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Abstract

Measurements of hyperspectral canopy reflectance provide a detailed snapshot of
information regarding canopy biochemistry, structure and physiology. In this study, we
collected five years of repeated canopy hyperspectral reflectance measurements for
a total of over 100 site visits within the flux footprints of two eddy covariance towers at
a pasture and rice paddy in Northern California. The vegetation at both sites exhibited
dynamic phenology, with significant inter-annual variability in the timing of seasonal
patterns that propagated into inter-annual variability in measured hyperspectral
reflectance. We used partial least-squares regression (PLSR) modeling to leverage
the information contained within the entire continuous canopy reflectance spectra
(400-900nm) in order to investigate questions regarding the connection between
measured hyperspectral reflectance and landscape-scale fluxes of net ecosystem
exchange (NEE) and gross primary productivity (GPP) across multiple timescales,
from instantaneous flux to monthly-integrated flux. With the PLSR models developed
from this large dataset we achieved a high level of predictability for both NEE and
GPP flux in these two ecosystems, where the R? of prediction with an independent
validation dataset ranged from 0.24 to 0.69. The PLSR models achieved the highest
skill at predicting the integrated GPP flux for the week prior to the hyperspectral
canopy reflectance collection, whereas the NEE flux often achieved the same high
predictive power at the daily- through monthly-integrated flux timescales. The high level
of predictability achieved by PLSR regression in this study demonstrated the potential
for using repeated hyperspectral canopy reflectance measurements to help partition
NEE measurements into its component fluxes, GPP and ecosystem respiration, and
for using continuous hyperspectral reflectance measurements to model regional carbon
flux in future analyses.
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1 Introduction

The development of remote sensing tools that bridge the scale of carbon flux
measurements from individual eddy covariance towers to broader, continuous spatial
scales has long been a goal of the earth systems science community (Bauer, 1975;
Running et al., 1999; Ustin et al., 2004). This goal inspired the formation of the
international research group SpecNet, developed to synthesize the collection of near-
surface ground reflectance measurements at eddy covariance tower sites to provide
a crucial link between the spatial scales of eddy flux towers and aircraft or satellite
measurements (Gamon et al., 2010). Previous work in near-surface remote sensing
has demonstrated that normalized canopy reflectance indices can yield important
insights for understanding landscape-scale CO, flux measurements, particularly for
understanding patterns in CO, uptake through photosynthesis (Gamon et al., 1997;
Inoue et al., 2008). Recent work has also demonstrated the utility of using the entire
reflectance spectrum to uncover new normalized near-surface reflectance indices
that are correlated with ecosystem productivity and can be used to monitor canopy
phenology with relatively inexpensive LED sensors (Ryu et al.,, 2010a). Metrics
based on canopy reflectance can be used as proxies for biological processes at the
surface when those biological processes have corresponding features that change the
reflectance and absorption of energy in the plant canopy. The two most commonly used
remote sensing metrics, the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI), track ecosystem productivity by measuring broad-
band energy absorption at the visible wavelengths where chlorophyll is active and
comparing that to the reflectance or emission at near-infrared wavelengths where
active plant canopies dissipate energy (Liu and Huete, 1995; Rouse et al., 1973).
NDVI and EVI are widely used metrics since they can be calculated worldwide
(although at coarse spatial resolution of about 250 m) by reflectance measurements
from the Moderate-Resolution Imaging Spectroradiomenter (MODIS) instruments. The
widespread use of normalized indices has revolutionized the predictive power of global
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carbon flux measurements, as they act as important proxies for photosynthetic carbon
dioxide uptake in plants that can be modeled through temporally continuous satellite
imagery (Justice et al., 1985; Potter et al., 1993; Running and Nemani, 1988; Tucker
et al., 1985).

While these normalized indices have wide utility for predicting landscape-scale
carbon flux at spatial scales from near-surface sensors to satellites these indices
necessarily leave out much of the information provided within the continuous visual
and near-infrared spectrum of canopy reflectance. Modeling techniques such as partial
least-squares regression (PLSR) (Wold et al., 2001) that can leverage the entire
information contained within a continuous canopy reflectance spectrum by reducing
the regression variables to a set of fewer latent variables (i.e. modeled variables that
capture information from many individual regression variables at once) are now widely
used to predict traits at the leaf, plot, and canopy level. Hyperspectral reflectance
measurements have been used with PLSR methods to successfully predict leaf-level
traits like nitrogen (N) and carbon content, specific leaf area, protein, cellulose, and
lignin content, and even leaf isotopic '®N content and Vcmax, the maximum rate of
carboxylation during photosynthesis (Asner and Martin, 2008a; Bolster et al., 1996;
Serbin et al.,, 2012, 2014). PLSR has also been used with near-surface canopy
hyperspectral reflectance measurements to predict biomass and nitrogen content in
wheat crops (Hansen and Schjoerring, 2003) and to predict pasture forage quality
(Kawamura et al., 2008). Airborne hyperspectral reflectance measurements have been
used with PLSR to map canopy-level chemistry (Ollinger et al., 2002; Smith et al.,
2002), to predict citrus yields in orchards (Ye et al., 2009), and to map floristic gradients
in grasslands (Schmidtlein et al., 2007) and species diversity in tropical forests (Asner
and Martin, 2008b). This large range of studies across a diverse set of spatial
scales, from the leaf- to canopy-level, demonstrates the utility of using hyperspecitral
reflectance measurements in conjunction with PLSR methods to increase the predictive
power of remote sensing relationships with ecological variables compared with
traditional normalized indices. Despite the proven utility of PLSR methods over
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a wide range of spatial scales, to our knowledge no studies have yet investigated
the potential for using continuous hyperspectral reflectance measurements to directly
predict landscape-scale carbon fluxes through PLSR modeling.

The goal of this analysis was to investigate the ability of repeat canopy hyperspectral
reflectance to directly predict landscape-scale carbon dioxide (CO,) fluxes at two
short-structured plant canopies. We measured replicated near-surface hyperspectral
canopy reflectance on 100 different sampling dates over the course of five years from
2010 to 2014 within the flux footprint of two nearby eddy covariance tower sites with
similar structure but different canopy phenology in Northern California. The first site
was a pasture where grasses grew over the winter and the invasive pepperweed
plant (Lepidium latifolium) was active throughout the summer. The second site was
an irrigated rice paddy with a simple phenology, where rice plants were present only
from May through October following the typical growing season pattern for agricultural
crops within this region. We combined the rich information contained within these
repeated hyperspectral canopy reflectance measurements with PLSR methods to
predict landscape-scale patterns in net CO, flux (net ecosystem exchange; NEE) and
CO, uptake through canopy photosynthesis (gross primary productivity; GPP).

We used this five-year long-term dataset of near-surface hyperspectral canopy
reflectance measurements collected at two sites in conjunction with landscape-scale
eddy covariance CO, fluxes to answer the following four research questions:

1. How does canopy hyperspectral reflectance vary seasonally and inter-annually
within and across sites during different phenological stages?

