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Many thanks to the reviewers for your thorough and helpful responses. We have addressed the 

comments within the manuscript and please find our responses to your comments and 

suggestions below, identified by paragraphs that start with a ##. 

Anonymous Referee #1 

First, I am curious why the authors chose to use the LAI3g dataset rather than the MODIS LAI 

product (MCD15A2). While these datasets have similar agreement with respect to in situ LAI 

observations (RMSE=∼0.7; Zhu et al. 2013 RemSen), both validation exercises used a limited 

number of sites located in drought deciduous regions (e.g., Figure 2 in Zhu et al.) and MODIS 

data are known to have higher fidelity than AVHRR data (Huete et al. 2002 RemSenEnv). 

Moreover, while the LAI3g dataset is twice as long as MCD15A2, it is not clear how additional 

years of data actually benefit the model assessments made in this analysis. It would be helpful if 

the authors provided explanation for why they chose to use LAI3g rather than MCD15A2. If this 

is not possible, then I recommend that the authors redo the analysis using MCD15A2 to ensure 

that the highest quality data are used.  

## We agree that the MCD15A2 data set is more robust, but we felt that the length of the LAI3g 

data set was important, as semi-arid ecosystems have inconsistent rainfall and green-up 

patterns, making more data useful to cover a broader range of weather patterns. In addition, 

since we were focused on broad issues in CLM, not pinning the LAI values exactly to the 

satellite data, we expect that switching data sets would not significantly change the overall 

results, given that the discrepancies in the original model were so profound. 

Second, while it is certainly necessary to assess model performance over the entire annual 

cycle, I believe it is equally important to consider how well models capture timing of seasonal 

metrics such as start and end of season since they largely control annual carbon uptake (e.g., 

Ma et al. 2007 AgForMet). For example, in Figure 2a it is apparent that the LAI3g growing 

season across NH C3 grasses is shifted early by an entire month. Despite the relatively high R2 

and low RMSE across this region as shown in Table 2, this result suggests that the model does 

not incorporate the mechanistic controls for triggering leaf onset or autumn senescence. 

Therefore, for regions with stronger seasonality in LAI (mainly temperate grasslands), I suggest 

the authors perform a quantitative assessment of model bias in start and end of growing season 

dates.  

## We agree that this would be an additional interesting assessment, however, we do not think 

it would change the overall results of this paper, and algorithms like those designed to assess 

start and end of growing season, growing season length, or amplitude do not perform well when 

trying to assess areas with more than one growing season per year, which are a common part 

of savanna-type ecosystems. We have added comments regarding this in the methods section 

of the manuscript (see response to reviewer 2, below). Further, our study is focused on semi-

arid systems, and not on cold-deciduous phenology, which has been studied more extensively 

in the past (e.g. Levis et al. 2012).  

Third, perhaps this is outside of the context of this study but if the authors have access to in situ 

observations of LAI data from a semi-arid/drought deciduous region it would be interesting and 
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worthwhile to validate the authors’ novel cumulative rainfall model using these data. This is 

briefly mentioned on Page 5821, Lines 23-24.  

## We agree! There is lots of room for more assessment of drought deciduous phenology, 

however, there are only a small number of in situ data sets (e.g. Phenocams) in drought 

deciduous areas, as far as we know. Adding more data sources (both on the ground and space-

borne) is a focus of ongoing proposals, etc. 

Finally, while the authors describe and perform parameter sensitivity analyses in the methods 
and results sections (research question #2), there does not appear to be any significant 
discussion or formal conclusions made regarding these results later in the manuscript. 
Moreover, in Figures 4 and 5 the relationship between each model run and the magnitude of the 
varied parameter is unclear. Overall, I believe this is an important aspect of the analysis and, 
therefore, suggest that the authors make appropriate changes to resolve these issues.  

## Latin hypercube types of analysis are difficult to illustrate, however, we agree that the 
discussion of the sensitivity analysis could be more detailed, and appropriate changes have 
been made to the manuscript explaining the results of the sensitivity analyses and what is 
shown in Figures 4 and 5. 

