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Abstract 8 

Attributing changes in river water quality to specific factors is challenging because multiple 9 

factors act at different temporal and spatial scales, and it often requires examining long-term 10 

series of continuous data. But data consistency is sometimes hindered by the lack of 11 

observations of relevant water quality variables and the low and uneven sampling frequency 12 

that characterize many water quality monitoring schemes. Nitrate and dissolved phosphate 13 

concentration time-series (1980–2011) from 50 sampling stations across a large 14 

Mediterranean river basin were analyzed to disentangle the role of hydrology, land-use 15 

practices, and global climatic phenomena on the observed nutrient patterns, with the final aim 16 

of understanding how the different aspects of global change affected nutrient dynamics in the 17 

basin. Dynamic Factor Analysis (DFA) provided the methodological framework to extract 18 

underlying common patterns in nutrient time-series with missing observations. Using 19 

complementary methods such as frequency and trend analyses, we sought to further 20 

characterize the common patterns and identify the drivers behind their variability across time 21 

and space. Seasonal and other cyclic patterns were identified, as well as trends of increase or 22 

decrease of nutrient concentration in particular areas of the basin. Overall, the impact of 23 

global change, which includes both climate change and anthropogenic impacts, on the 24 

dynamics of nitrate concentration across the study basin was found to be a multifaceted 25 

process including regional and global factors, such as climatic oscillations and agricultural 26 

irrigation practices, whereas impacts on phosphate concentration seemed to depend more on 27 

local impacts, such as urban and industrial activities, and less on large-scale factors. 28 
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1. Introduction 29 

The Earth system is intrinsically dynamic but the intensity and rate of recent environmental 30 

changes are overall unprecedented (Meybeck, 2003; García-Ruiz et al., 2011). Land-use change 31 

and management practices, pollution, human demography shifts, and climate change are 32 

components of global environmental change (Rosenzweig et al., 2008), understood as the 33 

synergy between climate change and direct action of human activities on the territory (U.S. 34 

Global Change Research Act, 1990). Freshwaters are at the forefront of the phenomena 35 

associated to global change (Vörösmarty et al., 2010), and impacts on water resources 36 

availability as well as on their quality are extensive (Parmesan and Yohe, 2003; Milly et al., 37 

2005; Grimm et al., 2008; Rabalais et al., 2009; Gallart et al., 2011). 38 

 39 

Nutrient pollution derived from anthropogenic activities impacts inland and coastal waters, 40 

resulting in serious environmental and human health issues, and impacting the economy 41 

(Howarth et al., 2002; Woodward et al., 2012). A fundamental concern in river ecology  is 42 

therefore to understand the spatial patterns of nutrient concentration and loading in rivers, 43 

their variation during the last decades, and whether these are promoted by the increasing 44 

human activities (Grizzetti et al., 2011), or associated to climate change (Marcé et al., 2010). 45 

This is particularly relevant in Mediterranean regions where the imbalance between available 46 

water resources and increased demands has become a growing problem (Milly et al., 2005; 47 

Bovolo et al., 2011), and where streams and rivers bear concurrent additional pressures such 48 

as damming, water extraction, and urbanization (Sabater and Tockner, 2010). In Spain, for 49 

instance, the construction rate of large dams peaked during the 1960s and 1970s, whereas 50 

human population density and urban area in the Mediterranean region increased during the 51 

1990s (Cooper et al., 2013). Furthermore, nutrient pollution  in Mediterranean rivers 52 

contributes to eutrophication because of the co-existence of naturally-occurring low flows and 53 

high water demand (Caille, 2012). However, it is challenging to attribute changes in nutrient 54 
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concentration dynamics to specific factors, because factors of change exist and act at different 55 

temporal and spatial scales (Kundzewicz and Krysanova, 2010). Identifying factors and causes 56 

often requires examining long-term series of data, which should be consistent and of good 57 

quality. Such detailed analysis, which aims to extract the key properties enclosed in time-58 

series, is essential to obtain insight of the physical, biological, or socioeconomical events and 59 

associated impacts that originally shaped these time-series (Ghil et al., 2002). It is realistic to 60 

consider that temporal trends and spatial patterns reveal emerging environmental problems 61 

(Lane et al., 1994; Lovett et al., 2007; Marcé et al., 2010; Estrada et al., 2013). Data consistency 62 

can be however affected by the lack of observations of relevant water quality variables and the 63 

low or uneven sampling frequency, which are common characteristics of many water quality 64 

monitoring schemes worldwide. These impede the appropriate analysis of the time-series 65 

available from long-term monitoring, eventually affecting management decisions on the 66 

minimization of effects of global change, and particularly in Mediterranean regions, where 67 

there is a dearth of knowledge compared to other temperate regions (Benítez-Gilabert et al., 68 

2010). The vast majority of studies of global change impact based on the analysis of longterm 69 

data use time-series methods like the Mann–Kendall and the Seasonal Kendall analyses for 70 

trend detection (Chang, 2008; Bouza-Deaño et al., 2008; Argerich et al., 2013); wavelet analysis 71 

for temporal patterns (Kang and Lin, 2007); and combinations of statistical models such as 72 

univariate and multivariate regressions (Tilman et al., 2001); and analysis of variance and 73 

variography (i.e., spatial dependence measured as a function of the distance and direction 74 

separating two locations; Bernal et al., 2013). Spectral analysis (e.g., Singular Spectrum 75 