2. How well can the continuous 400-900 nm canopy reflectance spectrum predict
GPP and NEE at the two sites?

3. Are there significant differences in the ability to predict GPP and NEE at the
pasture site compared with the rice paddy?

4. At what timescale are fluxes most strongly correlated with changes in measured
hyperspectral canopy reflectance?
5083
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First, we examined the variability in measured hyperspectral reflectance within each
site and between the two sites on individual sampling dates and across years. This
provided insight into the dynamic nature of the canopy reflectance spectrum at these
two study sites. The second two questions addressed the ability of the hyperspecitral
reflectance spectra to capture changes in GPP and NEE at the two sites, and tested
whether the predictive power of hyperspectral reflectance modeling with PLSR is higher
at the rice paddy site, where GPP and ER are more closely coupled than at the
pasture, where GPP and ER are more decoupled due to different environmental drivers
(Hatala et al., 2012; Knox et al., 2015). The final research question investigated the
temporal scale at which the measured hyperspectral canopy reflectance integrated
previous CO, fluxes. The canopy traits that control hyperspectral reflectance (e.g.
chlorophyll, nitrogen, and water content in leaves, leaf abundance, etc.) are the
emergent, integrated response to previous ecophysiological variability. We tested the
ability of the canopy reflectance to predict instantaneous fluxes, and daily-, weekly-
, and monthly-integrated carbon fluxes at each of the sites to quantify the timescale
at which the canopy reflectance integrated prior ecophysiology, providing insight into
the system memory of canopy reflectance. These three integrated flux timescales
represented the peaks in temporal autocorrelation due to daily fluctuations in the
diurnal cycle of plants and solar radiation, weekly fluctuations in synoptic weather
fronts, and monthly variability due to seasonal and phenological patterns, respectively
(Baldocchi et al., 2001b; Stoy et al., 2009). Together, these research questions yielded
key insights into the utility and limitations of using repeated hyperspectral canopy
reflectance measurements to predict landscape-scale CO, fluxes.
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2 Methods
2.1 Site characteristics

We collected replicated hyperspectral ground reflectance measurements of plant
canopies at two sites in Northern California with similarly structured, yet phenologically
different, plant canopies. The first site was a drained peatland pasture (hereafter
referred to as “Pasture”) located on Sherman Island in the Sacramento-San Joaquin
Delta (latitude: 38.0373; longitude: —121.7536; elevation: —4 m) with annual grasses
growing during the winter and spring, and the invasive perennial pepperweed plant
(Lepidium latifolium) active from spring through autumn. Pepperweed produces
a dense canopy of white flowers each year from about the beginning of June through
the end of August, creating increased complexity in canopy reflectance during this time
(Sonnentag et al., 2011a, b). The second site was a rice paddy (hereafter referred to
as “Rice”) located on Twitchell Island in the Sacramento-San Joaquin Delta (latitude:
38.1055, longitude: —121.6521, elevation: —5m) with an active growing season from
May through October and maintained as a fallow and flooded field for the remainder of
the year.

The two sites were located within 10km of each other in the Sacramento San-
Joaquin Delta, and as such, they experienced the same Mediterranean climate with
hot and dry summer months and rainy, cool winters. The 30-year mean annual air
temperature (1981-2010) recorded at a nearby climate station in Antioch, CA was
16.4°C, and mean annual precipitation was 335 mm. Despite their similar climatology,
the difference in hydrological and agricultural management between the two sites
results in ecosystems with plant canopies that are quite different in phenology (Hatala
et al.,, 2012; Knox et al.,, 2015). The water table at the Pasture was maintained
at a level always below the soil surface at around 50-80cm throughout the year.
While the phenology of grasses at the Pasture peaked during the springtime, the
pepperweed plants at the site remained relatively active throughout the summer as
their roots can tap the shallow water table, creating a biologically active canopy almost
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year-round (Sonnentag et al.,, 2011a). The Rice was planted and flooded through
irrigation management during the summer growing season only, and the plant canopy
sustained high rates of productivity during the precipitation-free summer months. The
field remained fallow and flooded during the remainder of the year. Differences in the
canopy phenology at both sites propagated into differences in the peak periods of
photosynthesis, where peak GPP at the Pasture occurs April-May and peak GPP at
the rice occurs August—September (Hatala et al., 2012; Knox et al., 2015).

2.2 Hyperspectral canopy reflectance sampling

At both the Pasture and Rice, hyperspectral canopy reflectance was collected with
a fiber optic spectrometer (USB 2000; Ocean Optics, Dunedin, FL) with a detector
range from 200 to 1100 nm at a height of 1 m above the mean canopy surface. The fiber
optic sensor was filtered through a cosine corrector (CC-3-UV-S Spectralon) to ensure
that the bi-hemispherical reflectance from the ground surface was measured at an
angle normal to the sensor surface (Nicodemus et al., 1977; Schaepman-Strub et al.,
2006). For this analysis we constrained our data to 400—900 nm due to large levels
of noise at the detection edges of this instrument. The spectrometer was mounted
on a tripod approximately one meter above the canopy and was connected via USB
cable to a laptop computer running the OOBase32 software (USB 2000; Ocean Optics,
Dunedin, FL) to capture spectra, which internally corrected for instrument-specific
calibration parameters. Each field spectrum was collected and saved by OOBase32.
At the start of each site visit, the integration time within OOBase32 was adjusted to the
ambient light conditions and a reference dark spectrum measurement was collected by
covering the fiber optic head with two layers of black electrical tape and orienting the
sensor downward.

After this initial set-up, we collected a reflectance spectrum for each site replicate
by first pointing the spectrometer directly skyward to record the spectrum of incoming
energy, and within seconds, pointing the spectrometer directly at the ground surface to
record the spectrum of reflected energy. Thus, we calculated the canopy reflectance
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for each replicate as the reflected spectrum normalized by the incoming spectrum. For
each collection date at each site, we averaged the replicate spectra for this analysis to
compute a single mean spectral reflectance per date at each site. The spectrometer
records data at approximately 0.28 nm intervals, and we smoothed each reflectance
spectrum using a spline fit to 1 nm intervals between 400 and 900 nm in order to reduce
instrumental noise in the data.

