, M., Detto, M., Law, B. E., Wohlfahrt, G., Arriga, N., Campos, J., McCaughey, J. H., 915 
Montagnani, L., Paw U, K. T., Sevanto, S. and Williams, M.: Biosphere-atmosphere exchange of 916 



	
  

39	
  

CO2 in relation to climate: a cross-biome analysis across multiple time scales, Biogeosciences, 917 
6(10), 2297–2312, doi:10.5194/bg-6-2297-2009, 2009. 918 

Tucker, C. J., Townshend, J. R. G. and Goff, T. E.: African land-cover classification using 919 
satellite data, Science (80-. )., 227(4685), 369–375, 1985. 920 

Ustin, S. L., Roberts, D. A., Gamon, J. A., Asner, G. P. and Green, R. O.: Using Imaging 921 
Spectroscopy to Study Ecosystem Processes and Properties, Bioscience, 54(6), 523–534, 922 
doi:10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2, 2004. 923 

Verhoef, W. and Bach, H.: Coupled soil–leaf-canopy and atmosphere radiative transfer modeling 924 
to simulate hyperspectral multi-angular surface reflectance and TOA radiance data, Remote 925 
Sens. Environ., 109(2), 166–182, doi:10.1016/j.rse.2006.12.013, 2007. 926 

Webb, E. K., Pearman, G. I. and Leuning, R.: Correction of flux measurements for density 927 
effects due to heat and water-vapor transfer, Q. J. R. Meteorol. Soc., 106(447), 85–100 [online] 928 
Available from: <Go to ISI>://WOS:A1980JD79200007, 1980. 929 

Wold, S., Sjostrom, M. and Eriksson, L.: PLS-regression: a basic tool of chemometrics, 930 
Chemom. Intell. Lab. Syst., 58, 109–130, 2001. 931 

Yang, X., Tang, J. and Mustard, J. F.: Beyond leaf color: Comparing camera-based phenological 932 
metrics with leaf biochemical, biophysical, and spectral properties throughout the growing 933 
season of a temperate deciduous forest, J. Geophys. Res. Biogeosciences, 119(3), 181–191, 934 
doi:10.1002/2013JG002460, 2014. 935 

Ye, X., Sakai, K., Sasao, A. and Asada, S.: Estimation of citrus yield from canopy spectral 936 
features determined by airborne hyperspectral imagery, Int. J. Remote Sens., 30(18), 4621–4642, 937 
doi:10.1080/01431160802632231, 2009.  938 

 939 

  940 



	
  

40	
  

Table 1. Fit statistics for the bootstrapped PLSR model. The mean R2 and root mean squared 941 

error (RMSE) is provided for the PLSR Calibration fitting (Cal) and the calibration Evaluation 942 

(Eval) during the PLSR model development, conducted with 80% of the total dataset. Units for 943 

instantaneous fluxes are µmol m-2 s-1, and for daily, weekly, and monthly values are g-C m-2. In 944 

general, models with daily-integrated GPP and NEE had the best fit compared with models that 945 

fit the flux data from other timescales. The PLSR fit for GPP using the hyperspectral reflectance 946 

data tended to outperform the fit of NEE across the datasets and models. The statistical fit of the 947 

PLSR models was higher at the Rice site compared with the Pasture. 948 

  R2 Cal R2 Eval 
RMSE 

Cal 
RMSE 
Eval Components 

Both sites 

GPP inst 0.87 0.64 3.34 4.74 7 
GPP daily 0.87 0.69 1.42 1.96 6 
GPP wkly 0.86 0.69 10.35 13.82 6 
GPP mthly 0.63 0.24 45.47 44.75 6 
NEE inst 0.84 0.64 3.30 4.39 6 
NEE daily 0.84 0.66 1.43 1.87 6 
NEE wkly 0.83 0.65 10.34 13.21 6 
NEE mthly 0.81 0.64 42.11 51.88 6 