Analysis), is limited to characterizing the spectral density to detect any periodicities in the data 76 

and does not necessarily allow the identification of common patterns embedded in a collection 77 

of time-series (Zuur et al., 2003). Furthermore, most of the above mentioned  methods do not 78 

easily accommodate missing observations, which are extremely abundant in most public 79 

environmental databases. The –restrictions on the number of time-series that can be analyzed 80 
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and the requirements of continuous time-series needed to implement such methods make the 81 

analysis of water quality datasets in large regions difficult and cumbersome. Since in most 82 

occasions the impact of global change on a given ecosystem consists in the overlap of multiple 83 

stressors acting at both regional and local scales, it is necessary using methodologies that 84 

explicitly consider the inextricable link between temporal and spatial patterns of change and 85 

that are able to accommodate missing values. We use a combination of Dynamic Factor 86 

Analysis (DFA), classical time-series methods, and spatial regression models to extract 87 

underlying common patterns in a set of time-series and to depict their relationships with local 88 

and global scale phenomena. We apply the above to a set of river nutrient concentration time-89 

series within a Mediterranean basin in order to identify temporal and spatial patterns at the 90 

basin-wide scale, and to understand how global change shapes these patterns. Both nitrate 91 

and dissolved phosphate dynamics were analyzed in order to disentangle the role of 92 

hydrology, land-use practices, and climate phenomena on the observed patterns, with the final 93 

aim of understanding how the different aspects of global change may affect nutrient variability 94 

(and hence water quality) in the basin. 95 

 96 

2. Study area 97 

The Ebro River is one of the main tributaries of the Mediterranean Sea. The mean annual 98 

runoff at the outlet is 13 408 hm3. The basin covers a highly heterogeneous area of ca. 85 500 99 

km2, which extends from the southern-facing side of the Cantabrian range and Pyrenees and 100 

the northern-facing side of the Iberian Massif until the river reaches the Mediterranean Sea 101 

(Sabater et al., 2009). The geographical setting of the Ebro River determines a large range of 102 

climatic conditions (Sabater et al., 2009). Mean annual precipitation varies from over 2000mm 103 

in the Pyrenees to less than 400mm in the arid interior. Overall, silicic materials are located in 104 

the uppermost altitudes while calcareous materials occur at lower elevations (Lassaletta et al., 105 

2009). The water biogeochemical characteristics are highly influenced by anthropogenic 106 
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activities. The main effects are those due to water discharge regulation (i.e., the construction 107 

of large reservoirs) and agriculture (determining increases in nitrate concentration) (Romaní et 108 

al., 2010). The intense use of water throughout the basin (Boithias et al., 2014) puts the Ebro 109 

River under strong pressure particularly in the most downstream sections during dry annual 110 

periods, when irrigation is widespread. The basin started a sanitation plan during the 90s that 111 

progressively covered most of the local inputs. 112 

 113 

3 Materials and methods 114 

3.1 Time-series data 115 

Existing nitrate and phosphate concentration as well as water discharge data of the Ebro River 116 

Basin were collected from public databases (Ebro Basin Authority (CHE)). The frequency of 117 

sampling was monthly. We selected 50 monitoring points distributed all across the basin that 118 

showed the longest time-series, consisting in 31 year-long (1980–2011) monthly data. Thus, 119 

these time-series had a maximum length of 372 data points, although most of the stations 120 

contained observation gaps. Outliers, related mainly to recording errors, were manually 121 

removed considering expected ranges of values for each nutrient. Discharge time-series were 122 

available in 37 of the sampling sites. 123 

 124 

3.2 Detection and attribution of global change effects: methodological steps 125 

The first step in defining global change effects on nutrient time-series was to detect common 126 

temporal patterns (i.e., cycles and trends) (Sect. 3.3) in the 50 nutrient time series (nitrate or 127 

phosphate) using Dynamic Factor Analysis (DFA) (Zuur et al., 2003). Once the common patterns 128 

for nitrate and phosphate were identified, we described the significant cycles and trends 129 

present in those patterns with classical frequency (Sect. 3.4) and trend (Sect. 3.5) analyses. 130 

Subsequently, the potential dependence on hydrological variability was sought by exploring 131 

any significant association between patterns and water discharge time-series (Sect. 3.6). We 132 
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finally assessed the spatial variability of these patterns and their relationship to environmental 133 

change drivers in the region by means of spatial regression models (Sect. 3.7) and clustering 134 

(Sect. 3.8). 135 

 136 

3.3 Extraction of common nutrient concentration patterns 137 

Dynamic Factor Analysis (DFA; Zuur et al., 2003) is a dimension-reduction method that 138 

estimates underlying common patterns in a set of time-series. It is based in the so-called state-139 

space model, which treats each observed time-series as a linear combination of multiple state 140 

processes (Holmes et al., 2012). A considerable advantage of the state-space approach is the 141 

ease with which missing observations can be dealt with. The main disadvantage of DFA is that 142 

it can be computationally expensive. DFA decomposes the observed time-series from all 143 

sampling points included in the analysis into common patterns and their associated error 144 

terms (Holmes et al., 2012). The resulting patterns are in turn related to factor loadings, which 145 

indicate the weight that each pattern has at every monitoring point included in the analysis. In 146 

other words, DFA models the different time-series as a linear combination of common 147 

temporal patterns, in a similar way a Principal Component Analysis reduces an n-dimensional 148 

problem into a few manageable axes. Both the identified common patterns and their 149 

relevance at each sampling point (i.e., the factor loadings) were subsequently analyzed using 150 

additional time-series and regression techniques. DFA was applied to our database by means 151 

of the MARSS v3.4 R-package (Holmes et al., 2013). We also used DFA to enhance the signal to 152 

noise ratio of the measured streamflow time-series which in turn facilitated the identification 153 

of characteristic oscillations and potential relationships between streamflow and other 154 

variables. After DFA, we reconstructed the streamflow time-series at each sampling point 155 