We measured canopy hyperspectral reflectance from July 2010 through
September 2014 at both sites, collecting measurements during the entire year at
the Pasture and during the growing season at the Rice, which amounted to 100
total sampling dates at the Pasture and 71 total sampling dates at the Rice (Fig. 1).
On each sampling date, hyperspectral reflectance measurements were collected at
each site with a spatial and temporal replicate frequency suited to the individual
site heterogeneity. At the Pasture, where the canopy was spatially and temporally
heterogeneous, we measured hyperspectral reflectance approximately weekly, bi-
weekly, or monthly, with nine replicate canopy reflectances randomly sampled per
visit. At the Rice, which had lower spatial variability, hyperspectral reflectance was
collected weekly or bi-weekly during the growing season, with five replicate canopy
reflectance spectra collected per visit. We occasionally collected up to ten additional
replicates at each of the sites, in order to ensure that our smaller sampling sizes were
capturing broad landscape-scale patterns in spatial heterogeneity. At each site we
randomly sampled canopy reflectance at locations approximately 10—20 m within the
flux tower footprint, the area most representative of the half-hourly flux measurements.
For partial least-squared regression analysis, we averaged across the hyperspectral
canopy reflectance replicates for each site and day. Because leaf geometry and
clumping can critically impact the interpretation of canopy reflectance measurements
(Colwell, 1974), these two sites provide a useful first-case study for directly connecting
hyperspectral canopy reflectance measurements to CO, flux because both ecosystems
have an erectophile in leaf angle distribution for the majority of the year, minimizing
shadow effects when field spectra are collected near solar noon.
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2.3 CO; flux measurements

Both sites are active AmeriFlux and FLUXNET sites (Baldocchi et al., 2001a)
measuring fluxes of energy, water vapor, and CO, using standard eddy covariance
methods and processing procedures described elsewhere in detail (Ameriflux site
codes: US-Snd and US-Twt; Hatala et al., 2012; Knox et al., 2014; Sonnentag et al.,
2011a). The eddy covariance technique was used to measure the fluxes of CO, at
each site by collecting simultaneous 10 Hz measurements of vertical turbulence (w,
ms_1), measured with a sonic anemometer (Gill WindMaster Pro; Gill Instruments
Ltd, Lymington, Hampshire, England), and CO, density (c, umolm‘s), measured
with an infrared gas analyzer (LI-7500; Li-Cor Biosciences, Lincoln, NE). From these
measurements we calculated the net half-hourly mean flux of CO, (NEE, pmol m~2 s'1)
between the surface and atmosphere by averaging the covariance between w and
c over a half-hourly time period after applying a set of standard air density and
temperature corrections (Detto et al., 2010; Schotanus et al.,, 1983; Webb et al.,
1980). To partition NEE into gross primary photosynthesis (GPP, umolm_z s_1) and
ecosystem respiration (ER, umolm'2 s'1), net CO, fluxes were first gap-filled using
artificial neural network (ANN) techniques outlined in detail within Knox et al. (2014),
driven by meteorological variables (Moffat et al., 2007; Papale et al., 2006). After the
net CO, fluxes were gap-filled using the ANN technique, we separated the net flux
into GPP and ER by modeling nighttime NEE measurements as ER, since GPP is
assumed to be zero at night (Reichstein et al., 2005). We prescribed the nighttime
temperature dependence of ER by an Arrhenius-type model (Lloyd and Taylor, 1994),
and extrapolated this model to the daytime, calculating GPP as the difference between
NEE and modeled ER. Net CO, flux data within this analysis are presented from
the atmospheric convention, where a negative flux indicates ecosystem uptake, and
a positive flux indicates release from the ecosystem to the atmosphere.

Within this analysis we examined the predictive power of hyperspectral canopy
reflectance to explain patterns in instantaneous and daily-, weekly-, and monthly-
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integrated NEE and GPP flux. We tested these variables separately in order to
determine whether the canopy reflectance better predicted an instantaneous flux
measurement at the time of collection, or a flux signal integrated over the previous day,
week, or month. For instantaneous NEE and GPP flux, we matched the time of spectral
collection with the nearest mean half-hourly flux measurement, where these values
are presented in units of pmolm’2 s~'. For the daily-, weekly-, and monthly-integrated
NEE and GPP fluxes, we integrated the net CO, and GPP flux over the course of the
previous day, week, or month for the date of spectral reflectance collection, where these
values are presented in units of ng_ztime‘1. For reference regarding the magnitude
and temporal dynamics of CO, fluxes at the Pasture and Rice, the instantaneous GPP
flux and daily NEE flux for both sites are plotted as Fig. 2.

2.4 Partial least-squares regression modeling

Partial least-squares regression is a standard method in chemometrics for modeling
the ability of a set of continuous spectral variables to predict a single response
(Wold et al., 2001). In this analysis we used PLSR methods with the hyperspectral
canopy reflectance dataset to model the response of instantaneous or integrated
NEE or GPP. PLSR is similar to principle components analysis (PCA), in that the
modeling algorithm reduces a large predictor matrix of spectral reflectance data to
a reduced set of latent variables. In our study, the large predictor matrix is the
measured hyperspectral reflectance at each wavelength between 400-900 nm during
each sampling event, which in our analysis was reduced to a maximum of 10 latent
variables that contained the most significant sets of variables from the larger matrix
for predicting instantaneous or integrated NEE or GPP. PLSR typically outperforms
PCA or standard step-wise linear regression for situations where there is high co-
linearity within the predictor matrix, such as within narrow-band spectral reflectance
and chemometrics (Wold et al., 2001). For this analysis we used the PLS package
(Mevik et al., 2013) within the R statistical environment (R Development Core Team,

5089

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
R ] >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-print.pdf
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2014). All the R code used to conduct this analysis is freely available on GitHub at
http://github.com/jhmatthes/canreflectance_flux_plsr.

For PLSR model fitting and validation, our methods followed those of Serbin
et al. (2014), which used PLSR regression modeling to determine the ability of
hyperspectral reflectance data to predict a suite of leaf traits. However, in this analysis,
we used repeated measurements to examine how well the repeated hyperspecitral
reflectance measurements could directly predict landscape-scale fluxes of NEE and
GPP. We conducted one set of PLSR regression modeling for the entire spectral
reflectance dataset that combined both the Pasture and Rice data, and then two
additional PLSR modeling exercises with the only the Pasture data and only the Rice
data, to examine whether there were significant differences between the two sites in the
resulting PLSR models. For each of the three PLSR modeling exercises, we split the
data into model calibration (80 % of the data) and independent validation (20 % of the
data; hereafter referred to as “Independent Validation”), where the model calibration
data were used to fit the model, and the independent validation data were used to
evaluate the ability of the model to predict landscape-scale NEE and GPP outside of
the PLSR model fitting exercise. As in Serbin et al. (2014), we randomly split the model
calibration data into 70 % for model fitting (hereafter referred to as “Calibration”) and
30 % for model uncertainty evaluation (hereafter referred to as “Evaluation”) over 1000
iterations to evaluate the uncertainty in PLSR model development. So overall, we used
56 % of the total data for Calibration, 24 % of the data for Evaluation, and an unchanging
20 % of the data for Independent Validation to test the predictive power of the final mean
models. We conducted an initial optimization with a single set of Calibration data and
Evaluation data to determine the total number of PLSR latent variables to include in
each model by minimizing the prediction residual sum of squares, calculated through
leave-one-out cross-validation (Chen et al., 2004). We used the entire 400—900 nm
spectrum range with these PLSR methods to fit the instantaneous and daily-, weekly-,
and monthly-integrated NEE and GPP flux data.
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To quantify the performance of each PLSR model we calculated the coefficient of
determination (/-?2), the root mean square error (RMSE), and the model bias. We
used the 1000 iteration bootstrapping approach for each PLSR to quantify the model
calibration performance as in Serbin et al. (2014). From the random 70 to 30 % split
of the calibration and evaluation data, we generated new estimates for each iteratively
removed sample. This allowed us to test the stability and generality of the models using
different sets calibration data and to estimate robust errors for the prediction of flux
measurements by representing the uncertainty across measurements, spectral data,
and the PLSR modeling approach. For each set of 1000 modeling iterations over the
random calibration/validation fit dataset split, we calculated the resulting mean PLSR
model coefficients and the variable importance of projection (VIP) score associated
with the reflectance measured at each wavelength. The VIP score represents the
statistical contribution of each individual wavelength to the overall fitted PLSR model
across all latent model components. In this way, the VIP score can be used to identify
the wavelengths that contribute the most information for predicting the variable at
hand (in this case, either NEE or GPP). Using the mean of the bootstrapped PLSR
models, we tested each final mean model against the 20 % of original data left aside
for Independent Validation by linear regression.

