

Responses to specific comments of Reviewer 1

General comments

- **Statistics.** In order to rely on so many regression analyses I recommend using multivariate analyses: A principal component analysis (PCA) based on the four fluorescence components containing the different lakes, the four seasons and maybe salinity as factor in order to reveal the major controls on fluorescent component distribution, e.g. is the between-lake variability higher than the seasonal variability? In how far might salinity affect the distribution? Though the authors do not aim at extracting differences between freshwater and brackish water DOM fluorescent component composition it might still be interesting to mention in how far salinity could play a role and why it had/ had no effects in this study. Secondly, I suggest performing a model II-ANOVA using season and lake as random effect factors.

Response: Thank you for your suggestion. A principal component analysis (PCA) has been widely used to assess the variation of water quality among water bodies (Bonilla et al., 2009. Phytoplankton and phytoplankton pigment strategies: implications for algal survival in the changing Arctic. *Polar Biol.* 32, 1293) and the relative distribution of the EEM-PARAFAC extracted fluorescent components for all sample locations. According to the references (Helena et al., 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. *Water Research*, 34, 807e816; R. Jaffe' et al., 2008. spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. *Journal of Geophysical Research*, 113, G040320; Jami Goldman, 2011. Applications of fluorescence spectroscopy for monitoring water quality in an urban watershed; Zhi et al., 2015. Characterization of the composition of water DOM in a surface flow constructed wetland using fluorescence spectroscopy coupled with derivative and PARAFAC, *Environ Earth Sci.*, 73, 5153–5161), PCA based on the four fluorescence components containing the different lakes, the four seasons have been performed in our study (Figure in the

following). However, the results can not reveal which is the major control on the fluorescent components between lake-variability and season-variability.

As is shown in Figure 1, a closer analysis of the samples for June 2013 (or April 2014), it shows that the fluorescence distribution for both fresh and saline lakes in the western part of Jilin province is controlled by the same of the two PCA components. In particular, the different lake locations in February 2014 (or August 2013 16-28) were broadly distributed along the first two axes (PC1 and PC2). This may be attributed to different CDOM fluorescent components in water for different lakes in winter, or may be the condensed salinity for the lakes when covered by ice may affect the distribution of fluorescence components. We will further focus on extracting differences between freshwater and brackish water CDOM fluorescent component composition with larger saline gradients as presented in Song et al., (2013), and investigating whether or not the elevated gradient of salinity play a role in affecting the distribution of fluorescent components.

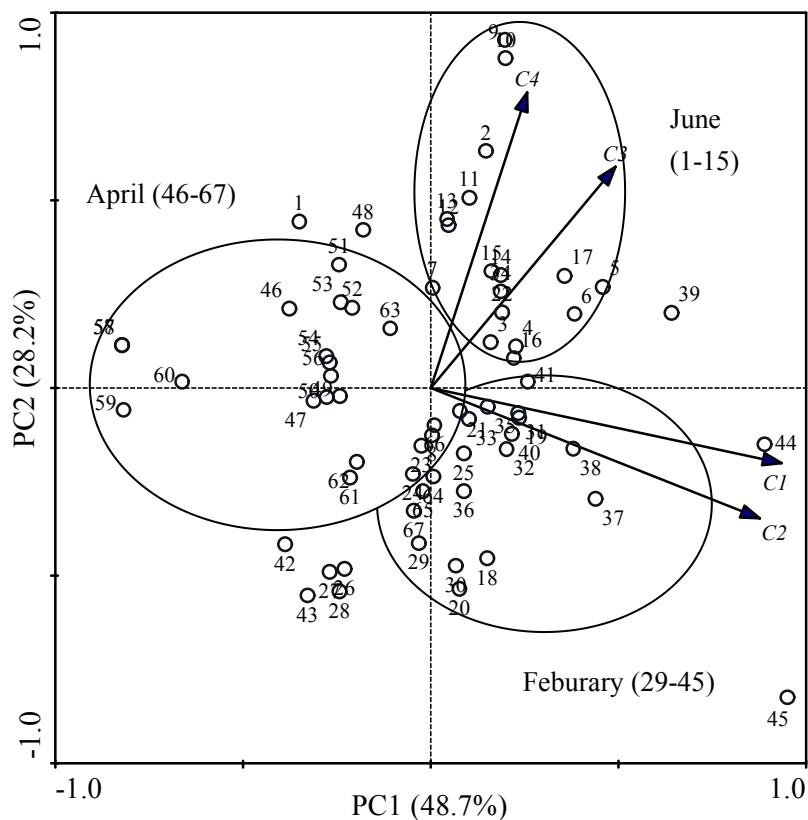


Figure 1 Plots of scores (samples) and loadings (variables) for PC1 and PC2 of CDOM components.

Thank you for your suggestion. We have performed a model II-ANOVA based on the total fluorescence intensity using season and lake as random effect factors in the revised manuscript. The results shows that the seasonal variability ($F_1=6.045 > F_{crit1}=4.459, p < 0.05$) is higher than between-lake variability ($F_2=1.742 < F_{crit2}=3.838, p > 0.05$), and therefore we pooled the seven lakes including both fresh and saline waters in the western part of Jilin province together in order to study the CDOM fluorescence intensity at different season.

The absorption coefficients still lack explanations: why have these specific absorption values been used (a254, a350, a280)? What do they indicate and what conclusions can be drawn from finding correlations with other factors like DOC or salinity?

Response: Thank you for putting out the question. The absorption coefficients have been explained (see responses to specific comments).

Introduction

Line 54: better use “its ability” instead of “this ability”

Response: Thank you for your suggestion. The contents “...**this ability**...” should be replaced by “...its ability...”.

Line 82: unclear what is meant with “...are distributed due to its geomorphology”.

Response: We are sorry making the error. The contents “...**in which many fresh and brackish waters are distributed due to its geomorphology**.” should be replaced by “...in which many fresh and brackish waters are distributed according to its geomorphological characteristics.”

Line 93: better use “at different seasons”

Response: Thank you for your suggestion. The contents “...**which had seasonal variation**.” should be replaced by “...which varied at different seasons.”

Line 97: state why exactly it is interesting to link all of these factors

Response: Thank you for putting forward the question. Linking CDOM fluorescence

intensities, absorption coefficients, DOC concentrations and salinity to each other, is to assess the relationship between CDOM-extracted fluorescent components and water quality parameters. The correlation between DOM quantity (DOC concentration) and DOM quality (absorption or fluorescence) can establish proxies for characterizing bioavailability and photoreactivity in waters (R. Jaffe' et al., 2008: spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. *Journal of Geophysical Research*, 113, G04032).

Materials and Methods

Line 105: in how far do these lakes form two groups? Due to geographical position only or are there also other factors? Is there variation within both groups as well (e.g. differences in salinity, temperature...)?

Response: Thank you for putting forward the question. The two groups of lakes were located in the western part of Jilin Province, which belongs to the semi-arid part of the Songnen Plain (Song et al., 2013). The two groups of lakes were divided according to geographical position only because they were distributed over two remote sensing images. The Chagan lake group is in the Songyuan city, and the Yueliang lake group in the Baicheng city. The Songyuan city is adjacent to the Baicheng city. The Chagan lake is approximately 60 km away from Yueliang lake, shown in Figure 2.

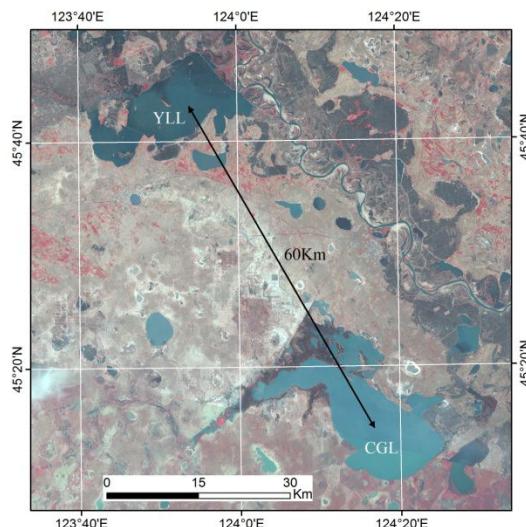


Figure 2 The locations of CGL and YLL

There is also some variations within group as well, e.g., the Chagan lake group

include both fresh lakes (XMP) and salinity lake (XDP). These brackish and fresh water in Jilin province in northeast China are endowed with similar geological, hydrological and climatic settings, thus we presume that similar process may control the CDOM components. When a model II-ANOVA based on the total fluorescence intensity using season and lake as random effect factors was performed, it shows that the seasonal variability ($F > F_{crit}$, $p < 0.05$) is higher than between-lake variability, and therefore we only pooled seven lakes together in order to study the CDOM fluorescence intensity at different season.

absorption measurement: please state clearly the calculation step for a254 and a280 and a350. Why are these indices used? What are they supposed to indicate? References?

Response: Thank you for putting forward the question. The absorption coefficient is calculated by the Eq. 1 : $a_{CDOM}(\lambda) = 2.303[OD_{(\lambda)} - OD_{(null)}]/\gamma$
 $OD_{(null)}$: the average optical density over 740-750 nm, where the absorbance of CDOM was assumed to be zero.

$$a(254) = 2.303OD_{(254)} / 0.01$$

$$a(280) = 2.303OD_{(280)} / 0.01$$

$$a(350) = 2.303OD_{(350)} / 0.01$$

$OD_{(254)}$, $OD_{(280)}$, $OD_{(350)}$ and $OD_{(null)}$ can be measured by the Shimadzu UV-2600PC UV-Vis dual beam spectrophotometer with a 1 cm quartz cuvette and Milli-Q water as reference.

Finally, the absorption coefficients were corrected for backscattering of small particles and colloids, which pass through filters, using Eq. 2 (Bricaud et al., 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain. *Limnology and Oceanography*, 26, 43–53, 1981):

$$a_{CDOM}(\lambda) = a_{CDOM}(\lambda) - a_{CDOM}(750) * \lambda / 750$$

$a(254)$ can be used to measure the contribution of CDOM which is rich in humic-like

substance, i.e., the optical properties of DOC aromaticity (Weishaar et al., 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37, 4702-4708; R. Jaffe' et al., 2004).

$a(280)$ is correlated with DOC biodegradation (McDowell et al., 2006: A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial source. Soil Biol. Biochem., 38, 1933-1942).

$a(350)$ is usually used as a proxy for characterizing CDOM concentration (Guo et al., 2010; Zhang et al., 2011).

In wavelength region from 250 to 400 nm, the correlation between absorption coefficient $a(\lambda)$ and DOC (or salinity) can indicate the bioavailability and photoreactivity in waters (R. Jaffe' et al., 2008).

Results and discussion

Line 246 ff: I do not understand this sentence.

Response: Thank you for putting forward the question. The contents in line 246-248 should be replaced by "With respect to the protein-like components, they, i.e., tyrosine-like and tryptophan-like substance, mainly consist of dissolved amino acids."

Line 255ff: going into detail on this specific lake seems pretty unnecessary. Figure 2 might better belong to the supplementary. Furthermore, any discussions about seasonal variations should be done at the respective chapter later in the manuscript.

Response: Thank you for your suggestion. Figure 2 has been placed to the supplementary.

Line 264ff: Skip the details about the split-half analysis. Further Figure 3 should be left out, it does not contain relevant information.

Response: Thank you for your suggestion. Figure 3 has been left out in the revised-manuscript.

Line 293: what is (B) referring to? (citation!)

Response: B refers to the tyrosine-like peaks also found by Henderson et al. (2009) and Hudson et al. (2007).

Line 299: which lakes or seasons did not contain some of the fluorescent components? Are there any interesting patterns?

Response: The contents in line 299 indicates the tyrosine-like (C4) components was almost included in ice when the lakes freeze, as is shown in Figure S2a. The tyrosine-like (C4) components could be obscured by other fluorescent components (C1 or C3) (Figure S1c) in the underlying water. The fluorescent components in ice-melt water need to be further studied.

Line 322ff: Do these values represent the sum of the four components for each season? Maybe this F_{max} -values for each of the seasons can be added to plot 5? How about the ice samples?

Response: Thank you for putting forward the question. The total fluorescence intensity (in line 322 to 324) represent the sum of the four components for each season. We are sorry for making the error. The F_{max} -values for each of the seasons has been added to plot Figure 3c in the revised manuscript. The F_{max} -values of the ice sample is very weak and need to be further studied.

Line 353: biological activities might be highly reduced, but not prohibited completely. Maybe there might still be a bit of production of C3 and C1 which could explain the difference in behavior of the terrestrially imported C2 that did not display significant differences between august and february?