(since the original time-series contained missing observations) using the best linear 156 

combination of the common patterns identified during DFA. This procedure is equivalent to 157 

other signal to noise ratio enhancement methods, like reconstruction using Singular Spectrum 158 
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Analysis (Ghil et al., 2002), with the difference that our approach enhances the features shared 159 

by the different time-series. 160 

 161 

3.4 Identification of significant oscillations in the common nutrient concentration patterns 162 

We analyzed all significant frequencies present in the common patterns identified by DFA 163 

using frequency analysis. We specifically aimed to identify frequencies that could be linked to 164 

seasonal cycles (6 and 12 months period) and climatic interannual oscillations. We chose the 165 

Multitaper Method (MTM) due to its reduced variance of spectral estimates compared to 166 

classical methods (Ghil et al., 2002). Frequencies significantly different from noise at the p < 167 

0.05 level were identified using the F test for spectral frequencies. MTM was applied using the 168 

Multitaper R-Package (Rahim and Burr, 2013). 169 

 170 

3.5 Identification of significant temporal trends in the common nutrient concentration 171 

patterns 172 

Since the common patterns are allowed to be stochastic in DFA, they can also contain 173 

significant trends that are non-linear (Zuur et al., 2007). We therefore sought to identify the 174 

significant trends present in individual patterns and to characterize such trends as increasing 175 

or decreasing over time. We used the implementation of the Yue–Pilon’s (Yue et al., 2002) 176 

prewhitening approach included in the zyp R-package (Rahim and Burr, 2013) to determine the 177 

trends in data that are serially correlated. The method computes both the Kendall’s tau 178 

statistic and the Kendall’s p value. 179 

 180 

3.6 Relationships between streamflow and the common nutrient concentration patterns 181 

The relationships between streamflow and nitrate and phosphate concentration patterns from 182 

the DFA analysis were assessed with the Maximal Information Coefficient (MIC) method 183 

(Reshef et al., 2011), which belongs to a larger family of statistics called Maximal Information-184 
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based Nonparametric Exploration (MINE; http://www.exploredata.net/). MIC captures a wide 185 

range of associations which are not restricted to be linear, and without the need to define a 186 

model a priori. MIC provides a score that roughly corresponds to the coefficient of 187 

determination of the data relative to the regression function, and a significance level. In our 188 

case, we calculated MIC scores and significance levels for each paired combination of common 189 

nutrient concentration patterns and the DFA reconstructed streamflow series measured at 190 

each sampling station. We used these filtered streamflow time-series instead of the original 191 

ones due to the continuity of the resulting filtered series and in order to enhance the signal to 192 

noise ratio. 193 

 194 

3.7 Attribution of drivers for spatio-temporal variabilility of the common nutrient 195 

concentration patterns 196 

Factor loadings are the multiplication factors that determine the linear combination of the 197 

common patterns to produce a best-fit nutrient concentration time-series (Zuur et al., 2003). 198 

Factor loadings can take positive or negative values when specific time-series behave in an 199 

opposite way to that described by the extracted pattern. Therefore, the geographical 200 

distribution of factor loading values across monitoring points inform about the spatial 201 

development of the processes responsible for the extracted patterns. To evaluate the 202 

relationship between the relevance (i.e., factor loading) of the extracted patterns at each 203 

sampling point and the environmental change drivers, we selected a set of potential 204 

explanatory variables that were spatially distributed. These included meteorological variables 205 

(mean annual air temperature and precipitation), reservoir capacity and location, wastewater 206 

treatment plants (WWTP) discharge and location, specific streamflow (runoff index), mean 207 

river nutrient concentration in the sampling point, land use distribution, and five variables 208 

related to nitrogen loads and their sources obtained by (Lassaletta et al., 2012): application of 209 

synthetic fertilizers, application of manure, inputs by biological fixation, total exported N, and 210 
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point sources. The land use conditions included in our study represent the average conditions 211 

between the period 1980 to 2011, where no other significant or drastic land use changes 212 

occur, other that management practices related to the improvement of industrial and urban 213 

wastewater, which is reflected in the decrease of phosphate in 1990s. 214 

 215 

For each sampling point we calculated mean values or percent areas of all the above 216 

explanatory variables considering two different regions. The first includeda buffer area of 10 217 

km surrounding the point, aimed at capturing the more local conditions. In the case of 218 

reservoirs and WWTP, this represented the immediate upstream potential effects of these 219 

variables on individual sampling points. The second region included the total basin upstream 220 

from the sampling point. The total basin area per se was excluded from the explanatory 221 

variables analyses as it was highly collinear with the variables calculated for the basin 222 

upstream area of each sampling point.  223 

 224 

The potential explanatory variables were related to factor loadings measured at each sampling 225 

site by the Generalized Least Squares (GLS) regression model (Pinheiro and Bates, 2000). The 226 

use of generalized least squares for regression modeling is advisable when neighboring values 227 

of the response variable tend to be spatially correlated (Pinheiro and Bates, 2000). The GLS 228 

models were fitted using the nlme R-Package (Pinheiro et al., 2012). In our case, we assumed a 229 

spatial error structure using the Gaussian distribution  available in nlme, since it provided the 230 

best model resultsbased on Akaike Information Criterion (AIC) values. A combination of 231 

forward and backward selection was used to identify the significant explanatory variables, 232 

using the AIC criterion to identify the best model. We fitted different GLS models for sampling 233 

stations showing opposite signs of the factor loading for a given Pattern (e.g., stations showing 234 

positive and negative factor loadings for Pattern 1 of nitrate concentration were treated 235 

separately). The rationale of this procedure is that many fundamental features of the patterns 236 
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(phase of the time-series, relationships with streamflow and other variables, direction of the 237 

trends) change when the pattern is flipped due to a change of the factor loading sign, 238 

potentially implying different generating mechanisms.. In order to assess the model fit and the 239 

variance explained, we calculated a Generalized R-Squared based on (Cox and Snell, 1989) 240 

using the r.squaredLR function included in the MuMIn R-Package (Barton, 2014). 241 

