

1 The import and export of organic nitrogen species at a Scottish ombrotrophic
2 peatland

3

4 R.M. McKenzie*^{a,b}, M.Z. Özel^c, J.N. Cape^a, J. Drewer^a, K. J. Dinsmore^a, E. Nemitz^a, J. F.
5 Hamilton^c, M.A. Sutton^a, M.W. Gallagher^b, U. Skiba^a

6 a) Centre for Ecology & Hydrology, Edinburgh, Bush Estate, Penicuik, EH26 0QB, United Kingdom

7 b) School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Williamson Building,
8 Oxford Road, Manchester, M13 9PL, United Kingdom

9 c) Department of Chemistry, The University of York, York, YO10 5DD, United Kingdom

10 *Corresponding author. Present address: Environmental Research Institute, Castle Street, Thurso, KW14 7JD. Tel.: +44
11 1847 889586. Fax: 01847 890014. Email address: rebecca.mckenzie@uhi.ac.uk

12 **Abstract**

13 Dissolved organic nitrogen (DON) can contribute significantly to the overall nitrogen
14 budget, but is not routinely measured in precipitation or stream water. In order to
15 investigate the contribution of DON to deposition and export of N, precipitation, stream
16 and soil water samples were collected from an ombrotrophic peatland and analysed for
17 DON over a two year period. In wet only deposition DON contributed up to 10% of the
18 total dissolved nitrogen (TDN), and was the most dominant fraction in soil water (99%),
19 and stream water (75%). NH_4^+ was the most dominate form of N in precipitation, with
20 NO_3^- contributing the least to precipitation, soil water and stream water.

21 Precipitation and stream DON was qualitatively analysed using GC \times GC-NCD. Only 10%
22 of DON was able to be assessed, with ten unique compounds detected. Only five could be
23 identified: pyrrole, benzonitrile, dodecylamine, N-nitrosodipropylamine and decylamine.
24 Five compounds were present in both precipitation and stream samples: pyrrole,
25 benzonitrile and three unidentified compounds. A more detailed DON speciation may be
26 used to identify sources and pathways of DON.

27

28 *Keywords:* organic nitrogen, ammonium, nitrate, precipitation, stream, GC \times GC-NCD

29 **1 Introduction**

30 Atmospheric deposition of nitrogen (N) has increased dramatically over the last century
31 as a result of industrial and agricultural activities (Galloway et al., 2004). In the last 150
32 years, the amount of global anthropogenic reactive nitrogen has increased by a factor of
33 12.5; from \sim 15 Tg N y^{-1} in 1860 to \sim 187 Tg N y^{-1} in 2005 (Galloway et al., 2008) . The
34 total deposition of N in the UK was estimated to be approximately 330 Gg in 2004, with

35 wet and cloud deposition accounting for approximately 211 Gg (63.9%), and the rest
36 consisting of dry deposition (Fowler et al., 2009, Hertel et al., 2011).

37 Altering the chemistry of precipitation inputs to ecosystems which are dependent on
38 atmospheric deposition for nutrients, such as N, can disturb the way in which N is
39 utilised. Problems such as N-saturation may result in N being leached from the soil and
40 into nearby water bodies (Adamson et al., 1998). Eutrophication and acidification may
41 occur in both terrestrial and aquatic ecosystems.

42 Wet deposition of the dissolved inorganic nitrogen (DIN) compounds ammonium (NH_4^+)
43 and nitrate (NO_3^-) has been studied over many years (Violaki et al., 2010, Cape et al.,
44 2011, Zhang et al., 2012). The former is produced by the dissolution of ammonia gas
45 (NH_3) and the scavenging of NH_4^+ aerosol, and the latter by the dissolution of nitric acid
46 gas (HNO_3) and the scavenging of NO_3^- aerosol (Russell et al., 1998, Cornell et al., 2003,
47 Tian et al., 2011). The dissolved organic nitrogen (DON) fraction is less well
48 documented due to difficulties in measuring it, but it can be an important fraction of the
49 total dissolved nitrogen (TDN) deposited, and can potentially be biologically available as
50 a source of N (Russell et al., 1998, Neff et al., 2002, Cornell et al., 2003, Cape et al.,
51 2004). The sources of DON are not well understood, but it is known to be ubiquitous in
52 the environment, present in particulate, gaseous and aqueous phases (Cornell et al., 2003,
53 Cape et al., 2004, Özel et al., 2011). Studies have shown that DON can contribute 30-
54 50% of the wet deposition of water soluble N (Neff et al., 2002, Cape et al., 2004, Zhang
55 et al., 2008, Cape et al., 2011, Cornell, 2011, Zhang et al., 2012).

56 Several atmospheric species of DON are considered hazardous to human health, and
57 appear on the Environment Protection Agency (EPA) hazardous air pollutant list (Özel et
58 al., 2011). Sources of DON are believed to include: pollen; sea spray; soil dust; deposits
59 from fauna and flora; the scavenging of aerosols; and reactions in the atmosphere
60 between inorganic gaseous nitrogen species and organic compounds (Prospero et al.,
61 1996, Russell et al., 1998, Cornell et al., 2003, Calderon et al., 2007, Zhang et al., 2008,
62 Violaki et al., 2010). Some work has been done to identify organic N compounds, so that
63 their sources can be traced. Amino acids, urea, aliphatic amines and peptides have all
64 been found in the atmosphere from naturally occurring sources (Calderon et al., 2007,
65 Violaki et al., 2010). The main anthropogenic organic compounds are believed to be N-
66 heterocyclic compounds, nitrophenols and nitro-polycyclic aromatic hydrocarbons
67 (Violaki et al., 2010). Alky amides have also been identified and are believed to result
68 from reactions between NH_3 and fatty acids at high temperatures (Cheng et al., 2006);

photochemical reactions are believed to be responsible for the presence of alky nitrates and peroxyacetyl nitrates (Violaki et al., 2010).

As with wet deposition, N is present in streams as both DIN and DON, with most focus usually being on the DIN fraction. DIN, in particular NO_3^- , is often used as an indicator of N saturation, with higher stream concentrations and changes in seasonal patterns indicating an increase in the leaching of DIN from the catchment (Cundill et al., 2007, Daniels et al., 2012). DON, however, is not often measured in spite of being the most dominant fraction in waters draining peatland catchments; DON is known to contribute 60-90% of the TDN load in peatland streams (Yesmin et al., 1995).

Various techniques have been developed to characterise DON, including FT-ICR Mass spectrometry (Altieri et al., 2009) and NMR spectrometry (Maie et al., 2006), with these methods focusing on the more on groups of compounds rather than individual species.

Many techniques are not sensitive enough to detect individual organic nitrogen compounds in low concentrations (Özel et al., 2010). Solid phase extraction (SPE) is a technique used to separate organic compounds from aqueous systems, and has successfully been applied in many cases (Moret & Conte, 2002, Özel et al., 2003, Özel et al., 2011). The SPE method has given better DON recovery than solvent extraction from the aqueous phase (Özel et al., 2011) and the extracted samples can be analysed using Gas chromatography (GC). By using a multi-dimensional GC-technique and comprehensive two-dimensional GC, GC \times GC, and coupling it with a nitrogen chemiluminescence detector (NCD), better separation and improved limits of detection can be achieved than by conventional one-dimensional GC (Özel et al., 2006, Adam et al., 2007, Adahchour et al., 2008, Özel et al., 2010). GC \times GC-NCD has recently been used to investigate the presence of organic nitrogen compounds in diesel fuel, atmospheric aerosol, nitrosamines in meat and vegetables, and nicotine and N-nitrosamines in house dust (Adam et al., 2007, Özel et al., 2010, Özel et al., 2011, Kocak et al., 2012, Ramirez et al., 2012).

The aim of this study was to investigate the contribution of DON to TDN of wet deposition and TDN export via a stream at a typical NW European ombrotrophic peatland over a two year period. In addition to this, an attempt was made to identify individual DON compounds present in a selection of precipitation and stream samples.

100 **2 Site and methods**

101 **2.1 Study area**

102 Auchencorth Moss (Fig. 4.1) is an ombrotrophic peat bog located in south Scotland,
103 approximately 18 km southwest of Edinburgh (National Grid Reference NT221562; lat.
104 55°47'34" N; long. 03°14'35" W). The site is used primarily for low intensity sheep
105 grazing (less than one livestock unit km⁻²) and in 2009 a small herd of cows (15-20) also
106 grazed on the site.

107 The volume of peat in the catchment is estimated to be ~50 million m³, with depths up to
108 5 m, and an average depth of 50 cm. The total peat coverage is ~1214 ha, of which
109 approximately 170 ha is extracted (located 1.75 - 3.4 km W-SW of the monitoring
110 station) (Mitchell and Mykura, 1962, Dinsmore, 2008).

111 The Black Burn runs SW to NE of the CEH atmospheric monitoring station at
112 Auchencorth Moss, and drains into the North Esk river. It has a catchment area of
113 approximately 335 ha, which is fed by numerous tributaries, including one which
114 originates in the area of peat extraction. There are a number of overgrown ditches laid out
115 in parallel which is evidence of past drainage activities. The elevation of the catchment is
116 approximately 250-300 m and the main soil type is Histosols (85% coverage), with
117 Gleysol (9%), Humic Gleysol (3%) and Cambisols (3%) present mostly at the margins of
118 the catchment (Billett et al., 2004).