Response: Thank you for your suggestion. The contents in line 352-354 should be replaced by "...vigorous biological activities in the lakes would be highly reduced at low temperature and low light level (Thomas K., 1983; Uusikiv et al., 2010; Wharton, et al., 1993). Although the biological activities was very weak, there still be a bit of production of C1 and C3 in lake water.... Therefore, the C1 and C3 in the water of the lakes beneath the ice layers would be produced and cumulated simultaneously."

Line 371: I do not understand this sentence. how can lake-CDOM be dominated by all four components?

Response: Thank you for putting forward the question. The contents in line 371-372

should be replaced by “However, the underlying lake CDOM included both humic-like (C1 or C2) and protein-like (C3 or C4) components.”

CDOM VS EEM-PARAFAC extracted components

Line 390: obviously sunshine-induced evapo-condensed DOC concentration had no significant effects here, otherwise DOC concentration would be highest in summer and not in winter?! Please state, shortly, the observed patterns here (which hydrological, climate and landscape patterns like stated in line394?)

Response: Thank you for putting forward the question. The authors are sorry for making the error. The DOC concentrations varies from April to August 2013, demonstrating a seasonal dynamics that can be attributed to hydrological, climatic and landscape variations (Song et al. 2013). The highest averaged DOC concentration ($55.04 \pm 20.00 \text{ mg L}^{-1}$) was present in February 2014. This can be attributed to the accumulated DOC when the lakes freeze in winter, which leaves DOC in the liquid phase, resulting in a higher DOC concentration in the underlying water.

The contents from line 388 to 397 should be replaced by “...The DOC concentrations ranged from 10.03 to 56.60 mg L^{-1} with an average value of 31.66 mg L^{-1} during the study period from April to August 2013, demonstrating a seasonal dynamics that can be attributed to hydrological, climatic and landscape variations (Song et al., 2013). It is because the prolonged sunshine duration can result in an evapo-condensed DOC concentration in the Songnen Plain. The highest averaged DOC concentration ($55.04 \pm 20.00 \text{ mg L}^{-1}$) was present in February 2014; whereas, relatively constant values of approximate 30 mg L^{-1} were observed in the other three seasons. This can be attributed to the accumulated DOC when the lakes freeze in winter, which leaves DOC in the liquid phase, resulting in a higher DOC concentration in the underlying water (unpublished material)...”.

Line 404: The SR as calculated here merely represents DOM molecular weight (Helms, 2008)?

Response: Thank you for putting forward the question. The authors are sorry for making the error. The S_R represents DOM molecular weight (Helms et al., 2008). The contents in line 404 should be replaced by “...represent DOM molecular weight...”

Line 413 ff: As mentioned in the general comments, please adapt the statistics. Anyway, the correlations presented here lack interpretation (e.g. C1 and C2, why do they correlate though they derive from different sources?)

Response: Thank you for your suggestion. We have adapted the statistics (see response to general comments). The strong correlation between C1 and C2 shows that the two fluorescent components may derived from a common FDOM source, i.e., the humic-like substance (Baker et al., 2004. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy, *Sci. Total Environ.*, 333, 217-232; Zhang et al., 2011).

Line 425: I do not understand this argument.

Response: Thank you for putting forward the question. As there is no obvious correlation between DOC and fluorescent components, the linkage of the fluorescence signal to DOC was very complicated. The seasonal impacts, such as increased rainfall, algal blooms and ice-cover, can affect the DOC concentration. Moreover, DOC contains both steady and labile CDOM fluorescent components. The fluorescent signal would changes with the ratio of fluorescence and non-fluorescence CDOM components.

The contents in line 425-428 should be replaced by "...The linkage of a fluorescence signal to DOC was very complicated because of the seasonal impacts, i.e., increased rainfall, algal blooms and ice-cover, which affect the DOC concentration. Since DOC contains both steady and labile CDOM fluorescent components, the fluorescent signal would changes with the ratio of fluorescent and non-fluorescent CDOM components (Henderson et al., 2009; R. Jaffe' et al., 2008: spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. *Journal of Geophysical Research*, 113, G04032)."

Line 428 ff: C3 might be useful to detect water pollution but a correlation with DOC solemnly does not necessarily indicate water pollution. Some other factors correlating with C3 (i.e. nutrients) might help to underscore the usefulness of C3 as a pollution indicator.

Response: Thank you for your suggestion. The correlation between protein-like

components (C3) and nutrients can indicate C3 can be used as a pollution indicator (Baker et al., 2004: Protein-like fluorescence intensity as a possible tool for determining river water quality. *Hydrol. Processes* 18 (15), 2927–2945). As the linkage of the fluorescence signal to DOC was very complicated (Response to Line 425), only a correlation between C3 and DOC can not indicate water pollution. The contents in 428-431 “**Component 3 of the CDOM fluorescence can be used to detect water pollution (Baker et al., 2004)**” should be delete.

Line 432ff: The co-linearity of DOC and salinity could be explained by evapotranspiration but, as mentioned before, obviously some other factors play crucial roles in this study since both display highest concentrations in winter rather than in summer where higher evapotranspiration rates are expected. How can this pattern be explained?

Response: Thank you for putting forward the question. The DOC significantly correlated with salinity ($R^2 = 0.931$) during the study period. This is because DOC is evapo-condensed from spring to autumn and freeze-accumulated in winter in the semi-arid region. A prolonged sunshine duration can result in an evapo-condensed DOC concentration from April to August 2013. On the other hand, the DOC is accumulated when the lakes freeze in winter, which leaves DOC in the liquid phase resulting in a higher DOC concentration in the underlying water.

Line 438: I do not understand this argument.

Response: The DOC significantly correlated with salinity ($R^2 = 0.931$) but there is no obvious correlations between salinity and EEM-PARAFAC extracted components during the study period in our paper, i.e., there is no relationship between DOC and fluorescent components. The linkage of a fluorescence signal to DOC was very complicated because of the seasonal effects of increased rainfall, algal blooms and ice-cover, which affect the DOC concentration by changing the ratio of both steady and labile fluorescence : non-fluorescence CDOM components. For example, with the sunshine duration hours increasing in warm season, the photo-degradation and microbial activities become stronger, leading to a more efficient transformation of labile fluorescence CDOM into non-fluorescence CDOM component (Song et al.,

2013).

Conclusions: might be adapted to potential new findings using multivariate statistics. Overall it should contain the important main findings and underscore the importance of this study and maybe provide an outlook for the future (e.g. how is the microbial degradability of these fluorescent components? what would be the effects on this ecosystem?)

Response: Thank you for your suggestion. We have adopt the multivariate statistics (see response to general comments). When a model II-ANOVA based on the total fluorescence intensity using season and lake as random effect factors was performed, it shows that the seasonal variability ($F > F_{crit}, p < 0.05$) is higher than between-lake variability. The fluorescent components between-lake variability (e.g. with larger saline gradients) should be studied further in the semi-arid regions. In order to understand the biogeochemical effects on the aquatic ecosystem, it is important to identify CDOM source and assess physical/chemical, bioavailable and photoreactive transformation in various lakes with larger saline gradients in the semi-arid region, northeast China.

Figure 6 should better be part of the supplementary

Response: Thank you for your suggestion. Figure 6 has been placed in the supplementary in the revised manuscript.

Responses to specific comments to Reviewer 2

Introduction

Line 44: “for us” is not necessary

Response: Thank you for your suggestion. The contents “...**for us...**” should be skipped.

Line 58-64: too long sentence

Response: Thank you for your suggestion. The contents “**In recent years, ...as well as snow melting water**” should be replaced by “**In recent years, EEM spectroscopy has been widely used to investigate the dynamics of marine, freshwaters and ice-water ecosystems as well as snow melting water** (Barker et al., 2006, 2009, 2010, 2013; Coble, 2007; Fellman et al., 2010; Guo et al., 2010; Hudson et al., 2007; Stedmon et al., 2007). Moreover, the EEM spectroscopy can also be used to distinguish allochthonous and autochthonous CDOM source in aquatic environment (Coble et al., 1998; Mayer et al., 1999; Yamashita et al., 2008, 2010; Zhang et al., 2013).”

Line 74: not necessary to put citation twice

Response: Thank you for your suggestion. The content “...**(Stedmon et al., 2003)**...” should be skipped.

Line 82: “fresh and arid waters are distributed due to its morphology”: reformulate this sentence

Response: Thank you for your suggestion. The contents “**...in which many fresh and brackish waters are distributed due to its geomorphology.**” should be replaced by “**...in which many fresh and brackish waters are distributed according to its geomorphological characteristics.**”

Line 88: “little studied has” should be either ”little study has” or “little studies have”

Response: We are sorry for making the error. The content “**little studied has...**” should be replaced by “**little study has...**”

Materials and methods

Line 117: reformulate the sentence “After the ice...”

Response: Thank you for your suggestion. The content “**After the ice layer was**

drilled a hole, the under-ice surface water was coming up.” should be replaced by “The under-ice surface water was coming up when the ice layer was drilled a hole by the auger.”

Line 121-122: reformulate the sentence “In the laboratory...”

Response: Thank you for your suggestion. The contents “In the laboratory, these samples were kept at 4 °C until analysis after filtered within two days.” should be replaced by “In the laboratory, these samples were filtered within 24h and then kept at 4 °C until analysis within two days.”

Line 133-135: missing reference for turbidity?

Response: Thank you for your suggestion. The turbidity measurement is referred to the reference titled “UV talk letter vol. 10”.

<https://shimadzu.com.au/uv-talk-letter-volume-10>

Line 152: “it is necessary” change to “it was necessary”

Response: Thank you for your suggestion. The contents “...it is necessary...” should be replaced by “...it was necessary...”.

Line 196-198 this sentence belongs rather to introduction

Response: Thank you for your suggestion. The contents in line 196-198 should be placed in line 73 “...2011, 2013). A number of investigators have used EEMs-PARAFAC to characterize DOM in freshwater and marine aquatic environments (Cory et al., 2005; Stedmon et al., 2003; Stedmon and Markager, 2005; Yamashita, 2008; Zhang et al., 2010, 2011). Stedmon et al. (2003) introduced...”.

Results and discussion

Line 228-237: It is not necessary to describe what is already in Table1. For example, line 231-pH 8.55-this information is already in Table1.

Response: Thank you for your suggestion. The contents “... (mean, 8.55) ... (mean, 0.48 PSU) ... (0.70 PSU) ... with the mean of 62.18 ± 79.07 NTU...” should be skipped.

Line 246-248: reformulate the sentence

Response: Thank you for your suggestion. The contents “With respect to the protein-like components, i.e., tyrosine-like and tryptophan-like substance, mainly

consist of dissolved amino acids.” should be replaced by “With respect to the protein-like components, they, i.e., tyrosine-like and tryptophan-like substances, mainly consist of dissolved amino acids.”

Line 253-254: not necessary sentence here, this belongs to methods

Response: Thank you for your suggestion. The contents in line 253-254 should be placed in line 187 “The measured fluorescence intensity is dependent on the concentration of the dissolved fluorophores in water bodies. Finally, the fluorescence intensities...”

Line 280-300: this paragraph should be reduced significantly, it is not necessary to describe the components and their maxima if this information is already in the Table 2.

Response: Thank you for your suggestion. The authors have reduced the paragraph in line 280-300. The revised manuscript is written as “In our study, four separate fluorescent components (Fig. 4a-d) and the excitation and emission loadings (e-h) of the four components identified by EEM-PARAFAC are summarized in Fig. 4 and Table 2. The first fluorescent component (C1) was a biological degradation humic-like component comparable to humic-like peaks (M and N) in marine and in phytoplankton degradation experiments for inland waters (Coble, 1996; Zhang et al., 2009). Component 2 was consistent with the humic-like peaks 288 (A and C) defined by Coble (1996). Component 3 resembles the tryptophan-like (T) component as found by Baker et al. (2004) and 291 Hudson et al. (2007). For component 4, it is likely related to tyrosine-like component (B). Components 3 and 4 represent autochthonous semi-labile CDOM associated with bacteria activity and phytoplankton degradation (Borisover et al., 2009; Stedmon et al., 2003). Particularly, there was a shoulder at the excitation wavelength 310-330 nm in component 3 and 330-340 nm in component 4, which may be due to the residual Raman peaks in some water samples 298 (Fig. 4c-d). In this study, not all of the four components were present in all of the samples.”

Line 318: not clear, What do authors mean by “other organisms”?