 242 

3.8 Spatial aggregation of common nutrient concentration patterns and  explanatory 243 

variables 244 

We assessed the clustering of the spatial distribution of nutrient concentration patterns and 245 

the significant explanatory variables found in GLS regression models. We used the clustering 246 

analysis to portray homogeneous regions in terms of the presence of concrete nutrient 247 

concentration patterns and their likely drivers. Our final aim was to highlight the most relevant 248 

cause-effect mechanisms that define vulnerable regions to the effects of global change. We 249 

used the implementation of the unsupervised k-Means algorithm in the open source data 250 

visualization and analysis tool Orange 2.7 (http://new.orange.biolab.si/), which uses the 251 

between-cluster-distances score to assess the most effective grouping. The method looks for a 252 

solution where all the features (in our case, the value of all factor loadings and significant 253 

explanatory variables found during GLS modeling) within each group are as similar as possible, 254 

and all the groups themselves are as different as possible. Thus, it is not necessary to define 255 

the number of desired cluster beforehand. We applied the k-means algorithm without any 256 

spatial constraints. Although explicit spatial relationships actually exist between sampling 257 

points along a river network, our aim was to identify clusters exclusively based on the 258 

information contained in the factor loadings and explanatory variables. 259 

 260 

4 Results 261 

4.1 Common nutrient concentration patterns in the basin 262 
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The DFA analysis for nitrate concentration extracted 3 common patterns from the set of 50 263 

time-series (Fig. 1a), where the order of the extracted patterns has no implication on the 264 

importance or weight of a particular pattern. Patterns 1 and 2 identified in nitrate time-series 265 

had a marked seasonal component appreciated visually (Fig. 1a) and further confirmed by the 266 

significant 12 month cycles found in the frequency analysis (Table 1). The seasonal evolution of 267 

Pattern 1 was clearly associated with the seasonal streamflow pattern (Fig. 1e), suggesting that 268 

it was hydrology-driven. The MINE analysis also detected significant associations between 269 

Pattern 1 of nitrate concentration and the DFA reconstructed streamflow series in almost all 270 

sites across the basin (Table 1). Nitrate concentration increased with streamflow (sites 271 

showing positive factor loadings), and was affected by a dilution dynamics (negative factor 272 

loadings). In contrast, Pattern 2 was strongly associated with the seasonal evolution of the 273 

mean air temperature in the basin (Fig. 1f), suggesting its connection to phenological 274 

processes (lower values during the growing season). Pattern 1 of nitrate concentration was 275 

also associated to a ca. 2.6 year periodicity according to the MTM analysis, and Pattern 3 276 

showed a significant 3.5 yr oscillation period (Table 1). Pattern 3 also included a significant 277 

decreasing trend (Table 1). The signs associated to DFA factor loadings of Pattern 3 indicated 278 

that 20 of the 50 stations were in fact following the opposite trend. The significance or 279 

relevance of this opposite decreasing trend in nitrate concentration is indicated by the 280 

magnitude of the factor loadings in those 20 stations (shown in Figure 2) 281 

 282 

DFA extracted four common patterns from the 50 dissolved phosphate concentration time-283 

series included in the analysis (Fig. 1b). The 1990s represented a shift-time point for phosphate 284 

patterns. In all four patterns, a sharp decrease in the phosphate concentration occurred in the 285 

early 1990s, and shifted to a steady behavior till the end of the study period, but the four 286 

patterns differed in peak timing before the 1990s. Despite the overall decrease (also observed 287 

in phosphate flux in upstream and downstream locations; Section S.1. of Supplementary 288 



12 
 

Material), only Pattern 2 had a highly significant trend while trend in Pattern 4 was only 289 

marginally significant (Table 1). Pattern 1 had a marked seasonal cycle, potentially driven by 290 

streamflow (suggested by the significant relationship between the seasonal evolution of the 291 

pattern and streamflow; Fig. 1b). However, the MINE algorithm detected just 2 significant 292 

associations between this pattern and the DFA reconstructed streamflow time-series from the 293 

sampling sites (Table 1). Pattern 3 showed cycles of ca. 4.3 and 1.6 yr (Table 1). The frequency 294 

analysis of the 37 DFA reconstructed streamflow series revealed several characteristic 295 

oscillations. Apart from the strong seasonal signal, there were significant oscillations at 1.5, 296 

2.2, 3.2, 4.2, and 9 years in several sampling stations. Periods from 1.5 to 4.2 years were highly 297 

coherent with the oscillations found in the common patterns of nitrate and phosphate 298 

concentration (Table 1), suggesting that multi-year oscillations in nutrients concentration were 299 

related to streamflow variability. Interestingly, nitrate and phosphate patterns showing at least 300 

one significant oscillation with period longer than one year also showed many significant MINE 301 

associations with streamflow across sites (Table 1). No significant trend was detected in the 302 

streamflow series (extracted common DFA patterns shown in Section S.2 of the Supplementary 303 

Material). 304 

 305 

4.2 Factors explaining the distribution of the different nutrient concentration patterns 306 

The GLS regression models for the distribution of factor loadings for each Pattern identified 307 

several significant explanatory variables (Tables 2 and 3). Since nitrate concentration Patterns 308 

1 and 2 showed contrasted positive and negative factor loadings across sites, we considered 309 

different models for sites showing positive and negative factor loadings. The distribution of 310 

positive factor loadings for Pattern 1 strongly related to the total area of water (mainly 311 

reservoirs). The higher the total area occupied by water upstream, the higher the weight of 312 

