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Note to reviewers: 
 
We would like to thank both reviewers for their comments and valuable suggestions that help us to 
improve the clarity of the manuscript. We have followed the recommendations of the referees and 
made changes accordingly. Changes can be seen colored in the new manuscript version. In red the parts 
that have been removed from the previous version and in green the new text that has been included. 
Detailed answers to each of the comments of the referees can be found below. 

 
Comments to reviewer 1: 

The discussion of results would benefit by extending statistical relations with more explicit 
references to biophysical processes, such as relations of water stress to LAI chlorophyll 
reduction, which is particularly evident in the case of grasslands.  

- We agree in this comment with the reviewer. Is something that we tried to improve now in the 

new version. We followed the recommendation of the reviewer and included in the text explicit 

references the relationships between water stress and LAI, and chlorophyll. As example we have 

included in the discussion. 

-  Page 16, lines 11-19.”The relationship between these indices and water metric is indirect, since 

none of them include spectral bands in the SWIR region where water absorption is strong. 

However, there is a strong link between grassland water content, chlorophyll activity and LAI in 

this ecosystem. During wet periods the grassland grows very rapidly, increasing the LAI, biomass 

and chlorophyll content, but as soon as the dry season starts with high temperatures and low 

rainfall the grassland becomes cured rapidly losing all chlorophyll and quickly decreasing the LAI 

and biomass...” 

 
 
The conclusions drawn by the authors are very much related to grasslands physiology, but it 
would not hold for other vegetation types, such as trees or shrubs. For this reason, indices that 
are not directly linked to water content (such as NDVI or EVI) provide high explicative power. 
The authors should state this clearly in both the abstract and the conclusions. For this reason, I 
strongly recommend using grasslands instead of vegetation throughout the paper, including the 
title and the abstract, as they cannot extend their conclusions to other vegetation types other 
that what they actually sampled.  

-  

- We definitely agree with the reviewer that the conclusions from this study cannot be extended 

to other type of vegetation that is not grasslands. Therefore we have changed the title to better 

adapt to the paper contents to. “Seasonal variation in grass water content estimated from 

proximal sensing and MODIS time series in a Mediterranean Fluxnet site”.  Following reviewer´s 



recommendations we have added some additional sentences to both the abstract and the 

conclusions to clarify this point.   

- Grass was also used instead of vegetation all over the manuscript where suitable.  

 
Another issue is to better explain why certain indices provide higher explanation than others, 
and first test whether those R2 or RMS values are statistically significant or not. To explain 
these differences, proximal sensing measures only grasslands at nadir view angle, but MODIS 
includes also trees, their shades, and other artifacts at up to 20_ view angle. 

- In the new version we have included two figures, one for R2 and a second for RRMSE. In this 

figure we show the confidence interval for each of the parameters. Since we used bootstrap, we 

considered more adequate presenting this rather than the significance. 

1. Introduction. Include formulas of all referred terms 

- Following the suggestion of the referee, we have included in the introduction section the 
formulas of all referred terms  

2. For this introductory section, you may gain by reading the Yebra et al.’s (2013) review. 
 

- Thanks for the recommendation. We have incorporated some of the valuable information in 

Yebra et al.’s 2013 in the introduction. 

 
3. Page 5505:5: “These indices monitor the vegetation water content by indirectly relating it to 
another biophysical parameter that is used as a proxy of water stress. This is the case of the 
Normalized Difference Vegetation Index (NDVI) (Tucker, 1979)”. I think this is a misleading 
sentence, as NDVI has very little relation to plant water content, and therefore it should never be 
used as a proxy of water stress. It can eventually estimate indirect effects of changes in water 
content, particularly when reaching stress conditions, such as reductions in chlorophyll or LAI, 
which is a different issue.  

-  We removed that sentence and rephrase: 

- Page 5, line 7: “In the case of grasslands the relationship with bands in the Visible (VIS) and Near 

Infrared (NIR) spectral region, has shown a close relationship between vegetation biomass, 

chlorophyll and water content…” 

4. Avoid using qualitative terms in the description of results. Correlations are not better or 
worse, but higher or lower. 

-  As recommended, qualitative terms have been avoided in the new version of the manuscript.  

 
5. You compare empirical models with RTM models. It is not clear whether the RTM models 
used were the originals developed by Jurdao et al. (which did not intend to estimate CWC but 
only FMC), or do you parameterize them somehow. In this case, please include technical 
details. Otherwise, state why. 

- Following the referee recommendation we have included in the manuscript a section describing 
the approaches used in the study to estimate FMC and CWC from RTMs. CWC was estimated 
following Trombetti et al 2008 while for FMC we followed  Yebra et al 2008 and 2009 and Jurdao 
et al 2013 models.  

-  



- 6. page 5517/5: “Therefore, the strategy to capture better the variability of vegetation water 
content in this ecosystem should be to sample more times but fewer plots”. Check grammar. 
 

- We have changed the sentence: 
-  Page 15, line 10-line 13. “Therefore, the strategy to better capture the variability of 

grassland water content in this ecosystem should consist in increasing the number of samples in 
time and but sampling less number of plots per day”.  

 

7. page 5517/17: “CWC depends on LAI which is even higher correlated than those two 
variables”. Several studies have shown that LAI contribution to total reflectance variability is 
much higher than water. You may refer to (Bowyer and Danson 2004). For this reason also,  
CWC should provide more accurate retrievals than FMC, as it depends on LAI, which is highly 
correlated to the spectral indices  

- We changed that sentence to: “CWC depends on LAI which is showing higher correlation values 

to the empirical models than other metrics such as FMC or EWT. Some studies have shown that 

LAI contributions to total reflectance variability is much higher than water (Bowyer and Danson, 

2004) this would explain that CWC provides more accurate retrievals than FMC or EWT.” 

- Page 15, lines 27-31 

8. Conclusions. “Results indicated that FMC and EWT showed lower spatial variation than 
CWC”. This is pretty obvious, as CWC includes another factor which also varies throughout 
time. 

- We have removed the sentence from the manuscript. 

 
Figure 4 is too complex. Think about alternative ways or restrict the information you consider 
relevant for displaying. From comparison with Figure 5 is very difficult to extract any conclusion. 
Why figure 8 is not in color? 
 

-  We have simplified figures 4 and 5. Now only the results regarding the R2 (Figure 4) and the 

RRMSE (Figure 5)  is displayed in the figures. We have included in these two figures the 

confidence interval of the parameters. 

- Figure 8 now is displayed with colors. 

 
 
 
  



Comments to reviewer 2: 

The abstract does not give a concise summary of the paper. It only covers methods and results 
but the authors should clearly state why they are doing these analysis and presenting these 
results as well as the implications of her conclusions and findings.  

- Following the recommendation from the reviewer, we have modified the abstract clarifying 

paper´s objectives and remarking the implications of the results found. 

 
2. The introduction does not clearly state the original contribution of this work. Does 
this paper builds on previous key work? Which are the knowledge gaps it is trying to 
fill in? 

- We have rewritten the introduction stressing the gaps our work is trying to fill in. In our work we 

aim to compare three different metrics of vegetation water content.  Each of the compared 

metrics offer information at different level, and therefore the spectral relationships might vary. 

To make the results comparable we considered that samples should be collected simultaneously 

to remove part of the uncertainty, per se imposed in field data collection. In the study we also 

compared different protocols to collect the samples. Even this decision made the reading of the 

paper a bit more complex, we considered that it is important to evaluate different protocols to 

ensure the consistency of the measurements taken in the field. We also used new subscripts to 

designate the different samples collected in the field and aiming making the reading of the 

paper easier. 

- Regarding the remote sensing part, we compared empirically derived models based on spectral 

indices with other methods based on RTM inversion.   

3. The methods section lack on detail/justification in some aspects: 
a. Why do the authors compute FMC/EWT from a subsample and the quadrat? What do the 
authors want to prove with this? Is this important? Again, the research question is not clear. This 
distinction between quadrat and subsample add complexity to the paper so it should be clearly 
justified.  