Response: Thank you for putting forward the question. The “other organisms” means algae and microorganisms, etc. The contents “...originated from **phytoplankton**

degradation and other organisms.” should be replaced by “...originated from the degradation of phytoplankton and microorganisms.”

Line 355: I think “matters” is not appropriate here. Do you mean “material”?

Response: Thank you for your suggestion. The word “**matters**” should be replaced by “**materials**”.

Line 386-408: it is not necessary to repeat results which are already presented in Table 3.

Response: Thank you for your suggestion. The authors have revised the paragraph in line 386-408. The revised manuscript is written as “The concentration of DOC, CDOM absorption coefficients and the slope ratio S_R are shown in Table 3. The DOC concentrations ranged from 10.03 to 56.60 mg L⁻¹ with an average value of 31.66 mg L⁻¹ during the study period from April to August 2013, demonstrating a seasonal dynamics that can be attributed to hydrological, climatic and landscape variations (Song et al., 2013). It is because the prolonged sunshine duration can result in an evapo-condensed DOC concentration in the Songnen Plain. The highest averaged DOC concentration (55.04 ± 20.00 mg L⁻¹) was present in February 2014; whereas, relatively constant values of approximate 30 mg L⁻¹ were observed in the other three seasons. This can be attributed to the accumulated DOC when the lakes freeze in winter, which leaves DOC in the liquid phase, resulting in a higher DOC concentration in the underlying water (unpublished material). Generally, the absorption coefficient $a(350)$ is used as a proxy for characterizing CDOM concentration (Guo et al., 2010; Zhang et al., 2011). $a(280)$ is related to DOC biodegradation (McDowell et al., 2006). $a(254)$ can be used to character the optical properties of DOC aromaticity (Jaffe' et al., 2004; Weishaar et al., 2003). The highest averaged CDOM absorption coefficients $a(350)$, $a(280)$, $a(254)$ were also present in February 2014, corresponding to the highest DOC concentration. The S_R values of the two wavelength ranges (275-295 nm over 350-400 nm) were used to represent represent DOM molecular weight (Helms et al., 2008). The lowest mean of S_R was present in August 2013....”

1 Seasonal characterization of CDOM for lakes in semi-arid regions of
2 Northeast China using excitation-emission matrices fluorescence and
3 parallel factor analysis (EEM-PARAFAC)

4 Ying Zhao¹, Kaishan Song^{1*}, Zhidan Wen¹, Lin Li², Shuying Zang³, Tiantian Shao¹,
5 Sijia Li¹, Jia Du¹

6 ¹Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences,
7 Changchun, Jilin, 130102, China

8 ²Department of Earth Sciences, Indiana University-Purdue University, Indianapolis,
9 IN, USA

10 ³College of Geographical Science, Harbin Normal University, Harbin, China

11 *corresponding author E-mail: songks@iga.ac.cn; Tel: 86-0431-85542364

12

13 **Abstract.** The seasonal characteristics of fluorescent components in CDOM for lakes
14 in the semi-arid region of Northeast China were examined by excitation-emission
15 matrix (EEM) spectra and parallel factor analysis (PARAFAC). Two humic-like (C1
16 and C2) and the protein-like (C3 and C4) components were identified using
17 PARAFAC. The average fluorescence intensity of the four components differed under
18 seasonal variation from June and August 2013 to February and April 2014.
19 Components 1 and 2 exhibited strong linear correlation ($R^2 = 0.633$). Significantly
20 positive linear relationships between CDOM absorption coefficients $a(254)$ ($R^2 = 0.72$,
21 0.46 , $p < 0.01$), $a(280)$ ($R^2 = 0.77$, 0.47 , $p < 0.01$), $a(350)$ ($R^2 = 0.76$, 0.78 , $p < 0.01$)
22 and F_{max} for two humic-like components (C1 and C2) were exhibited, respectively. A

23 significant relationship ($R^2 = 0.931$) was found between salinity and DOC. However,
24 almost no obvious correlation was found between salinity and EEM-PARAFAC
25 extracted components except for C3 ($R^2 = 0.469$). Results from this investigation
26 demonstrate that the EEM-PARAFAC technique can be used to evaluate the seasonal
27 dynamics of CDOM fluorescent components for inland waters in the semi-arid
28 regions of Northeast China, and to quantify CDOM components for other waters with
29 similar environmental conditions.

30 **Keywords:** CDOM, fluorescent components, EEMs, PARAFAC, DOC, Salinity

31
32

33 1 Introduction

34 Dissolved organic matter (DOM), a heterogeneous mixture of humic acids,
35 proteins and carbohydrates, plays important roles in aquatic ecosystems (Zhang et al.,
36 2010). Chromophoric dissolved organic matter (CDOM), the colored fraction of
37 DOM, absorbs light energy in the ultraviolet (UV) and visible region of the spectrum
38 and inhibits the propagation of UV radiation. CDOM in waters also affects the
39 transport and bio-availability of materials such as trace metals and other pollutants
40 (Song et al., 2013), so it can be used as a proxy of water quality. In natural water
41 bodies, CDOM originates from the degradation of plant materials and other organisms
42 and terrestrially imported substances, which varies in time and space and is controlled
43 by its structure and composition (Stedmon et al., 2003). CDOM is compositionally
44 complex, making it difficult ~~for us~~ to isolate hydrophobic from hydrophilic acids
45 using XAD ion-exchange resins (Aiken et al., 1992; Spencer et al., 2010).

46 Nonetheless, some optically active components of CDOM can emit fluorescence after
47 absorbing light at certain wavelengths (Zhang et al., 2010) so that the fluorescence
48 spectroscopic techniques can be used to provide detailed information about the source
49 and concentration of CDOM. The traditional fluorescence techniques including
50 fluorescence emission spectrometry and synchronous fluorescence scanning applied
51 to examine CDOM components have the drawback that the output was restricted to a
52 linear scan (Hudson et al., 2007).

53 Recently, excitation-emission matrix fluorescence spectroscopy (EEM) has been
54 applied to identify CDOM components because of this ability of producing
55 synchronous scan spectra in the form of contours (Stedmon et al., 2003; Zhang et al.,
56 2010). The EEM spectroscopy is considered the most effective technique for studying
57 the composition of fluorophores given its high selectivity and sensitivity to CDOM in
58 water columns (Zhang et al., 2010). ~~In recent years, EEM spectroscopy has been~~
~~widely used to distinguish allochthonous and autochthonous CDOM source in aquatic~~
~~environment (Coble et al., 1998; Mayer et al., 1999; Yamashita et al., 2008, 2010;~~
~~Zhang et al., 2013), and to investigate the dynamics of marine, freshwaters and~~
~~ice-water ecosystems as well as snow melting water (Barker et al., 2006, 2009, 2010,~~
~~2013; Coble, 2007; Fellman et al., 2010; Guo et al., 2010; Hudson et al., 2007;~~
~~Stedmon et al., 2007).~~ Based on the peak positions in EEMs, two main fluorescent
65 components, i.e., humic-like and protein-like substances, have been identified and
66 investigated (DelCastillo et al., 1999; Jaffe et al., 2004). However, overlapped
67 fluorophores of CDOM EEMs could make this traditional ‘peak-picking’ method

68 unreliable to evaluate CDOM dynamics in aquatic ecosystems (Coble, 1996; Stedmon
69 et al., 2003). Recently, the combined EEMs-PARAFAC (parallel factor analysis)
70 technique has been shown to effectively decompose EEM of CDOM into independent
71 fluorescent components and assess the source of CDOM and relationships with other
72 water quality parameters (Broisover et al., 2009; Guo et al., 2010; Zhang et al., 2010,
73 2011, 2013). Stedmon et al. (2003) introduced PARAFAC and identified five distinct
74 DOM components for a Danish estuary and its catchment (Stedmon et al., 2003). In
75 coastal environments, Yamashita et al. (2008) reported on seven components using the
76 combined EEMs-PARAFAC technique and assess the dynamic of individual
77 fluorophores and relationship with salinity in Ise Bay. Zhang et al. (2011) also found
78 three different components by PARAFAC modeling and analyzed the correlations
79 between the fluorescent components and absorption coefficients of CDOM for Lake
80 Tianmu and its catchment.

81 The Songnen Plain is a fluvial plain with semi-arid climate, in which many fresh
82 and brackish waters are distributed due to its geomorphology (Song et al., 2013).
83 Dissolved organic carbon (DOC) characteristics of these fresh and brackish waters
84 across the Songnen Plain have been studied by Song et al. (2013); the results
85 indicated that a huge amount of DOC were stored in these waters. In particular,
86 brackish waters would exhibit high average DOC concentration and significantly
87 contributed the carbon budget to inland waters (Duarte et al., 2008; Song et al., 2013;
88 Tranvik et al., 2009). However, little studied has been made on the detailed
89 information of DOC sources for these waters in the Songnen Plain. Therefore, it

90 motivated us to investigate the components in CDOM for both fresh and brackish
91 waters in the semi-arid region. In the present study, the absorption and fluorescence of
92 CDOM were determined for the water samples collected from seven lakes in the
93 western part of Jilin province, ~~which had seasonal variation~~. The specific objectives of
94 this study are to: 1) characterize CDOM components contained in these lakes using
95 EEMs and their origins through the EEM-PARAFAC method; 2) assess the dynamic
96 of individual fluorescent component of CDOM under seasonal variation; and most
97 importantly 3) link CDOM fluorescence intensities, absorption coefficients, DOC
98 concentrations and salinity to each other.

99

100 **2 Materials and Methods**

101 **2.1 Lakes and water sampling**

102 The water bodies investigated in this study were located in the western part of Jilin
103 Province, which belongs to the semi-arid part of the Songnen Plain (Song et al., 2013).
104 Two groups of lakes were investigated, i.e., the Chagan lake group and the Yuelianghu
105 lake group. The Chagan lake group is made up of Lake Chagan (CGL), Xinmiaopao
106 (XMP), Xindianpao (XDP) and Kulipao (KLP). The Yuelianghu lake group mainly
107 includes Lake Yueliang (YLL), Talahong (TLH) and Xinhuangpao (XHP) (Fig. 1).
108 The primary economic value for these lakes is fishery, agricultural irrigation and
109 recreation. The average annual precipitation is about 391 mm, but the average
110 evaporation is up to 1790 mm, resulting in water scarcity. Due to the area dominated
111 by saline-alkali soil, the rainfall flush and agricultural catchment land use can result in

112 an increase of lake salinities. In order to characterize the CDOM fluorescent
113 components under seasonal variation using EEMs-PARAFAC, 67 water samples were
114 collected from the surface of the seven lakes in 1-liter acid-cleaned plastic bottles
115 during four field campaigns in June and August 2013 as well as in February and April
116 2014, respectively. These samples were collected during the ice covering period using
117 an ice drilling auger. ~~After the ice layer was drilled a hole, the under ice surface water~~
118 ~~was coming up.~~ The ice shavings were collected in plastic bags and the under-ice
119 surface water was collected in plastic bottles. The collected samples were held on ice
120 and immediately transported to the laboratory in the Changchun City of Jilin province
121 within 3-5 hours. ~~In the laboratory, these samples were kept at 4 °C until analysis after~~
122 ~~filtered within two days.~~ Latitude and longitude of each sample location were
123 recorded *in situ* using a Trimble Global Positioning System (GPS).

124

125 **Figure 1. Locations of the water sampling sites for 7 lakes in the western part of Jilin**
126 **province, Northeast China.**

127

128 **2.2 Analytical procedures**

129 To characterize the basic parameters of water quality, salinity was measured through a
130 DDS-307 electrical conductivity (EC) meter in laboratory. Salinity was expressed in
131 the basis of the UNESCO practical salinity unit (PSU 1978). The pH was measured
132 using a PHS-3C pH meter at room temperature (20 ± 2 °C) in laboratory. Water
133 turbidity was determined using the Shimadzu UV-2600PC UV-Vis dual beam
134 spectrophotometer with matching 3 cm quartz cells at room temperature (20 ± 2 °C)

135 with Milli-Q water as the reference. To determine DOC concentrations, water samples
136 were filtered through 0.45 μm filters and then measured using a Shimadzu TOC-5000
137 Analyzer and a 1.2 % Pt on silica catalyst at 680 $^{\circ}\text{C}$. Potassium hydrogen phthalate
138 was used as standard. The reproducibility of the analytical procedure was within 2-3 %
139 for the current study (APHA, 1998; Song et al., 2011).