119 The vegetation is arranged into numerous hummocks and hollows. The hollows are
120 depressions up to 30 cm deep and are dominated by blankets of *Sphagnum* mosses, with
121 various sedges, monocotyledons and other bryophytes also present; the hummocks can be
122 up to 30 cm high, and although *Sphagnum* mosses are present, there is a larger density of
123 vascular plants with the dominant species being *Deschampsia flexuosa*, *Eriophorum*
124 *vaginatum* and *Juncus effusus*. Flechard and Fowler (1998) and Dinsmore (2008) have
125 presented more detailed vegetation information for Auchencorth Moss.

126 The mean water table depth was determined from nine dip wells located close to the
127 monitoring station (Figure1) and was -14.8 cm, ranging from -52.4 to 7 cm above the
128 peat surface during the study period (January 2009 - December 2010).

129

130 **2.2 Wet-only precipitation**

131 Auchencorth Moss is a European Monitoring and Evaluation Programme (EMEP)
132 supersite contributing to the Co-operative Programme for Monitoring and Evaluation of

133 the Long-range Transmission of Air Pollutants in Europe
134 (http://www.emep.int/index_facts.html). Precipitation was collected daily using an
135 automated wet-only collector (Eigenbrodt NSA 181/KS, Königsmoor, Germany). A
136 sensor detected when rain fell, opening the lid and allowing rain to be collected in a
137 PTFE-coated funnel draining to refrigerated polyethylene bottles. When rainfall ceased,
138 the sensor closed the lid, protecting the samples from contamination from dry deposition
139 and animal inputs. The collector was kept at 4°C by an internal cooling system and
140 samples were manually emptied once a week, where they were stored in a cool room, also
141 at 4°C. Samples were analysed by Ion Chromatography (IC) for NH_4^+ and NO_3^- ,
142 following EMEP protocols (<http://www.nilu.no/projects/ccc/manual/index.html>). Where,
143 possible, subsamples were collected and frozen for analysis of DON and DIN.

144 A Metrohm 761 Compact Ion Chromatograph (IC) connected in parallel with a Metrohm
145 733 IC Separation Centre to a Metrohm 766 IC sample processor (Metrohm Ltd.,
146 Herisau, Switzerland) measured NO_3^- and NH_4^+ respectively. NO_3^- was determined by
147 pumping an eluent solution of 3.2 mM sodium carbonate and 1.0 mM sodium bicarbonate
148 through a Metrosep A Supp 5 column. For NH_4^+ determination, an eluent solution of 24
149 mM boric acid, 5 mM tartaric acid and 0.7 mM dipicolinic acid, was pumped through a
150 Metrosep C1 column. Typical detection limits were 1 $\mu\text{mol N l}^{-1}$ for both NO_3^- and NH_4^+ .
151 For analysis of TDN (TDN = DIN + DON) subsamples were obtained (a minimum of 5
152 ml) where possible, and filtered using Millipore Hydrophilic PTFE (0.45 μm pore size)
153 syringe filters prior to freezing and later analysed for TDN by high-temperature catalytic
154 oxidation using an ANTEK 8060-M Nitrogen Specific HPLC Detector (ANTEK
155 Instruments Inc., Houston, TX, USA). The analysis was conducted in flow-injection
156 mode, in which 20 μl samples were introduced into an eluent stream of 10% methanol in
157 deionised water at a flow rate of 250 $\mu\text{l min}^{-1}$. It was then combusted in oxygen at 1050
158 °C, producing nitric oxide (NO) which was detected by chemiluminescence. The
159 detection limit for TDN was $\sim 1 \mu\text{mol N l}^{-1}$. DON was determined by subtracting DIN
160 from TDN.

161 The subsamples were also analysed for NO_3^- and NH_4^+ at the same time DON was
162 analysed and compared to the EMEP samples. The samples compared well with an
163 average standard error of $\pm 0.22 \mu\text{mol N l}^{-1}$ between NO_3^- samples and $\pm 1.45 \mu\text{mol N l}^{-1}$
164 between NH_4^+ samples. The analysis was carried out according to the IC description
165 above.

166 The uncertainty in DON values is greater than for DIN as a result of errors associated
167 with measuring TDN and DIN compounding and thus reducing the accuracy of the DON
168 calculation (Cornell et al., 2003). A negative bias may result from these combined
169 uncertainties, from DON not being fully converted during the total N analysis, and from
170 losses due to the collection and storage procedure (Russell et al., 1998, Cornell et al.,
171 2003). A positive bias results from setting small negative values of DON to zero; small
172 negative values of DON were included in the data analyses here in order to prevent this
173 source of bias. The limit of detection of DON was determined by the summation of the
174 detection limits of the 3 independent measured concentrations (NH_4^+ , NO_3^- and TDN)
175 and was $3 \mu\text{mol N l}^{-1}$.

176 2.3 Soil water

177 Soil water was collected once or twice per month from nine dip wells, from which the
178 water table was also measured. They were filtered within 24 hours of collection, using
179 Millipore Hydrophilic PTFE (0.45 μm pore size) syringe filters and stored frozen until
180 analysis. The dip wells consisted of high-density polyethylene perforated pipes (0.04 m
181 diameter) buried in the ground, with rubber bungs to prevent contamination. Samples
182 were analysed for NH_4^+ , NO_3^- and TDN by the IC and ANTEK methods described
183 previously. DON was determined by subtracting DIN from TDN.

184 2.4 KCl-extractable mineral N

185 Soil cores were collected at a depth of 0-10 cm at three locations (next to the dip wells),
186 in spring and autumn in 2009 and in spring, summer and winter in 2010. NH_4^+ and NO_3^-
187 were extracted from soil samples using KCl; 15 g of soil were shaken for 1 hour with 50
188 ml of 1M KCl solution at a rate of 100 rpm. Samples were then filtered using Whatman
189 42 filter papers and frozen prior to analysis by IC. TDN was not measured, so DON could
190 not be determined.

191 2.5 Stream water

192 Stream water spot samples were collected by dipping a 300 ml glass bottle once a week
193 from the Black Burn, to the north of the field station. The samples were filtered within 24
194 hours of collection, using Millipore Hydrophilic PTFE (0.45 μm pore size) syringe filters
195 and frozen until ready for analysis. Samples collected from January 2009 – October 2009
196 were analysed for TDN, NH_4^+ and NO_3^- using a San⁺⁺ Automated Wet Chemistry
197 Analyzer/Continuous Flow Analyzer (SKALAR, The Netherlands). Samples from

198 November 2009-November 2010 were analysed for NH_4^+ , NO_3^- and TDN using the IC
199 and ANTEK methods described above. In both cases, DON was determined by
200 subtracting DIN from TDN.

201 Discharge was determined from water height using manually calibrated rating curves
202 ($R^2 > 0.90$) based on measurements of dilution gauging (Dinsmore, per. com.). Pressure
203 transducers were used to measure water height at 10 minute intervals. Until April 2009, a
204 Druck PDCR 1830 series pressure transducer was used at the sample site (Fig 1). After
205 April 2009, an In Situ Inc. Level Troll® pressure transducer located ~2 km downstream
206 was used.

207 2.6 GC \times GC-NCD

208 Comprehensive two-dimensional gas chromatography coupled to a nitrogen
209 chemiluminescence detector (GC \times GC-NCD) was used to separate DON into different
210 peaks and identify individual components where possible. The samples were extracted by
211 solid phase extraction (SPE), in order to trap the DON, using Superclean ENVI-18 SPE
212 tube 20 μm polymeric C₁₈-reverse phase 500 mg-3 ml SPE cartridges (SUPELCO,
213 Bellefonte, PA, USA). C₁₈ material has been used in many SPE applications for
214 extraction of organic compounds from the aqueous phase. It has been found that there is
215 almost no change in the composition of the sample before and after the application of
216 SPE of the C₁₈ material (Özel et al., 2003). Cartridges were conditioned with 5 ml
217 methanol followed by 5 ml of water at a rate of 2-5 ml min^{-1} . Between 5 and 18 ml of
218 precipitation and 9 and 24 ml of stream water was passed through the cartridge at a rate
219 of 2-5 ml min^{-1} . The cartridge was thoroughly dried under vacuum for ~30 minutes.
220 Following drying, the cartridge was eluted with 5 ml dichloromethane (DCM), and then
221 concentrated in a stream of nitrogen to a volume of ~ 0.1 ml. The GC \times GC-NCD was an
222 Agilent 7890 GC coupled with an Agilent 255 NCD (Agilent Technologies, Palo Alto,
223 CA, USA). 1 μl extracts were injected in pulsed splitless mode at a temperature of 280 °C
224 and a pressure of 30 psi for 2 min, using a Gerstel automated liquid injector (Gerstel,
225 Mulheim an der Ruhr, Germany). The first dimension column was a non-polar BPX5 (30
226 m x 0.32 nm i.d. x 0.25 μm film thicknesses), set to an initial temperature of 55 °C for 1
227 min. The temperature was then increased at a rate of 5 °C min^{-1} until 305 °C where it was
228 isothermally held for 1 min. The second column was a BPX50 (1.5 m x 0.10 mm i.d. x
229 0.10 μm film thickness) set to an initial temperature of 70 °C for 1 min, the temperature
230 was then increased at a rate of 5 °C min^{-1} until 320 °C where it was isothermally held for

231 1 min. Both columns were from SGE Analytical Science (VIC, Australia). Helium was
232 used as a carrier gas at a constant flow of 1 mL min^{-1} and the data was collected at 50 Hz.
233 Pyrolysis was carried out at $900 \text{ }^{\circ}\text{C}$ with a hydrogen flow rate of 4 ml min^{-1} and oxygen
234 flow rate of 10 ml min^{-1} .