3 Results
3.1 Spatiotemporal variability in hyperspectral canopy reflectance

There was significant seasonal, inter-annual, and site-level variability across the
hyperspectral canopy reflectance measurements collected over the course of five
years at both sites. Intra-site variability within canopy reflectance changed due
to the phenological stage of the ecosystem, whereas inter-annual variability was
driven by changes in the timing of these phenological events. The Pasture tended
to be more spatially heterogeneous than the Rice, observed through the higher
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intra-site variability during an individual sampling event, particularly in the infrared
reflectance (Fig. 3). During the green leaf-out stage at both the Pasture and Rice,
the patterns of hyperspectral reflectance were quite similar, with a peak at the green
wavelengths, absorption in the red wavelengths, and high reflectance in the near-
infrared wavelengths (Fig. 3a and b). Intra-site variability across the spectrum was high
across at the Pasture during periods of white pepperweed flowering that produced
a much higher albedo than the green canopy and obscured reflectance patterns in the
green and red wavelengths, despite relatively high plant productivity during this time
(Fig. 3c). The closest analogous phenological stage to this period at the Rice was
during the time at which the rice has seeded and the plants have dried in preparation
for harvest, when the Rice experienced similar trends in increased albedo through
the visible wavelengths (Fig. 3d). However, the magnitude of the senescing Rice
reflectance was not as large as the white pepperweed canopy at the Pasture, and
in addition the reflectance spectra were not obfuscated during this time since the rice
productivity was quite low at this point in the growing season.

The seasonal and inter-annual patterns in narrow-band reflectance in the green
(550 £ 5nm), red (640 £ 5nm), and near-infrared (NIR; 800 + 5 nm) wavelengths also
highlighted intra-site and inter-annual variability. At the Pasture, there was low intra-
site variability and inter-annual variability in green reflectance from January through
the end of May, when the grass canopy was present at the site (Fig. 4a). However,
when pepperweed became the dominant canopy plant at the Pasture during the
summer growing season, both replicate and inter-annual variability increased as the
pepperweed created a more heterogeneous cover than the grass due to its white
flowers and more spatially variable structure than the winter grass canopy. The same
pattern was evident in the red reflectance at the Pasture, with low variability in the
second half of winter and spring, and a large increase in variability during the summer
growing season and autumn (Fig. 4c). At the Rice, there was also large inter-annual
variability in the timing of the seasonal pattern green and red reflectance, however there
was a more discernible seasonal pattern of reflectance that tracks within years across
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the entire growing season (Fig. 4b and d). For example, each year green reflectance
and red reflectance started high, decreased as the growing season progressed, then
eventually increased again as the rice straw dried before harvest. The NIR reflectance
at the Pasture had a stable mean through the year with little inter-annual variability
but large intra-site variability across the year (Fig. 4e). The Rice NIR reflectance had
a consistent seasonal pattern between years, with low reflectance in the early growing
season and increasing NIR reflectance as the canopy developed due to the change
in the rice canopy closure as the growing season progressed (Fig. 4f). Although there
was a consistent phenological trend in NIR reflectance at the Rice each year, there
remained inter-annual variability in the timing of the NIR minimum and larger intra-site
variability compared with reflectance in the visible wavelengths.

3.2 Calibrated PLSR models for predicting NEE and GPP

We fit PLSR models to the hyperspectral data to predict landscape-scale NEE and
GPP at four integrated flux timescales: instantaneous flux measurements, and daily-,
weekly-, and monthly-integrated flux measurements for the period preceding the time of
hyperspectral canopy reflectance collection. In this analysis we determined the optimal
number of latent variables to include for each model by minimizing the predictive
residual sum of squares. The number of optimal latent variables included in the PLSR
models ranged from 2 to 8, which indicated that some models could achieve the best
predictive statistical fit for NEE and GPP with a much lower number of components
than other models (Table 1). For the PLSR models that included the entire canopy
reflectance dataset for both sites, the optimal number of latent variables was stable
at six components, except for the instantaneous GPP model, which included seven
components. The number of optimal components was more variable across the PLSR
models for the Pasture reflectance data (2-8 components) compared with those from
the Rice reflectance data (4—6 components).

As expected, across all models, the R? for the PLSR Calibration was higher than
the R? for the PLSR Evaluation fit, and the RMSE was lower for the Calibration and
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higher for the Evaluation during the model calibration step (Table 1). The fit statistics
presented within Table 1 show the mean fit statistics for the 1000 iterations of random
70 % calibration, 30 % validation data selection from the 80 % total data used during the
model development fitting process. For each PLSR model, the 1000 iterated fit statistics
followed a normal distribution with low variance, which indicated only a low bias to
selecting the calibration and evaluation data so only the mean results are presented
within Table 1. Across almost all of the CO, flux prediction variables, the PLSR models
for the Rice dataset achieved the highest fit for both the Calibration (R2 =0.77-0.92)
and Evaluation (R2 = 0.58-0.68) exercises, the PLSR models with the dataset including
both sites achieved a slightly lower overall fit for Calibration (R2 =0.63-0.87) and
Evaluation (R2 = 0.24-0.69), and the PLSR models for the Pasture had the lowest
overall fit for calibration (l-?2 = 0.38-0.97) and evaluation (R2 = 0.29-0.56) (Table 1).
For each set of 1000 modeling iterations over the random calibration/validation
fit dataset split, we calculated the resulting mean PLSR model coefficients and the
variable importance of projection (VIP) statistic associated with each wavelength.
Across all fitted PLSR models, as the timescale of the fitted integrated flux increased
from instantaneous to daily-, weekly-, and monthly-integrated values, the VIP statistic
in the visible wavelengths (400-700nm) decreased and the VIP statistic in the
near-infrared wavelengths (700-900 nm) increased (Fig. 5). This indicated that for
flux measurements on short timescales, the reflectance in the visible wavelengths
contributed the highest explanatory power to the PLSR model components, but at
longer timescales structural changes in the canopy that are correlated with the NIR
range became more important for predicting GPP and NEE flux. This pattern was
especially apparent for the VIP scores of the GPP model using the dataset with both
sites (Fig. 5a), where there was a dramatic shift in VIP scores between the weekly-
and monthly-integrated flux models. For the weekly-integrated GPP flux model and
those at shorter timescales, the highest VIP scores were contributed by the visible
wavelengths, with a peak in the red wavelengths near 700 nm. However for the monthly-
integrated GPP flux model, there was a dramatic difference where the highest VIP
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scores shifted from the visible to the NIR range, indicating that structural components
of the plant canopy correlated with NIR reflectance contributed higher predictive power
than reflectance in the visible part of the spectrum. There is a lower shift in VIP scores
across integrated flux timescales in the models developed with only the Rice dataset
(Fig. 5e and f) compared against the models developed with only the Pasture dataset
(Fig. 5¢ and d), likely reflecting the increased spatial and phenological complexity of
the Pasture ecosystem compared with the relatively homogeneous Rice.