140

141 **2.3 Absorption measurement**

142 In laboratory, all the samples were filtered at low pressure, first through a
143 pre-combusted Whatman GF/F filter (0.7 μm), and then through a pre-rinsed 25 mm
144 Millipore membrane cellulose filter (0.22 μm) into glass bottles. Absorption spectra of
145 the samples were measured between 200 and 800 nm at 1 nm increments using the
146 Shimadzu UV-2600PC UV-Vis dual beam spectrophotometer with a 1 cm quartz
147 cuvette and Milli-Q water as reference. The absorption coefficient a_{CDOM} was
148 calculated from the measured optical density (OD) of the sample using Eq. (1):

149
$$a_{CDOM}(\lambda) = 2.303[OD_{S(\lambda)} - OD_{(null)}]/\gamma \quad (1)$$

150 where γ is the cuvette path length (0.01 m) and the factor 2.303 converts from base 10
151 to base natural logarithm transformation. Some fine particles possibly remained in the
152 filtered solution (Babin et al., 2003; Bricaud et al., 1995), therefore it is necessary to
153 correct for scattering by fine particles and in this case, $OD_{(null)}$ is the average optical
154 density over 740-750 nm where the absorbance of CDOM can be assumed to be zero.

155 A CDOM absorption spectrum ($a_{CDOM}(\lambda)$) can be expressed as an exponential
156 function (Babin et al., 2003; Bricaud et al., 1995):

157
$$a_{CDOM}(\lambda_i) = a_{CDOM}(\lambda_r) \exp[-S(\lambda_i - \lambda_r)] \quad (2)$$

158 where $a_{CDOM}(\lambda_i)$ is the CDOM absorption at a given wavelength λ_i , $a_{CDOM}(\lambda_r)$ is the
159 absorption estimate at the reference wavelength λ_r (440 nm), and S is the spectral
160 slope of the CDOM absorption. According to Helms et al. (2008), S is calculated by
161 fitting a linear model to the date over a wavelength range of 275 to 295 nm (S1) or
162 350 to 400 nm (S2). To eliminate the inter-laboratory variability, the slope ratio $S_R =$
163 $S1/S2$ is defined to indicate the molecular weight and photo-bleaching of CDOM
164 (Helms et al., 2008; Zhang et al., 2010).

165

166 **2.4 Three-dimensional fluorescence measurement**

167 The EEMs analysis of CDOM were conducted using a Hitachi F-7000 fluorescence
168 spectrometer (Hitachi High-Technologies, Tokyo, Japan) with a 700-voltage xenon
169 lamp. The scanning ranges were 200–450 nm for excitation, and 250–500 nm for
170 emission. Readings were collected in the ratio mode at 5 nm intervals for excitation,
171 and at 1 nm intervals for emission, using a scanning speed of 2400 nm min⁻¹. The
172 band-passes were 5 nm for both excitation and emission. A Milli-Q water blank of the
173 EEMs was subtracted to eliminate the water Raman scatter peaks (McKnight et al.,
174 2001; Stemdon et al., 2003; Zhang et al., 2010, 2011).

175 The inner-filter effect, which results from reabsorption and excitation of the
176 fluorescence itself, can reduce the fluorescence intensity by 5% (Larsson et al., 2007;
177 McKnight et al., 2001). In order to eliminate the inner-filter effect, the EEMs were
178 corrected for absorbance by multiplying each value in the EEMs with a correction

179 factor based on the assumption that the average path length of absorption of the
180 excitation and emission light is one-half length of the cuvette (McKnight et al., 2001;
181 Zhang et al., 2010). The correction function is expressed as follows:

182

$$F_{corr} = F_{obs} \times 10^{(A_{ex}+A_{em})/2} \quad (3)$$

183

184 where F_{Corr} and F_{obs} are the corrected and uncorrected fluorescence intensities and A_{ex}
185 and A_{em} are the absorbance values at the respective excitation and emission
186 wavelengths.

187 Finally, the fluorescence intensities of all sample's EEMs were normalized to
188 the area under the Milli-Q water Raman peak ($\lambda_{ex}=350$ nm, $\lambda_{em}=371-428$ nm)
189 measured daily (Lawaetz and Stedmon, 2009). The contour figures of the EEMs were
190 plotted using the Matlab 10.0 software package (Math Works, Natick Massachusetts,
191 America).

192

193 **2.5 The PARAFAC modeling**

194 PARAFAC, a three-way method, is applied to decompose the CDOM fluorescence
195 into separate fluorescent signals (Andersen and Bro, 2003; Stedmon and Bro, 2008).
196 ~~A number of investigators have used EEMs PARAFAC to characterize DOM in~~
197 ~~freshwater and marine aquatic environments (Cory et al., 2005; Stedmon and~~
198 ~~Markager, 2005; Yamashita, 2008; Zhang et al., 2010, 2011).~~ According to Stedmon
199 and Bro (2008), a similar PARAFAC analysis is carried out in the present study using
200 the DOMFluor toolbox in MATLAB with the “N-way toolbox for MATLAB”

201 (Andersson et al., 2000). Before PARAFAC modeling, the excitation wavelengths
202 from 200 to 220 nm and the emission wavelengths from 250 to 300 nm were deleted
203 because of their poor quality. In order to remove the effect of Rayleigh scatter on
204 PARAFAC modeling, the missing values (NaN-Not a number) were inserted in the
205 regions ($Ex-20 \leq Em \leq Ex+20$ and $2Ex-20 \leq Em \leq 2Ex+20$; unit: nm) which are
206 significantly influenced by the first and second order scattering from the measured
207 spectroscopic data (Hua et al., 2007; Stedmon and Bro, 2008).

208 To determine the appropriate number of PARAFAC components, the split-half
209 validation procedure was executed to verify whether the model was valid by
210 comparing the emission and excitation loadings from each half (Stedmon and Bro,
211 2008). Split-half analysis is the most effective method for implementing the
212 PARAFAC models, in which the EEMs are randomly divided into four groups of
213 equal size, and then analyzed for two half splits (1-2 and 3-4 half) respectively. If the
214 correct number of components is chosen, the excitation and emission loadings from
215 the two groups should show the same shape and size (Bro, 1997, 1999). The
216 fluorescence intensity of every component was represented by F_{max} (Raman unit: nm^{-1})
217 (Stedmon and Markager, 2005).

218

219 **2.6 Statistical analysis**

220 Statistical analysis was conducted using the SPSS 16.0 software package (Statistical
221 Program for Social Sciences). Regression and correlation analysis was used to
222 describe the relationship between CDOM absorption coefficient, DOC concentration,

223 salinity and F_{max} . The difference is considered to be statistically significant when
224 p -values are less or equal to 0.05.

225

226 **3 Results and discussion**

227 **3.1 Water quality conditions**

228 The water quality parameters, i.e., pH, salinity, turbidity for the 67 water samples
229 collected from June 2013 to April 2014 in the western part of Jilin province are
230 displayed in Table 1. When the set of samples from various field trips was pooled
231 together, the waters had high pH values (mean, 8.55) and high salt contents (mean,
232 0.48 PSU). The highest salinity (0.70 PSU) was present when the lakes were frozen in
233 February 2014, whereas relatively constant values (around 0.40 PSU) were exhibited
234 in other three seasons. Also the water bodies were highly turbid with the mean of
235 62.18 \pm 79.07 NTU. The highest turbidity was present in June 2013, and then reduced
236 in August 2013, and the lowest value was recorded in February 2014. Compared with
237 February 2014, the turbidity had almost no change in April 2014 (Table 1).

238

239 **Table 1. Mean value of water quality parameters from June 2013 to April 2014.**

240

241 **3.2 EEMs characterization of CDOM**

242 Based on the EEMs ‘peak picking’ technique, the key fluorescence peaks can be
243 observed in 67 water samples: two humic-like and two protein-like substances (Coble,
244 1996; Stedmon et al., 2003). The humic-like components are the mixture of aromatic

245 and aliphatic compounds-humic-like acids from terrestrial substances, and aquatic
246 humic-like substances of phytoplankton origin. With respect to the protein-like
247 components, i.e., tyrosine-like and tryptophan-like substance, mainly consist of
248 dissolved amino acids. As an example, Fig. 2 displays the EEMs of samples from lake
249 Xindianpao at different seasons. The peaks comprise two humic-like fluorescence
250 peaks: one in the ultraviolet range (Ex/Em = 220-240/410-430 nm) and the other in
251 the visible range (Ex/Em = 300-340/410-450 nm) and the protein-like fluorescence
252 peaks: tyrosine-like (Ex/Em = 210-230, 270-280/310-330 nm) and tryptophan-like
253 (Ex/Em = 220-230, 280-300/350-370 nm). ~~The measured fluorescence intensity is~~
254 ~~dependent on the concentration of the dissolved fluorophores in water bodies. The~~
255 ~~fluorescence properties of CDOM had seasonal variation. For Xindianpao, the~~
256 ~~protein-like fluorescence peaks were higher than the humic-like fluorescence peaks in~~
257 ~~June 2013, whereas the humic-like fluorescence peaks were higher than the~~
258 ~~protein-like peaks in August 2013.~~

259
260 **Figure 2. Examples of EEMs for one water sample from Xindianpao Lake in the western**
261 **part of Jilin province at different seasons a) June 2013; b) August 2013; c) February 2014; d)**
262 **April 2014 (Fluorescence is in Raman unit: nm⁻¹).**

263

264 ~~In split half analysis, the 67 EEMs were randomly divided into four halves and then~~
265 ~~analyzed for two different splits (1-2 and 3-4 half split). When the number of~~
266 ~~components was chosen to be four, the excitation and emission loadings from the~~
267 ~~output results of the 1-2 and 3-4 split-half analysis largely overlapped, respectively~~

268 (Fig. 3). It should be noted that for the 3-4 split-half analysis, the excitation and
269 emission loadings of component 3 and component 4 were reversed. In fact, the output
270 results of the split-half analysis were valid as long as the excitation and emission
271 loadings of the fluorescent component were overlapped at the same wavelength and
272 these components in different colors in the two groups only represent the order of
273 appearance of the components according to their contributions (Stedmon and Bro,
274 2008).

275

276 **Figure 3. Results from split-half analysis (1-2 top a); 3-4 down b) in PARAFAC models. The**
277 **plots represent spectral shapes of the excitation and emission loadings from the two halves**
278 **(1-2; 3-4 split-half analysis) modeling.**

279

280 In our study, four separate fluorescent components (Fig. 4a-d) and the
281 excitation and emission loadings (e-h) of the four components identified by
282 EEM-PARAFAC are summarized in Fig. 4 and Table 2. The first fluorescent
283 component (C1) was a biological degradation humic-like component that displays two
284 excitation maxima (at 230 and 300 nm) with a single emission wavelength (at 425 nm)
285 comparable to humic-like peaks (M and N) in marine and in phytoplankton
286 degradation experiments for inland waters (Coble, 1996; Zhang et al., 2009).
287 Component 2 had the maximum excitations (at 255 and 350 nm) and an emission
288 wavelength (at 460 nm) (Fig. 4a-b), which was consistent with the humic-like peaks
289 (A and C) defined by Coble (1996). Component 3 demonstrated two excitation
290 maxima (at 225 and 275 nm) and one emission maximum (at 360 nm), which

291 resembles the tryptophan-like (T) component as found by Baker et al. (2004) and
292 Hudson et al. (2007). For component 4, it is likely related to tyrosine-like component
293 (B), ~~which was characterized by the maximum excitations at 225 and 275 nm and the~~
294 ~~emission wavelength was found at 310 nm.~~ Components 3 and 4 represent
295 autochthonous semi-labile CDOM associated with bacteria activity and phytoplankton
296 degradation (Borisover et al., 2009; Stedmon et al., 2003). Particularly, there was a
297 shoulder at the excitation wavelength 310-330 nm in component 3 and 330-340 nm in
298 component 4, which may be due to the residual Raman peaks in some water samples
299 (Fig. 4c-d). In this study, not all of the four components were present in all of the
300 samples.

301

302 **Figure 4.** The PARAFAC modeling output shows the contour plots of the four PARAFAC
303 fluorescent components (a-d) and excitation (black) and emission (red) loadings (e-h) of each
304 component. Fluorescence is in Raman units: nm^{-1} .

305

306 **Table 2.** Positions of the fluorescence maximum peaks of the four components identified by
307 PARAFAC modeling in the present study compared with those previously identified.
308 Secondary excitation maxima is given in brackets.