235 The detector shows an equimolar response regardless of the chemical state of the organic
236 nitrogen (except azo compounds), allowing nitrogen-containing compounds to be
237 quantified without the need for a separate calibration standard for each compound (Yan,
238 2002, Özel et al., 2011). Details of the optimization of the NCD response and the
239 analytical performance with respect to equimolar response using standards was evaluated
240 by Özel et al., (2011).

241 **3 Results**

242 **3.1 Meteorology**

243 Total rainfall was determined from the volume of rain collected in the wet only analyser.
244 In 2009 the total rainfall was 902 mm with monthly totals varying from 16 mm in
245 February to 180 mm in November. The mean monthly temperature varied from $0.5 \text{ }^{\circ}\text{C}$ in
246 December to $13.7 \text{ }^{\circ}\text{C}$ in July, with a yearly mean of $7.6 \text{ }^{\circ}\text{C}$. In 2010 the total rainfall was
247 732 mm with monthly totals varying from 21 mm in May to 128 mm in November.
248 However, in 2010 a significant amount of snow fell, interfering with the wet-only
249 collector and resulting in less precipitation collection during January-March. It is
250 estimated that 423 mm of precipitation fell during these months (an additional 291 mm),
251 making the total precipitation collected for 2010 approximately 1023 mm. This additional
252 precipitation was estimated from the ratio of discharge and precipitation, measured at the
253 stream sampling site by the Black Burn (Dinsmore et al., 2013, Skiba et al., 2013). The
254 mean monthly temperature varied from $-2.0 \text{ }^{\circ}\text{C}$ in December to $13.6 \text{ }^{\circ}\text{C}$ in July, with a
255 yearly mean of $6.6 \text{ }^{\circ}\text{C}$.

256 **3.2 Wet-only N deposition**

257 Figure 2 shows the volume-weighted monthly mean concentrations of N in precipitation.
258 The temporal variation of NH_4^+ and NO_3^- follow a similar pattern, with DON differing. In
259 both 2009 and 2010 (Table 1), NH_4^+ was the dominant component of wet-only deposition
260 with annual mean concentrations of $27.2 \text{ } \mu\text{mol N l}^{-1}$ (58% of TDN) and $30.7 \text{ } \mu\text{mol N l}^{-1}$
261 (53% of TDN) respectively. The contribution of NO_3^- was greater in 2010 than in 2009,
262 with mean concentrations of $15.0 \text{ } \mu\text{mol N l}^{-1}$ (32% of TDN) in 2009 and $22.7 \text{ } \mu\text{mol N l}^{-1}$

(39% of TDN) in 2010. Although DON contributed the least to annual concentrations in both years, on a monthly timescale there were a few occasions when DON exceeded NO_3^- (March 2009, June 2009, Aug 2009 and Oct 2010). A loose seasonal pattern can be observed for NH_4^+ and NO_3^- , with peak concentrations occurring between January and June. This is more obvious in 2010. DON has no clear seasonal pattern, although the lowest concentrations seem to occur in the winter months (Nov- Jan). A weak, but significant correlation was found between NH_4^+ and NO_3^- in 2009 ($R^2 = 0.45, p < 0.001$). In 2010, a stronger correlation between NH_4^+ and NO_3^- was also observed ($R^2 = 0.62, p < 0.001$). No correlations were observed between NH_4^+ , DON, temperature, rainfall or precipitation; NO_3^- , DON, temperature, rainfall or precipitation; or DON, temperature, rainfall or precipitation.

3.3 Soil water and KCl-extractable N

Due to gaps in the data, caused by the dip wells being dry and thus no sample to be collected, it is difficult to assess seasonal patterns. What is clear is that DON dominates the TDN. The contribution of DON to TDN was higher in 2010 at 99% compared to 85% in 2009 (Table 2). NO_3^- mean annual concentrations were $1.2 \mu\text{mol N l}^{-1}$ (2% of TDN) in 2009 and $0.2 \mu\text{mol N l}^{-1}$ (0.3% of TDN) in 2010. NH_4^+ mean annual concentrations were also larger in 2009 than in 2010; $8.6 \mu\text{mol N l}^{-1}$ compared to $0.2 \mu\text{mol N l}^{-1}$. The contribution of NH_4^+ to TDN was thus much larger in 2009 at 13% and just 0.4% in 2010. Soil extractions from 2 samples in 2009 and 3 samples in 2010 found no detectable NO_3^- , and NH_4^+ concentrations of $29 \pm 12 \mu\text{mol N l}^{-1}$ and $39 \pm 20 \mu\text{mol N l}^{-1}$ for 2009 and 2010, respectively.

3.4 Concentration and forms of N in stream water

Monthly mean discharge-weighted concentrations of NO_3^- , NH_4^+ and DON are presented in Figure 4, and a basic statistical analysis of annual stream water chemistry is presented in Table 3. DON is the dominant N species found in the stream water contributing, on average, 74.6% (in 2009) and 74.3% (in 2010) of TDN., with the highest concentrations in summer/autumn, however no clear seasonal pattern was evident. Monthly mean concentrations of NO_3^- ranged from 0.0 to $13.7 \mu\text{mol N l}^{-1}$ in 2009 and 0.0 to $15.2 \mu\text{mol N l}^{-1}$ in 2010. Annual mean concentrations were $2.3 \mu\text{mol N l}^{-1}$ in 2009 and $4.5 \mu\text{mol N l}^{-1}$ in 2010. In 2009, concentrations varied seasonally; largest NO_3^- concentrations were measured during the cooler months and the smallest during the warmer months. In

295 summer 2009 there was no detectable NO_3^- . In 2010 stream water NO_3^- concentrations
296 initially followed a similar pattern as in 2009, with concentrations increasing during the
297 winter months and decreasing as temperature increased and summer approached.
298 However, there was a large increase in NO_3^- concentrations in June and July 2010.
299 Consequently, average annual NO_3^- concentrations in 2010 were nearly double those in
300 2009, contributing 6.6% of TDN compared to 3.6% of TDN (Table 3). Monthly median
301 concentrations for NO_3^- for the whole period showed a similar pattern to monthly
302 discharge-weighted mean concentrations, with the exception of June 2010, which is
303 reduced to a summer low of $0 \mu\text{mol N l}^{-1}$, suggesting the monthly mean value was
304 skewed by an unusually large value. Median concentrations made little difference to the
305 July 2010 maximum. July 2010 also showed a maximum in the mean concentrations of
306 DON and NH_4^+ .

307 Monthly mean concentrations of NH_4^+ ranged from 5.4 to $21.9 \mu\text{mol N l}^{-1}$ with an annual
308 mean of $14.1 \mu\text{mol N l}^{-1}$ in 2009, and 0.0 to $52.3 \mu\text{mol N l}^{-1}$ with an annual mean of 12.9
309 $\mu\text{mol N l}^{-1}$ in 2010. Concentrations of NH_4^+ were consistently higher than NO_3^- and there
310 was no clear seasonal pattern. No correlation was observed between NH_4^+ , NO_3^- , DON,
311 discharge, temperature, rainfall (both air and stream) or precipitation.

312 3.5 DON speciation by GC \times GC-NCD

313 Tables 4 and 5 display breakdowns of the individual DON compounds detected by the
314 GC \times GC-NCD and their concentrations for precipitation and stream water, respectively.
315 The plasticiser N-butyl-benzenesulphonamide (not included in tables) was a prominent
316 compound in all samples, with extremely high concentrations, sometimes higher than
317 TDN detected in the precipitation by ANTEK. We assume that the N-butyl-
318 benzenesulphonamide detected was most likely to be a sampling contaminant from the
319 storage bottles. This contamination was not detected by the ANTEK as samples run on
320 this machine were filtered directly into glass vials for storage before analysis. The source
321 of this contamination is discussed later and the compound was thus excluded from the
322 results. Since this study involved screening for unknown DON components, the SPE
323 recoveries of the identified species could not be determined in advance. Therefore the
324 concentrations provided should be considered as a lower limit assuming 100 % recovery
325 from the water sample. Reverse phase SPE will by its nature not retain the most polar
326 DON species and so this analysis targets only the GC amenable fraction of water soluble
327 volatile/semi-volatile mid-polarity compounds.

328 In 13 of the 31 precipitation samples, and 2 of the 21 stream samples, no DON
329 compounds were detected or the peaks were too small to be distinguishable from
330 background noise. The limit of detection (LOD) using the optimized method has been
331 determined between 0.16-0.27 pgN using GC \times GC-NCD of standard mixtures (Özel et al.,
332 2011).