-  In the new version of the manuscript we have added information trying to clary the use of 

different protocols used in the field data collection. As there is not a consensus in this issue, we 

found it interesting to test the effect of two different field protocols in the results when 

comparing field and proximal/remote sensing data.  As far as we know, no previous works have 

intended this exercise. 

- New text included in  Page 4, line 11 to Page 4, line 21. 

 
b. The authors should explain more in detail the methodologies from Trombetti and Jurdao they 
are applying and presenting in this paper. For example, Jurdao et al 2013 derived FMC in 
woodlands in the Mediterranean and Eurosiberian region using two different Look up Tables 
(LUT). The authors do not specify which LUT they are using (I assume they are using the LUT 
developed for the Mediterranean region?). Also, the authors must justify the selection of those 
methods. Why did you select Jurdao’s method that was developed for closed woodlands and 
nor other more suitable for dehesa type ecosystem? This is definitely something that should be 
discussed in the discussion section. The apparent worst performance of the RTM models in 
comparison to the empirical equations may be related to this. 



- The reviewer is totally correct. In the case of Jurdao we used the LUT developed for the 

Mediterranean region. As far as we know there is no method specifically designed for dehesa, as 

in principle is similar to a Wooded grassland ecosystem. Dehesa can vary in density of tree and 

therefore that’s why we considered appropriated to use this LUT. In addition this LUT was 

calibrated in Spain, but not using any sample from our study site.  In the new version we have 

included a new section to explain the RTM based estimates. Page 10, line 11 to Page 11, line 11 

and discussed deeper in the discussion section in Page 17, line 12 -21.  

-  
- c. The authors should explicitly present in the results section the equations they derive 

for the empirical models. 
- Following reviewer´s recommendation empirical fitting equations are now presented in table 2. 

- Page 25. 

4. Results do not appear to be well discussed in relation to previous published works (e.g. how 

the author’s findings may contribute to clarified/complement previous findings) and are difficult 

to follow because the research questions is not clearly identified in the introduction and the 

implications of their findings are barely discussed. The results presented around FMC/CWC 

derived using the quadrat/subsample samples are difficult to follow and not well justified. Are the 

authors trying to conclude which is the better methodology in order to propose a standard 

sampling protocol? The authors Should also improve the description of the results and avoid 

qualitative or vague terms (see specific comments) 

- Following previous comment the introduction has been modified to better identify the research 

question addressed in this work. We have also rewritten the discussion section in order to 

better state the implications of the results found.  

- We have reviewed the results section avoiding qualitative terms, as recommended 

 
5. Figures do not have clear captions. The authors should carefully work on figures caption so 
they are self-contained. Figures 2, 4 and 5 are difficult to read. I would suggest the authors to 
increase the size of figure 2 and simplify figures 4 and 5. Is it important to include here the 
results from the quadrat and the subsample? The authors should only consider only the most 
relevant information. 

- We followed the recommendations of the reviewer and modified the figures captions.  In order 
to improve readability, figure 2 has been enlarged. In figure 4 and 5 we removed the non-
relevant information and now in the case of figure 5 we only display the information regarding 
the R2 between the field metrics and the models generated using the spectral indices from 
MODIS and proximal sensing. In figure 6 similar information is plotted, but instead of R2 we 
showed the RRMSE values. In both cases as the results obtained after bootstrap we have 
included the confidence interval. 

Specific comments: The line and page numbers refer to those provided in the printerfriendly 
version that I downloaded from the website. 
 
Page. 5505 Line 6. Include “a” before “Mediterranean” 

- Done. 

Page. 5505 Line 12. “Due to the high seasonal Dm variability: : :” This sentence seems 



to be out of context. 
- We have rephrased the sentence. In the new version the sentence is as follows: “Dm variability 

was high which demonstrate that a constant annual Dm value should not be used to predict 

EWT from FMC as other previous studies did.” 

- Page 2, line 14- 15 

 
Page. 5505 Line 14 onwards. GEMI, GVMI, etc. need to be defined.  

- Acronyms have been defined. 

 
Page 5508. Line 4. “Secondly, the model performance...”. Which models do the authors 
refer to? They have not presented any model yet. 

- We tried to say in this sentence that we compared the performance of the different empirical 

fitting equations used in the empirical calibration.  We have changed part of the text in the 

paragraph to clarify this.  

- Page 6, line 5- 7. 

 
Page 5509 Line 20.” Each EWTsample and a sub-sample from each quadrat : : :” This 

is confusing. My understanding is that EWT sample refers to the EWT derived from the 
sub-sample? Why do the authors then write here EWTsample and a sub-sample from each 
quadrat, isn’t that the same? 

- As explained in page 5509-line 15 we used a 25x 25 cm quadrant to collect vegetation samples. 
As we need to obtain the Leaf Area, one of the parameters necessary to calculate EWT we made 
the decision of trying to different sampling strategies, one was to use a sub-sample from the 
total sample collected within the quadrant and the other was to collect only a small sample 
nearby the quadrant. Even with a small quadrant as the one used in our field campaign, it is 
extremely difficult to scan the entire sample collected so we wanted to know the impact of 
using two different approaches to select the small sampled to be used for the estimation of leaf 
area.  We have included in the manuscript some additional text to clarify and simplify this point. 
We have use now new nomenclature to designate the different samples out of quadrant 
(OQSample) and inside quadrant (IQSample)  Page 7 lines 15 to page 8, line 18. 

- A diagram to help understanding the new names and where and how the samples are treated in 
the laboratory is now included in figure 2. Page 27 

 
Page 5510, Line 14. “ where LAI is the leaf: : :and EWT is obtained from eq (2). Again 

I am confused. Do the authors refer to EWTsample. 
-   The equation in the manuscript has been corrected. In the first approach the CWC was 

obtained from EWT sample (as in equation 2). 
-   

  LAIEWT=g/cm CWC 2
E       

 
 
Page 5511. Lines 24-26 and Page 5512 Lines 1-8. The description of the indices and 
the comparison with the RTM models do not belong to the “Field sampling “ section. 
These should be moved to data analysis. The same applies to Page 5512 Lines 26-28 



in MODIS data section. 
- In the new version of the manuscript we have included a specific section with the description of 

the spectral indices and RTM models. Page 10, line 5 to page 10, line 10 
 
Page 5513. Lines 23-25. “As recommended in Steyerberg: : :” should be moved to line 

20 before defining the RMSE. 
 

- We moved the reference. Page 11, line 31 to page 12 to line 2. 
 
 
Page 5515. Line 1. “: : :comparison between the spectral indices: : :”. Spectra indices 

should be replaced by empirical approach (along the manuscript) since Jurdao 
and Trombetti also used spectral indices in their RTM modelling. 
 

- We fully agree with the reviewer. We have substituted spectral indices all over the text when 
necessary to avoid misunderstandings. 

 
 
Page 5515. Lines 27. “EVI performed better”. Do the authors mean that EVI was 
the index with the highest correlation coefficient with FMCe and FMCq when using the 
reflectance form MODIS? 
 

- That’s it. That is what we meant to say. We have corrected the text in the manuscript. 
- Page 13 Line 30-31 

 
 
Page 5516. Lines11-12. “RTM was closer to the empirical models” Do the authors 
mean that RTM performed similarly to the empirical models? 
 

- Yes, we do. We have rewritten the sentence to clarify this. Page 14, lines 16 to18 

 
Page 5516. Line16. Figure 6 should be Figure 8. 

- Corrected in the manuscript 
 
Page 5517. Lines17. “: : :.LAI which is eve higher correlated than those: : :”. Higher 

correlated to what? 
- We meant correlated to spectral information. We have rewritten this sentence to clarify this 

point. Page 15, line 27-31 
 
Line 5518. Lines 22-23. “RTM only overcomes empirical approaches when structural 
information constrains the model inversion)”. I agree however I do not think this statement 
justify the worst performance of RTM in comparison to the empirical models in 
your study since the method the authors used (Jurdao et al 2013) includes such structural 
information. I suspect that Jurdao/Trombetti methods did not work well in this study because 
they were not designed to be apply in Mediterranean dehesas). 