Pattern 1. Other associations were also significant, although their prediction weights on the 313 

model were less important: a negative relationship with mean annual air temperature 314 
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upstream from the sampling point; a positive relationship with dryland farming area around 315 

the sampling point; and a negative association with the industrial areas upstream from the 316 

sampling point (Table 2). Negative factor loadings of Pattern 1 were related to the presence of 317 

irrigated agricultural lands and to the mean annual precipitation received upstream. The 318 

reservoir water capacity upstream the sampling point had a small and marginally significant 319 

effect. 320 

 321 

Factor loadings for Pattern 2 of nitrate were strongly associated to sites with irrigated 322 

agricultural areas upstream from the sampling point. The distribution of Pattern 2 was also 323 

weakly related to the annual mean precipitation and the presence of irrigated lands. Finally, 324 

the distribution of factor loading values for Pattern 3 was spatially associated to industrial 325 

areas. The main difference between models for negative and positive factor loadings for this 326 

pattern was dictated by the relevance of distinct sources of nitrogen being used in the area, 327 

namely, synthetic fertilizers and manure (Table 2). Globally, the explanatory power of the GLS 328 

models for the distribution of phosphate patterns was much lower than for nitrate 329 

concentration models (Table 3). Pseudo-R2 values were one third of those found in nitrate 330 

models, except for Pattern 1 that reached similar explanatory power. The distribution of the 331 

factor loadings of Pattern 1 was explained by a complex combination of synthetic fertilizer load 332 

and industrial area upstream from the sampling point, the runoff index associated to it, and 333 

the mean river phosphate concentration in the site. Overall, the distribution of the phosphate 334 

patterns was hardly explained by the set of explanatory variables considered in this study, and 335 

was mainly explained by the presence of industrial areas upstream of the sampling points 336 

(Table 3). 337 

 338 

4.3 The joint spatial distribution of the nutrient concentration patterns and explanatory 339 

factors 340 
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The clustering analysis for the spatial distribution of the nitrate patterns and the significant 341 

explanatory variables found 4 aggregations among the 50 sampling sites (Fig. 3a). Cluster 1 342 

contained sampling points located mainly in downstream sections of major tributaries of the 343 

Ebro River (particularly along the Segre River); Cluster 2 included points in upstream locations 344 

of tributaries and in the main Ebro; Cluster 3 comprised points located even more upstream; 345 

and Cluster 4 collected the downstream sites of the main stem of the Ebro River. These 346 

clusters were characterized by significant differences in the absolute values of the factor 347 

loadings for Pattern 1 (Fig. 3b, non parametric Wilcoxon test for mean comparison, p = 0.011), 348 

and Pattern 2 (p = 0.017). Cluster 1 showed the largest relevance for Pattern 1, Cluster 4 for 349 

Pattern 2, and Cluster 3 for Pattern 3. Therefore the most fundamental regional difference in 350 

the dynamics of nitrate concentration in the basin was a switch from a streamflow-dominated 351 

dynamics in Cluster 1 to a reservoir biogeochemistry-dominated of Cluster 4. The preeminence 352 

of Pattern 3 in Cluster 3 was also a significant spatial pattern extracted from the clustering 353 

analysis. 354 

 355 

These differences between clustering groups were coincident with significant differences for 356 

many explanatory variables, particularly the extension of irrigated agriculture (p < 0.0001), the 357 

presence of reservoirs upstream the sampling point (p < 0.0001), and the application of 358 

synthetic fertilizers (p < 0.0001). Cluster 3 showed the minimum values for these variables, 359 

followed by Cluster 2 and Cluster 1, whereas Cluster 4 showed the largest values. 360 

Contrastingly, the clustering analysis for the phosphate concentration resulted in a poor 361 

regionalization with only 2 different aggregations (Fig. 4a), one including just 5 sampling 362 

points. There were no obvious spatial clusters beyond Cluster 2, which included points with 363 

higher values for Pattern 4 (p = 0.006). This coincided with very high phosphate concentrations 364 

(p = 0.002) and extensive industrial areas (p = 0.001) related to the sampling points. The poor 365 
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regionalization in the phosphate case stressed again the apparently idiosyncratic behavior of 366 

phosphate concentration across sampling sites. 367 

 368 

5 Discussion 369 

5.1 The nature of nutrient concentration patterns in the Ebro basin 370 

The analysis of the impacts of global change on freshwater ecosystems requires the use of 371 

appropriate tools to identify the main regional trends and modes present in hydrological and 372 

water quality variables. Results of this study show that the combination of DFA, traditional 373 

time-series analysis, and regression methods is a convenient approach and several features of 374 

the time series shared by many sampling points across the Ebro basin can be detected. 375 

 376 

The analysis of the nutrient concentration time-series detected the existence of seasonal 377 

patterns related to hydrology. Although the common hydrological relation with nutrient 378 

dynamics (Donner et al., 2002) may hide the detection of other seasonal cycles not related to 379 

streamflow, our analysis also detected seasonality that was unrelated to hydrology. While 380 

Pattern 1 of nitrate concentration was related to streamflow, the nitrate dynamics in the basin 381 

was also related to the phenological cycles of the adjacent terrestrial ecosystems or other 382 

water bodies upstream of each sampling point (Pattern 2). Terrestrial phenological processes 383 

such as those involved in leaf fall and decomposition would potentially be more important in 384 

upstream sections of the basin, where the biogeochemical activity in large reservoirs is not 385 

present. In the downstream section, in turn, the reservoir biogeochemical control on rivers 386 

and streams shaped Pattern 2 for nitrate concentration. The actual mechanism behind the 387 

association between nitrate concentration and air temperature may be complex, and in fact it 388 

may differ at different sampling points, since air temperature can co-vary with many other 389 

factors. In the case of nitrate concentration, assimilation by freshwater primary producers 390 

during summer (Carpenter and Dunham, 1985) and the seasonal evolution of leaf fall and 391 
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decomposition (González, 2012) could have taken a major role. However, other factors may 392 

contribute to lower concentrations, like the seasonal cycle of denitrification in the adjacent 393 

terrestrial ecosystems and upstream water bodies during summer months (Tatariw et al., 394 