333 Peak identification was carried out by comparing the two retention times (Rt_1 and Rt_2) of
334 the peaks observed in the samples with the retention times of known standards. This
335 could lead to misidentification of peaks, however co-elution is greatly reduced using
336 GC \times GC and there is very good retention time stability between runs. There were several
337 peaks, consistently present in some samples, that could not be identified as they did not
338 match any of the retention times of the standards available to us and therefore were
339 labelled “Unknown” A-F. In total 10 unique compounds were found to be present in the
340 stream and precipitation, of which only 5 could be identified. Tables 4 and 5 present a
341 summary of the compounds identified in precipitation and stream water DON,
342 respectively. Both the precipitation and the stream water contained 8 distinct compounds,
343 5 of which were in common.

344 The most common compound identified in the precipitation samples was Unknown E,
345 present in 10 samples, followed by Unknown D in 6 samples and Unknown B in 5
346 samples, with mean concentrations of $0.3 \mu\text{mol N l}^{-1}$, $0.14 \mu\text{mol N l}^{-1}$ and $0.2 \mu\text{mol N l}^{-1}$,
347 respectively assuming an equimolar response. Two precipitation samples contained
348 pyrrole, with a mean concentration of $0.03 \mu\text{mol N l}^{-1}$. Unknown F was in 3 samples
349 (mean concentrations of $0.1 \mu\text{mol N l}^{-1}$), dodecylamine was in 2 samples (mean
350 concentration of $0.02 \mu\text{mol N l}^{-1}$), and Unknown C was in one sample (concentration of
351 $0.02 \mu\text{mol N l}^{-1}$). The precipitation samples did not contain any Unknown A, N-
352 nitrosodipropylamine or decylamine, which were found in the stream samples.

353 The most common compound identified in the stream samples was Unknown A, the
354 mean concentration was $2.0 \mu\text{mol N l}^{-1}$ (Table 5). Pyrrole was the next most common
355 compound, found in 18 of the stream samples, with a mean concentration of $1.2 \mu\text{mol N l}^{-1}$.
356 Unknowns E and F both appeared in 9 stream samples, with mean concentrations of
357 $0.5 \mu\text{mol N l}^{-1}$ and $0.4 \mu\text{mol N l}^{-1}$. N-nitrosodipropylamine (NDPA) was present in 4
358 stream samples, followed by Unknown B and decylamine in 3 stream samples. Mean
359 concentrations were $0.2 \mu\text{mol N l}^{-1}$ for all three compounds. Unknown D, Unknown C

360 and dodecylamine, which were found in the precipitation samples, were not present in the
361 stream samples.

362 In both the stream and precipitation samples, only one sample contained benzonitrile,
363 with means of $0.01 \mu\text{mol N l}^{-1}$ (precipitation) and $0.1 \mu\text{mol N l}^{-1}$ (stream)

364 Figures 5a and 6a display breakdowns of the monthly means of individual DON
365 compounds detected by the GC \times GC-NCD and the remaining DON detected by ANTEK
366 for precipitation and stream water, respectively. Figures 5b and 6b show the monthly
367 means of individual DON compounds detected by the GC \times GC-NCD only, to make this
368 fraction more visible. In both cases, the majority of DON was “unidentified”,
369 contributing a mean of 86% and 92% of total DON detected in precipitation and stream
370 water, respectively. This represents the DON not detected by the GC \times GC-NCD, but
371 measured as TDN by the ANTEK, and indicates that the GC \times GC-NCD was only able to
372 speciate a very small fraction of the DON present. This is likely to be in part a result of
373 losses of highly polar DON compounds during the SPE step and large molecular weight
374 species that are not volatile enough to be analysed by GC. In the precipitation samples,
375 Unknown E is the only compound present in all 5 sampling months, and is the only
376 compound identified in September. October had the most identified compounds present,
377 with 6 of the 8 compounds measured (Fig. 5b). In the stream samples, pyrrole and
378 Unknown A were present in all 4 sampling months. October also had the most identified
379 compounds present, with 7 of the 8 compounds present (Fig. 4).

380 **4 Discussion**

381 **4.1 The composition of N in precipitation**

382 Cape et al., (2004) studied several sites in the UK on a range of land uses and noted an
383 annual cycle for DIN and DON, with peak concentrations for NH_4^+ and NO_3^- occurring
384 in the late spring (April-June 2000-2002) and a DON peak occurring in late summer
385 (June-August 2000-2002). Both DIN and DON showed minima in winter. The data
386 presented here are similar, but with earlier DIN maxima in early spring (Feb-April in
387 2009 and Feb-June 2010) followed by lower values in the autumn and beginning of
388 winter. DON also peaked earlier than reported by Cape et al. (2004) but roughly a month
389 after DIN peaks in both 2009 and 2010. Generally, sources of NH_4^+ in precipitation tend
390 to be agricultural in origin and sources of NO_3^- in precipitation from combustion activities
391 (Cape et al., 2011). Although Auchencorth Moss is located in a rural setting and with
392 minimal agricultural activity on the peatland itself; there are several chicken farms in the

393 area. Chickens farms emit ammonia (NH_3), which when dissolved in rainwater, produces
394 NH_4^+ (Schlesinger, 1997). NH_4^+ also makes up a large fraction of atmospheric aerosols
395 and is often transported further downwind of its source (Nieder and Benbi, 2008), where
396 it can then be washed out and deposited by precipitation.

397 Sources of NO_3^- include motor vehicles and stationary combustion sources (power
398 stations, domestic heating) following atmospheric oxidation of the emitted nitrogen
399 oxides. As a secondary pollutant, nitric acid and nitrates are less easily traced back to
400 sources. The sources of DON are more difficult to generalise, but spring maxima may be
401 due to the release of pollen, plant debris and spores during the spring, which have been
402 suggested as sources of DON (Violaki et al., 2010), or to seasonal patterns in spreading
403 manure. Conversely, an autumn maximum may be linked to decomposition of vegetation
404 (Cape et al., 2004). The contribution of DON to TDN is low at Auchencorth – 10.0% and
405 8.3% in 2009 and 2010, respectively – when compared to the literature average of 30%
406 (Cornell et al., 2003, Cape et al., 2004, Zhang et al., 2008, Cape et al., 2011, Zhang et al.,
407 2012), which is likely to be the result of different contributions of biological and
408 anthropogenic local sources and those deposited through long range transport. This 10%
409 contribution is markedly less than for a nearby study in the grounds of the Centre for
410 Ecology & Hydrology (10 km north of Auchencorth Moss), a rural science park, where
411 the contribution of DON to TDN was 24% for the period June 2005 to April 2007
412 (Gonzalez Benitez et al., 2009). This site was within 1 km of an intensively managed
413 agricultural area (Easter Bush) dominated by sheep grazed grasslands and receiving high
414 rates mineral nitrogen fertiliser ($\sim 200 \text{ kg N ha}^{-1} \text{ y}^{-1}$). In areas of intensive agricultural
415 activity DON in precipitation increases, and is thought to be due to the addition of N
416 fertilisers, especially urea (Neff et al., 2002, Zhang et al., 2012). Auchencorth Moss does
417 not receive fertilisers and the number of sheep/cattle on site was low. Unfortunately our
418 experimental set up did not allow us to investigate the contribution of long range
419 transport to the DON concentrations, which may have been different between the two
420 sites. These differences may also have a methodological explanation, as many of these
421 earlier studies used bulk precipitation collectors instead of wet-only collectors, and these
422 are likely to have additional water-soluble organic N deposited via dry deposition, and
423 thus larger DON concentrations (Gonzalez Benitez et al., 2010).

424 Previous studies of precipitation DIN and DON have reported varying degrees of
425 correlation between DON, NH_4^+ and NO_3^- . For example, Violaki et al. (2010) found no
426 correlation between DON, NH_4^+ and NO_3^- in wet deposition in the Eastern

427 Mediterranean. Zhang et al. (2008) also did not observe correlation between DON, NH_4^+
428 and NO_3^- in precipitation at 15 sites in China. However, when an additional 37 sites from
429 across the globe were added to the study, positive relationships were found, suggesting a
430 common or similar sources of DON and DIN on a global, but not regional, scale. In a
431 number of studies, DON and NH_4^+ were correlated, or at least more closely correlated
432 than DON and NO_3^- , suggesting DON is more closely associated with agricultural
433 sources than with combustion processes (Cape et al., 2004, Chen et al., 2008, Cape et al.,
434 2011, Zhang et al., 2012). Our study showed weak to moderate correlations between
435 NH_4^+ and NO_3^- but no correlation between DIN and DON. This suggests that whilst the
436 DIN compounds might share a common source (e.g. secondary aerosol), DON does not.
437 This is further supported by the later seasonal maxima of DON compared to those of the
438 DIN compounds (Cape et al., 2011).