Pasture 

GPP inst 0.94 0.49 1.36 3.49 7 
GPP daily 0.97 0.56 0.43 1.53 8 
GPP wkly 0.53 0.38 11.64 10.15 3 
GPP mthly 0.91 0.42 22.96 52.43 7 
NEE inst 0.43 0.33 3.56 2.52 2 
NEE daily 0.38 0.30 1.40 0.91 2 
NEE wkly 0.44 0.29 8.47 6.42 3 
NEE mthly 0.79 0.36 22.81 30.49 6 

Rice 

GPP inst 0.85 0.61 4.34 5.92 5 
GPP daily 0.92 0.65 1.34 2.58 6 
GPP wkly 0.84 0.67 13.32 17.06 4 
GPP mthly 0.89 0.68 10.96 16.95 5 
NEE inst 0.77 0.58 4.88 5.66 4 
NEE daily 0.86 0.60 1.68 2.52 5 
NEE wkly 0.85 0.59 11.82 17.88 5 
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NEE mthly 0.80 0.64 56.50 67.93 4 
949 
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Table 2. Independent validation dataset fit for mean PLSR models. We calculated the R2 and 950 

bias between the predicted CO2 flux variables with the mean PLSR models and the actual 951 

measurements from the 20% of data left for Independent Validation. Units for instantaneous 952 

fluxes are µmol m-2 s-1, and for daily, weekly, and monthly values are g-C m-2. The highest 953 

predictive fit for the PLSR models was achieved with the dataset that included the Rice data 954 

only.  955 

  R2 Bias 
  NEE GPP NEE GPP 

Both sites 

Inst 0.51 0.42 -1.63 3.89 
Daily 0.52 0.52 -0.41 1.60 
Weekly 0.55 0.62 -3.31 9.75 
Monthly 0.57 0.27 -11.92 31.51 

Pasture 

Inst 0.53 0.24 -2.28 5.10 
Daily 0.44 0.45 -0.56 2.79 
Weekly 0.51 0.54 -1.96 15.94 
Monthly 0.43 0.47 -14.18 76.86 

Rice 

Inst 0.51 0.40 -1.41 2.73 
Daily 0.65 0.50 -0.89 0.58 
Weekly 0.69 0.62 -2.35 0.21 
Monthly 0.41 0.45 -18.56 4.60 

 956 

  957 
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Table 3. Comparison of SVIs and PLSR model skill. We evaluated the ability of the 958 

commonly used standardized vegetation indices (SVIs) to predict GPP and NEE in comparison 959 

with the PLSR models. Here we show the calibration fit R2 (fit) and predictive R2 (pred) values 960 

for the widely used MODIS NDVI (NDVIMOD) and the red-edge NDVI (NDVIre), which was the 961 

SVI that achieved the highest skill at predicting GPP and NEE. Results from all SVIs tested in 962 

this study are included as Supplementary Table 1.  963 

Site Flux NDVIMOD 
fit 

NDVIre 
fit 

PLSR 
fit 

NDVIMOD 
pred 

NDVIre 
pred 

PLSR 
pred 

All GPP_inst 0.50 0.57 0.87 0.18 0.22 0.42 
All GPP_day 0.55 0.65 0.87 0.44 0.53 0.52 
All GPP_week 0.56 0.64 0.86 0.42 0.50 0.62 
All GPP_month 0.49 0.56 0.63 0.32 0.38 0.27 
All NEE_inst 0.49 0.57 0.84 0.50 0.57 0.51 
All NEE_day 0.45 0.54 0.84 0.51 0.58 0.52 
All NEE_week 0.48 0.56 0.83 0.53 0.59 0.55 
All NEE_month 0.53 0.58 0.81 0.54 0.59 0.57 
Pasture GPP_inst 0.29 0.38 0.94 0.09 0.13 0.24 
Pasture GPP_day 0.35 0.45 0.97 0.26 0.34 0.45 
Pasture GPP_week 0.29 0.38 0.53 0.22 0.30 0.54 
Pasture GPP_month 0.18 0.25 0.91 0.13 0.19 0.47 
Pasture NEE_inst 0.31 0.40 0.43 0.30 0.39 0.53 
Pasture NEE_day 0.31 0.41 0.38 0.26 0.35 0.44 
Pasture NEE_week 0.29 0.36 0.44 0.25 0.31 0.51 
Pasture NEE_month 0.20 0.25 0.79 0.17 0.22 0.43 
Rice GPP_inst 0.46 0.54 0.85 0.48 0.49 0.4 
Rice GPP_day 0.56 0.69 0.92 0.57 0.62 0.5 
Rice GPP_week 0.60 0.72 0.84 0.62 0.65 0.62 
Rice GPP_month 0.59 0.68 0.89 0.60 0.63 0.45 
Rice NEE_inst 0.47 0.56 0.77 0.49 0.52 0.51 
Rice NEE_day 0.49 0.60 0.86 0.51 0.55 0.65 
Rice NEE_week 0.54 0.64 0.85 0.56 0.58 0.69 
Rice NEE_month 0.60 0.69 0.8 0.63 0.64 0.41 
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Figure captions 965 