2013).  395 

 396 

Nutrient concentrations showed multiple associations with streamflow spanning from the 397 

seasonal to the interannual scale. One of the most prominent features of nitrate concentration 398 

time-series was the existence of a switching relationship with streamflow (expressed by the 399 

changing sign of factor loadings for Pattern 1). This implies a fundamental change of the 400 

dynamics of nitrate concentration and suggests a major change in the sources of nitrogen to 401 

freshwaters. The positive relationship between nutrient concentration and streamflow suggest 402 

the preponderance of diffusive inputs from the terrestrial ecosystems and non-irrigated 403 

agricultural fields, whereas the negative relationshippointed to a dilution mechanism typical of 404 

locations having point sources. The GLS models further identified the land fraction occupied by 405 

irrigated agriculture as the main factor associated to the presence of negative factors loadings 406 

for Pattern 1 of nitrate concentration. Summer irrigation is a common agricultural practice in 407 

Mediterranean areas that can disrupt the relationship with the natural flow regime as well as 408 

the nitrate dynamics. This has been already observed in the Ebro basin where the intra-annual 409 

N export differed among rainfed and irrigated crops, the former following the flow regime, the 410 

latter modifying it (Lassaletta et al., 2012). In addition, irrigation has the capability of altering 411 

local and regional precipitation behavior through changes in soil moisture and heat budgets 412 

(Boucher et al., 2004), particularly in downstream areas (Huber et al., 2014). However, none of 413 

these regional climate effects has been 25 confirmed in the Ebro basin. The absence of 414 

seasonal relationships between nitrate concentration and streamflow (i.e., very low absolute 415 

values for Pattern 1) can also be related to the proximity to large reservoirs in the lower 416 
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section of the basin, where the seasonal nitrate concentration cycles seem to be highly 417 

influenced by the water released from the reservoirs. 418 

 419 

The supra-annual frequencies detected in the nitrate and phosphate concentration patterns in 420 

the Ebro point out to associations with climatic oscillations identified in the Mediterranean 421 

region. The North Atlantic Oscillation (NAO) has multiple modes starting at 1.4 years, while the 422 

El Niño–Southern Oscillation (ENSO) has modes between 2.4 and 5.2 years (Rodó et al., 1997). 423 

Both the nutrient patterns and the streamflow series showed oscillations coherent with those 424 

from the ENSO and NAO, which are known to modify, through teleconnections, the magnitude 425 

and frequency of precipitation in a heterogeneous manner (Rodó et al., 1997). Furthermore, 426 

air temperature common patterns (shown in Section S.3. of Supplementary Material) in the 427 

basin also showed significant frequencies between 2.2 and 5.7 ys, which further confirmed the 428 

relationship of meteorological conditions in the basin to the above mentioned climatic modes.  429 

 430 

The impact of ENSO on nitrate river concentrations is, in fact, not uncommon in areas under 431 

indirect ENSO effects, such as the SE United States (Keener et al., 2010). Moreover, the 432 

associations of ENSO with streamflow modifications (Marcé et al., 2010) and nitrate 433 

concentration dynamics (Vegas-Vilarrúbia et al., 2012) in the Iberian Peninsula have been 434 

unambiguously stated. Indeed, all nutrient concentration patterns showing significant supra-435 

annual frequencies also showed significant relationships with streamflow in many sites across 436 

the basin. In our opinion, this indicates that the effect of atmospheric teleconnections on 437 

nitrate and phosphate concentrations was driven by modifications in the streamflow. Since 438 

streamflow relies on both precipitation and evapotranspiration, extreme events such as 439 

droughts and heat waves promoted by global atmospheric teleconnections can have 440 

significant effects on river water quality in the basin. Indeed, the relationship between the 441 

partially predictable global climate modes and the occurrence and frequency of extreme 442 
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events is a very active topic in the literature (Coumou and Rahmstorf, 2012), and their links 443 

with water quality crisis episodes should be further investigated, especially in the 444 

Mediterranean region, where climate extreme events are predicted to increase (García-Ruiz et 445 

al., 2011). Overall, the changes in these climatic modes within the 31 years included in our 446 

study could indicate the potential role of climate change in in-stream nutrient variability. 447 

Regarding long term trends, no significant correlation was found between nutrients and 448 

climatic modes. 449 

 450 

5.2 Nutrient trends and local management practices 451 

The spatial distribution of the relevant patterns was identified by the magnitude of the factor 452 

loading for each pattern, and both results are obtained by means of DFA. Further cluster 453 

analyses including factor loadings as well as the corresponding significant explanatory variables 454 

provided further information about the spatial distribution and the dynamics of nutrient 455 

concentration patterns in the Ebro basin. The most remarkable spatial difference was the 456 

switch between streamflow-dominated nitrate concentrations in upstream sections of the 457 

basin (Cluster 1) to nitrate concentrations being controlled by the biogeochemical activity of 458 

large reservoirs in downstream sections of the Ebro (Cluster 4). This switching dynamics was 459 

not evident in the phosphate analyses.  460 

 461 

In the case of nitrate concentration, both decreasing and increasing trends were observed the 462 

basin. The association of the trends with sampling points affected by large loads of synthetic 463 

fertilizer (decreasing trend) and manure (increasing trend) indicates that nitrate trends were 464 

possibly promoted by the application of agricultural practices that, in the last three decades, 465 

can be associated with a more rational fertilizer application (Lassaletta et al., 2012). Also, the 466 

implementation of sewage treatment schemes in the basin can be partly invoked to justify this 467 