309

310 **3.3 Temporal distribution of PARAFAC components**

311 As shown in Fig. 5a and b, the average fluorescence intensity of the four components
312 had seasonal variation. When all the water samples at different seasons were pooled
313 together, the average value of total fluorescence intensity was $2.05 \pm 0.93 \text{ nm}^{-1}$,
314 corresponding to the intensities of 0.71 ± 0.32 (C1), 0.33 ± 0.11 (C2), 0.50 ± 0.24

315 (C3), and 0.51 ± 0.26 (C4) nm^{-1} for different components. These results can
316 demonstrate that the fluorescence intensity was dominated by C1, implying most part
317 of the CDOM for the seven inland lakes was originated from phytoplankton
318 degradation and other organisms. The protein-like components (C3 and C4), related to
319 bioavailability and microbial activity of CDOM, had almost the same magnitude. At
320 all four seasons, the fluorescent component C2, which was terrestrially imported to
321 water bodies, contributed less to total fluorescence than the other three. The total
322 fluorescence intensity differed under seasonal variation, varying from 2.54 ± 0.68
323 nm^{-1} in June to $1.93 \pm 0.70 \text{ nm}^{-1}$ in August 2013, and then increased to 2.34 ± 0.92
324 nm^{-1} in February and reduced to the lowest $1.57 \pm 0.55 \text{ nm}^{-1}$ in April 2014 (Fig. 5b).
325 The intensities of four fluorescent components (i.e., 0.75 ± 0.17 (C1), 0.32 ± 0.06
326 (C2), 0.69 ± 0.24 (C3), and 0.77 ± 0.20 (C4) nm^{-1}) from the samples collected in June
327 2013 exhibited similar trends to that for the pooled data set. These values were higher
328 than the seasonal average except C2 ($0.32 \pm 0.06 \text{ nm}^{-1}$). This can be explained by
329 enhanced activities from plant degradation and microbial activities, but less terrestrial
330 substances were imported to the water bodies in June and therefore the fluorescence
331 intensity of C2 was lower than the seasonal average. Compared to the fluorescence
332 intensity in June, the three fluorescence intensities (0.65 ± 0.14 (C1), 0.33 ± 0.16 (C3),
333 0.52 ± 0.36 (C4) nm^{-1}) from the samples collected in August 2013 reduced, but an
334 increased value was recorded for C2 ($0.42 \pm 0.05 \text{ nm}^{-1}$). Especially, the fluorescence
335 intensities of two protein-like components showed an obvious difference. This can be
336 attributed to substantially increased precipitation up to 180 mm in July from June to

337 August 2013 (Fig. 5e) so that flood occurred when rainfall continued to increase in
338 August. Gradually, DOM contained in terrestrial CDOM was flushed by rainfall to the
339 lakes so that the C2 ($0.42 \pm 0.05 \text{ nm}^{-1}$) fluorescence intensity became higher. In
340 accordance with Cheng et al. 2010, the rainwater CDOM for this study was largely
341 characterized by protein-like components (Cheng et al., 2010). The fluorescence
342 intensity of the rainwater CDOM was very weak, and also the rainwater CDOM
343 contained much lower humic-like concentration (Fig. 6b). The intensities of the other
344 three components decreased because of dilution resulting from heavy rain and
345 relatively weak microbial decomposition of plants.

346 The highest C1 ($1.02 \pm 0.38 \text{ nm}^{-1}$) presented in February 2014 and the C2 (0.39
347 $\pm 0.12 \text{ nm}^{-1}$) intensity remained almost the same as that in August 2013. However, the
348 protein-like components indicated that the C3 ($0.57 \pm 0.25 \text{ nm}^{-1}$) intensity was higher
349 than the C4 ($0.35 \pm 0.17 \text{ nm}^{-1}$) intensity, which was opposite to the results from other
350 months (Fig. 5b). In cold winter, the surface waters formed a thick layer of ice
351 covering the lake waters. ~~Because the ice cover reduced light penetration and~~
352 ~~restricted gas exchange between the underlying water and atmosphere, vigorous~~
353 ~~biological activities in the lakes would be prohibited at low temperature and low light~~
354 ~~level (Thomas K., 1983; Uusikiv et al., 2010; Wharton, et al., 1993).~~ Also, dissolved
355 ~~matters~~ were left in the underlying surface waters and little terrestrial matters were
356 imported to the lakes once covered by ice (Stedmon et al., 2007). Therefore, the C1
357 and C3 in the water of the lakes beneath the ice layers would ~~cumulate~~ simultaneously,
358 whereas, the C2 remained the same. Obviously, the fluorescence intensity of

359 component 1 reached the highest value for the winter samples. As shown in Fig. 6a,
360 another striking feature for the winter samples was that the fluorescence of CDOM in
361 the ice was dominated by the tyrosine-like C4 component, which is consistent with
362 the findings of Barker et al. (2009, 2013) and Stedmon et al. (2007). It showed that
363 the C4 component was left in the ice-cover when the lakes were frozen. Therefore, it
364 is not surprising that the intensity of component C4 for water beneath ice layers was
365 reduced and the concentrated C3 showed a much higher fluorescence intensity. In
366 April 2014, the intensities of four fluorescent components (0.47 ± 0.17 (C1), $0.25 \pm$
367 0.08 (C2), 0.40 ± 0.16 (C3), and 0.45 ± 0.13 (C4) nm^{-1}) exhibited similar seasonal
368 trends though these values were much lower than the average. Our interpretation is
369 that the ice CDOM was characterized by tyrosine-like component (C4) (Fig. 6a), and
370 the fluorescence intensity of C4 contributed by the ice-melt water was very weak.
371 However, the underlying lake CDOM was ~~dominated by both humic-like (C1 and C2)~~
372 ~~and protein-like (C3 and C4)~~ components. When the ice in the lakes melt into water
373 with warming weather and biological degradation and human activity was weak, the
374 lake CDOM was diluted by the ice-melted water and the fluorescence intensity would
375 reach to the lowest value in early spring.

376

377 ~~Figure 5. a) Seasonal average of F_{max} for EEM-PARAFAC components (C1, C2, C3 and C4)~~
378 ~~for lakes in the western part of Jilin province; b) Seasonal variation of the four~~
379 ~~EEM-PARAFAC components at different seasons; c) Monthly variation of rainfall for the~~
380 ~~lakes in western part of Jilin province from April 2013 to February 2014. The error bar~~
381 ~~represents standard deviations.~~

382

383 **Figure 6.** Representative examples of EEMs for a) lake ice-melt water sample, and b)
384 rainwater CDOM in the western part of Jilin province (Raman: nm^{-1}).

385

386 **3.4 CDOM versus EEM-PARAFAC extracted components**

387 The concentration of DOC, CDOM absorption coefficients and the slope ratio S_R are
388 shown in Table 3. The DOC concentrations ranged from $10.03 \text{ to } 88.15 \text{ mg L}^{-1}$ during
389 the study period, with an average value of $37.60 \pm 18.05 \text{ mg L}^{-1}$. It is because the
390 prolonged sunshine duration can result in an evapo-condensed DOC concentration in
391 the Songnen Plain. The highest averaged DOC concentration ($55.04 \pm 20.00 \text{ mg L}^{-1}$)
392 was present in February 2014; whereas, relatively constant values of approximate 30
393 mg L^{-1} were observed in the other three seasons, ~~demonstrating a seasonal dynamics~~
394 ~~that can be attributed to hydrological, climatic and landscape variations (Song et al.,~~
395 ~~2013)~~. This can be attributed to the accumulated DOC when the lakes freeze in winter,
396 which leaves DOC in the liquid phase, resulting in a higher DOC concentration in the
397 underlying water (unpublished material). Generally, the absorption coefficient $a(350)$
398 was used as a proxy for characterizing CDOM concentration, ~~which was 5.73 ± 1.68~~
399 ~~m^{-1} in June 2013, $5.82 \pm 0.81 \text{ m}^{-1}$ in August 2013, $6.36 \pm 2.17 \text{ m}^{-1}$ in February 2014,~~
400 ~~$4.17 \pm 1.49 \text{ m}^{-1}$ in April 2014, respectively, with an seasonal average of 5.40 ± 1.84~~
401 ~~m^{-1}~~ . The highest averaged CDOM absorption coefficients $a(350)$, $a(280)$, $a(254)$ were
402 also present in February 2014, corresponding to the highest DOC concentration. The
403 S_R values of the two wavelength ranges (275-295 nm over 350-400 nm) were used to
404 represent the ratio of molecular weight of humic acid and fulvic acid. The mean of S_R
405 for all water samples was up to 1.21 ± 0.20 , with the lowest 0.96 ± 0.22 in August

406 2013 suggesting the relatively weak microbial decomposition of plants and lots of
407 terrestrially imported substances through rainwash resulted in the higher average
408 molecular weight of DOC.

409

410 **Table 3. Mean values of DOC concentration and CDOM absorption coefficients groups at**
411 **different seasons. S_R : the slope ratio of $S_{275-295\text{nm}}$: $S_{350-400\text{nm}}$.**

412

413 When the whole data set ($N = 67$) was pooled together, there were significantly
414 positive linear relationships between $a(254)$, $a(280)$, $a(350)$ and F_{max} for two
415 humic-like components (C1 and C2), respectively, but mostly such correlations were
416 not observed for the protein-like components (Fig. 7, Table 3). These results were in
417 accordance with previous investigations (Zhang et al., 2010, 2011). Components 1
418 and 2 were strongly linearly correlated with each other ($R^2 = 0.633$), indicating that
419 ~~the concentrations of~~ the two humic-like components were controlled by common
420 sources. There was a weak relationship ($R^2 = 0.051$) between the protein-like
421 components (C3 and C4) because of a complex origin of CDOM such as rainfall in
422 summer, ice in winter and organic pollutants derived from domestic, agricultural and
423 industrial sewerage, which represent the complex origins of CDOM. However, there
424 was almost no correlation between the humic-like and protein-like components. ~~The~~
425 ~~linkage of a fluorescence signal to DOC was very complicated because of the~~
426 ~~seasonal effects of both steady and labile fluorescence and non-fluorescence CDOM~~
427 ~~components as a result of increased rainfall and algal blooms which affect the DOC~~
428 ~~concentration (Henderson et al., 2009).~~ Component 3 of the CDOM fluorescence can

429 be used to detect water pollution (Baker et al., 2004). A weak relationship ($R^2 = 0.42$)
430 (Fig. 7d) was found between DOC and component 3 from the decay of plants through
431 microbial activity or the pollution from human and animal wastes.

432 The most important finding for the water samples collected at different seasons
433 from the Songnen Plain is a significant relationship ($R^2 = 0.931$) between salinity and
434 DOC (Fig. 7e), which implies that a prolonged sunshine duration can result in an
435 evapo-condensed DOC concentration. Different from the findings by Yamashita et al.
436 (2008) for ocean water, this study did not find obvious correlation between salinity
437 and EEM-PARAFAC extracted components with the exception of C3 ($R^2 = 0.469$)
438 (Table 4 and Fig. 7d). It was because that with the sunshine duration hours increasing,
439 the photo-degradation and microbial activities become stronger, leading to a more
440 efficient transformation of labile fluorescence CDOM into non-fluorescence CDOM
441 component (Song et al., 2013).

442
443 **Table 4. Correlation coefficients (R) and significance levels (p) of the linear relationships**
444 **between CDOM absorption, DOC, salinity and fluorescent components.**

445
446 **Figure 7. Relationships between CDOM absorption coefficient $a(350)$ with a) $F_{max}(C1)$, b)**
447 **with $F_{max}(C2)$, c) peak $F_{max}(C1)$ versus $F_{max}(C2)$, d) peak $F_{max}(C3)$ versus DOC, e) Salinity**
448 **versus DOC, f) Salinity versus $F_{max}(C3)$.**

449

450 **4 Conclusions**

451 In this study, the application of EEM-PARAFAC to characterize four fluorescent
452 components under seasonal variation in CDOM was presented with 67 water samples

453 collected from June 2013 to April 2014 in the semi-arid region of the Songnen Plain.