We’ve added the following paragraph to explain this challenge in the methods, as well as 
described this issue elsewhere in the manuscript: 

## To assess the performance of the different models in the Latin hypercube test we originally 
plotted the coefficients of determination between the different models’ LAI values and the LAI3g 
data at those points. However, this result did not illustrate any clear optimum in model 
performance either for the parameters of the existing model, nor for the rainfall threshold. We 
illustrate this using the time-series data in Figure 4, which highlight the unusual behavior of the 
model, and to assess whether the extra green-up period during the dry season had been 
eliminated in any of the parametric permutations.  We ascribe the lack of a clear parametric 
signal to two effects.  First, the LAI3g data were necessarily aggregated to monthly values, 
meaning that the primarily sub-monthly variation between ensemble members was masked. 
Second, the timing of the secondary  leaf-on period in the dry season was the emergent 
property of the oscillatory (and thus somewhat chaotic) dynamics of the soil-vegetation 
feedback on soil moisture. 

## Regarding the rainfall threshold, we’ve added the following statement in the results: 

## While this new rainfall threshold improved model performance both at our points and globally 
(see below), we note that, except in a few exceptionally dry areas, the model did not appear to 
be particularly sensitive to the rainfall threshold, as long as some rain did fall, but this threshold, 
and the drought deciduous algorithm as a whole, deserves more research into seasonal drivers. 

Minor Comments and Suggestions:  

Page 5804, Line 23: Not sure that quotes are necessary here.  

## Removed 

Page 5807, Line 7: Please explain what BGC stands for.  

## BGC stands for Biogeochemistry and designates a particular version of CLM that includes an 

active carbon and nitrogen cycle, but is different from the CLM-CN version (also with active C 

and N) which was used primarily in earlier versions of CLM. Since CLM4.5BGC is now the 
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default version, we have included an explanation in the beginning of the paper but changed 

further mentions of CLM4.5BGC to CLM for simplicity. 

Page 5808, Equation 1: offset → onset  

## Good catch! Looks like this error was introduced during typesetting – per reviewer 2’s 

comment we’ve changed all of these to psi-threshold 

Page 5810, Line 6: Please explain what CRU-NCEP stands for.  

## CRU-NCEP = Climate Research Unit (University of East Anglia) – National Centers for 

Environmental Prediction (NOAA), we did not define this following other papers published in 

Biogeosciences, but will defer to the Editor’s preference. 

Page 5810, Line 19 (and instances afterward): gridcell → grid cell  

## Changed 

Page 5816, Section 3.3: The CLM naming convention (e.g., CLM4.5BGC, CLM, CLMMOD) gets 

a little confusing here. Perhaps it makes sense to only use CLM and CLMMOD?  

## See comment above – we’ve changed CLM4.5BGC to just CLM 

Page 5822, Line 12: phonological → phenological  

## Changed. Whoops! 

Figure 2: Need to show letters in each panel.  

## Letters are in the bottom right corners of each panel – e.g. “A. NH C3 Grasses” 

Figure 3: This figure is somewhat busy, although I am not sure what makes the most sense to 

remove. Perhaps it is okay but I suggest the authors consider alternative representations, if 

possible.  

## We agree that these figures (and Figure 10) are challenging, however, we opted for this 

presentation as it shows all of the relevant details, and we felt that stacking all of the data 

allowed for easier comparisons than plotting things in different panels. 

Figure 4: If the authors choose not to explain differences between each model run, it may also 

make sense to just plot a mean curve with +/- 1 standard deviation or some other indicator of 

variance.  

## Related to the comment above, we’ve added a more clear description of the Latin hypercube 

analysis and discussion of these figures to better explain how to interpret them. 

Figures 8/9: Perhaps it would make sense to mask out grid cells with less than some fraction of 

drought deciduous land cover so that it is easier to depict spatial patterns in the improvement of 

model performance. 
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## We’ve opted to leave all of the data clearly represented (instead of masked) with the hope 

that these figures will be useful to researchers interested in study regions beyond those we 

have focused on.  