decrease (Romaní et al., 2010). The dominant role of nitrate concentration trends in the more 468 
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upstream locations of the basin (mostly included in Cluster 3) suggest that the impact of 469 

human activities upstream sampling points were higher in headwater and small streams, and 470 

that these water courses and corresponding sub-basins were the most vulnerable to increasing 471 

nitrate trends. On the other hand, decreasing trends also dominated the time-series in some of 472 

the sampling points included in Cluster 3, suggesting that upstream locations are also prone to 473 

improvement due to remediation measures and best management practices. Particularly, our 474 

analysis suggests that the application of synthetic fertilizers precluded the existence of a 475 

decreasing trend in some areas of the basin, but the application of manure as a fertilizer 476 

actively promoted increasing nitrate concentration trends. This increasing nitrate trend was 477 

mainly observed in sampling points related to Cluster 1, particularly along the Segre River (NE 478 

of the basin). Overall, while manure application has dramatically grown in some specific areas 479 

during the last decades (Terrado et al., 2010), there has been a more rational application of 480 

synthetic fertilizers in the basin (Lassaletta et al., 2012). 481 

 482 

The overall decrease of phosphate concentration in the Ebro basin since the early 1990s was 483 

highlighted by all four extracted patterns. This decreasing trend coincides with the 484 

improvement of urban sewage treatment in the most important cities of the Ebro basin 485 

(Ibáñez et al., 2008), since most patterns of phosphate dynamics derive from point sources. 486 

Furthermore, according to the same study by Ibañez et al., (2008), there was a significant 487 

positive correlation between the decreasing phosphate concentration and decreasing total 488 

chlorophyll in the lower Ebro basin between the 1987-2004 period. The reduction of 489 

phosphate fertilizers in the agriculture could have also resulted in the reduction of phosphate 490 

loads exported to rivers and streams (Bouza-Deaño et al., 2008). A similar pattern has been 491 

observed in the Loire River (France), where the wastewater treatment plants and the 492 

concurrent ban on phosphorus content in washing powders (Floury et al., 2012) were highly 493 

effective. Severe reductions of riverine phosphorus loads were common in Europe during the 494 
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1990s, while nitrate concentrations decrease has been limited to recent years (Ludwig et al., 495 

2009). Overall, the significant trends identified in nitrate and phosphate concentration, 496 

whether increasing or decreasing, across the Ebro basin appear to be modulated by local 497 

management practices associated to the different anthropogenic activities that have co-498 

existed in the basin during the study period, but no climatic factor seemed to play any relevant 499 

role in shaping decreasing or increasing trends of nutrient concentration. 500 

 501 

6. Conclusions 502 

Our results imply that the impact of global change on the dynamics of nitrate concentration 503 

across the Ebro basin is a multifaceted process that includes regional and global factors while 504 

impacts on phosphate concentration depend more on local impacts and less on large-scale 505 

factors (Fig. 5). In the case of nitrate, our analyses have identified the presence of irrigated 506 

agriculture and its corresponding fertilization management practices (synthetic fertilizers or 507 

manure), the presence of industrial activities in the basin, and damming as the main global 508 

change factors. Other climatic processes linked to streamflow variability were also identified, 509 

but the impact of climate changes on these processes is uncertain and could not be 510 

disentangled in this study. These factors shape a complex dynamics including temporal trends, 511 

and interannual and seasonal cycles, with either strong or vanishing relationships with 512 

streamflow, and links with phenological processes in upstream terrestrial ecosystems and 513 

downstream reservoirs. Interestingly, the impact of identified factors on this rich dynamics was 514 

not homogenous across the basin, but clustered in 4 regions not entirely coherent from a 515 

geographic perspective (Fig. 3). In contrast, phosphate concentration showed a more 516 

idiosyncratic behavior. The only relevant global change mechanism acting at large scales is the 517 

presence of industrial activities and the application of synthetic fertilizers, which defines 518 

higher phosphate concentrations in Cluster 2. The explanatory power of our models was low in 519 

the case of phosphate concentration dynamics, meaning that most variability was accounted 520 
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by factors not considered in our models. Although these factors may include some relevant 521 

regional drivers, the contrasting results from the nitrate analysis imply that the ultimate 522 

reason of the lower performance of the phosphate models is the absence of the more local 523 

factors, such as the different timing of implementation of wastewater treatment technologies. 524 

 525 

Overall, our analysis shows that nitrate concentration dynamics is more responsive to regional 526 

and global factors, while global change impacts on phosphate concentration dynamics operate 527 

at the small scales of point sources. Anthropogenic land uses seem to play the most relevant 528 

role, and appropriate fertilization management may aid in stabilizing temporal trends, thus 529 

avoiding future nitrate concentration increases. The relevance of the inter-annual signals in 530 

our nutrient concentration series suggest that any impact of climate change on the intensity 531 

and timing of global climate phenomena driving inter-annual streamflow oscillations can also 532 

exert a significant impact on river nutrient dynamics. This would be expressed more likely in 533 

variations of the prevalence of extreme events in streamflow that would impact nutrient 534 

dynamics. This may add to a multi-stressor situation typical from freshwaters in Mediterranean 535 

countries, guaranteeing future research on this topic. 536 
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Tables 

 

Nutrient 
Trend 

(Kendall 
tau) 

Significant 
oscillations 

(years) 

Significant MINE 
relationships with 

streamflow 
(number of sites 

out of 37) 

Other relationships 
with streamflow 

Nitrate     

Pattern 1 ns 1 and 2.6 34  Strong seasonal coherence (Fig. 1e) 

 Coincident and significant streamflow oscillation at 2.2 
years    

Pattern 2 ns 1 12  Nothing to remark 

Pattern 3 -0.53*** 3.5 22  Trend NOT related to streamflow 

 Coincident and significant streamflow oscillation at 3.2 
years    

Phosphate     

Pattern 1 ns 1 2  Moderate seasonal coherence (Fig. 1g) 
 