454 Two humic-like and the protein-like components were identified using PARAFAC

455 model. The average fluorescence intensity of the four components differed under

456 seasonal variation from June 2013 to April 2014. The highest $C1\ 1.02\ nm^{-1}$ was

457 presented in February 2014 due to the condensed CDOM caused by ice formation in

458 winter. Especially in summer when quantities of rainfall take place and in winter

459 when water is frozen, the fluorescence intensity is dominated by tyrosine-like

460 component in rain and ice-melt water. Component 1 and 2 exhibited strong linear

461 correlation ($R^2 = 0.633$). There were significantly positive linear relationships

462 between F_{max} and CDOM absorption coefficient $a(254)$ ($R^2 = 0.72, 0.46, p < 0.01$),

463 $a(280)$ ($R^2 = 0.77, 0.47, p < 0.01$), $a(350)$ ($R^2 = 0.76, 0.78, p < 0.01$) for two

464 humic-like components (C1 and C2), respectively. A weak relationship ($R^2 = 0.42$)

465 was found between DOC and component 3 from the decay of plants through

466 microbial activity or the pollution from human and animal wastes. ~~Most importantly, a~~

467 ~~significant relationship ($R^2 = 0.931$) was found between salinity and DOC. However,~~

468 ~~almost no obvious correlation was found between salinity and EEM PARAFAC~~

469 ~~extracted components except C3 ($R^2 = 0.469$), though the correlation was not as~~

470 ~~strong as with DOC concentration.~~

471

472 **Acknowledgements**

473 The research was jointly supported by the “One Hundred Talents” program from

474 Chinese Academy of Sciences and the National Natural Science Foundation of China
475 (No. 41171293). The authors thank Zhi Ding, Ying Guan, Lei Liu and Ming Wang for
476 their persistent assistance with both field sampling and laboratory analysis.

477

478 **References**

479 APHA/AWWA/WE F.: Standard Methods for the Examination of Water and
480 Wastewater, Washington, DC: American Public Health Association, 1998.

481 Aiken, G. R., McKnight, D. M., Thorn, K. A., and Thurman, E. M.: Isolation of
482 hydrophobic organic-acids from water using nonionic macro porous resins, Org.
483 Geochem., 18, 567-573, 1992.

484 Andersen, C. M., and Bro, R.: Practical aspects of PARAFAC modeling of
485 fluorescence excitation-emission data, J. Chemom., 17, 200-215, 2003.

486 Andersson, C. A., and Bro, R.: The N-way Toolbox for MATLAB, Chemom. Intell.
487 Lab. Syst., 52, 1-4, 2000.

488 Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G.,
489 and Hoepffner, N.: Variations in the light absorption coefficients of
490 phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters
491 around Europe, J. Geophys. Res., 108, 3211-3230, 2003.

492 Baker, J. D., Dubnick, A., Lyons, W. B., and Chin, Y. P.: Changes in Dissolved
493 Organic Matter (DOM) Fluorescence in Proglacial Antarctic Streams, Arct.
494 Antarct. Alp. Res., 45, 305-317, 2013.

495 Barker, J. D., Sharp, M. J., Fitzsimons, S. J., and Turner, R. J.: Abundance and
496 dynamics of dissolved organic carbon in glacier systems, *Arct. Antarct. Alp. Res.*,
497 38, 163–172, 2006.

498 Barker, J. D., Sharp, M. J., and Turner, R. J.: Using synchronous fluorescence
499 spectroscopy and principal components analysis to monitor dissolved organic
500 matter dynamics in a glacier system, *Hydrol. Processes*, 23, 1487–1500, 2009.

501 Barker, J. D., Klassen, J. L., Sharp, M. J., Fitzsimons, S. J., and Turner, R. J.:
502 Detecting biogeochemical activity in basal ice using fluorescence spectroscopy,
503 *Ann. Glaciol.*, 51, 47–55, 2010.

504 ~~Baker, A., Ward, D., Lieten, Shakti H., Periera, R., Simpson, Ellie C., and Slater, M.:~~
505 ~~Measurement of protein-like fluorescence in river and waste water using a~~
506 ~~handheld spectrophotometer, *Water Res.*, 38, 2934–2938, 2004.~~

507 Borisover, M., Laor, Y., Parparov, A., Bukhanovsky, N., and Lado, M.: Spatial and
508 seasonal patterns of fluorescent organic matter in Lake Kinneret (Sea of Galilee)
509 and its catchment basin, *Water Res.*, 43, 3104–3116, 2009.

510 Bricaud, A., Babin, M., Morel, A., and Claustre, H.: Variability in the
511 chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis
512 and parameterization, *J. Geophys. Res.*, 100, 13321–13332, 1995.

513 Bro, R.: PARAFAC tutorial and applications, *Chemom. Intell. Lab. Syst.*, 38, 149–171,
514 1997.

515 Bro, R.: Exploratory study of sugar production using fluorescence spectroscopy and
516 multi-way analysis, *Chemom. Intell. Lab. Syst.*, 46, 133–147, 1999.

517 Cheng, Y. Y., Guo, W. D., Long, A. M., and Chen, S. Y.: Study on optical
518 characteristic of chromophoric dissolved organic matter in rainwater by
519 fluorescence excitation-emission matrix and absorbance spectroscope (Article in
520 Chinese), *Spectrosc. Spect. Anal.*, 30, 2413-2416, 2010.

521 Coble, P. G.: Characterization of marine and terrestrial DOM in seawater using
522 excitation-emission matrix spectroscopy, *Mar. Chem.*, 51, 325–346, 1996.

523 Coble, P. G.: Marine optical biogeochemistry: the chemistry of ocean color, *Chem.*
524 *Rev.*, 107, 402-418, 2007.

525 Coble, P. G., Del Castillo, C. E., and Avril, B.: Distribution and optical of CDOM in
526 the Arabian Sea during the 1995 Southwest Monsoon, *Deep-Sea Res. part II*, 45,
527 2195–2223, 1998.

528 Cory, R. M., and McKnight, D. M.: Fluorescence spectroscopy reveals ubiquitous
529 presence of oxidized and reduced quinines in dissolved organic matter, *Environ.*
530 *Sci. Technol.*, 39, 8142-8149, 2005.

531 DelCastillo, C. E., Coble, P. G., Morell, J. M., Lopez, J. M., and Corredor, J. E.:
532 Analysis of the optical properties of the Orinoco River plume by absorption and
533 fluorescence spectroscopy, *Mar. Chem.*, 66, 35–51, 1999.

534 ~~Duarte, C. M., Montes, C., Cole, J. J., Striegl, R. G., Melack, J., and Downing, J.~~
535 ~~A.: CO₂ emissions from saline lakes: A global estimate of a surprisingly large flux,~~
536 ~~J. Geophys. Res. Biogeosci., 113, G04041, 2008.~~

537 Fellman, J. B., Hood, E., and Spencer, R. G. M.: Fluorescence spectroscopy opens

538 new windows into dissolved organic matter dynamics in freshwater ecosystems:

539 A review, Limnol. Oceanogr., 55, 2452-2462, 2010.

540 Guo, W. D., Xu, J., Wang, J. P., Wen, Y. G., Zhou, J. F., and Yan, Y. C.:

541 Characterization of dissolved organic matter in urban sewage using excitation

542 emission matrix fluorescence spectroscopy and parallel factor analysis, J.

543 Environ. Sci., 22, 1728-1734, 2010.

544 Henderson, R. K., Baker, A., Murphy, K. R., Hambly, A., Stuetz, R. M., and Khan, S.

545 J.: Fluorescence as a potential monitoring tool for recycled water system: A

546 review, Water Res., 43, 863-881, 2009.

547 Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.:

548 Absorption spectral slopes and slope ratios as indicators of molecular weight,

549 source, and photo bleaching of chromophoric dissolved organic matter, Limnol.

550 Oceanogr., 53, 955–969, 2008.

551 Hua, B., Dolan, F., Mcghee, C., Clevenger, ThomasE., and Deng, B. L.: Water-source

552 characterization and classification with fluorescence EEM spectroscopy:

553 PARAFAC analysis, Int. J. Environ. Anal. Chem., 87, 135-147, 2007.

554 Hudson, N., Baker, A., and Reynolds, D.: Fluorescence analysis of dissolved organic

555 matter in natural, waste and polluted waters – a review, River Res. Appl., 23,

556 631–649, 2007.

557 Jaffe ; R., Boyer, J. N., Lu, X., Maie, N., Yang, C., Scully, N. M., and Mock, S.:

558 Source characterization of dissolved organic matter in subtropical

559 mangrove-dominated estuary by fluorescence analysis, Mar. Chem., 84, 195–210,
560 2004.

561 Larsson, T., Wedborg, M., and Turner, D.: Correction of inner-filter effect in
562 fluorescence excitation-emission matrix spectrometry using Raman scatter, Anal.
563 Chim. Acta., 583, 357-363, 2007.

564 Lawaetz, A. J., and Stedmon, C. A.: Fluorescence Intensity Calibration Using the
565 Raman Scatter Peak of Water, Appl. Spectrosc., 63, 936-940, 2009.

566 Mayer, L. M., Schick, L. L., and Loder, T. C.: Dissolved protein fluorescence in two
567 Maine estuaries, Mar. Chem., 64, 171–179, 1999.

568 McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and
569 Andersen, D. T.: Spectrofluorometric characterization of dissolved organic
570 matter for indication of precursor organic material and aromaticity, Limnol.
571 Oceanogr., 46, 38–48, 2001.

572 Song, C. C., Wang, L. L., Guo, Y. D., Song, Y. Y., Yang, G. S., and Li, Y. C.: Impacts
573 of natural wetland degradation on dissolved carbon dynamics in the Sanjiang
574 Plain, Northeastern China, J. Hydrol., 398, 26-32, 2011.

575 Song, K. S., Zang, S. Y., Zhao, Y., Du, J., Lin, L., Zhang, N. N., Wang, X. D., Shao, T.
576 T., Guan, Y., and Liu, L.: Spatiotemporal characterization of dissolved carbon
577 for inland waters in semi-humid/semiarid region, China, Hydrol. Earth Syst.
578 Sci., 17, 4269-4281, 2013.

579 Spencer, R. G. M., Hernes, P. J., Ruf, R., Baker, A., Dyda, R. Y., Stubbins, A., and
580 Six, J.: Temporal controls on dissolved organic matter and lignin
581 biogeochemistry in apristine tropical river, *J. Geophys. Res. Biogeosci.*, 115,
582 G03013, 2010.

583 Stedmon, C. A., and Bro, R.: Characterizing dissolved organic matter fluorescence
584 with parallel factor analysis: a tutorial, *Limnol. Oceanogr. Methods*, 6, 572-579,
585 2008.

586 Stedmon, C. A., and Markager, S.: Tracing the production and degradation of
587 autochthonous fractions of dissolved organic matter by fluorescence analysis,
588 *Limnol. Oceanogr.*, 50, 1415-1426, 2005.

589 Stedmon, C. A., Markager, S., and Bro, R.: Tracing dissolved organic matter in
590 aquatic environments using a new approach to fluorescence spectroscopy, *Mar.
591 Chem.*, 82, 239-254, 2003.

592 Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S.,
593 and Kuosa, H.: Characteristics of dissolved organic matter in Baltic coastal sea
594 ice: allochthonous or autochthonous origins? *Environ. Sci. Technol.*, 41,
595 7273–7279, 2007.

596 Thomas K. B.: Under Landfast ice. *Arctic*, 36, 328-340, 1983.

597 ~~Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T.
598 J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B., Kortelainen, P. L., Kutser, T.,
599 Larsen, S., Laurion, I., Leech, D. M., McCallister, S. L., McKnight, D. M.,~~

600 ~~Melack, J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H., Roland, F.,~~
601 ~~Sherman, B. S., Schindler, D. W., Sobek, S., Tremblay, A., Vanni, M. J.,~~
602 ~~Verschoor, A. M., Wachenfeldt, E. V., and Weyhenmeyer, G. A.: Lakes and~~
603 ~~reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54,~~
604 ~~2298–2314, 2009.~~

605 Uusikiv, J., Vahatal, A.V., Granskog, M.A., Sommaruga, R.: Contribution of
606 mycosporine-like amino acids and colored dissolved and particulate matter to
607 sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr., 55,
608 703–713, 2010.

609 ~~Wharton, R. A., Jr., McKay, C. P., Clow, G. D., and Andersen, D. T.: Perennial ice~~
610 ~~covers and their influence on Antarctic lake ecosystems. Antarct. Res. Ser., 59,~~
611 ~~53–70, 1993.~~

612 Yamashita, Y.: Assessing the dynamics of dissolved organic matter (DOM) in coastal
613 environments by excitation emission matrix fluorescence and parallel factor
614 analysis (EEM-PARAFAC), Limnol. Oceanogr., 53, 1900-1908, 2008.

615 Yamashita, Y., Cory, R. M., Nishioka, J., Kuma, K., Tanoue, E., and Jaffe, R.:
616 Fluorescence characteristics of dissolved organic matter in the deep waters of the
617 Okhotsk Sea and the northwestern North Pacific Ocean, Deep Sea Res. Part II,
618 57, 1478–1485, 2010.

619 Zhang, Y. L., Liu, X. H., Osburn, C. L., Wang, M. Z., Qin, B. Q., and Zhou, Y. Q.:
620 Photo bleaching response of different Source of Chromophoric Dissolved

621 Organic Matter Exposed to Natural Solar Radiation Using Absorption and
622 Excitation-Emission Matrix Spectra, Plos one, 8, e77515, 2013.