439 4.2 N in the soil solution

440 August 2009 had the highest DIN concentrations and was the driest month that still
441 produced enough sample for analysis. Samples collected in drier periods or from dipwells
442 situated in drier parts of the moss were more viscous and contained much particulate
443 matter, making filtering difficult. In contrast, DIN concentrations in dipwells during
444 wetter periods or in wetter parts of the moss were more dilute and samples contained
445 much less particulate matter. Adamson et al., (2001) found higher NH_4^+ concentrations,
446 but lower DON concentrations, during periods of low water table in a blanket bog in
447 England. They suggested that the microbial community responsible for ammonification
448 benefited from the fluctuating water table to a higher degree than nitrifying organisms,
449 resulting in enhanced NH_4^+ concentrations, which then accumulated if the fluctuation
450 continued (Adamson et al., 2001, Daniels et al., 2012). This may be due to nitrifiers being
451 less able to cope with the stress caused by fluctuating conditions than ammonifiers
452 (Voroney, 2007). Although the mean water table was lower in 2010, 2009 saw a greater
453 degree of water table fluctuation (Fig. 4).

454 Interestingly, the TDN and DIN deposited as precipitation in 2010 was larger than in
455 2009, but the soil chemistry showed larger concentrations of TDN and DIN in 2009 than
456 in 2010. The larger DIN concentrations in 2009 may be due to the activities of sheep
457 which grazed on this moorland at very low livestock density of less than 1 ewe per ha and
458 also a small herd of 15 – 20 cattle . In 2009, sheep and sheep droppings were observed in
459 and around the vicinity of the dip wells and where the soil cores were collected; the small

460 cattle herd (15-20) also had access to this area. However, in 2010, there were no cattle on
461 site and the sheep frequented an alternative area of the peatland.

462 The type of vegetation present in an ecosystem is known to have an effect on the
463 availability of N. Bog vegetation and the associated litters, such as the *Sphagnum* mosses
464 found at Auchencorth, can strip N, particularly NO_3^- , from precipitation, depending on
465 rainfall and vegetation N requirements (Adamson et al., 1998). This would likely result in
466 less N detected in the soil and associated waters. The vegetation cover at Auchencorth
467 does not change significantly year on year, but the location, type and density of livestock
468 does vary unpredictably.

469 4.3 The composition of N in stream water

470 Numerous studies have found DON to be the dominant form of stream water N in upland
471 catchments, with contributions varying from 54% to 82% annually (Chapman et al.,
472 2001, Cundill et al., 2007, Helliwell et al., 2007a). Similarly, NO_3^- is commonly the
473 second most dominant species reported in upland catchments, with NH_4^+ being present in
474 much lower concentrations.. At Auchencorth Moss, the Black Burn DON concentrations
475 were also the dominant form of N, at 75% ($48.1 \mu\text{mol N l}^{-1}$) and 74% ($50.0 \mu\text{mol N l}^{-1}$)
476 for 2009 and 2010, respectively. These high TDN contributions of DON are typical of
477 waters that drain peatlands due to their high organic matter content, often steep slopes
478 promoting surface runoff, and high rainfall. In addition, anaerobic and acidic conditions
479 reduce mineralisation of DON and nitrification to NO_3^- (Yesmin et al., 1995, Adamson et
480 al., 1998, Chapman et al., 2001). However, in contrast to the studies highlighted above,
481 water draining from Auchencorth Moss had higher mean annual NH_4^+ than NO_3^-
482 concentrations in both 2009 and 2010, with means of $14.1 \mu\text{mol N l}^{-1}$ (22%) in 2009 and
483 $12.9 \mu\text{mol N l}^{-1}$ (19%) in 2010 for NH_4^+ , and $2.3 \mu\text{mol N l}^{-1}$ (3.6%) in 2009 and $4.5 \mu\text{mol}$
484 N l^{-1} (6.6%) in 2010 for NO_3^- . Helliwell et al. (2007a) compared four upland regions in
485 the UK and found NO_3^- concentrations were lower when waters drained peaty soils than
486 those which drained more mineral soils. Usually, the leaching of inorganic N is
487 dominated by NO_3^- , whereas NH_4^+ remains in the soil in weak association with organic
488 matter and incorporation into clay lattices (Scherer, 1993, Chapman and Edwards, 1999,
489 Davies et al., 2005, Helliwell et al., 2007a). The anaerobic conditions resulting from
490 waterlogged soils may inhibit the oxidation of NH_4^+ to NO_3^- , resulting in a higher
491 incidence of NH_4^+ leaching into nearby water bodies (Helliwell et al., 2007a). Fluctuating
492 water tables have also been linked to higher NH_4^+ concentrations from the mineralisation

493 of organic nitrogen (Daniels et al., 2012, Paul and Clark, 1996). Vegetation can also
494 influence river water N-chemistry; peatlands with extensive blanket bog vegetation often
495 exhibit lower NO_3^- concentrations than those that drain mineral soils (Chapman et al.,
496 2001, Cundill et al., 2007).

497 No correlation was found between the wet deposition of atmospheric N and stream
498 concentrations suggesting that precipitation does not represent a major source of stream
499 water N.

500 4.4 Seasonal patterns of N in stream water

501 No clear seasonal pattern was identified for DON, although the general trend was higher
502 concentrations in warmer months. Chapman et al. (2001) studied 28 Scottish upland
503 streams and found DON to be larger in the summer than winter months. It was suggested
504 that this was due to an increase of in-stream DON production as a result of
505 algae/microorganisms in stream.

506 The seasonal pattern of NO_3^- , where concentrations were higher in cooler months and
507 lower in warmer months has been observed in numerous upland studies (Black et al.,
508 1993, Chapman et al., 2001, Daniels et al., 2012). In warmer months, the biological
509 uptake of NO_3^- by plants and microbes is at its highest, immobilising NO_3^- . In winter,
510 productivity declines, increasing the amount of NO_3^- available to be leached into the
511 stream (Black et al., 1993, Chapman et al., 2001, Helliwell et al., 2007b). The summer
512 peaks in June and July 2010 are unusual and different to the summer lows observed in
513 2009. The high June value appears to be due to one high concentration, skewing the mean
514 monthly concentration; the median value for June was $0 \mu\text{mol N l}^{-1}$. The high July 2010
515 peak is also evident in the mean concentrations of DON, and NH_4^+ , and is still reflected
516 in median values. The reason for these high values are unclear, however the differences
517 in discharge and precipitation between the two sampled years may be a contributing
518 factor.

519 4.5 DON speciation by GC \times GC-NCD

520 Most of the compounds contributing to DON in both the precipitation and stream samples
521 could not be identified. Whilst some of the compounds detected by the GC \times GC-NCD
522 appear in both sets of data, the two main compounds identified in the stream water were
523 either present in precipitation only in small amounts or not present at all. This suggested
524 that at least some sources of DON in precipitation and stream waters are different.

525 Schulten and Schnizer, (1998) investigated the chemistry of organic matter of humic
526 substances and soils. Amongst other compounds they identified pyrrole and benzonitrile,
527 along with derivatives of pyrrole. They concluded that heterocyclic N compounds, of
528 which pyrrole is one, were an important constituent of soil organic matter, contributing
529 up to 35% of total N. Pyrrole and pyrrolic compounds are a major N source in coal and
530 are often found in peats; they can result from the aerobic breakdown of the tetrapyrrole
531 ring found in chlorophyll or from the breakdown of extensin, which is a type of
532 hydroxyproline-rich polymer found in the cell walls of plants (van Smeerdijk and Boon,
533 1987, Schulten and Schnizer, 1998). It is therefore likely that the source of pyrrole in the
534 streams was the peat in the surrounding catchment. Pyrrole has also been identified in fog
535 waters where it was found to be quickly degraded during transport by photochemistry
536 (Anastasio and McGregor, 2000). It is thought to be present in the atmosphere originating
537 from soil dust rich in humic/fluvic material (Schulten and Schnizer, 1998, Anastasio and
538 McGregor, 2000). This may explain the presence of a small amount of pyrrole found in
539 the precipitation samples.

540 The three other compounds identified were all amines: dodecylamine (found only in the
541 precipitation), NDPA and decylamine (both only found in the stream).

542 4.6 GC \times GC-NCD limitations

543 Although the application of GC \times GC-NCD to precipitation and stream water samples was
544 largely successful, there were a number of issues. The main issue was the presence of
545 what appeared to be a contamination peak. Blank water samples were included before
546 sample analysis and N-butyl-benzenesulphonamide was not detected. N-butyl-
547 benzenesulphonamide is a plasticiser, and may have leached into the samples from the
548 storage bottles when stored in the freezer prior to analysis, or from SPE extraction tubes
549 by reaction with the DCM. This warrants further investigation.

550 In order to remove the DIN and water prior to analysis, solid phase extraction was used.
551 The most polar, water-soluble compounds, such as amino acids and urea, will be lost
552 during this step. Further work is needed to improve the extraction procedure to maximise
553 the applicability of the technique. Alternative approaches include liquid-liquid
554 extractions or stir bar sorptive extraction. Another issue is the small sample size of
555 precipitation samples, which combined with low concentrations, means that many of the
556 compounds are below the detection limit. In the stream samples, part of the DON may be

557 in less volatile forms that, although they can be measured by the ANTEK, are not
558 amenable to a GC analysis.

559 Identification of the peaks of unknown compounds may be improved by including
560 standards of more chemical compounds.