Across all models, the visible wavelengths that contributed the most information to
the PLSR models, as determined by the magnitude of the VIP score, were within the
red portion of the visible spectrum (Fig. 5). Most PLSR models had VIP scores above
1.0 that correlated with reflectance at 642 and 662 nm, the wavelengths of chlorophyll
absorption. Across most PLSR models there was also a peak in the VIP score near
673 nm, the wavelength of chlorophyll fluorescence. However, the second band of
chlorophyll fluorescence at 726 nm, exhibited low VIP scores across all models. For
both of the PLSR models developed using only the Pasture dataset, there were also
high VIP scores within the violet and blue range of the visible spectrum, from 400—
450 nm. These high VIP scores in the violet-blue portion of the spectrum could be
partly explained by the chlorophyll a and b absorption peaks at 430 and 460 nm,
because slightly higher VIP scores were also observed at the Rice site for these
wavelengths (Fig. 5e and f). However, this part of the spectrum at the Pasture site was
particularly significant compared with the other models, and this could correspond to
white reflectance of the pepperweed flowers at the site. When the pepperweed canopy
was blooming, the bright white flowers reflected light across the entire visible spectrum,
a unique characteristic to this site, where the high visible albedo in this spectral range
might also have contributed to the high VIP scores within this portion of the spectrum
(Fig. 5¢ and d).
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3.3 Independent validation of PLSR models for NEE and GPP

After we fit the PLSR models to 80 % of the entire dataset through 1000 iterations of
different random sets of Calibration and Evaluation data, we tested the mean fitted
models against the Independent Validation data (the 20 % of the original dataset left
out of the PLSR model fitting process). In general, the fitted PLSR models achieved
a good fit with the measurements for this Independent Validation dataset, where the
R? fit between the predicted and actual NEE and GPP ranged from 0.26 to 0.69
(Table 2). As was the case for the calibration and validation R? fits during the PLSR
calibration process, the Rice dataset achieved the highest R? values (0.40-0.69), the
dataset with both sites achieved the second-highest set of R? (0.27-0.62), and the
Pasture dataset had the lowest R? (0.27-0.54). As in the previous discussion for the
Calibration and Evaluation fits to these three sets of data, we believe that the lower
level of predictability at the Pasture is due to the higher level of spatial heterogeneity
and phenological complexity compared with the Rice.

Although all models achieved a statistically significant fit between the predicted and
measured CO, fluxes with the Independent Validation dataset with relatively high R?
values, the uncertainty in the prediction was significantly lower for the models that
included all the data compared with the models that included only either the Pasture
or Rice data. This pattern is clearly observed within the Independent Validation fit for
the daily GPP and NEE data (Fig. 6). For the daily prediction of both GPP and NEE,
the dataset that included all the data had a smaller range for both the 95 % confidence
interval and 95 % prediction interval for the relationship between predicted and actual
GPP and NEE. This trend likely represented an increase in predictive power achieved
by including a larger dataset with a wider range of values both for NEE and GPP and
for the measured hyperspectral reflectance. As the datasets that included either the
Pasture and Rice data only had a lower amount of data overall as well as a narrower
range of values, the confidence in the ability to predict NEE and GPP at these individual
sites was lower compared with the power of using the entire combined dataset.
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3.4 Prediction of NEE and GPP fluxes across different timescales

We investigated the ability of PLSR modeling with the hyperspectral canopy reflectance
measurements to predict instantaneous GPP and NEE fluxes from the same half
hour of spectral measurement, in addition to fluxes integrated over the previous day,
week, and month. Previous work determined that sampling errors in eddy covariance
flux measurements diminished when the fluxes were integrated over the course of
many days (Moncrieff et al., 1996). We expected that the instantaneous flux would
achieve the lowest correlation with the measured canopy reflectance since reflectance
changes more slowly compared with CO, flux, and that the fluxes integrated over
longer timescales would provide a stronger signal with a higher predictive capacity.
For the Calibration and Evaluation during the initial PLSR model fitting, there was
no strong evidence that one timescale (instantaneous, daily, weekly, or monthly flux)
was particularly better fit with the hyperspectral canopy reflectance than the other
timescales (Table 1). However, during the evaluation of the predictive power of the
PLSR models with the Independent Validation data, most models achieved the highest
predictive % with GPP flux at the weekly-integrated timescale, and we found no clear
optimal timescale for predicting NEE with measured hyperspectral reflectance data
(Table 2; Fig. 7).

4 Discussion
4.1 Sources of variability in measured reflectance

Variation across the measured hyperspectral canopy reflectance was dominated by
inter-annual variability in the timing of canopy phenology (Figs. 3 and 4). At the Rice,
transitions were typical for an agricultural crop, where canopy reflectance incorporated
portions of the background flooded soil in conjunction with the emerging green plants
early the in growing season, with canopy closure achieved by early July (Beget and
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Di Bella, 2007). After flooding when the Rice canopy closed, there was less intra-
site variability in measured reflectance, until the end of the growing season when
the rice plants started to senesce and dry before harvest (Fig. 4). At the Pasture,
canopy phenology was more complicated, marked by a transition from a green grass
canopy to a green pepperweed canopy in April, followed by the white flowering of the
pepperweed canopy from June through August, which increased intra-site variability
in measured reflectance (Fig. 4). Both the Rice and Pasture experienced significant
inter-annual variability in the start and end dates of these phenological patterns, but
despite this variability the sites experienced relatively low variability in the overall CO,
flux (Fig. 2). The primary driver of inter-annual variability at the Pasture was the timing
of summer drought in the Mediterranean climate, and canopy management (Sonnentag
etal., 2011a). These primary controls agreed with the results from European syntheses
of FLUXNET sites where water was a key driver of inter-annual variability in NEE
(Reichstein et al., 2007). At the Rice, inter-annual variability was driven by changes in
the start and end dates of canopy phenology that were driven by changes agricultural
management of the planting and harvesting dates each year and smaller changes
in fertilizer management (Hatala et al., 2012; Knox et al., 2014). The timing of the
planting and harvest at the Rice is controlled by logistical environmental drivers, as the
field must be dry enough to drive farm equipment through the soil, and warm enough
to ensure seedling survival. Differences in these variables from year to year created
variability in the planting dates, and subsequent variability in the seasonal trajectory of
hyperspectral canopy reflectance (Figs. 3 and 4).