623 Zhang, Y. L., Yin, Y., Feng, L. Q., Zhu, G. W., Shi, Z. Q., Liu, X. H., and Zhang, Y. Z.:
624 Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its
625 catchment basin using excitation-emission matrix fluorescence and parallel
626 factor analysis, Water Res., 45, 5110-5122, 2011.

627 Zhang, Y. L., Zhang, E. L., Yin, Y., VanDijk, M. A., Feng, L. Q., Shi, Z. Q., Liu, M. L.,
628 and Qin, B. Q.: Characteristics and sources of chromophoric dissolved organic
629 matter in lakes of the Yungui Plateau, China, differing in trophic state and
630 altitude, Limnol. Oceanogr., 55, 2645-2659, 2010.

631 Zhang, Y. L., VanDijk, M. A., Liu, M. L., Zhu, G. W., and Qin, B. Q.: The
632 contribution of phytoplankton degradation to chromophoric dissolved organic
633 matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence.
634 Water Res., 43, 4685–4697, 2009.

635
636
637
638
639
640
641
642
643
644
645
646
647
648

649 Table 1. Mean value of water quality parameters from June 2013 to April 2014. Turb
650 denotes water turbidity; N denotes sampling numbers.

651

Sampling season	pH	Salinity (PSU)	Turb (NTU)	N
Jun.2013	8.54	0.40	166.20 ± 108.73	15
Aug.2013	8.63	0.37	63.13 ± 31.21	13
Feb.2014	8.35	0.70	21.33 ± 15.87	17
Apr.2014	8.67	0.43	22.24 ± 16.42	22
All	8.55	0.48	62.18 ± 79.07	67

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674 Table 2. Positions of the fluorescence maximum peaks of the four components
675 identified by PARAFAC modeling in the present study compared with those
676 previously identified. Secondary excitation maxima is given in brackets.

677

Component	Ex _{max} (nm)	Em _{max} (nm)	Description and source	Components (Coble) and (Zhang)	Components (Stedmon and Markager)
No					
C1	230 (300)	425	Marine humic-like (phytoplankton degradation)	M	6
C2	255 (350)	460	Terrstralhumic-like	A and C	1 and 4
C3	225 (290)	360	Autochthonous tryptophan-like	T	
C4	220 (275)	320	Autochthonous tyrosine-like	B	8

678 Fluorescence peaks were named as Components (Coble) and (Zhang) by Coble et al. (1996, 1998) and Zhang et al.
679 (2010, 2011), while as Componets (Stedmon and Markager) by Stedmon and Markager (2005).

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697 Table 3. Mean values of DOC concentration and CDOM absorption coefficients
 698 groups at different seasons. S_R : the slope ratio of $S_{275-295\text{nm}}$: $S_{350-400\text{nm}}$.

699

Sampling season	$a(254) \text{ m}^{-1}$	$a(280) \text{ m}^{-1}$	$a(350) \text{ m}^{-1}$	S_R	DOC mg L ⁻¹	N
Jun.2013	38.39 \pm 9.23	25.98 \pm 6.38	5.73 \pm 1.68	1.29 \pm 0.16	31.84 \pm 14.67	15
Aug.2013	29.71 \pm 4.73	19.36 \pm 2.91	5.82 \pm 0.81	0.96 \pm 0.22	32.83 \pm 14.78	13
Feb.2014	52.88 \pm 18.13	34.62 \pm 1.54	6.36 \pm 2.17	1.18 \pm 0.11	55.04 \pm 20.00	17
Apr.2014	34.43 \pm 11.38	22.45 \pm 7.36	4.17 \pm 1.49	1.32 \pm 0.13	30.86 \pm 10.91	22
All	39.08 \pm 14.73	25.73 \pm 9.58	5.40 \pm 1.84	1.21 \pm 0.20	37.60 \pm 18.05	67

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719 Table 4. Correlation coefficients (R) and significance levels (p) of the linear
720 relationships between CDOM absorption, DOC, salinity and fluorescent components.

721

	a(254)	a(280)	a(350)	DOC	Salinity	C1	C2	C3	C4
DOC	0.711**	0.646**	0.294*	1.000**					
Salinity	0.650**	0.579**	0.159	0.965**	1.000**				
C1	0.850**	0.875**	0.873**	0.496**	0.383**	1.000**			
C2	0.677**	0.686**	0.885**	0.414**	0.270*	0.796**	1.000**		
C3	0.452**	0.417**	0.134	0.648**	0.685**	0.267*	0.103	1.000**	
C4	-0.040	-0.016	0.078	-0.101	0.135	0.084	0.069	0.225	1.000**

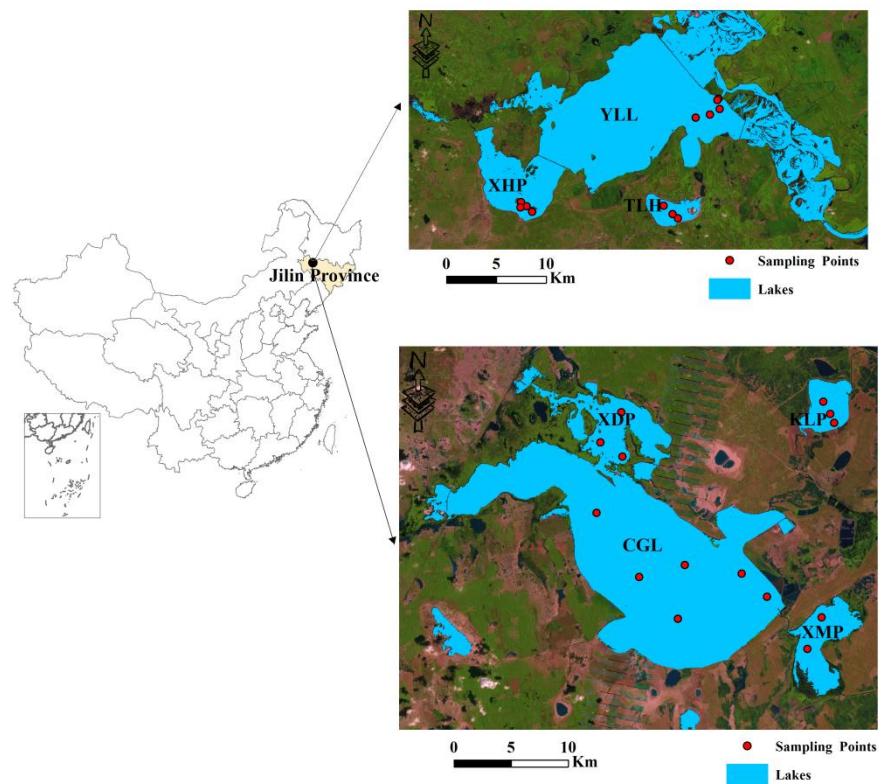
722 ** $p < 0.01$ level ; * $p < 0.05$ level.

723

724

725

726


727

728

729

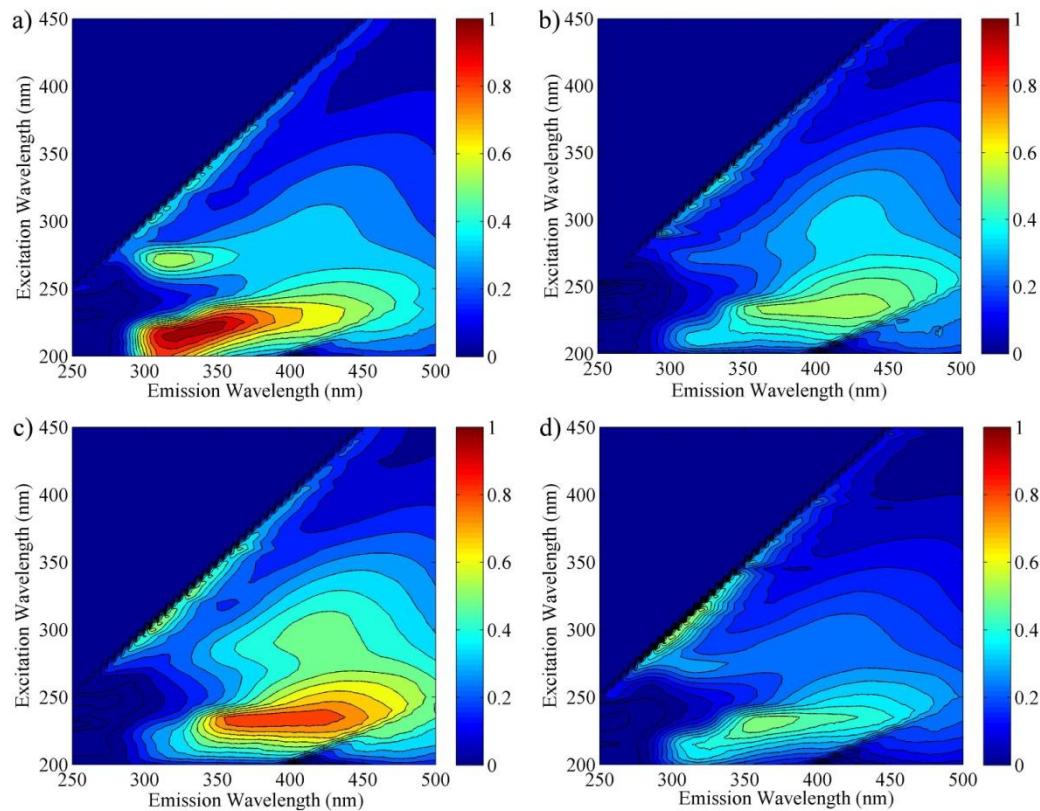
730

731

732

733

734


735 Figure 1. Locations of the water sampling sites for 7 lakes in the western part of Jilin
 736 province, Northeast China.

737

738

739

740

741

742

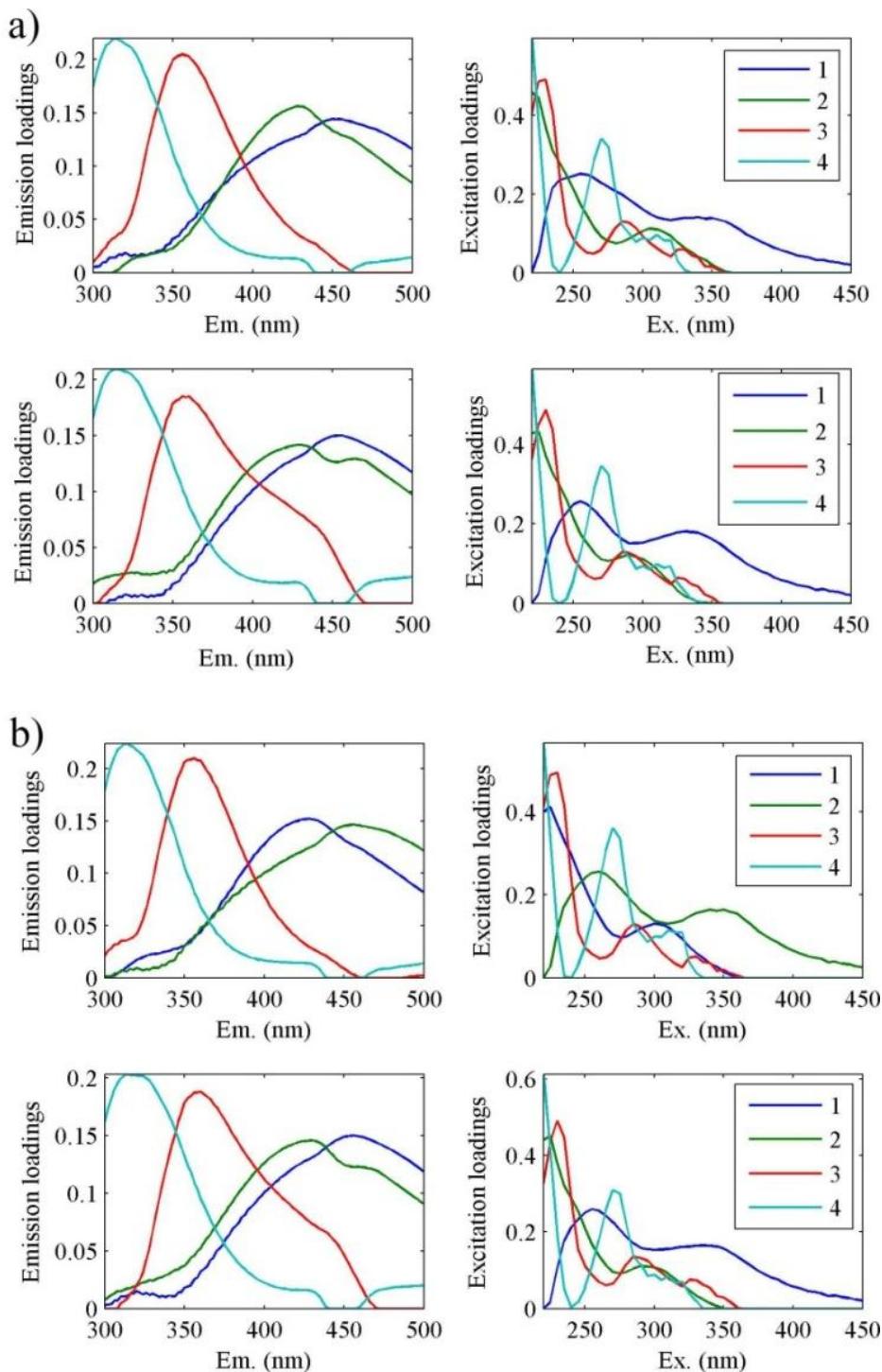
743 Figure 2. Examples of EEMs for one water sample from Xindianpao Lake in the
 744 western part of Jilin province at different seasons a) June 2013; b) August 2013; c)
 745 February 2014; d) April 2014 (Fluorescence is in Raman unit: nm^{-1}).