Figure 1. Canopy hyperspectral field collection dates. This analysis synthesized canopy 966 

hyperspectral reflectance measurements collected from 2010-2014 at Pasture and Rice sites in 967 

the Sacramento-San Joaquin Delta in Northern California. On each sampling date we collected 968 

nine individual canopy hyperspectral reflectance replicates at the Pasture site and five individual 969 

reflectance replicates at the Rice site.   970 

 971 

Figure 2. Instantaneous gross primary productivity (GPP) and daily net CO2 flux on the 972 

hyperspectral canopy reflectance sampling dates. Both the Pasture and the Rice exhibited 973 

strong seasonal patterns with peak CO2 uptake mid-year. However, the Pasture experienced peak 974 

CO2 uptake that preceded the peak for the Rice, where the maximum CO2 uptake occurred in 975 

March-April for the Pasture and in July-August for the Rice.  976 

 977 

Figure 3. Daily variability in measured canopy hyperspectral reflectance during 978 

phenological events. a-b) Daily measured hyperspectral canopy reflectance for the Pasture and 979 

Rice sites when the canopy was closed and green, at the Pasture on 10 April 2014 and the Rice 980 

on 31 July 2013. Reflectance was very low in the visible wavelengths due to canopy absoption, 981 

but quite large in the near infrared reflectance with a high amount of variability. Both sites had 982 

spectral peaks that corresponded to green reflectance (~550 nm) and troughs that corresponded to 983 

spectral absorption in red reflectance (~675 nm). c) During the white flowering of the 984 

pepperweed plants, the measured reflectance changed significantly, due to the higher albedo of 985 

the bright white flowers. There was much higher reflectance across the spectrum during this 986 

time, and the white flowers obfuscated reflectance in the wavelengths that corresponded to plant 987 
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productivity. d) There was a similar but not as dramatic shift in increased albedo particularly 988 

across the visible wavelengths from green to red reflectance during the rice seeding and 989 

senescence as the canopy dried before harvest. However an important distinction between this 990 

phenological event and the white flowering at the Pasture is that the productivity of the rice 991 

plants was quite low at this time, in contrast with the higher productivity of the pepperweed 992 

during flowering.  993 

 994 

Figure 4. Inter-annual and daily variability at narrow-band green, red, and near-infrared 995 

(NIR) reflectance. a-b) Inter-annual variability in measured canopy green reflectance at 550±5 996 

nm, where the points are the site mean and the bars represent one standard deviation for each 997 

sampling date. The green reflectance at the Pasture was relatively uniform throughout the year, 998 

due to the presence of either grass or pepperweed canopy for most of the year. There was more 999 

intra-site variability in reflectance during the summer when the pepperweed canopy was active, 1000 

since at some locations the white flowers of the pepperweed plant can complicate the green 1001 

reflectance spectrum. The green reflectance at the Rice had more inter-annual variability but a 1002 

more discernible seasonal pattern within each year, where the trough in green reflectance tended 1003 

to occur mid-summer. c-d) These plots show red reflectance at 662±5 nm at each site, which 1004 

corresponds to the absorption wavelength of chlorophyll b. Both sites demonstrated a seasonal 1005 

pattern, where the minimum in red reflectance occured in late spring at the Pasture and in late 1006 

summer at the Rice, corresponding to the times of peak plant growth at each site. Again, the 1007 