4.2 Predicting NEE and GPP with PLSR models

Along with the inter-annual variability experienced at both sites, there were also

differences in the intra-site variability of measured reflectance within the two flux

tower footprints. The Pasture site was more spatially heterogeneous than the Rice,

driving increased variability among replicate hyperspectral reflectance spectra at the

site (Fig. 4). The increased spatial variability at the Pasture was reflected in the
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lower predictive power of the PLSR models in predicting GPP and NEE with only
the Pasture dataset (Tables 1 and 2). The lower overall fit between the hyperspectral
measurements and CO, flux at the Pasture can be explained through two possible
mechanisms: (1) the hyperspectral canopy reflectance measurements at the Pasture
are less representative of the entire flux footprint than the Rice data, and/or (2) white
pepperweed flowers in the Pasture canopy during summertime create an obstruction
for reflectance that degrades the representativeness of measured spectra. (Hestir et al.,
2008; Sonnentag et al., 2011b). It is likely that both of these factors contributed to
the lower PLSR predictive power at the Pasture, and the obstruction by white canopy
flowers presented a challenge that is somewhat unavoidable for canopy reflectance
studies in complex ecosystems. Changes to future sampling efforts that address the
footprint representativeness, for example increasing the number and spatial distribution
of hyperspectral reflectance collected at the Pasture, might help to further improve the
future PLSR predictive power.

The most important wavelengths for the PLSR modeling with the GPP and NEE flux
data in this study fell in line with previous work that has examined correlations between
reflectance and traits of photosynthetic uptake (Main et al., 2011). However, we were
initially surprised to find that the green wavelengths were not dominant components for
prediction of either NEE or GPP across the suite of calibrated PLSR models (Fig. 5).
These results do parallel recent work in oak forests that demonstrated a temporal
mismatch between peak greenness and peak leaf chlorophyll content (Yang et al.,
2014). This temporal mismatch could be the cause for the insignificant correlation in
narrow-band green reflectance, because at both sites vegetation is a lighter green early
in the growing season and develops into a darker green as the season progresses.
There were particularly high VIP scores in the blue visible wavelength range, from
400-450nm, at the Pasture site (Fig. 5¢ and d), which could be partly explained
by the chlorophyll a and b absorption peaks at 430 and 460 nm since the Rice
also experienced slightly higher VIP scores in this region (Fig. 5e and f). However,
the magnitude of the VIP scores in this region at the Pasture far exceeded those
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at the Rice. There are two possible explanations for this marked increase in the
importance of the blue visible wavelengths at the Pasture: (1) white reflectance of
the pepperweed flowers at the site could be increasing the albedo within this portion
of the spectrum, (2) the more complex phenology at the site with annual grass and
pepperweed senescence is periodically driving reflectance near 420 nm in response
to these periods of stress (Carter and Miller, 1994). While the Pasture shifted toward
much higher reflectivity across the visible wavelengths during the brief period of white
flowering in late spring (Fig. 3a), this site also experienced more dynamic phenology
overall, with browning of the grass in early summer and of the pepperweed in late
summer.

Almost all of the PLSR models predicting instantaneous and daily- and weekly-
integrated NEE and GPP had a peak in the VIP score at red wavelengths (Fig. 5).
Reflectance features within this portion of the spectrum include absorption in the
red wavelengths at 642 and 662nm correlated with chlorophyll absorption, and
reflectance in the chlorophyll a fluorescence wavelengths that occurs near 673 nm.
The maximum VIP score in the visible wavelengths across nearly all of the PLSR
models occurred near the end of the red portion of the spectrum between 670 and
680 nm, indicating that these wavelengths provided critical information to the latent
variables that comprised most of the PLSR models (Fig. 5). This result paralleled
previous work that demonstrated the importance of narrow-band reflectance at 670—
680 nm for predicting chlorophyll absorption features across a diverse suite of plant
canopies (Carter and Miller, 1994; Dawson et al., 1999; Gitelson and Merzlyak, 1997;
Main et al., 2011).

The differences among the predictive power of the PLSR models that included all
the data compared with the models developed at individual sites highlighted important
considerations for future work in this area. The predictive models with the smallest 95 %
prediction intervals originated from the models that included all of the data from both
sites (Table 2), demonstrating the power of using larger datasets, with a wider range
of values, to develop the predictive capacity of PLSR models. Further improvements
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in PLSR predictive power might be achieved by building upon this data to include
paired hyperspectral-eddy flux datasets from additional sites that can expand and
refine the connection between reflectance and CO, flux. This approach has particular
promise for sites with automated hyperspectral sensing systems in conjunction with
eddy covariance measurements (Balzarolo et al., 2011; Hilker et al., 2007; Leuning
et al., 2006; Rossini et al., 2010). However, we do emphasize that changes in the
canopy complexity and clumping are important consideration for such work at other
sites, compared with the short-statured canopies with low clumping indices (Ryu
et al., 2010b) included in this study. In canopies with more complex leaf and branch
clumping, hyperspectral canopy reflectance measurements will need to be combined
with radiative transfer modeling in order to accurately model the energy reflectance
spectrum (Knyazikhin et al., 2013; Verhoef and Bach, 2007).

4.3 CO; flux prediction at various timescales

Across all sets of PLSR models, there was an interesting shift in VIP scores from
the visible wavelengths to the NIR wavelengths as the timescale of NEE and GPP
integration increased (Fig. 5). An increase in structural complexity drives higher NIR
reflectivity (Main et al., 2011), and the VIP scores across the suite of PLSR models
showed that this structural components of the canopy driving NIR reflectance became
increasingly important to predicting both NEE and GPP as the integrated timescale
increased. This demonstrated that reflectance in visible wavelengths correlated with
chlorophyll content was most important for short-term flux prediction, but canopy
structural changes in the NIR wavelengths was most important for longer-term flux
prediction. An important constraint of this analysis is that the field spectrometer
used only measured wavelengths up to 900 nm reliably, making analysis at longer
wavelengths in the infrared area correlated with leaf structural components such as
fiber, lignin, and cellulose content impossible (Serbin et al., 2014). However, this
same approach of canopy-level PLSR modeling could be used in conjunction with
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a spectrometer capable of making wider spectral reflectance measurements at eddy
covariance sites to evaluate areas of the NIR spectrum at longer wavelengths.