561 **5 Conclusions**

562 DON is an important source of nitrogen both in streams and precipitation and must not be
563 ignored in measurements of atmospheric nitrogen deposition rates or stream water
564 nitrogen balances. The mean volume-weighted concentration of DON found in the
565 precipitation over the total study period was $4.8 \mu\text{mol N l}^{-1}$, with a mean contribution of
566 9% to TDN.

567 DON in stream water was a major contributor to TDN (with an overall mean of 75%) and
568 showed no clear seasonal pattern. The presence of pyrrole, the large DON concentrations
569 and the high NH_4^+ in stream water, suggest mineralisation of organic N stored in peat was
570 one of the sources.

571 In soil water, DON contributed an overall mean of 92% to TDN. The mean
572 concentrations of DON did not vary greatly between the years but the concentration of
573 NH_4^+ did ($8.6 \mu\text{mol N l}^{-1}$ in 2009 and $0.2 \mu\text{mol N l}^{-1}$ in 2010), possibly due to localised
574 impact of animal waste and the importance of water table variation on the availability of
575 N to plants and on immobilisation.

576 GC \times GC-NCD shows promise as a technique to identify compounds in stream
577 water/precipitation and their potential sources. The number of unknown compounds
578 detected may be reduced by running more standards for comparison. The contamination
579 issue needs to be investigated to determine when/how a plasticiser was leached into the
580 samples.

581 **6 Acknowledgements**

582 This work was funded by the UK Natural Environment Research Council (NERC)
583 through a PhD studentship grant number NE/H526351/1 and standard grant
584 ((NE/F01905X/1) and the EU projects NitroEurope IP (FP6 proposal number 017841)
585 and ECLAIRE "Effects of Climate Change on Air Pollution Impacts and Response
586 Strategies for European Ecosystems" (FP7-ENV-2011/282910). The authors would like
587 to gratefully acknowledge the assistance of Ian Leith, Ivan Simmons and Netty van Dijk,

588 with sample collection, and Harwell Analytics laboratory for analysis of the EMEP
589 samples.

590 **References**

591 Adahchour, M., Beens, J. and Brinkman, U. A. T. (2008) 'Recent developments in the
592 application of comprehensive two-dimensional gas chromatography', *Journal of
593 Chromatography A*, 1186(1-2), 67-108.

594

595 Adam, F., Bertoncini, F., Brodusch, N., Durand, E., Thiebaut, D., Espinat, D. and
596 Hennion, M.-C. (2007) 'New benchmark for basic and neutral nitrogen
597 compounds speciation in middle distillates using comprehensive two-dimensional
598 gas chromatography', *Journal of Chromatography A*, 1148(1), 55-64.

599

600 Adamson, J. K., Scott, W. A. and Rowland, A. P. (1998) 'The dynamics of dissolved
601 nitrogen in a blanket peat dominated catchment', *Environmental Pollution*, 99(1),
602 69-77.

603

604 Adamson, J. K., Scott, W. A., Rowland, A. P. and Beard, G. R. (2001) 'Ionic
605 concentrations in a blanket peat bog in northern England and correlations with
606 deposition and climate variables', *European Journal of Soil Science*, 52(1), 69-79.

607

608 Altieri, K.E., Turpin, B. J. and Seitzinger, S. P. (2009) 'Composition of Dissolved
609 Organic Nitrogen in Continental Precipitation Investigated by Ultra-High
610 Resolution FT-ICR Mass Spectrometry', *Environmental Science & Technology*,
611 43(18), 6950-6955

612

613 Anastasio, C. and McGregor, K. G. (2000) 'Photodestruction of dissolved organic
614 nitrogen species in fog waters', *Aerosol Science and Technology*, 32(2), 106-119.

615

616 Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton-West, R., Hargreaves, K. J.,
617 Flechard, C. and Fowler, D. (2004) 'Linking land-atmosphere-stream carbon
618 fluxes in a lowland peatland system', *Global Biogeochemical Cycles*, 18(1),
619 GB1024.

620

621 Black, K. E., Lowe, J. A. H., Billett, M. F. and Cresser, M. S. (1993) 'Observations on
622 the changes in nitrate concentrations along streams in seven upland moorland
623 catchments in Northeast Scotland', *Water Research*, 27(7), 1195-1199.

624

625 Calderon, S. M., Poor, N. D. and Campbell, S. W. (2007) 'Estimation of the particle and
626 gas scavenging contributions to wet deposition of organic nitrogen', *Atmospheric
627 Environment*, 41(20), 4281-4290.

628

629 Cape, J., Anderson, M., Rowland, A. and Wilson, D. (2004) 'Organic nitrogen in
630 precipitation across the United Kingdom', *Water, Air, & Soil Pollution: Focus*,
631 4(6), 25-35.

632

633 Cape, J. N., Cornell, S. E., Jickells, T. D. and Nemitz, E. (2011) 'Organic nitrogen in the
634 atmosphere - Where does it come from? A review of sources and methods',
635 *Atmospheric Research*, 102(1-2), 30-48.

636
637 Chapman, P. J. and Edwards, A. C. (1999) 'The impact of atmospheric
638 nitrogen deposition on the behaviour of nitrogen in surface waters' in Langan, S.
639 J., ed. *The Impact of Nitrogen Deposition on Natural and Semi-Natural
640 Ecosystems*, Dordrecht, The Netherlands: Kluwer Academic Publishers, 153-212.
641
642 Chapman, P. J., Edwards, A. C. and Cresser, M. S. (2001) 'The nitrogen composition of
643 streams in upland Scotland: some regional and seasonal differences', *Science of
644 the Total Environment*, 265(1-3), 65-83.
645
646 Chen, N.-W., Hong, H.-S. and Zhang, L.-P. (2008) 'Wet deposition of atmospheric
647 nitrogen in Jiulong River Watershed', *Huanjing Kexue*, 29(1), 38-46.
648
649 Cheng, Y., Li, S.-M. and Leithead, A. (2006) 'Chemical Characteristics and Origins of
650 Nitrogen-Containing Organic Compounds in PM2.5 Aerosols in the Lower Fraser
651 Valley', *Environmental Science & Technology*, 40(19), 5846-5852.
652
653 Cornell, S. E. (2011) 'Atmospheric nitrogen deposition: Revisiting the question of the
654 importance of the organic component', *Environmental Pollution*, 159(10), 2214-
655 2222.
656
657 Cornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P. and Duce, R. A. (2003)
658 'Organic nitrogen deposition on land and coastal environments: a review of
659 methods and data', *Atmospheric Environment*, 37(16), 2173-2191.
660
661 Cundill, A. P., Chapman, P. J. and Adamson, J. K. (2007) 'Spatial variation in
662 concentrations of dissolved nitrogen species in an upland blanket peat catchment',
663 *Science of the Total Environment*, 373(1), 166-177.
664
665 Daniels, S. M., Evans, M. G., Agnew, C. T. and Allott, T. E. H. (2012) 'Ammonium
666 release from a blanket peatland into headwater stream systems', *Environmental
667 Pollution*, 163, 261-272.
668
669 Davies, J. J. L., Jenkins, A., Monteith, D. T., Evans, C. D. and Cooper, D. M. (2005)
670 'Trends in surface water chemistry of acidified UK Freshwaters, 1988-2002',
671 *Environmental Pollution*, 137(1), 27-39.
672
673 Dinsmore, K. J. (2008) *Atmosphere-Soil-Stream Greenhouse Gas Fluxes from Peatlands*,
674 unpublished thesis The University of Edinburgh.
675
676 Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drever, J. and Helfter, C.
677 (2010) 'Role of the aquatic pathway in the carbon and greenhouse gas budgets of a
678 peatland catchment', *Global Change Biology*, 16, 2750-2762.
679
680 Dinsmore, K. J., Billett, M. F., Dyson, K. E. (2013) 'Temperature and precipitation drive
681 temporal variability in aquatic carbon and GHG concentrations and fluxes in a
682 peatland catchment', *Global Change Biolog*, 10 (7), 2133-2148
683
684 Flechard, C. R. and Fowler, D. (1998) 'Atmospheric ammonia at a moorland site. I: The
685 meteorological control of ambient ammonia concentrations and the influence of

686 local sources', *Quarterly Journal of the Royal Meteorological Society*, 124(547),
687 733-757.

688

689 Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson,
690 D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S.
691 A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmggen, U., Neirynck, J.,
692 Personne, E., Kruit, R. W., Bahl, K. B., Flechard, C., Tuovinen, J. P., Coyle, M.,
693 Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S.,
694 Paoletti, E., Mikkelsen, T. N., Poulsen, H. R., Cellier, P., Cape, J. N., Horváth, L.,
695 Loreto, F., Niinemets, Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D.,
696 Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüeggemann, N., Boltenstern,
697 S. Z., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A.,
698 Chaumerliac, N. and Erisman, J. W. (2009) 'Atmospheric Composition Change:
699 Ecosystems - Atmosphere interactions', *Atmospheric Environment*, 43(33), 5193-
700 5267.

701

702 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
703 Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A.,
704 Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R. and Vorusmarty, C. J.
705 (2004) 'Nitrogen cycles: past, present, and future', *Biogeochemistry*, 70(2), 153-
706 226.

707

708 Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R.,
709 Martinelli, L. A., Seitzinger, S. P. and Sutton, M. A. (2008) 'Transformation of
710 the nitrogen cycle: Recent trends, questions, and potential solutions', *Science*,
711 320(5878), 889-892.