 

Anonymous Referee #2  

Major comments and suggestions: The papers central result seems to be the pragmatic “fix” to 

stop the unrealistic simulation of multiple onsets over much of the draught deciduous parts of 

the world. This fix – using a cumulative rainfall threshold - is basically designed to stop 

anomalous onset caused by unrealistic soil water movement in CLM. While I am not completely 

against using these kinds of pragmatic solutions to prevent erroneous events within a model - 

and have had to use them myself - to base an entire paper around such a development that has 

no real world basis seems to be a bit overkill. The authors identify the actual cause of the 

models problems in simulating seasonal phenology (i.e. that a sudden drop in transpiration at 

the end of the growing season and a potentially unrealistic water table dynamics triggers leaf 

onset through a sudden increase in soil water potential), but fail to investigate potential changes 

in the simulation of soil water dynamics or a more real-world based soil water/phenology 

coupling. To me it seems that this would have been a much better starting position for model 

development and, based on the information that the authors (again, very clearly) explain in the 

paper, I can think of several avenues of investigation, provided that data is available for proper 

analysis:  

1. Is the simulation of the “unconfined aquifer” and its interaction with the soil layers realistic? (to 

be fair, the authors do suggest may be tricky because of lack of data)  

2. Is the sudden increase in water potential after the growing season realistic? If not, is there a 

way of “blocking” this sudden spike? A pragmatic solution here would probably be more 

appropriate than the one the authors implemented, as the fix is applied at the root of the 

problem.  

3. Is phenology actually coupled to soil water potential? If not, is a more realistic decoupling 

than the one put forward possible, along with a demonstration that this is based on real world 

plant responses?  

4. Can plants “pull out” of onset if soil water potential peaks but then suddenly drops again?  

## We agree that this ‘quick fix’ is not the ideal solution to a fairly significant issue in CLM, 

however, our goal was to correct this one problem (dry season green-up) without significantly 

impacting other parts of the model. Several groups are currently working on new and better soil 

water solutions for the CLM, but changes to the soil water algorithms will have wide reaching 

impacts that will need to be assessed in their own right.  The CLM4.5 is widely used by the land 

surface modeling community, and its development is a collaborative effort that relies on 

identification and publication of issues as rapidly as possible, to reduce redundant development 

efforts.  We felt that this issue was too important to wait for those soil water parameterizations to 

come on line, given its impacts on the global carbon cycle in the model (new soil hydrology 
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representations are not finalized at this time). It is not our decision whether or not this 

modification is incorporated into the next release of CLM, but we wanted to make it available if 

deeper issues in the soil water algorithms are not resolved, or to others to use prior to the 

release of the new model, which will likely be up to a year from now. Regarding #3 and #4, 

those are great questions. KMD is currently conducting a literature review to attempt to address 

these questions across the semi-arid parts of the globe, but so far the answer seems to be that 

it depends on the plant and that there is quite a bit of variation in how plants respond to soil 

moisture at scales finer than the CLM plant functional type groupings. We hope that this ms 

stimulates more focus in the land modeling community on dry ecosystems and their processes. 

With a slight shift on focus, the paper may have the potential for being an interesting case study 

of model benchmarking and evaluation. However, model quantitative evaluation of initial and 

developed model is a little spare and not systematic. A more suitable evaluation of phenology 

would probably need to assess the models simulation of the timing of the start, peak and end of 

the season, magnitude and number of onsets via quantifiable metrics, rather than just RMSE 

over the annual cycle and visual spatial and timeseries comparisons. Also, a proper assessment 

of model improvement (or degradation) over a range of model outputs outside of phonology 

would help guide interpretation of the results impact and guide further work (as the authors hint 

at in the discussion on carbon and fire on page 5820). There has been a lot of work on land 

surface model benchmarking over the past few years (see e.g. Randerson et al. 2009; Lou et al. 

2012; Kelley et al. 2013) which could serve as a good starting point for assessment. Randerson 

and Kelley both design metrics for assessing simulated vs observed seasonal signals, and then 

relate this to vegetation cover and/or productivity (Randerson by comparing LAI, Kelley by 

comparing faPAR), and both demonstrate full model assessment of both chosen area for 

development and full-model impacts.  

## This paper did indeed begin as a benchmarking study, however, the discovery of the strange 

behavior of the model phenology in drought deciduous areas quickly changed the focus of the 

paper. As stated above, much more work is needed in this area, but we think that a description 

of the current state of the model is an important contribution.   Benchmarking software following 

the concepts in Kelley et al. 2013 and Luo et al 2012 is in development for the CLM, and will be 

available soon. It should be noted, however, that many benchmarking systems used monthly 

data as a default output. This study highlights that a great deal of information can be lost via the 

use of automated assessments of monthly timeseries.  There are other metrics that we might 

have used, but identification of onset and offset from the satellite timeseries is subject to issues 

surrounding the subjectivity of the criteria defining onset and offset thresholds.  We considered 

that the direct metrics of RMSE and R2 over the whole timeseries were more appropriate 

measures, given the complexity of the multiple growing seasons simulated in the default model.  