Comparing the predictive fit achieved with the PLSR models across different CO,
flux timescales with the Independent Validation dataset provided important insights
into the temporal scale of CO, flux integration represented by the hyperspectral canopy
reflectance collection at a moment in time. Almost all of the final PLSR models achieved
the highest predictive fit with the weekly-integrated GPP fluxes (Fig. 7). The changes in
the PLSR predictive power for NEE and GPP at different timescales provided important
information for considering what exactly is represented by measured hyperspectral
reflectance in the field, as canopy biochemistry is in fact an emergent response to
biological and environmental drivers that are integrated through time. The fact that all
three models achieved the best predictive fit with the Independent Validation data for
GPP at the weekly timescale yielded support for modeling efforts that determine carbon
fluxes from MODIS satellite reflectance, which has an 8day orbit time. The results
of this flux timescale analysis are congruous with those from previous work, which
found a good correlation between gross CO, flux and the 8 day MODIS overpass time
(Sims et al., 2005). While there was a clear signal in the higher predictive power for
estimating the weekly-integrated GPP flux compared with other timescales, there was
less consistency within the best predictive timescale for estimating NEE (Fig. 7). This
is likely due to the fact that NEE is a combination of both GPP and ER, which change
on different timescales in response to different environmental drivers and are more
highly coupled at the Rice than they are at the Pasture (Hatala et al., 2012; Knox et al.,
2014). The fact that NEE achieved a good fit with canopy hyperspectral reflectance
through the monthly timescale for the models developed with all the data (Fig. 7a) could
indicate that the system memory in carbon flux at these sites is integrated over a longer
timescale than was tested in this analysis, and that canopy biochemistry collected at
one moment reflects at least the previous month of integrated NEE flux.
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5 Conclusions

This analysis demonstrated that using PLSR modeling with repeated near-surface
hyperspectral canopy reflectance created reliable predictive models of NEE and
GPP flux for two short-structured plant canopies with different phenology and
significant intra-site and inter-annual variability in canopy reflectance. The PLSR
models developed from hyperspectral canopy reflectance collected during 100 site
visits from 2010-2014 at a Pasture and a Rice paddy achieved a high level of
predictability for both NEE and GPP flux where the predictive R? ranged from 0.24
to 0.69 using an independent validation dataset. The higher variability in measured
hyperspectral reflectance at the Pasture did decrease the predictive power of the
PLSR models when compared against those developed at the Rice site with a more
homogeneous canopy. The PLSR models were most skilled at predicting the GPP flux
for the integrated week prior to the collection of canopy reflectance. Although the use
of PLSR methods with hyperspectral field reflectance such as those presented within
this analysis need to be rigorously tested with a much larger dataset and in more
diverse ecosystems, the results from this analysis showed promise for using repeated
hyperspectral canopy reflectance to directly predict landscape-scale carbon flux. Use
of this method, particularly if developed with large datasets collected over several
years, might help to constrain GPP estimates through the integration of additional
datasets into the modeling efforts that partition NEE into GPP and ER at flux sites
(Hilker et al., 2014). The development of PLSR models to predict NEE and GPP from
hyperspectral canopy reflectance collected within flux tower footprints is a promising
avenue of future research, particularly with the development and deployment of
hyperspectral satellite sensors such as NASA’s Hyperspectral and InfraRed Imager
(HysplRI; http://hyspiri.jpl.nasa.gov), which will provide continuous spatial coverage of
measured hyperspectral reflectance.

Author contributions. D. D. Baldocchi, J. H. Matthes, and O. Sonnentag designed the
experiment, all co-authors collected, processed, and analyzed the reflectance and eddy
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Table 1. Fit statistics for the bootstrapped PLSR model. The mean R? and root mean squared
error (RMSE) is provided for the PLSR Calibration fitting (Cal) and the calibration Evaluation
(Eval) during the PLSR model development, conducted with 80% of the total dataset. In
general, models with daily-integrated GPP and NEE had the best fit compared with models that
fit the flux data from other timescales. The PLSR fit for GPP using the hyperspectral reflectance
data tended to outperform the fit of NEE across the datasets and models. The statistical fit of
the PLSR models was significantly higher at the Rice site compared with the Pasture.

R?Cal R®Eval RMSE Cal RMSE Eval Components

Both sites GPP inst 0.87 0.64 3.34 4.74 7
GPP daily 0.87 0.69 1.42 1.96 6
GPP wkly  0.86 0.69 10.35 13.82 6
GPP mthly 0.63 0.24 45.47 4475 6
NEE inst 0.84 0.64 3.30 4.39 6
NEE daily 0.84 0.66 1.43 1.87 6
NEE wkly  0.83 0.65 10.34 13.21 6
NEE mthly 0.81 0.64 4211 51.88 6
Pasture GPP inst 0.94 0.49 1.36 3.49 7
GPP daily 0.97 0.56 0.43 1.53 8
GPP wkly  0.53 0.38 11.64 10.15 3
GPP mthly  0.91 0.42 22.96 52.43 7
NEE inst 0.43 0.33 3.56 2.52 2
NEE daily  0.38 0.30 1.40 0.91 2
NEE wkly  0.44 0.29 8.47 6.42 3
NEE mthly 0.79 0.36 22.81 30.49 6
Rice GPP inst 0.85 0.61 4.34 5.92 5
GPP daily 0.92 0.65 1.34 2.58 6
GPP wkly 0.84 0.67 13.32 17.06 4
GPP mthly 0.89 0.68 10.96 16.95 5
NEE inst 0.77 0.58 4.88 5.66 4
NEE daily 0.86 0.60 1.68 2.52 5
NEE wkly  0.85 0.59 11.82 17.88 5
NEE mthly 0.80 0.64 56.50 67.93 4
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Table 2. Independent Validation dataset fit for mean PLSR models. We calculated the R? and
bias between the predicted CO, flux variables with the mean PLSR models and the actual
measurements from the 20 % of data left for Independent Validation. The highest predictive fit
for the PLSR models was achieved with the dataset that included the Rice data only.