746

747

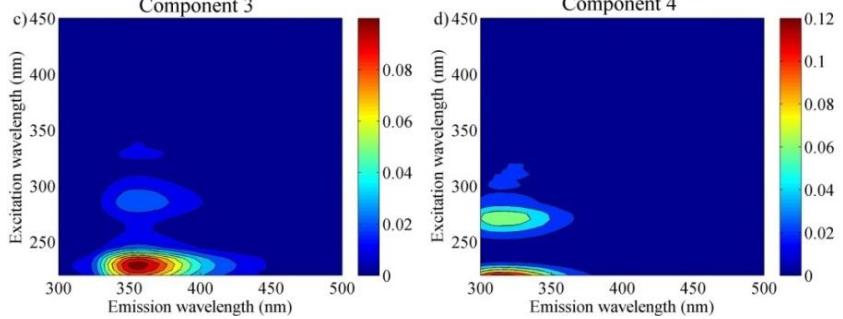
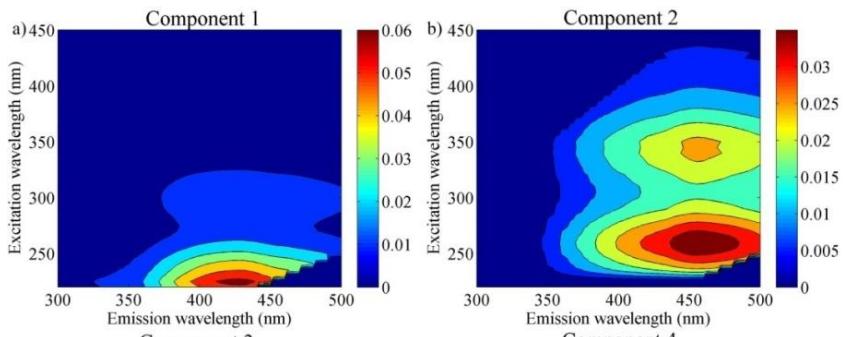
748

749


750

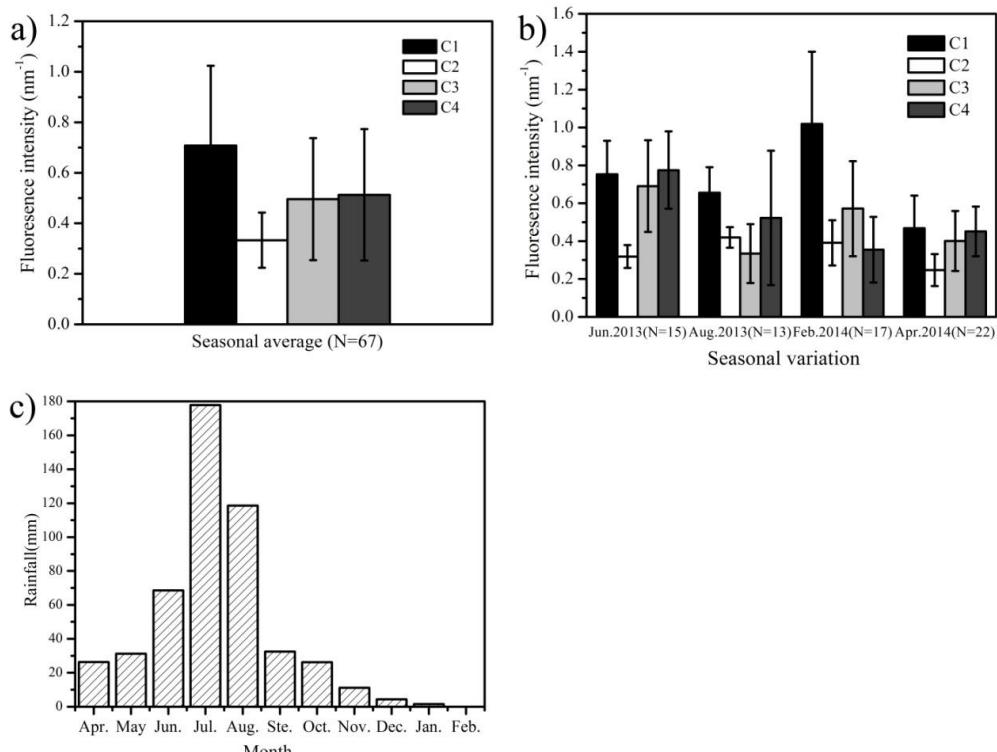
751

752



753

754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
Figure 3. Results from split-half analysis (1-2 top a); 3-4 down b)) in PARAFAC


775
models. The plots represent spectral shapes of the excitation and emission loadings
from the two halves (1-2; 3-4 split-half analysis) modeling.

793 Figure 4. The PARAFAC model output shows the contour plots of the four
 794 PARAFAC fluorescent components (a-d) and excitation (black) and emission (red)
 795 loadings (e-h) of each component. Fluorescence is in Raman units: nm^{-1} .

796

797

798

799 **Figure 5.** a) Seasonal average of F_{max} for EEM-PARAFAC components (C1, C2, C3, C4) for lakes in the western part of Jilin province; b) Seasonal variation of the four EEM-PARAFAC components at different seasons; c) Monthly variation of rainfall for the lakes in western part of Jilin province from April 2013 to February 2014. The error bar represents standard deviations.

800

801

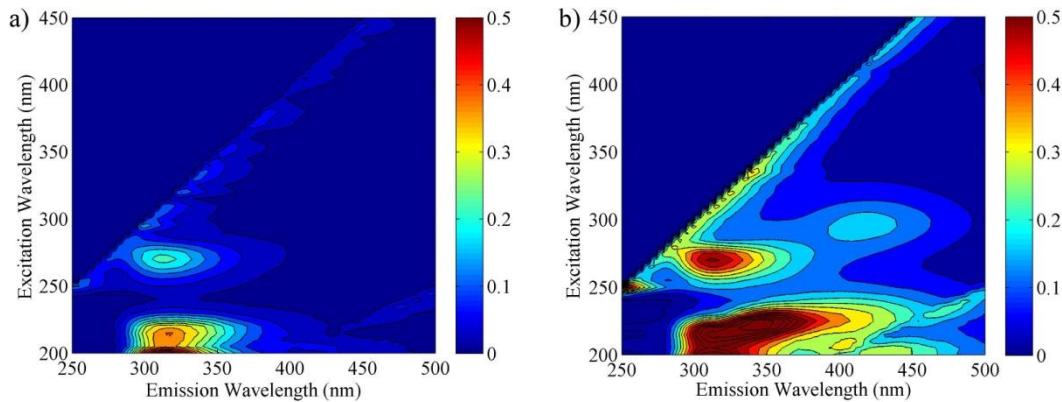
802

803

804

805

806


807

808

809

810

811

812

813 Figure 6. Representative examples of EEMs for a) lake ice-melt water sample, and b)
814 rainwater CDOM in the western part of Jilin province (Raman: nm^{-1}).

815

816

817

818

819

820

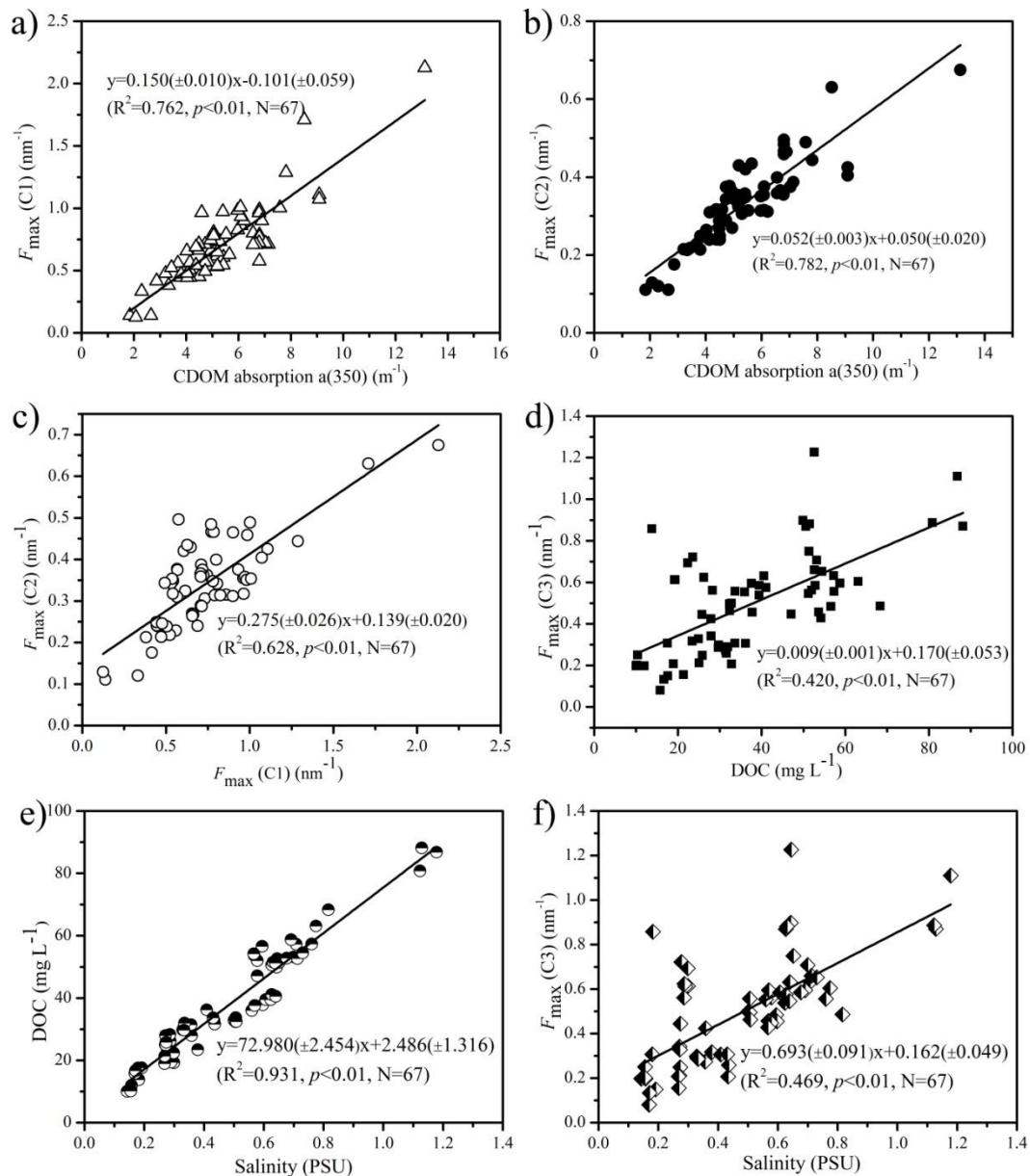
821

822

823

824

825


826

827

828

829

830

831

832 Figure 7. Relationships between CDOM absorption coefficient $a(350)$ with a)
 833 b) with $F_{max}(C2)$, c) peak $F_{max}(C1)$ versus $F_{max}(C2)$, d) peak $F_{max}(C3)$
 834 versus DOC, e) Salinity versus DOC, f) Salinity versus $F_{max}(C3)$.

835

836