- We did not intend to justify with this sentence that this is the reason why the RTM based 
estimates perform worse than the empirical models. We included some lines to better explain. 
Pages 17, lines 12-21.  

- The other statement was very strong and might not be true in all cases as the empirical methods 
also depend on the number of samples etc. so we removed it. 



- Empirical models have the great advantage of being calibrated with the data collected in situ, 
and therefore was expected this results. Jurdao includes some structural information based on 
GEOSAIL, but this information is used in the generation of the LUT. To obtain FMC what the 
method does briefly is to comparing the reflectance values against the generated LUT. The one 
that is more similar based on a merit function is used to assign the FMC value. Among the 
advantages of using this technique is that it can be easily run without too much computation 
time after the LUT was generated and therefore offers the possibility of run it at large scales. 

- We believe that there is still a lot place for improvement, not just in FMC but also in CWC. 
Testing other inversion techniques, using multiple observations or using more robust algorithms 
not based on LUT such as optimization algorithms might help to improve the estimates, 
however, these methods are usually computing expensive and therefore they lack sometimes in 
operability.  

Table 1. I suggest the authors to improve the caption of the figure so the reader can 
quickier understand what does Bx mean. The authors should also explain what does 
NIRREC and SWIRRec stands for. 

- As the referee suggests, the changes have been implemented in the table. In the caption 
information has been added about what Bx mean. We have also included a note explaining what 
NIRREC  stands for and removed SWIRREC as was a typing error in the formula. In the note it is also 
mentioned the bands used for NIRREC  and SWIR. 

 
 
Figure 6. The authors should also explain what does RTM FMC (Grassland and oak) 
mean and why is it different from RTM (grassland). 

- As the referee suggests, an explanation on the difference between the RTM FMC (Grassland and 
oak) and (grassland) has been included in the figure caption. 
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 21 

Abstract 22 

This study evaluates three different metrics of vegetation water content estimated in of an 23 

herbaceous cover in a Mediterranean wooded grassland (dehesa) ecosystem. from proximal 24 

sensing and MODIS satellite imagery: Fuel Moisture Content (FMC), Equivalent Water 25 

Thickness (EWT) and Canopy Water Content (CWC) were estimated from proximal sensing 26 

and MODIS satellite imagery.  Dry matter (Dm) and Leaf area Index (LAI) connect the three 27 

metrics and were also analyzed. in order to connect FMC with EWT and EWT with CWC, 28 



 2 

respectively. This research took place in a Fluxnet site located in a Mediterranean wooded 1 

grassland (dehesa) ecosystem in Las Majadas del Tietar (Spain).  Metrics were derived from 2 

field sampling of grass cover within a 500 m MODIS pixel. Hand held hyperspectral 3 

measurements and MODIS images were simultaneously acquired and predictive empirical 4 

models were parametrized. Two methods of estimating FMC and CWC using different field 5 

protocols were tested in order to evaluate the consistency of the metrics and the relationships 6 

with the predictive empirical models.  In addition, Radiative Transfer Models (RTM) were 7 

used to produce estimates of  CWC and FMC, which were compared with the empirical ones.   8 

The results indicated that FMC and EWT showed lower spatial variation than CWC. Results 9 

revealed that, for all metrics spatial variationvariability was significantly lower than temporal. 10 

within the MODIS pixel Thus we concluded that experimental design should prioritize 11 

sampling frequency rather than sample size. was not as critical as its temporal trend, so to 12 

capture better the variability, fewer plots should be sampled but more times. Due to the high 13 

seasonal Dm variability was high which demonstrate that  a constant annual Dm value would 14 

not work to  should not be used to predict EWT from FMC as other previous studies did. 15 

Relative root mean square error (RRMSE) evaluated the performance of nine spectral indices 16 

to compute each variable. Visible Atmospherically Resistant Index (VARI) provided the 17 

worst lowest explicative power results in all cases. For proximal sensing, Global Environment 18 

Monitoring Index (GEMI) worked bestshowed higher statistical relationships for both for 19 

FMC (RRMSE = 34.5%) and EWT (RRMSE = 27.43%) while Normalized Difference 20 

Infrared Index (NDII)  and Global Vegetation Monitoring Index (GVMI) performed best for 21 

CWC (RRMSE =30.27% and 31.58% respectively). When MODIS data was used, results 22 

were a bit better withshowed and increase in R
2
 and Enhanced Vegetation Index (EVI) as the 23 

best predictor for FMC (RRMSE=33.81%) and CWC (RRMSE=27.56%) and GEMI for EWT 24 

(RRMSE=24.6%). To explain these differences, proximal sensing measures only grasslands at 25 

nadir view angle, but MODIS includes also trees, their shades, and other artifacts at up to 20° 26 

view angleDifferences in the viewing geometry of the platforms can explain these differences 27 

as the portion of vegetation observed by MODIS is larger than when using proximal sensing 28 

including the spectral response from scattered trees and its shadows. CWC was better 29 

predicted than the other two water content variablesmetrics, probably because CWC depends 30 

on LAI, that shows a notable seasonal variation in this ecosystem. Strong statistical 31 

relationship was found between empirical models using indices sensible to chlorophyll 32 

activity (NDVI or EVI which are not directly related to water content) due to the close 33 



 3 

relationship between LAI, water content and chlorophyll activity in grassland cover, which is 1 

not true for other types of vegetation such as forest or shrubs. which is highly correlated to the 2 

spectral indices. Finally, These empirical methods tested outperformed FMC and CWC 3 

products based on radiative transfer model inversion. 4 

 5 

1 Introduction 6 

Water in leaves is a limiting factor for different physiological processes of vegetation and its 7 

deficit causes malfunctioning of different cellular processes. Water is involved in the thermal 8 

regulation of plant trough transpiration and also becomes crucial in the uptake of 2CO  for 9 

photosynthesis (Chaves et al., 2003). It is also fundamental to maintain turgor pressure, which 10 

controls different functional processes of plants like cell enlargement or gas exchange (Taiz 11 

and Zeiger, 2010).  12 

Different metrics quantify vegetation water content. Fuel Moisture Content (FMC) (Desbois 13 

et al., 1997), defined as the mass of water per unit mass of vegetation, 14 

   100*
W

WW
=%  FMC

Dry

DryFresh        (1) 15 

where WFresh is the fresh weight of the sample measured in the field and WDry is the oven 16 

dried weight. FMC has been extensively used to estimate the fire risk occurrence and fire 17 

propagation (García et al., 2008;Yebra et al., 2008b). Equivalent Water Thickness (EWT) or 18 

Leaf Water Content (LWC), defined as the mass of water per leaf area, measures the thickness 19 

of the water layer with the same leaf area (Danson et al., 1992) 20 

 
Leaf

DryFresh2

Area

WW
=g/cm EWT


      (2) 21 

where AreaLeaf is the leaf area. 22 

Several studies showed that EWT can be retrieved from spectral information at leaf level as it 23 

is directly related to the water absorption depth of leaves (Ceccato et al., 2001;Datt, 1999). 24 

FMC and EWT are related each other since: 25 

  )
100

DmFMC
(=g/cm  EWT 2        (3) 26 

where Dm is defined as the ratio of leaf dry weight and leaf area: 27 



 4 

 
Leaf

Dry2

Area

W
=g/cm  Dm        (4) 1 

 EWT can be expressed as FMC multiplied by the dry matter (Dm) and divided by 100. 2 

Finally, another metric is the Canopy Water Content (CWC), the mass of water in the canopy 3 

per ground area (Cheng et al., 2008;Trombetti et al., 2008). CWC represent the product of 4 