712

713 Gonzalez Benitez, J. M., Cape, J. N., Heal, M. R., van Dijk, N. and Diez, A. V. (2009)
714 'Atmospheric nitrogen deposition in south-east Scotland: Quantification of the
715 organic nitrogen fraction in wet, dry and bulk deposition', *Atmospheric
716 Environment*, 43(26), 4087-4094.

717

718 Helliwell, R. C., Coull, M. C., Davies, J. J. L., Evans, C. D., Norris, D., Ferrier, R. C.,
719 Jenkins, A. and Reynolds, B. (2007a) 'The role of catchment characteristics in
720 determining surface water nitrogen in four upland regions in the UK', *Hydrology
721 and Earth System Sciences*, 11(1), 356-371.

722

723 Helliwell, R. C., Davies, J. J. L., Evans, C. D., Jenkins, A., Coull, M. C., Reynolds, B.,
724 Norris, D. and Ferrier, R. C. (2007b) 'Spatial and seasonal variations in nitrogen
725 leaching and acidity across four acid-impacted regions of the UK', *Water Air and
726 Soil Pollution*, 185(1-4), 3-19.

727

728 Hertel, O., Reis, S., Skjøth, C. A., Bleeker, A., Harrison, R., Cape, J. N., Fowler, D.,
729 Skiba, U., Simpson, D., Jickells, T., Baker, A., Kulmala, M., Gyldenkærne, S.,
730 Sørensen, L. L. and Erisman, J. W. (2011) 'Nitrogen processes in atmosphere' in
731 Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt,
732 P., van Grinsven, H. and Grizzetti, B., eds., *The European Nitrogen Assessment:
733 Sources, Effects and Policy Perspectives*, Cambridge, UK: Cambridge University
734 Press, pp. 117-210.

735

736 Kocak, D., Özel, M. Z., Gogus, F., Hamilton, J. F. and Lewis, A. C. (2012)
737 'Determination of volatile nitrosamines in grilled lamb and vegetables using
738 comprehensive gas chromatography – Nitrogen chemiluminescence detection',
739 *Food Chemistry*, 135(4), 2215-2220.

740

741 Maie, N., Parish, K. J., Watanabe, A., Knicker, H., Benner, R., Abe, T., Kaiser, K. and
742 Jaffé, R. (2006) 'Chemical characteristics of dissolved organic nitrogen in an
743 oligotrophic subtropical coastal ecosystem', *Geochimica et Cosmochimica Acta*,
744 70(17), 4491-4506.

745

746 Mitchell, G. H. and Mykura, W. (1962) *The geology of the neighbourhood of Edinburgh*,
747 3rd ed., Edinburgh: H.M.S.O. publishing.

748

749 Moret, S., and Conte, L. S. (2002). 'A rapid method for polycyclic aromatic hydrocarbon
750 determination in vegetable oils', *Journal of Separation Science*, 25, 96-100.

751

752 Neff, J. C., Holland, E. A., Dentener, F. J., McDowell, W. H. and Russell, K. M. (2002)
753 'The origin, composition and rates of organic nitrogen deposition: A missing piece
754 of the nitrogen cycle?', *Biogeochemistry*, 57(1), 99-136.

755

756 Nieder, R. and Benbi, D. K. (2008) *Carbon and nitrogen in the terrestrial environment*,
757 illustrated ed., Springer.

758

759 Özel, M. Z., Gogus, F., Lewis, A. C. (2003) 'Subcritical water extraction of essential oils
760 from Thymbra spicata', *Food Chemistry*, 82, 381-386.

761

762 Özel, M. Z., Gogus, F. and Lewis, A. C. (2006) 'Determination of Teucrium chamaedrys
763 volatiles by using direct thermal desorption-comprehensive two-dimensional gas
764 chromatography-time-of-flight mass spectrometry', *Journal of Chromatography*
765 A, 1114(1), 164-169.

766

767 Özel, M. Z., Gogus, F., Yagci, S., Hamilton, J. F. and Lewis, A. C. (2010) 'Determination
768 of volatile nitrosamines in various meat products using comprehensive gas
769 chromatography-nitrogen chemiluminescence detection', *Food and Chemical
770 Toxicology*, 48(11), 3268-3273.

771

772 Özel, M. Z., Hamilton, J. F. and Lewis, A. C. (2011) 'New Sensitive and Quantitative
773 Analysis Method for Organic Nitrogen Compounds in Urban Aerosol Samples',
774 *Environmental Science & Technology*, 45, 1497-1505.

775

776 Paul, E. A. and Clark, F. E. (1996) *Soil Microbiology and Biochemistry*, London:
777 Academic Press.

778

779 Prospero, J. M., Barrett, K., Church, T., Dentener, F., Duce, R. A., Galloway, J. N., Ii, H.
780 L., Moody, J. and Quinn, P. (1996) 'Atmospheric Deposition of Nutrients to the
781 North Atlantic Basin', *Biogeochemistry*, 35(1), 27-73.

782

783 Ramirez, N., Özel, M. Z., Lewis, A. C., Marce, R. M., Borrull, F. and Hamilton, J. F.
784 (2012) 'Determination of nicotine and N-nitrosamines in house dust by
785 pressurized liquid extraction and comprehensive gas chromatography-Nitrogen
786 chemiluminescence detection', *Journal of Chromatography A*, 1219, 180-187.

787
788 Russell, K. M., Galloway, J. N., Macko, S. A., Moody, J. L. and Scudlark, J. R. (1998)
789 'Sources of nitrogen in wet deposition to the Chesapeake Bay region',
790 *Atmospheric Environment*, 32(14-15), 2453-2465.
791
792 Scherer, H. W. (1993) 'Dynamics and availability of the non-exchangeable NH₄-N:a
793 review.', *European journal of agronomy* 2(3), 149-160.
794
795 Schlesinger, W. H. (1997) *Biogeochemistry : an analysis of global change*, 2nd ed., San
796 Diego, Calif. ; London: Academic Press.
797
798 Schulten, H. R. and Schnizer, M. (1998) 'The chemistry of soil organic nitrogen: a
799 review', *Biology and fertility of soils* 26, 1-15.
800
801 Skiba, U., Jones, S. K., Drever, J., Helfter, C., Anderson, M., Dinsmore, K., McKenzie,
802 R., Nemitz, E. and Sutton, M. A. (2013) 'Comparison of soil greenhouse gas
803 fluxes from extensive and intensive grazing in a temperate maritime climate',
804 *Biogeosciences*, 10, 1231-1241.
805
806 Tian, Y. H., Yang, L. Z., Yin, B. and Zhu, Z. L. (2011) 'Wet deposition N and its runoff
807 flow during wheat seasons in the Tai Lake Region, China', *Agriculture
808 Ecosystems & Environment*, 141(1-2), 224-229.
809
810 van Smeerdijk, D. G. and Boon, J. J. (1987) 'Characterisation of
811 subfossil *Sphagnum* leaves, rootlets of ericaceae and their peat by pyrolysis-high-
812 resolution gas chromatography-mass spectrometry', *Journal of Analytical and
813 Applied Pyrolysis*, 11, 377-402.
814
815 Violaki, K., Zarbas, P. and Mihalopoulos, N. (2010) 'Long-term measurements of
816 dissolved organic nitrogen (DON) in atmospheric deposition in the Eastern
817 Mediterranean: Fluxes, origin and biogeochemical implications', *Marine
818 Chemistry*, 120(1-4), 179-186.
819
820 Vogt, E. (2011) *Nitrogen fluxes at the landscape scale: A case study in
821 Scotland* unpublished thesis The University of Edinburgh.
822
823 Voroney, R. P. (2007) 'The Soil Habitat' in Paul, E. A., ed. *Soil Microbiology, Ecology
824 and Biochemistry*, Third ed., San Diego: Academic Press, 25-49.
825
826 Yan, X. W. (2002) 'Sulfur and nitrogen chemiluminescence detection in gas
827 chromatographic analysis', *Journal of Chromatography A*, 976(1-2), 3-10.
828
829 Yesmin, L., Gammack, S. M., Sanger, L. J. and Cresser, M. S. (1995) 'Impact of
830 atmospheric N deposition on inorganic- and organic-N outputs in water draining
831 from peat', *Science of The Total Environment*, 166(1-3), 201-209.
832
833 Zhang, Y., Song, L., Liu, X. J., Li, W. Q., Lu, S. H., Zheng, L. X., Bai, Z. C., Cai, G. Y.
834 and Zhang, F. S. (2012) 'Atmospheric organic nitrogen deposition in China',
835 *Atmospheric Environment*, 46, 195-204.
836

837 Zhang, Y., Zheng, L. X., Liu, X. J., Jickells, T., Cape, J. N., Goulding, K., Fangmeier, A.
838 and Zhang, F. S. (2008) 'Evidence for organic N deposition and its anthropogenic
839 sources in China', *Atmospheric Environment*, 42(5), 1035-1041.

840 Table 1. Statistics of annual concentrations of NH_4^+ , NO_3^- , DON and TDN for 2009 and
 841 2010 in wet-only precipitation. Values are based on individual samples collected over the
 842 two year period. N* indicates the number of samples collected.