Regarding the other benchmarking metrics we could have used, we agree that this should be 

addressed, and we’ve added the following paragraph to the last section of the Methods and a 

sentence emphasizing this point in the conclusions: 

## The recent focus on land model benchmarking has led to a number of additional suggested 
methods for assessing seasonality in models compared to data (e.g. Randerson et al 2009, 
Kelley et al 2013), however, the proposed metrics would not capture the central issue 
addressed in this paper – model output with two or more peaks per year, data with only one – 
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as they begin with the unstated assumption that seasonality is unimodal over the course of a 
year, as do measures of the start and end of the growing season. In Randerson et al (2009) 
seasonality is assessed by identifying the month of peak LAI and comparing that to MODIS LAI 
(MOD15A2), and in Kelley et al (2014) several more complicated metrics are introduced 
(equations 7-9) to again produce single numbers to compare a model’s seasonality to a 
benchmark data set. In these examples, as in other benchmarking studies, the focus is on 
producing a single number, which, while useful, can miss important details. 
 
Specific comments:  

Region assessment – pg 5807, line 19/20. It would be useful to provide information on how 

PFTs are prescribed: i.e what is the dataset, what period is the prescribed cover based on etc.  

## Lawrence & Chase 2007 (referenced in the ms) describes the development of CLM’s land 

cover data set in detail. 

- pg 5808, equation 1: Should ψ offset be ψ onset?  

## Good catch! Looks like this error was introduced during typesetting per your later comment 

we’ve changed all of these to psi-threshold 

- pg 5808, line 25: Why is the number of onset days prescribed as 30?  

## That’s what is prescribed in CLM currently – re-written to be more clear 

- pg 5809, line 4: Why is a timestep 108000s? If I’ve got my arithmetic right, 10800s is 30 hours 

or 1.25 days.  

## This is a typo (thanks!) – should be 30 minutes, or 1800 seconds. 

- Pg 5809, line 20: why are ψ offset and ψ onset defined as different parameters despite having 

the same value?  

## Changed to be one symbol defined as ‘soil water potential threshold’ 

- Pg 5809, line 22: as with the number of onset days, why is the offset period proscribed as 15 

days?  

## As with onset, that’s what is prescribed in CLM currently – re-written to be more clear 

- 5810, lines 4-9: A little more detail on climate information would be nice: What climate 

variables are needed to run the model?  Which of these has the largest effect on soil water 

potential (and therefore the phenology indices)?  Are soils prescribed? Does the model require 

CO2 inputs? Is the 45- year run using transient or equilibrium (detrended) climate? If detrended, 

how is this done? What time period does the run cover? What was the climate and vegetation 

cover (and soil and CO2?) inputs for the equilibrium baseline state run? How was equilibrium 

tested for in the baseline state? 

## We have included more detail in this paragraph to address these questions. It now reads as 

follows:  
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The model runs used in the global simulations described here ran for 45 years, and were started 
from an equilibrium baseline state generated by a standard CLM spin up run, (as described in 
detail by Koven et al. 2013) cycling meteorological conditions of 1948-1972. The present-day 
run (1965 – 2010) used CRU-NCEP meteorological reanalysis data (N. Viovy, pers. comm.; 
data available at: http://dods.ipsl.jussieu.fr/igcmg/IGCM/BC/OOL/OL/CRU-NCEP/) and transient 
CO2 concentrations to drive the model. Soil type and land cover are prescribed in the model, 
and recent work has suggested that the soil resistance parameterization may be unrealistic in 
arid ecosystems (Swenson & Lawrence 2014). More details on CLM are available in Oleson & 
Lawrence 2013. 
 
- Pg 5810, lines 18-22: I’m not sure I follow the spatial averaging and resampling procedure. 

Were observed cells just averaged to decide if a CLM cell should be excluded? And was 

averaging performed just using LAI3g cells falling entirely within a CLM cell, with resampling 

used to incorporate the rest?  