EWT and Leaf Area Index (LAI), offering information on vegetation water content at canopy 5 

level and can be expressed as: 6 

  LAIEWT=g/cm CWC 2
       (45) 7 

or 8 

 
Area

WW
=g/cm CWC

DryFresh2


      (6) 9 

where Area denotes for the area of the spatial unit used to collect the sample. 10 

Field sampling of FMC, EWT or CWC relies are usually estimated from vegetation samples 11 

using on gravitational methods. but this method is quite limited for estimates at regional to 12 

global spatial scales, since it requires interpolation to bridge the gaps in both time and space. 13 

Different field and laboratory protocols are used, despite of the need for standardization 14 

(Yebra et al., 2013). In several studies FMC is sampled using a bag were 100-200g of the 15 

fresh sample are introduced and considered as representative (Verbesselt et al., 16 

2007;Chuvieco et al., 2003). In other studies vegetation is sampled within a quadrant whose 17 

area is used as reference (Sims and Gamon, 2003). However, uncertainties introduced by the 18 

different protocols and therefore their comparability are unknown. The three metrics can be 19 

used to measure water content, but relationships existing among them remains also unknown. 20 

No comparative studies for grasslands have been reported.  21 

Moreover, field sampling is limited and cannot provide estimates at regional or global scales, 22 

since it requires interpolation to bridge the gaps in both time and space. Remote sensing is a 23 

powerful alternative data source to provide information on vegetation water content as it fills 24 

such temporal and spatial gaps. Monitoring vegetation water content with remote sensing 25 

benefits agriculture, to control crop production and prevent stress in plants (Peñuelas et al., 26 

1992;Sepulcre-Cantó et al., 2006) and forestry, to assess fire danger associated with 27 

vegetation water conditions (Chuvieco et al., 2003;Chuvieco et al., 2004;García et al., 28 

2008;Yebra et al., 2008b).  29 



 5 

To estimate plant water content with remote sensing, vegetation spectral reflectance has been 1 

primarily related to specific water absorption bands in the Short Wave Infrared region (SWIR, 2 

1300-2500 nm) (Ceccato et al., 2001;Zarco-Tejada et al., 2003). Other studies related 3 

vegetation water content to spectral indices that do not include SWIR data bands.  These 4 

indices monitor the vegetation water content by indirectly relating it to another biophysical 5 

parameter that is used as a proxy of water stress. This is the case of the Normalized 6 

Difference Vegetation Index (NDVI) (Tucker, 1979), In the case of grass the relationship with 7 

bands in the Visible (VIS) and Near Infrared (NIR) spectral region, that has shown a close 8 

relationship between vegetation biomass, chlorophyll and water content in grasslands 9 

(Chuvieco et al., 2003;Chuvieco et al., 2004;García et al., 2008;Yebra et al., 2008b) as water 10 

stress produces changes in the chlorophyll activity and biomass of the plant. Least squares 11 

regression models have served to empirically relate observed measurements of vegetation 12 

water content to spectral indices. These models have their weakest point of being are  site 13 

dependent, requiring long datasets for calibration (Chuvieco et al., 2009) and showing 14 

different results when the models are extrapolated to other sites using different data sets, 15 

making difficult their applicability (Riaño et al., 2005;Yebra et al., 2008a).  16 

Radiative Transfer Models (RTM) simulate vegetation spectra and are a sound alternative to 17 

empirical modeling. They can be applied to different locations to estimate different vegetation 18 

parameters, as long as the RTM is a true representation of the vegetation canopy. For 19 

example, Trombetti et al (2008) predicted CWC for the continental US using RTM 20 

PROSAILH (Jacquemoud et al., 1995) simulations. Their model was calibrated with CWC 21 

from Airborne Visible / Infrared Imaging Spectrometrer (AVIRIS) hyperspectral water 22 

absorption bands. Yebra et al. (2008b) used also PROSAILH to quantify FMC, and more 23 

recently, Another example is Jurdao et al (2013) who inverted the RTM GEOSAIL 24 

(Huemmrich, 2001) combined with PROSAILH to estimate FMC. The estimations were that 25 

was validated with extensive field sampling data in Spain. RTM estimates are based on a 26 

physical principle, and one of the advantages is that are not constrained to local conditions as 27 

is the case of empirically derived relationships. Therefore, in theory they can be extensively 28 

applied at different locations with good results (Yebra et al., 2008a;Yebra et al., 2008b). This 29 

study compares the modelperformance of the different empirically derived models and RTM 30 

based estimates models. The former were created using stablishing empirical relationships 31 

between three different metrics of vegetation water content measured simultaneously in the 32 

field (FMC, EWT, CWC) and nine spectral indices calculated at two scales, from both 33 
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proximal sensing and MODIS spectral data. In addition Dm and LAI were also analyzed in 1 

order to connect FMC with EWT and EWT with CWC, respectively metrics which estimates 2 

water content at leaf and canopy level. Firstly, an analysis of the temporal and spatial 3 

variability of the different measurements  vegetation samples collected in the field was 4 

conducted to evaluate which biophysical parameter offers more information. Secondly, the 5 

model performance wasthe performance statistics of the fitting equations were evaluated to 6 

select the most accurate empirical models. Finally, these this strategy gave us the empirical 7 

models were compared to two three RTM based models estimates, proposed in the literature 8 

to derive one two to derive FMC (Jurdao et al., 2013;Yebra et al., 2008b) and the other for 9 

CWC (Trombetti et al., 2008). 10 

 11 

2 Methods 12 

2.1 Site description 13 

 The study site is located at Las Majadas del Tiétar (Spain) FLUXNET site 14 

(http://fluxnet.ornl.gov/site/440, last accessed 2014/06/05) (Fig. 1). The area is a dehesa, a 15 

typical Mediterranean wooded grassland,  which is an ecosystem that occupies about 4% (2.5 16 

Mha) of the Iberian Peninsula (Castro, 1997). Common tree species are different varieties of 17 

oaks, here mostly Quercus ilex subsp. ballota (L.), whose acorns and leaves are mainly used 18 

as forage for pigs and cows, respectively. The scattered oak trees have a 9 m mean height and 19 

6 m mean crown diameter. Due to its deep and wide root system, this species is resistant to 20 

long drought periods (Camarero et al., 2012). Short grassland covers 86% of the area that is 21 

managed for cow shepherding. It is mainly composed by Rumex acetosella, L., Plantago 22 

carinata Schrad, Trifolium subterraneum L., Cynodon dactylon (L.) Pers., Taraxacum dens -23 

leonis Desf. and Vulpia myuros (L.) C. C. Gmel. During the summer, grass dries out rapidly 24 

and turns into dead matter. Summers are hot and dry, with 30 °C daily average temperature 25 

and only 67 mm total precipitation, which are not representative of mean annual 16.7 °C and 26 

572 mm. The average altitude is 256 m above mean sea level. Soils are lixisols with an 27 

average thickness of 80 cm. Due to the presence of a clay layer in some of the areas, small 28 

water pools may appear in winter after rainy periods. The occurrence of this type of 29 

ecosystem in Mediterranean areas worldwide, the need to track the responses to water stress 30 

http://fluxnet.ornl.gov/site/440
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conditions, together with the presence of a FLUXNET eddy covariance flux tower 1 

(http://fluxnet.ornl.gov/site/440) justifies the selection of this site. 2 

2.2 Field sampling data 3 

2.2.1 Vegetation sampling 4 

Grass water status was estimated through destructively sampled sampling every two weeks 5 

from April 2009 to April 2011. Sampling was performed assuring no rain occurred in the two 6 

previous days to avoid sampling superficial water on the leaves. During the 2009 summer, 7 

when grass became completely dry,  and samples were not collected in 2009. However, to 8 

ensure the time series continuity of at least one phenological cycle, sampling was restated 9 

throughout the summer of 2010. This sampling strategy leaded to a total of 21 valid sampling 10 

days for the whole study period.  11 

Six 25 x 25 m plots were randomly located within the 500 m MODIS pixel that contained the 12 

eddy covariance flux tower that was stablished as the center of the study site (Fig. 1). Three 13 

grass samples were collected from three 25 x 25 cm
2
 quadrants randomly positioned within 14 

each plot. All rooted grasses were collected inside the quadrant using clippers (IQSample 15 

hereafter). Additionally, a different sampling strategy was tested and a smaller sample was 16 

collected outside of the quadrant but nearby to estimate EWT -EWTSample hereafter- in a cost-17 

effective way, containing a representative proportion of surrounding species (OQSample 18 

hereafter) (Fig. 2). All samples were placed in sealed plastic bags, weighed on a scale with 19 