	NO_3^- $\mu\text{mol N l}^{-1}$	NH_4^+ $\mu\text{mol N l}^{-1}$	DON $\mu\text{mol N l}^{-1}$	TDN $\mu\text{mol N l}^{-1}$
2009				
Mean	15	27	5	47
Min	< LOD	< LOD	< LOD	6
Max	148	273	50	426
Standard deviation	21	35	4	50
N*	227	227	63	63
% TDN	32	58	10	100
2010				
Mean	23	31	5	58
Min	2	2	< LOD	8
Max	260	218	45	483
Standard deviation	30	33	5	59
N*	169	169	63	63
% TDN	39	53	8	100

843 Table 2. Statistics of annual concentrations of NH_4^+ , NO_3^- , DON and TDN for 2009 and
 844 2010 in soil water. Values are based on individual samples collected from dip wells over
 845 the two year period. N* indicates the number of samples collected.

	NO_3^- $\mu\text{mol N l}^{-1}$	NH_4^+ $\mu\text{mol N l}^{-1}$	DON $\mu\text{mol N l}^{-1}$	TDN $\mu\text{mol N l}^{-1}$
<u>2009</u>				
Mean	1	9	57	67
Min	< LOD	< LOD	11	11
Max	6	91	319	389
Median	0	1	48	54
Standard deviation	2	15	44	54
N*	72	72	72	72
% of TDN	2	13	85	100
<u>2010</u>				
Mean	< LOD	< LOD	59	60
Min	< LOD	< LOD	23	23
Max	8	7	285	285
Median	0	0	44	44
Standard deviation	1	1	43	43
N*	54	54	45	45
% of TDN	0.3	0.4	99.3	100

846

847 Table 3. Statistics of annual concentrations of NH_4^+ , NO_3^- , DON and TDN for 2009 and
 848 2010 in stream water. Values are based on individual samples collected over the two year
 849 period. N* indicates the number of samples collected.

	NO_3^- $\mu\text{mol N l}^{-1}$	NH_4^+ $\mu\text{mol N l}^{-1}$	DON $\mu\text{mol N l}^{-1}$	TDN $\mu\text{mol N l}^{-1}$
<u>2009</u>				
Mean	2	14	48	65
Min	< LOD	5	10	25
Max	14	22	96	118
Median	0	14	47	64
Standard deviation	4	3	21	21
N*	43	43	43	43
% of TDN	4	22	75	100
<u>2010</u>				
Mean	5	13	50	67
Min	< LOD	< LOD	16	16
Max	15	52.3	104	145
Median	4	7.9	46	59
Standard deviation	4	13.8	20	31
N*	48	48	48	48
% of TDN	7	19	74	100

850

851

853 Table 4. Summary of compounds and their concentrations ($\mu\text{mol N l}^{-1}$) detected by the GC \times GC-NCD, and overall DON concentrations ($\mu\text{mol N l}^{-1}$)
 854 derived from TDN-DIN in precipitation samples. Samples collected on dates shaded in grey did not contain compounds at measurable concentrations
 855 by the GC \times GC-NCD. Blank spaces indicate a value below the detection limit. Rt_1 and Rt_2 are retention times in seconds for the first and second GC
 856 columns.

Sample Rt ₁ /Rt ₂	DON (TDN-DIN)	Pyrrole 375/1.24	Benzonitrile 825/1.8	Unknown B 11.45/1.52	Unknown C 1218/1.48	Dodecylamine 1590/1.5	Unknown D 1615/1.7	Unknown E 1910/1.7	Unknown F 2200/2.09
09/07/2010	9.2							1.6	1.7
13/07/2010	13.8		0.4				0.5		
14/07/2010	6.5								
15/07/2010	5.5								
09/08/2010	9.4						0.6		1.8
12/08/2010	6.5							0.3	0.3
20/08/2010	3.5	0.2						0.6	
23/08/2010	2.4							0.5	
06/09/2010	3.1							1.9	
13/09/2010	3.2								
14/09/2010	5.8								
18/09/2010	3.3								
01/10/2010	0.5								
05/10/2010	1.0	0.7		2.0					
06/10/2010	-2.4								
18/10/2010	2.1			0.7			0.7		
21/10/2010	19.8				1.3		0.5	2.4	
24/10/2010	7.1				1.2				
25/10/2010	1.2				0.5		0.7	1.8	

857

858

859

860 Table 4. continued. Summary of compounds and their concentrations ($\mu\text{mol N l}^{-1}$) detected by the GC \times GC-NCD, and DON concentrations ($\mu\text{mol N l}^{-1}$)
 861 as TDN-DIN in precipitation samples. Samples collected on dates shaded in grey did not contain compounds at measurable concentrations by the
 862 GC \times GC-NCD. Blank spaces indicate a value below the detection limit. Rt_1 and Rt_2 are retention times in seconds for the first and second GC columns.
 863

Sample	DON	Pyrrole	Benzonitrile	Unknown B	Unknown C	Dodecylamine	Unknown D	Unknown E	Unknown F
Rt_1/Rt_2	(TDN-DIN)	375/1.24	825/1.8	11.45/1.52	1218/1.48	1590/1.5	1615/1.7	1910/1.7	2200/2.09
26/10/2010	5.8				0.5			0.9	
01/11/2010	3.9								
02/11/2010	7.0						0.1		
03/11/2010	5.1							0.4	
04/11/2010	2.9								
05/11/2010	3.9								
06/11/2010	4.6								
08/11/2010	9.9							0.4	
09/11/2010	-2.4								
10/11/2010	-0.2								
11/11/2010	5.0							0.7	
13/11/2010	6.1							0.6	

864

865 Table 5. Summary of compounds and their concentrations ($\mu\text{mol N l}^{-1}$) detected by the GC \times GC-NCD, and DON concentrations ($\mu\text{mol N l}^{-1}$) detected
 866 by ANTEK in stream water samples. Samples collected on dates shaded in grey did not contain compounds at measurable concentrations by the
 867 GC \times GC-NCD. Blank spaces indicate a measured value of below the detection limit.. Rt_1 and Rt_2 are retention times in seconds for the first and second
 868 GC columns.

Sample Rt ₁ /Rt ₂	DON (TDN-DIN)	Pyrrole 375/1.24	Unknown A 415/1.24	Benzonitrile 825/1.8	N-nitrosodipropylamine 970/1.4	Unknown B 11.45/1.52	Decylamine 1295/1.64	Unknown E 1910/1.7	Unknown F 2200/2.09
11/08/2010	45.9	1.3	3.2					0.9	
19/08/2010	54.8	0.2	0.3		1.2				
26/08/2010	85.2	0.7	2.7	3.0					
10/09/2010	30.5	0.2	0.8			1.6			1.4
30/09/2010	87.2	3.8	6.9					1.5	
06/10/2010	57.8	5.0	3.9					1.8	
12/10/2010	69.4	0.8	2.1			1.4			
14/10/2010	60.1		0.7			1.3			
15/10/2010	49.1								
18/10/2010	46.1	1.8	3.4						
19/10/2010	75.0		1.4		1.3			1.0	0.8
21/10/2010	58.2	2.3	4.0						
23/10/2010	65.9	0.3	1.9		0.7			1.2	0.5
26/10/2010	56.5	1.0							0.9
28/10/2010	57.6	0.7	1.8		1.7			1.8	0.6
02/11/2010	61.5	0.6	2.3					1.9	1.0
03/11/2010	69.5	2.5	3.4					0.4	
04/11/2010	79.4	0.6	0.6					0.4	0.7
05/11/2010	58.9								
10/11/2010	70.7		0.5					0.5	0.4
11/11/2010	65.6	4.3	1.8			1.1		1.6	1.7

869

870 Figure 1: Schematic map of catchment and sampling sites at Auchencorth Moss. Key: (A)
 871 study catchment outlet and stream sampling site; (B) monitoring station (wet only analyser);
 872 (C) dip wells. Adapted from Dinsmore et al., (2010).

873

874

875 Figure 2. Volume-weighted monthly average concentrations of NH_4^+ (grey), NO_3^- (black) and
 876 DON (white) in wet only precipitation.

877

878 Figure 3. Monthly concentrations of NH_4^+ (grey), NO_3^- (black) and DON (white) in soil
 879 water. The line represents monthly water table elevation. The June-09 sample was misplaced
 880 and Dec-09 and Jan 2010 were frozen, the remaining blank spaces indicate the dip wells were
 881 dry on the day of collection.

882

883

884 Figure 4. Discharge-weighted monthly mean concentrations of NH_4^+ (grey), NO_3^- (black) and
 885 DON (white) in stream water. The line represents mean monthly air temperature.

886

887 Figure 5. Mean monthly concentrations of the individual DON compounds found in
 888 precipitation water. (a) includes the DON fraction identified from the ANTEK (white bar).
 889 (b) excludes the unidentified fraction, so that the speciation achieved by GC \times GC-NCD is
 890 more clearly seen.

891

892 Figure 6. Mean monthly concentrations of the individual compounds found in stream water.
 893 (a) includes the DON fraction identified from the ANTEK (white bar) (b) excludes the
 894 'unidentified' fraction, so the fraction detected by GC \times GC-NCD is more clearly seen.