Pasture had more intra-site variability, particularly during the summer months when pepperweed 1008 

is active. e-f) Here we plot the near infrared (NIR) reflectance at 800±5 nm for the two sites. NIR 1009 

reflectance at the Pasture had no strong seasonal pattern, with a constant mean throughout the 1010 
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year and across years. The rice demonstrated a stronger pattern across the season, with less NIR 1011 

reflectance early in the growing season when the canopy was developing, with higher NIR 1012 

reflectance as the crop achieved a full canopy later in the summer. At both sites, intra-site 1013 

variability in NIR reflectance was much higher than the variability in the reflectance in the 1014 

visible spectrum.  1015 

 1016 

Figure 5. Variable importance of projection (VIP) statistics for bootstrapped partial least-1017 

squared regression (PLSR) modeling coefficients. Here we show the variable importance of 1018 

projection (VIP) statistics for the mean bootstrapped PLSR models, fitted to the GPP and NEE 1019 

flux datasets. The VIP statistic describes the relative contribution of each wavelength to the 1020 

predictive power of the PLSR model across all final PLSR model components. Across all 1021 

models, the visible wavelengths (400-700nm) were most important for prediction at shorter 1022 

timescales of integrated flux, while the infrared wavelengths (700-900nm) became increasingly 1023 

important at longer integrated flux intervals. This pattern is particularly apparent within the 1024 

PLSR model for GPP fitted across All the data (Figure 5a), where there was a dramatic shift in 1025 

the VIP statistics between the weekly- and monthly-integrated flux prediction and the infrared 1026 

wavelengths become much more important for prediction at longer timescales. This pattern was 1027 

also apparent with the PLSR models developed using the Pasture data only. The PLSR models 1028 

developed for the Rice data only (Figures 5e-f) had the least variation for fluxes integrated at 1029 

different timescales. 1030 

 1031 

Figure 6. Predictive ability of PLSR models on independent validation dataset. The mean 1032 

PLSR models determined through the bootstrapping routine were tested on the Independent 1033 
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Validation dataset, which was composed of 20% of the original data that was separated from the 1034 

model calibration process. Here the independent validation is presented for instantaneous and 1035 

daily NEE and GPP flux for the exercises with all the data, Pasture only, and Rice only. The 1036 

regression line between the predicted and actual variables is black, the 1:1 line is dashed, the 1037 

95% credible interval of the regression are the curved dotted lines, and the 95% prediction 1038 

interval are the grey lines. 1039 

 1040 

Figure 7. Predictive power of measured hyperspectral reflectance at increasing CO2 flux 1041 

integration intervals. We examined the ability of PLSR modeling with the hyperspectral 1042 

reflectance data to predict instantaneous and daily-, weekly-, and monthly-integrated NEE and 1043 

GPP at a) both sites will the entire dataset, b) the Pasture only, and c) the Rice only. For all three 1044 

cases, the measured hyperspectral reflectance had the highest correlation with weekly-integrated 1045 

GPP flux. The time interval with the highest predictive power for NEE flux was less variable 1046 

across different timescales within each modeling exercise, and there was not a strong 1047 

improvement to using one particular timescale to model NEE with the hyperspectral reflectance 1048 

data.   1049 

 1050 

  1051 
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FIGURE 1 1052 

 1053 

  1054 
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FIGURE 2 1055 

 1056 

 1057 

 1058 

 1059 

 1060 
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FIGURE 3 1061 
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 1064 

 1065 

  1066 
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a) Pasture: Green pepperweed, 10 April 2014
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b) Rice: Green canopy, 31 July 2013
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c) Pasture: White flowers, 7 May 2014
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d) Rice: Seeded and dry canopy, 11 September 2013
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FIGURE 4 1067 

  1068 

 1069 
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FIGURE 5 1071 
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FIGURE 6 1074 

  1075 
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