0.01 g precision and then transported in a cooler to the laboratory. Every OQSample Each 20 

EWTSample and a sub-sample from each IQSample were scanned at 150 pixels per inch (ppi) in 21 

an Epson Perfection V30 color scanner (Epson American Inc., Long Beach, CA, USA). Leaf 22 

area was calculated automatically from the scanned images using the unsupervised 23 

classification algorithm ISOCLUS with 16 iterations in PCI Geomatica (PCI Geomatics, 24 

Richmond Hill, Ontario, Canada). All samples were then placed in an oven for 48 hours at a 25 

constant temperature of 60°C to obtain their dry weigh. Five biophysical variables were 26 

obtained from the collected vegetation samples: FMC, EWT, Dm, CWC and LAI.  27 

FMC was determined from the fresh and dry weights of both the IQSample (FMCIQ) and the 28 

OQSample (FMCOQ) according to Eq. 1. The OQsample permitted to calculate both, EWT and Dm 29 

using Eq. 22 and Eq. 4 respectively, since fresh/dry weight and leaf area were measured.  The 30 

IQsample was not used in this case as it was unfeasible to obtain the area of the total sample 31 
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collected inside the quadrant and neither the fresh weight of a sub-sample.  FMC was 1 

determined from the fresh and dry weights of both the whole quadrant sample (FMCQ) and 2 

the EWTSample (FMCE) according to Eq. 1 The EWTSample permitted to calculate both, EWT 3 

and Dm, since fresh/dry weight and leaf area were all measured) of the EWTSample. 4 

CWC was calculated from two different approaches. In the first one, information 5 

corresponding to the quadrant and  EWTSample IQsample and OQsample were combined using the 6 

following expression (Eq. 54where LAI is the leaf area index of the grass within the quadrant 7 

and EWT is obtained from Eq 2.  8 

The grass height was very short due to cow shepherding during some periods, so the only 9 

feasible technique to estimate LAI, rather than optically estimated, was measured with was 10 

using gravitational methods (He et al., 2007). The biomass to leaf area ratio of a sub-sample 11 

inside the IQSample to the total quadrant’s biomass provided LAI using the following 12 

expression (Eq 57):  13 
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where WDry is the total dry weight of the whole sample inside the quadrant IQSample, 
Sub

DryW  is 15 

the dry weight of a sub-sample of WDry, 
Sub

LeafArea  is the sub-sample leaf area and Area is the 16 

total area of the quadrant. The second approach measured CWC from the fresh and dry weight 17 

difference of the IQSample as in (Eq. 6). 18 

 19 

The second approach measured CWC from the fresh and dry weight difference inside the 20 

quadrant (CWCQ in Eq. 6):  21 

2.2.2 Proximal sensing 22 

Simultaneously to vegetation sampling, proximal sensing data were acquired using an ASD 23 

FieldSpec® 3 spectroradiometer (http://www.asdi.com/) along NE-SW and NW-SE transects 24 

in each 25x25 m plot. This instrument measures Hemispherical-Conical Reflectance Factor 25 

(HCRF) reflectance from 350 to 2500 nm. Before measuring along each transect, dark current 26 

was recorded, instrument settings were optimized and reference spectra were acquired using a 27 

Spectralon® 99% reflective reference panel (Labsphere Inc., North Sutton, NH, USA). All 28 
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measurements were taken under clear sky within about ±2 hours from local solar noon, to 1 

guarantee homogeneous illumination and maximum solar irradiance. Sky conditions were 2 

recorded in the field logs, and a quality control check removed the spectra where illumination 3 

changes may have occurred after calibration. The ASD was handled using bare fiber. without 4 

fiber optics to reduce the directional effects on the spectroradiometer’s fiber bundle field of 5 

view (FOV) (MacArthur et al., 2012). Spectra were acquired at approximately 1.2 m height, 6 

rendering a sensor footprint diameter of about 53 cm, since nominal FOV is 25º.  7 

An average of approximately 10 spectral measurements was calculated for each transect and 8 

then this information was spectrally resampled to MODIS bands using ITT ENVI 4.7. 9 

(EXELIS, Boulder CO, USA).(Paltridge and Barber, 1988;Yebra et al., 2008b). Finally, two 10 

RTM based algorithms were run to compare with these spectral indices. GEOSAIL RTM 11 

model inversion estimated FMC testing two different look up tables that constrained the 12 

simulations to either a grassland or a mixed tree-grassland cover based on  Jurdao et al. 13 

(2013). PROSAILH RTM model inversion predicted CWC assuming a pure grassland cover 14 

following Trombetti et al. (2008). This model applies the same look up table to all land covers 15 

but different calibration coefficients which will render the same R
2
 independently of the land 16 

cover considered. 17 

2.2.3 MODIS data images 18 

MODIS Terra daily surface reflectance (MOD09GA) data from April 1st, 2009 to April 15th, 19 

2011 were downloaded from NASA Land Processes Distributed Active Archive Center (LP 20 

DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, 21 

South Dakota, USA. This product includes the reflectance of bands 1 to 7, from 469 to 2130 22 

nm at 500 m spatial resolution, as well as sensor and solar observation angles and quality 23 

flags at 1 km. A script programmed in Matlab (Mathworks, Batick, Massachusetts, USA) 24 

extracted the MODIS pixel value of our study site from all the images to build the time series. 25 

The impact of angular effects on reflectance was reduced by removing images with sensor 26 

zenith angles wider than 20°, which also assures the accuracy of the geometrical location of 27 

the pixel (Wolfe et al., 2002). In addition, the quality flag layer eliminated images under 28 

clouds, cloud shadows and/or with high atmospheric aerosol content. The algorithm selected 29 

the closest valid MODIS image to the field sampling day within ±+ 5 days window, or the 30 

MODIS image acquired before the sampling day in case they were equal. Minimal time lag 31 

between sensor and field data reduces the chances of discrepancy, as grassland grazing could 32 
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affect LAI in a short period of time. This leaded to a total of 14 days of MODIS data with 1 

coincident proximal sensing measurements and field data.  2 

Similarly to proximal sensing, MODIS estimated the biophysical variables from the spectral 3 

indices in Table 1 and from the RTM model inversions. 4 

2.3 Vegetation indices 5 

These For the study 9 spectral indices were calculated from proximal and MODIS reflectance 6 

data according to the equations in Table 1. The indices selected to estimate the biophysical 7 

variables included bands in the water absorption SWIR region (Faurtyot and Baret, 1997) and 8 

bands sensitive to vegetation greenness and structure in the NIR region (Paltridge and Barber, 9 

1988;Yebra et al., 2008b). 10 

2.4 RTM based water metrics estimates  11 

In order to compare performance with the empirical derived models, three RTM based models 12 

were used to estimate CWC (Trombetti et al., 2008) and FMC (Yebra et al. (2008b);Jurdao et 13 

al. (2013)). As for the empirical models, the spectral information used to run the RTMs was 14 

the one obtained using proximal sensing and MODIS data. 15 

2.4.1 CWC 16 

CWC was estimated in the study site following Trombetti et al. (2008). This method uses 17 

PROSAILH RTM (Jacquemoud and Baret, 1990;Jacquemoud et al., 1995) and Artificial 18 