Pattern 2 -0.09** ns 4  Trend NOT related to streamflow 

Pattern 3 ns 1.6 and 4.3 25  Coincident and significant streamflow oscillations at 1.5 
and 4.2 years    

Pattern 4 -0.08* 
 

ns 10  Trend NOT related to streamflow 

 

Table 1: Characterization of the temporal variability and relationships with streamflow of 

nutrient patterns detected with DFA in the Ebro basin. 
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Nitrate Patterns Pseudo R2 Explanatory Variable Coefficient 
Std. 
Error 

t-
value 

p-
value 

Pattern 1  -              
Positive Factor Loadings  

0.65 Mean Air Temperature (°C) UPSTREAM -1.42 0.30 -4.66 0.0001 

Water area (km2) UPSTREAM 0.06 0.00 13.75 0.0000 

Dryland Farming (%) LOCAL 0.00 0.00 3.23 0.0035 

Industrial area (%) UPSTREAM -0.12 0.04 -2.91 0.0074 

Pattern 1  -                 
Negative Factor Loadings 

0.61 Reservoir Capacity (hm3) LOCAL -0.05 0.02 -2.64 0.0166 

Irrigated agriculture area (%)UPSTREAM 0.30 0.05 6.37 0.0000 

Mean Annual Precipitation (m) UPSTREAM 0.48 0.11 4.42 0.0003 

Pattern 2 0.59 Irrigated agriculture area (km2) UPSTREAM 0.11 0.01 19.06 0.0000 

Irrigated agriculture area (%) LOCAL 0.00 0.00 -2.59 0.0127 

Mean Daily Precipitation (m) LOCAL 0.16 0.07 2.29 0.0269 

Pattern 3  -                  
Positive Factor Loadings  

0.57 Industrial area (%) UPSTREAM 0.04 0.01 6.53 0.0000 

Synthetic Fertilizer Load UPSTREAM -0.01 0.00 -3.45 0.0018 

Pattern 3  -                 
Negative Factor Loadings 

0.56 Industrial area (%) UPSTREAM 0.04 0.01 4.81 0.0001 

Areal Manure Load  UPSTREAM 0.04 0.01 3.01 0.0063 

Water area (%) UPSTREAM 0.01 0.01 2.14 0.0428 

 

Table 2: GLS resulting potential drivers involved in the spatiotemporal variability of nitrate 
patterns in the Ebro basin.  
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Phosphate Patterns 

 
Pseudo 

R2 

 
Explanatory Variable 

 
Coefficient 

 
Std.Error 

 
t-value 

 
p-value 

Pattern 1 0.62 Synthetic Fertilizer Load UPSTREAM 0.46 0.08 6.18 0.0000 

Mean river phosphate  concentration -0.07 0.02 -3.97 0.0003 

Runoff Index UPSTREAM -0.03 0.01 -3.69 0.0006 

Industrial area (%) UPSTREAM 0.19 0.05 4.02 0.0002 

Pattern 2 –  
Positive Factor Loadings 

0.20 Industrial area (km2) UPSTREAM 0.03 0.02 2.22 0.0384 

Pattern 2 –  
Negative Factor Loadings 

0.17 Grass and shrubland area (%) LOCAL 0.01 0.00 2.24 0.0339 

Pattern 3  0.21 Industrial area (km2) UPSTREAM 0.05 0.01 3.60 0.0008 

Pattern 4 0.14 Industrial area (%) UPSTREAM 0.05 0.02 2.75 0.0083 

 

Table 3: GLS resulting potential drivers explaining the spatiotemporal variability of phosphate 

patterns in the Ebro basin.  
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Figures 

 
 
Figure 1: Top: DFA resulting patterns for nitrate (a) and phosphate (b) concentration. Middle: 

Examples of observed time-series and fitted DFA models at two selected monitoring points for 

nitrate (c) and phosphate (d) concentration. The DFA models in panels (c) and (d) are the result 

of a linear combination of the patterns in panels (a) and (b), respectively. Bottom: Seasonal 

variation for nitrate Pattern 1 and streamflow (e), nitrate Pattern 2 and Temperature (f), and 

phosphate Pattern 1 and streamflow (g). Points depict monthly averages for the entire 31 year 

time-series. For temperature and streamflow, the average is for all time-series available. We 

only included standard deviations as error bars for the nutrient patterns to enhance 

readability.    
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Figure 2: Factor loadings associated to nitrate patterns (left column) and phosphate patterns 
(right column). Dark circles indicate positive factor loadings and light-colored circles represent 
negative factor loadings. The size of the circles represents the magnitude of the Factor Loading 
at each monitoring point. A map with major land uses in the Ebro basin is enclosed in the 
lower left corner.  
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Figure 3: (a) Clustering analysis results for the spatial distribution of nitrate concentration 

patterns and associated explanatory variables. (b) Mean fraction of Factor Loadings (i.e., the 

overall weight of a specific pattern) found in each of the 4 clusters identified in the analysis.  
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Figure 4: (a) Clustering analysis results for the spatial distribution of phosphate concentration 

patterns and associated explanatory variables. (b) Mean fraction of Factor Loadings (i.e., the 

overall weight of a specific pattern) found in each of the 4 clusters identified in the analysis. 
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Figure 5: Global change factors that, acting at different scales, contribute to shaping the 
spatio-temporal variability of nitrate and phosphate concentration in the Ebro basin. Lettered 
circles describe the relationship between nutrient concentration patterns and the identified 
factors and drivers of change. Colored circles in A: Nitrate and B: Phosphate link types of 
relationship to corresponding clusters (if applicable) displayed in Figures 3 (nitrate) and 4 
(phosphate), respectively.  
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