## We’ve revised the sentences to say: 

## First, the two LAI3g maps generated for each month were averaged, then the LAI3g pixels 

were aggregated (averaged) to match the size of a CLM grid cell (~165 pixels per grid cell). If 

more than 80% of the grid cell did not have values in LAI3g (mostly applicable at high latitudes), 

the entire grid cell was removed from further analysis. Finally, the aggregated LAI3g data was 

resampled using a nearest neighbor approach to align with the CLM grid for further analysis. 

- Pg 5812, line 13: Does the Latin-hypercube approach test for equilibrium itself, and/or did you 

define an equilibrium position was?  

## We defined the equilibrium state, as clarified in the next paragraph (p. 5812, line 21) 

- pg 5813, line 18: Again, why 10 days? 

## We investigated alternative rainfall accumulation periods between 5 and 60 days. The impact 

of the accumulation periods was low, (since the model is mostly sensitive to the condition that 

there is any rain at all, rather than to the precise definition of the threshold). 

- Pg 5812 (5814, I think?), lines 3-4: I’m not sure I understand this sentence. Are the three maps 

of LAI for CLM4.5BGC, LAI3g and CLM-MOD? 

## We’ve modified this sentence to be more clear and it is addressed in the results. 

 - Pg 5815, line 9: Is there an important reason for running CLM globally here?  

## Not particularly – we’ve eliminated the word ‘globally’. 

- Pg 5816, line 8-9: Surely a model change such as this would require a new equilibrium 

baseline state? If you think it doesn’t, what is the rationale? 

## We discuss the equilibrium conditions on P5812 L18-L22. Spin-up of the new model to an 

LAI equilibrium was remarkably fast in these simulations, potentially reflecting a lack of 

http://dods.ipsl.jussieu.fr/igcmg/IGCM/BC/OOL/OL/CRU-NCEP/
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significant feedback between the soil nitrogen state and vegetation physiology for the semi-arid 

regions.   

- Pg 5816, line 9-12: can this “closer match” be quantified?  

## We feel that showing the maps, including the difference maps in Figure 6, particularly 6D and 

6F adequately illustrate this improvement. 

- Pg 5816, line14-19: Again, can this be quantified? In figure 7, it looks like some places get 

better (sahel, southern and western Australia etc) whilst some places get worse (i.e, Asia, north 

east Aus etc).  

## We’ve added a confusion matrix table comparing counts of peak numbers between LAI3g 

and the two model runs (CLM and CLM-MOD) and this paragraph now reads as follows: 

## To test whether the poor fit between CLM and LAI3g was due to multiple annual LAI peaks in 
CLM we counted the number of peaks per year in each data set (Fig 7). We found that in the 
observations, only areas in the humid tropics had multiple peaks in the LAI3g data (“peaks” in 
these cases being relatively small fluctuations), while CLM showed multiple peaks per year 
throughout many of the savanna regions of the world. CLM-MOD has more areas with only one 
peak, particularly in Sub-Saharan Africa. To quantify these changes to the model we 
constructed confusion matrices to compare the peak counts in LAI3g to those in CLM and CLM-
MOD (Table 3) for grid cells with >50% drought deciduous cover (Figure 1). Overall, CLM-MOD 
had a slightly poorer performance, matching the number of peaks in the LAI3g dataset 42.5% of 
the time, while CLM matched LAI3g 43.7% of the time. However, these unweighted summary 
numbers mask improvements in CLM-MOD. CLM only correctly predicted a single peak 8.9% of 
the time, while CLM-MOD correctly predicted single peaks 59% of the time, and never did CLM-
MOD predict more than two peaks in a year, matching the LAI3g data. The overall degradation 
in CLM-MOD is due to fewer correctly identified grid cells with zero or two peaks. 

 

- Pg 5816, line 24 - pg 5817, line 2: Again, the improvement does not seem to be quantified. 

Introduction of a more systematic benchmark system (see major comments) would help with 

these last 3 points)  

## Here, and in the above 2 comments, it would be possible to determine a single number for 

the change in model performance, but, as can be discerned from the global maps, the situation 

is actually spatially complex, and, as highlighted by Luo et al. and Randerson et al., the 

generation of single number benchmarking products is fraught with subjectivity. This is why we 

chose to present the results in their entirety, as part of the development of process 

representations.  

- Pg 5818, line 23-pg 5819 line 20: This part seems very out of place in the discussion. The 

implementation of this should be in the methods, and it would be nice to see some results, even 

if they go in an SI. If you cannot do this, I would take this section out.  