Neural Networks (ANN) to estimate CWC.  Trombetti et al. (2008) trained their model by 19 

using MODIS synthetic spectra based on a set of empirical relationships. Different MODIS 20 

spectra combinations and vegetation indices were later used as input variables to train a neural 21 

network and obtaining as outputs CWC, leaf water content, and LAI. The outputs were 22 

validated against AVIRIS CWC and MODIS MOD15A2 LAI product. At the end, a Multiple 23 

linear regression approach is later used to establish the equations for each landcover type. In 24 

our case we used the original calibration from Trombetti et al. (2008) for grassland. 25 

 Further details on this method can be found in Trombetti et al. (2008). 26 
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2.4.2 FMC  1 

The FMC estimates are based on Look Up Table (LUT) inversion technique. This technique 2 

compares each observed spectra against previously generated spectra stored in a LUT.  In this 3 

study two LUTs were tested. One specifically designated for grassland based on the study of 4 

Yebra et al. (2008b) and that was generated using PROSAILH (Jacquemoud and Baret, 1990). 5 

The second LUT was generated using a link between PROSAILH (Jacquemoud and Baret, 6 

1990) at leaf level and  GEOSAIL RTM (Huemmrich, 2001) at canopy level and originally 7 

proposed to estimate FMC in a mixed-oak-tree-grassland cover (Jurdao et al., 2013). This 8 

model includes some additional parameters that allow to account for shadows, especially 9 

important in areas with disperse tree coverage as is the case in our study site.    10 

Further details on these methods can be found in Yebra et al. (2008b) and Jurdao et al. (2013). 11 
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2.5  Data analysis Empirical models fitting 13 

Intra-group, inter-group and overall R
2
 values between FMCIQ, FMCOQ, EWT, CWCIQ, 14 

CWCOQ or LAI, and each of the proximal sensing spectral indices were calculated to 15 

investigate their variability within the 500 m MODIS pixel. More specifically, the intra-group 16 

R
2
 offers information about the spatial variability, due to the collection of samples at  from 17 

different plots within the MODIS pixel. A linear regression model was created for each 18 

sampling day where the biophysical variable and the spectral index were the dependent and 19 

the independent variable, respectively. The average R
2
 of all the regression models for each 20 

day provided the intra-group R
2
. Instead, the inter-group R

2
 explains the temporal variability 21 

due to the collection of the samples on different days. In this case, the biophysical variable 22 

and the spectral index for all plots were averaged for each sampling day. The linear regression 23 

model of these averaged values determined the inter-group R
2
. To explain temporal and 24 

spatial variability together, the overall R
2
 fitted in a single regression model including all 25 

plots and sampling days for each spectral index and biophysical variable. 26 

Later, using the mean values of each biophysical variable and the proximal sensing spectral 27 

indices, a univariate linear regression model was applied. The same procedure was repeated 28 

for MODIS data. Bootstrapping techniques evaluated the empirical model robustness, which 29 

is a valid alternative to traditional leave-one-out methods to validate regression models 30 

predictability according to Richter et al. (2012) and following Steyerberg et al. (2001) that 31 



 12 

recommends two hundred simulations. Later the median value of each statistics was used as 1 

indicative of its performance. Root Mean Square Error (RMSE), Relative Root Mean Square 2 

Error (RRMSE), Nash-Sutcliffe Efficiency index (NSE), determination coefficient (R
2
) and 3 

Taylor’s diagrams evaluated the models’ performance.  As recommended in Steyerberg et al. 4 

(2001), two hundred bootstrap model simulations were run for each model and the median 5 

value of each statistics represented its performance. The RMSE measured the error in the 6 

estimation of the biophysical variable by each model: 7 
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Where V
i

est
  is the estimated variable and V

i

obs
 is its observed field measurement. RMSE 9 

cannot compare the error of different variables with different units. To address this limitation 10 

in order to compare the model performances between different variables, RRMSE divides 11 

RMSE by the average of the observed values V obs
 (Richter et al., 2012): 12 
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The NSE indicates the model predictive power which ranges from –∞ to the best predictive 14 

power value of 1 (Richter et al., 2012). It establishes if the model performs at least as accurate 15 

as the average of observed values through the following expression: 16 
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The R
2 

measures the proportion of variance explained by the model and is calculated as: 18 

2

2

r2 -1=R



         (10) 19 

where 2

rσ  represents the residual variance and 2σ  is the variance of the dependent variable.  20 

2.6 Comparing performance between empirical and RTM based estimates 21 

Taylor diagrams allowed the comparison between the spectral indices  FMC and CWC 22 

predicted by empirical models fit and the RTM inversion estimates based algorithms of  23 
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Jurdao et al. (2013) and Trombetti et al. (2008)  for FMC and CWC, respectively. In these 1 

plots the observed variable and its standard deviation (SD) are plotted in the x-axes. RMSE is 2 

represented as semicircles centered at the observed data. The correlation coefficient (r) is 3 

displayed in the azimuthal position. Best models are closer in the plot to the observed 4 

measurement; therefore they will have a high r, a low RMSE and a SD similar to the observed 5 

values. 6 

 7 

3 Results 8 

3.1 Empirical models fitting 9 

All variables showed similar temporal evolution, a strong variability controlled by the 10 

meteorological conditions with a peak in spring and second minor peak in the fall  winter 11 

except Dm (Fig. 3). Dm fluctuated throughout the year and exhibited its highest values in the 12 

summer. The 47% Coefficient of Variation (CV) for Dm was less than for CWCIQ (CV= 13 

95%), CWCOQ (CV=0.95%), FMCIQ (CV= 60%) and FMCOQ (CV= 56%), but higher than for 14 

EWT (CV= 38%). A higher precipitation in the spring of 2010 versus the previous year 15 

compared to previous year translated into higher FMC, CWC and LAI values. FMCOQ and 16 

CWCOQ, calculated from the EWTSample OQSample, presented similar trends but in some cases 17 

higher values than FMCIQ and CWCIQ, calculated from the quadrant sample IQSample.  18 

A low intra-group R
2
 for all the variables indicates a low spatial variability between plots 19 

(Fig. 4). Contrary, the high inter-group R
2
 also for all variables points to the high temporal 20 

variability between sampling dates. The main differences between variables occurred for 21 

overall R
2
. Similar overall and inter-group R

2
 values for CWCOQ and FMCOQ indicated that 22 

the combination of the temporal and spatial factors matched in importance each factor on its 23 

own. Instead, overall R
2
 for CWCIQ and FMCIQ laid in between the inter-group and the intra-24 

group R
2
 underling the temporal factor as the main source of variation. GEMI offers the best 25 

R
2
 for all variables while VARI had the weakest R

2
. 26 

The most accurate univariate explicative empirical bootstrap model with the highest R
2
 to 27 

retrieve each variable differed from between proximal sensing and MODIS (Fig. 5) to 28 

MODIS (Fig. 5). FMCOQ and FMCIQ showed the best correlations with GEMI from proximal 29 

sensing data but EVI performed betterwas the index that presented the highest R
2
 when using 30 

from MODIS images. EWT offered the poorest adjustments among all variables analyzed 31 
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both for proximal sensing and MODIS data. In this case GEMI was the best predictor.was 1 

more accurately estimated with GEMI from either sensor but presented the lowest R
2
 and 2 

NSE of all the biophysical variables. NDII and GVMI were the most accurate predictors for 3 

LAI, CWCOQ and CWCIQ with proximal sensing. When using MODIS, the most accurate 4 

results for LAI were achieved with NDII and GVMI, but EVI did so for CWCOQ and CWCIQ. 5 

When the quadrant sample IQsample was used instead of the EWTSample OQsample, both FMC 6 

and CWC showed more accurate higher R
2
 results (Fig. 5) with lower RRMSE and higher 7 

NSE and R
2
, although the RRMSE results obtained presented small differences (Fig. 6).  8 