Bias
NEE GPP NEE GPP
Both sites Inst 0.51 042 -1.63 3.89
Daily 0.52 0.52 -0.41 1.60
Weekly 0.55 0.62 -3.31 9.75
Monthly 057 0.27 -11.92 31.51
Pasture Inst 0.53 0.24 -2.28 5.10
Daily 0.44 0.45 -0.56 2.79
Weekly 0.51 0.54 -1.96 15.94
Monthly 043 047 -14.18 76.86
Rice Inst 0.51 0.40 -1.41 2.73
Daily 0.65 0.50 -0.89 0.58
Weekly 0.69 0.62 -2.35 0.21
Monthly 041 045 -18.56 4.60
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Figure 1. Canopy hyperspectral field collection dates. This analysis synthesized canopy
hyperspectral reflectance measurements collected from 2010 to 2014 at Pasture and Rice
sites in the Sacramento-San Joaquin Delta in Northern California. On each sampling date
we collected nine individual canopy hyperspectral reflectance replicates at the Pasture site and
five individual reflectance replicates at the Rice site.
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Figure 2. Instantaneous gross primary productivity (GPP) and daily net CO, flux on the
hyperspectral canopy reflectance sampling dates. Both the Pasture and the Rice exhibited
strong seasonal patterns with peak CO, uptake mid-year. However, the Pasture experienced
peak CO, uptake that preceded the peak for the Rice, where the maximum CO, uptake
occurred in March—April for the Pasture and in July—August for the Rice.
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Figure 3. Daily variability in measured canopy hyperspectral reflectance during phenological
events. (a and b) Daily measured hyperspectral canopy reflectance for the Pasture and Rice
sites when the canopy was closed and green, at the Pasture on 10 April 2014 and the
Rice on 31 July 2013. Reflectance was very low in the visible wavelengths due to canopy
absoption, but quite large in the near infrared reflectance with a high amount of variability.
Both sites had spectral peaks that corresponded to green reflectance (~ 550 nm) and troughs
that corresponded to spectral absorption in red reflectance (~ 675nm). (¢) During the white
flowering of the pepperweed plants, the measured reflectance changed significantly, due to
the higher albedo of the bright white flowers. There was much higher reflectance across the
spectrum during this time, and the white flowers obfuscated reflectance in the wavelengths that
corresponded to plant productivity. (d) There was a similar but not as dramatic shift in increased
albedo particularly across the visible wavelengths from green to red reflectance during the rice
seeding and senescence as the canopy dried before harvest. However an important distinction
between this phenological event and the white flowering at the Pasture is that the productivity
of the rice plants was quite low at this time, in contrast with the higher productivity of the
pepperweed during flowering.
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Figure 4. Inter-annual and daily variability at narrow-band green, red, and near-infrared (NIR)
reflectance. (a and b) Inter-annual variability in measured canopy green reflectance at 550 +
5 nm, where the points are the site mean and the bars represent one SD for each sampling date.
There was more intra-site variability in reflectance during the summer when the pepperweed
canopy was active, since at some locations the white flowers of the pepperweed plant can
complicate the green reflectance spectrum. The green reflectance at the Rice had more inter-
annual variability but a more discernible seasonal pattern within each year, where the trough
in green reflectance tended to occur mid-summer. (¢ and d) These plots show red reflectance
at 662 £ 5nm, which corresponds to the absorption wavelength of chlorophyll b. Both sites
demonstrated a seasonal pattern, where the minimum in red reflectance occured in late spring
at the Pasture and in late summer at the Rice, corresponding to the times of peak plant growth
at each site. Again, the Pasture had more intra-site variability, particularly during the summer
months when pepperweed is active. (e and f) Here we plot the near infrared (NIR) reflectance
at 800 £ 5 nm for the two sites. NIR reflectance at the Pasture had no strong seasonal pattern,
with a constant mean throughout the year and across years. The rice demonstrated a stronger
pattern across the season, with less NIR reflectance early in the growing season when the
canopy was developing, with higher NIR reflectance as the crop achieved a full canopy later
in the summer. At both sites, intra-site variability in NIR reflectance was much higher than the
variability in the reflectance in the visible spectrum.
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Figure 5. Variable importance of projection (VIP) statistics for bootstrapped partial least-
squared regression (PLSR) modeling coefficients. Here the variable importance of projection
(VIP) statistics for the mean bootstrapped PLSR models fitted to the GPP and NEE flux
datasets. The VIP statistic describes the relative contribution of each wavelength to the
predictive power of the PLSR model across all final PLSR model components. Across all
models, the visible wavelengths (400—700nm) were most important for prediction at shorter
timescales of integrated flux, while the infrared wavelengths (700-900 nm) became increasingly
important at longer integrated flux intervals. This pattern is particularly apparent within the
PLSR model for GPP fitted across All the data (a), where there was a dramatic shift in the
VIP statistics between the weekly- and monthly-integrated flux prediction and the infrared
wavelengths become much more important for prediction at longer timescales. This pattern
was also apparent with the PLSR models developed using the Pasture data only. The PLSR
models developed for the Rice data only (e and f) had the least variation for fluxes integrated
at different timescales.

5120

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

BGD
12, 5079-5122, 2015

Predicting CO, flux
with hyperspectral
reflectance

J. H. Matthes et al.

' III III


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-print.pdf
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

O
Z
2 BGD
All Data Pasture Rice %
I [T ) ©) g' 12, 5079-5122, 2015
E* oo O °
T
N . 3 o
& - g Predicting CO, flux
'§ ) . o with hyperspectral
= . reflectance
§ ° R?-0.67 ° R*-045 g
s L el il S J.H.Matihes etal.
) 5 10 15 -2 0 2 4 6 8 10 12 0 5 10 15 m
Predicted Daily GPP [g-C m2 d-"] Predicted Daily GPP [g-C m?2 d-"] Predicted Daily GPP [g-C m2 d-"] g
=
£ » - o o
° [©)
w
w —
=z
: _ N
a =
3 i @ - -
% ¥ 4 :T:Ta:s =7 08 g
o Bias = -0.24
o @,
e T s I N
Predicted Daily NEE [g-C m?2 d-] Predicted Daily NEE [g-C m2d-] Predicted Daily NEE [g-C m2d-] )
s N I
Figure 6. Predictive ability of PLSR models on independent validation dataset. The mean = - -
PLSR models determined through the bootstrapping routine were tested on the Independent
Validation dataset, which was composed of 20 % of the original data that was separated from _
the model calibration process. Here the independent validation is presented for instantaneous %
and daily NEE and GPP flux for the exercises with all the data, Pasture only, and Rice only. 2 _
The regression line between the predicted and actual variables is black, the 1: 1 line is dashed, &
the 95 % credible interval of the regression are the curved dotted lines, and the 95 % prediction S _
interval are the grey lines. A
e
2 OmO.

5121


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-print.pdf
http://www.biogeosciences-discuss.net/12/5079/2015/bgd-12-5079-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

R? of independent validation

Figure 7. Predictive power of measured hyperspectral reflectance at increasing CO, flux
integration intervals. We examined the ability of PLSR modeling with the hyperspectral
reflectance data to predict instantaneous and daily-, weekly-, and monthly-integrated NEE and
GPP at (a) both sites will the entire dataset, (b) the Pasture only, and (c) the Rice only. For all
three cases, the measured hyperspectral reflectance had the highest correlation with weekly-
integrated GPP flux. The time interval with the highest predictive power for NEE flux was less
variable across different timescales within each modeling exercise, and there was not a strong
improvement to using one particular timescale to model NEE with the hyperspectral reflectance
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