Smaller confidence intervals of R
2
 were observed when proximal sensing reflectance was 9 

used with the exception of EWT in which MODIS presented smaller intervals.   10 

3.2 Comparing performance between empirical based and RTM estimates 11 

Taylor diagrams in Figs. 7 and 8 compare FMC and CWC estimates using spectral indices 12 

and RTM using the Taylor diagrams. In the case of FMCIQ from proximal sensing (Fig. 7 13 

left), RTMs are distant from empirical index-based models. They presented higher RMSE and 14 

lower r than the spectral indices whereas RTM SD was more similar to the observed values. 15 

In the case of FMCIQ estimated from MODIS (Fig. 7 right), RTMs was were closer to the 16 

empirical models in the Taylor diagram and therefore perform more similar to those. For 17 

CWCIQ (Fig. 8), the differences between the empirical and RTMs are larger. Using from 18 

proximal sensing data (Fig. 8 left), RTM overestimated the SD of the observed CWCIQ. At 19 

Using MODIS scale (Fig. 8 right), RTM showed a very high overestimation of the CWCIQ.  20 

Temporal evolution of the biophysical variables estimated using the most accurateexplicative 21 

model for proximal sensing and MODIS in Fig. 5 and 6 are shown in Fig. 9. Fitting equations 22 

for the different variables are shown in Table 2. Both sensors predicted well EWT, FMCIQ 23 

and FMCOQ but showed an overestimation, especially during the dry season. Contrary, the 24 

models for LAI, CWCOQ and CWCIQ adjusted well even during the dry season. 25 

 26 

4 Discussion 27 

Results revealed that Dm varies significantly throughout the year (CV=47 %) with high 28 

values in the summer. These changes could be related to the temporal variation in plant 29 

community structure, species composition and diversity in this ecosystem (Casado et al., 30 
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1986). Summer should be the best time of the year to invert RTM and predict Dm, since 1 

leaves are drier and therefore EWT does mask the Dm spectral absorption signal (Riaño et al., 2 

2005). Casas et al. (2014) applied a constant annual Dm value from the literature to 3 

successfully predict seasonal variations in EWT and CWC. However, our study suggests that, 4 

due to the high seasonal variation in Dm, a constant annual value would not be recommended 5 

here in grassland ecosystems as the one analyzed in this work.  6 

The high inter-group and low intra-group R
2
 implies that the temporal trend is much more 7 

critical than the spatial variation within the MODIS pixel (Fig. 4). Therefore, the strategy to 8 

capture better the variability of vegetation water content in this ecosystem should be to 9 

sample more times but fewer plots. Therefore, the strategy to better capture the variability of 10 

grass water content in this ecosystem should consist in increasing the number of samples in 11 

time and but sampling less number of plots per day. In addition, CWCIQ and FMCIQ, 12 

generated from larger sample sizes than CWCOQ and FMCOQ, presented higher inter-group R
2 

13 

values, which indicate a better characterization of the temporal variability. Even though 14 

similar conclusions were obtained using the two strategies the results in this study showed 15 

that the higher R
2
 are found in the case of the IQSample. Using the quadrant also presented 16 

some advantages as it allows not just the retrieval of FMC but also CWC (as in Eq. 6)  17 

without going through the time consuming leaf scanning process to retrieve leaf area needed 18 

to estimate EWT. This suggests the need to standardize sampling protocols for the estimation 19 

of vegetation biophysical parameters to ensure data quality, repeatability and to facilitate 20 

accurate cross comparison from different studies. Some initiatives already exist to facilitate 21 

this standardization, as the Global Terrestrial Carbon System (GTOS) guidelines in support of 22 

carbon cycle science (Law et al., 2008). However, currently there is no international backbone 23 

that ensures this and an agreement in the protocols is needed in order to validate remote 24 

sensing products.  25 

CWC was better predicted than the other two water content variables metrics, FMC and EWT 26 

(Fig. 4). CWC depends on LAI which is even higher correlatedshowing higher correlation 27 

values to the empirical models than those two variables other metrics such as FMC or EWT. 28 

Some studies have shown that LAI contributions to total reflectance variability is much higher 29 

than water (Bowyer and Danson, 2004) for this reason also, CWC should provide more 30 

accurate retrievals than FMC or EWT. It is possible to have the same FMC and EWT for 31 

different LAI and hence different CWC and amount of soil background, which will change its 32 
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reflectance. Yebra et al. (2013) demonstrated through PROSAILH simulations how a very 1 

different CWC for the same EWT based on changes of LAI translates into a huge large range 2 

of NDII values. Our results confirm this theoretical assumption described in Yebra et al. 3 

(2013). This issue is especially critical over areas like this one the one analyzed in this work 4 

with an herbaceous cover exhibiting large dynamic annual growth. Very low R
2
 values were 5 

obtained in this study regarding the EWT. More research needs to be done in this line as EWT 6 

is a key input parameter in many RTM. 7 

The empirical methods estimated FMC and CWC with slightly different results for proximal 8 

sensing and MODIS (Figs. 5 and 6). While GEMI and NDII were the most accurate for FMC 9 

and CWC respectively from proximal sensing in our study; EVI was the most accurate 10 

explicative estimator of both variables from MODIS. The relationship between these indices 11 

and water metric is indirect, since none of them include spectral bands in the SWIR region 12 

where water absorption is strong. However, there is a strong link between grass water content, 13 

chlorophyll activity and LAI in this ecosystem. During wet periods the grass grows very 14 

rapidly, increasing the LAI, biomass and chlorophyll content, but as soon as the dry season 15 

starts with high temperatures and low rainfall the grass becomes cured rapidly losing all 16 

chlorophyll and quickly decreasing the LAI and biomass. This explains the empirical 17 

relationships with high R
2
 between water metrics and indices sensible to chlorophyll activity, 18 

or those more sensible to water in the SWIR region. In addition, it is remarkable that MODIS 19 

estimations were more accuratepresented higher R
2
 than proximal sensing. Bootstrap 20 

confidence intervals indicated that R
2
 and RRMSE presented large intervals, larger when 21 

using MODIS images. Roberts et al. (2006) also observed different correlations between 22 

indices and platforms and the discrepancies here need further investigation. The difference in 23 

the confidence interval amplitude between proximal sensing and MODIS can be explained 24 

because the MODIS pixel included not only grass but also trees, their shades, and other 25 

marginal covers like bare soil and a water pond (Fig. 1), and its view angle could be up to 20° 26 

whilst pProximal sensing measures only two transects within each of the six plots and 27 

provides only nadiral measurements of herbaceous cover which could be more affected by the 28 

soil signal.   29 

Similarly to this study, Casas et al. (2014) reliably predicted water content variables in 30 

California (USA) from GEMI, NDII and EVI using simulated MODIS spectral response from 31 

airborne hyperspectral AVIRIS instrument. In their case, it was actually VARI the most 32 
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accurate for grasslands (FMC and CWC), chaparral (EWT, FMC and CWC) and a 1 

Mediterranean oak forest (EWT). Contrary, VARI showed very poor accuracies in our case to 2 

estimate FMC, EWT and CWC, but was still capable of capturing the variability in LAI (Fig. 3 

4). This fact also contradicts other studies that predicted FMC from VARI on chaparral 4 

(Peterson et al., 2008;Roberts et al., 2006;Stow et al., 2005, 2006). VARI was developed to 5 

detect vegetation fraction in homogenous wheat crops (Gitelson et al., 2002b), but Gitelson et 6 

al. (2002a) nor the above studies have tested this spectral index to detect vegetation water 7 

content on sites like ours, with strong seasonal changes in species composition and LAI.  8 

The empirical methods calibrated for this specific site outperformed the physical RTM 9 

estimates for CWC and FMC (Figs. 4 7 and 58). This confirms the results in Casas et al. 10 

(2014) where the CWC algorithm based on RTM inversion developed by Trombetti et al. 11 

(2008) also failed to improve results from empirical estimates. Regarding the RTM-based-12 

FMC estimates, considering that the FMC inversion models were not calibrated with any data 13 

from the field campaign and that the results were similar to those obtained using empirical 14 

approach (Fig. 7) we believe that the models can be applied in other similar areas. RTM only 15 

overcome when structural information constrains the model inversion (Yebra et al., 2008b; 16 

Casas et al., 2014). Such ancillary information is key to successfully extrapolate a RTM 17 

inversion at broader scale.  18 

Future work in this line can still be done, testing other inversion techniques, using multiple 19 

observations or other optimization algorithms might help to improve the performance of 20 

physical based estimates of biophysical variables of vegetation.  21 

 22 

 23 

5 Conclusions 24 

This work showed a complete analysis of three metrics, EWT, FMC and CWC, to measure 25 

vegetation grass water content at two different spatial scales by using proximal sensing from a 26 

field spectroradiometer and MODIS images. The temporal changes in these metrics are more 27 

critical than their spatial variation within the MODIS pixel. Results indicated that larger 28 

samples collected using quadrants as spatial reference sampling units are more representative 29 

than the small EWTSample  samples in order to follow the temporal trends in FMC and CWC.. 30 

Protocol standardization in order to make different datasets comparable should be considered 31 
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to make different dataset comparable both spatially and temporally.  Due to the high seasonal 1 

Dm variability, a constant annual value should not be used to estimate EWT from FMC in this 2 

ecosystem. The dependence of CWC on LAI makes this vegetation water content variable 3 

easier to predict than FMC or EWT in grasslands due to the strong existing link between LAI, 4 

water content and chlorophyll activity. 5 

GEMI, NDII and EVI reliably predicted vegetation water content. The best empirical 6 

estimator differed between sensors. Empirical models based on vegetation indices Results 7 

were a bit bettershowed higher R
2
 for MODIS than from proximal sensing, probably due to 8 

differences induced by observation geometry and canopy observed in view angles, sampling 9 

strategy and canopy observed. These empirical methods still exceed RTM inversions 10 

developed for other sites to predict FMC (Jurdao et al., 2013;Yebra et al., 2008b) and CWC 11 

(Trombetti et al., 2008). Conclusions from this study are much related to grassland physiology 12 

and cannot be extended to other vegetation types such as forest or shrubs. 13 
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Table 1: Spectral indices calculated using field reflectance HCRF measurements and MODIS 1 

data. Bx designates the band number corresponding to the MOD09GA product surface 2 

reflectance product. 3 

 Index   Formula   Reference  

Normalized difference 

vegetation index 

(NDVI)  
12

12=
BB

BB
NDVI





 

(Rouse et al., 

1973) 

Enhanced Vegetation 

Index (EVI) 
















312

12

7.56
2.5=

BBB

BB
EVI

 

(Huete et al., 

2002) 

Normalized Difference 

Water Index (NDWI) 52

52=
BB

BB
NDWI





 
(Gao, 1996) 

Normalized Difference 

Infrared Index (NDII) 62

62=
BB

BB
NDII





 

(Hardisky et 

al., 1983) 

Simple Ratio Water 

Index (SRWI) 5

2=
B

B
SRWI

 

(Zarco-

Tejada et al., 

2003) 

Soil Adjusted 

Vegetation Index 

(SAVI) 

 L
LBB

BB
SAVI 














1=

12

12

 

Where L= 0.5 

(Huete, 

1988) 

Global Environment 

Monitoring Index 

(GEMI) 

 
1

1

1

0.125
0.251=

B

B
GEMI




 

 

 where 

 
0.5

0.51.52
=

12

22

2

1

2

2





BB

BBBB


 

(Pinty and 

Verstraete, 

1992) 

Visible 

Atmospherically 

Resistant Index (VARI) 
314

14=
BBB

BB
VARI





.  

(Gitelson et 

al., 2002a) 
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Global Vegetation 

Monitoring Index 

(GVMI) 







 






 







 






 

0.020.1

0.020.1

=
*

*

SWIRNIR

SWIRNIR

REC

REC
GVMI  

 

(Ceccato et 

al., 2002)  

Central band 

wavelength 

B1= 645.5 nm, B2= 856.5 nm, B3= 465.6 nm, B4= 

553.6 nm, B5= 1241.6 nm, B6= 1629.1 nm, B7= 

2114.1 nm 

 

 NIRREC stands for the information in the Near Infra Red rectified as the index was 1 

designed for SPOT-VEGETATION (Ceccato et al., 2002). In this study the index was 2 

calculated using the spectral bands from MODIS corresponding to that B2 for the NIR 3 

and B5 for the SWIR regions4 
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Table 2: Empirical fitting equations obtained after bootstrap.  1 

Fitting equation 

Proximal Sensing 

Fitting equation 

MODIS 

FMCOQ = (1184.400 ∙GEMI)  - 734.405 FMCOQ = (1727.326 ∙EVI)  - 216.433 

FMCIQ = (999.707 ∙GEMI)  - 626.932 FMCIQ = (1398.385 ∙EVI)  - 173.518 

EWT = (0.029 ∙EVI)  + 0.011 EWT = (0.059 ∙EVI)  + 0.003 

LAI = (2.621 ∙NDII)  + 1.268 LAI = (3.524 ∙NDII)  + 1.189 

CWCOQ = (0.075 ∙NDII)  +0.029 CWCOQ = (0.195 ∙EVI)  -0.032 

CWCIQ = (0.063 ∙NDII)  +0.023 CWCIQ = (0.157 ∙EVI)  -0.026 

2 
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 1 

 2 

Figure 1. Plots sampled near the FLUXNET tower within the 500 m MODIS pixel at Las 3 

Majadas del Tiétar (Spain) study site.  4 

 5 
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 1 

 2 

 3 

Figure 2. Scheme showing the different samples collected in the field and how they are 4 

processed in the laboratory. Metrics obtained as results are also indicated in the last column.  5 

 6 
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 1 

 2 

Figure 3. Box plot showing the temporal evolution of field biophysical variables measured. 3 

Filled points represent the median of the daily measurements, the boxes indicate the position 4 

of the 1st and 3rd quartile, lines delimit the maximum and minimum values, and empty points 5 

are outliers. Line inside the boxes showed the median value of the day and the point the mean 6 

value. Precipitation is represented using bars and temperature is represented with a solid line 7 
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1 
  2 

Figure 4. Intra-group, inter-group and overall 
2R  values between proximal sensing spectral 3 

indexes and biophysical variables measured in the field.  4 

 5 

 6 

7 
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1 
  2 

Figure 5. DModel performance statistics for all the spectral indices calculated using proximal 3 

sensing.etermination coefficient for proximal (green circles) and MODIS (red squares) 4 

empirical models after bootstrap. Upper and lower limits of the confidence intervals for 5 

MODIS and proximal sensing are presented.  6 

7 
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1 
  2 

Figure 6. Relative root mean square error for proximal (green circles) and MODIS (red 3 

squares) empirical models after bootstrap. Upper and lower limits of the confidence intervals 4 

for MODIS and Proximal sensing are presented. Model performance statistics for all the 5 

spectral indices calculated using MODIS data.  6 
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 1 

 2 

Figure 7. Comparison of empirical vs RTM models to estimate FMC with proximal sensing 3 

(left) and MODIS (right). RTM FMC (Grassland) obtained from the LUT proposed by (Yebra 4 

et al., 2008b). RTM FMC (Grassland& Holm Oak) obtained from the LUT proposed by  5 

Jurdao et al. (2013).  6 

7 
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 2 

Figure 8. Comparison of empirical vs RTM models to estimate CWC with proximal sensing 3 

(left) and MODIS (right). RTM CWC is based on Trombetti et al. (2008). 4 

5 
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 1 

 2 

Figure 9. Temporal evolution of the observed (red circles) and estimated FMCOQ, FMCIQ, 3 

EWT, LAI, CWCOQ and CWCIQ obtained for proximal sensing (green asterisks) and MODIS 4 

(blue crosses). Fitting equations are presented in Table 2. 5 
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