## We feel that it is important to keep this discussion in the paper as these alternative options 

were frequently brought up when this work was discussed among CLM users, but we’ve moved 

it to the methods (section 2.4). 
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Abstract 10 

Seasonal changes in plant leaf area have a substantial impact on global climate. If and when leaves 11 

are present affects surface roughness and albedo, and the gas exchange occurring between leaves 12 

and the atmosphere affects carbon dioxide concentrations and the global water system. Thus, 13 

correct predictions of plant phenological processes are important for understanding the present and 14 

future states of the Earth system. Here we compare plant phenology as estimated in the Community 15 

Land Model (CLM) to that derived from satellites in drought deciduous regions of the world. We 16 

reveal a subtle but important issue in the CLM: anomalous green-up during the dry season in many 17 

semi-arid parts of the world owing to rapid upwards water movement from wet to dry soil layers. 18 

We develop and implement a solution for this problem by introducing an additional criterion of 19 

minimum cumulative rainfall to the leaf-out trigger in the drought deciduous algorithm. We discuss 20 

some of the broader ecological impacts of this change and highlight some of the further steps that 21 

need to be taken to fully incorporate this change into the CLM framework. 22 

 23 
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1 Introduction 24 

Ecosystems change with the seasons in response to environmental cues. Some of those cues 25 

are fixed, like day length, while others are climate-driven and therefore vary from year to year. The 26 

combination of fixed and climate-driven phenological cues poses an interesting problem in the face 27 

of climate change – climate related drivers of phenology (temperature and rainfall patterns) are likely 28 

to change (Lau et al., 2013), while fixed cues will remain unchanged. Phenological shifts due to 29 

climate change have already been identified (e.g. Parmesan & Yohe, 2003). “Phenology” can refer to 30 

a large number of patterns and behaviors in plants and animals that shift with the seasons. Here, 31 

however, because we are focused on land surface model simulations, we use phenology specifically 32 

to refer to intraannual variation in leaf area index (LAI).  Leaf area can vary significantly within a 33 

year and is, therefore, a critical control on land-atmosphere feedbacks (Lawrence et al., 2012). 34 

Recent advances have greatly improved our ability to predict seasonal patterns in northern 35 

temperate deciduous forests (Richardson et al., 2012), but our understanding of phenological 36 

patterns in stress or drought deciduous plants (also called ‘raingreen’) remains weak (Guan et al., 37 

2014; Jenerette et al., 2010; Ma et al., 2013). The semi-arid ecosystems that host the majority of 38 

drought deciduous woody plants have relatively low biomass but make up a large fraction of global 39 

land area (~30%; Scholes & Hall, 1996).  Their extensiveness alone makes them important to global 40 

radiation budgets, but additionally these systems are likely very sensitive to climate change given 41 

their apparent bistability (Scholes & Hall, 1996; Staver et al., 2011). In semi-arid ecosystems leaf-out 42 

is typically thought to be a function of water availability (Reich, 1995; White et al., 1997), however, 43 

some woody plants do leaf-out several weeks before the first rains of the season (Archibald and 44 

Scholes, 2007). 45 
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In an Earth system modeling context, the timing and magnitude of plant phenology, and 46 

how these processes may change, is critical for approximating the energy and carbon balances of the 47 

planet. Prognostic phenology has only recently been incorporated in to Earth system models, 48 

however, and its fidelity, particularly in semi-arid regions, remains poorly tested (Blyth et al., 2011; 49 

Lawrence et al., 2011; Randerson et al., 2009). Lawrence et al. (2012) found that the prognostic 50 

phenology in the Community Land Model version 4 (CLM4(CN)) degraded estimates of latent heat 51 

flux and other biophysical properties in comparison to using prescribed, satellite-derived phenology 52 

(CLM4SP). Wang et al. (2013) compared intraannual variation in the fraction of absorbed 53 

photosynthetically active radiation (fAPAR) in CLM4CN to satellite-derived estimates and found 54 

substantial differences in regional averages, zonal means, and interannual trends. It is difficult, 55 

however, to isolate the impact of the drought deciduous phenology algorithm using these regional 56 

and zonal estimates. 57 

Satellite-derived estimates of greenness, fAPAR, and LAI have greatly improved our ability 58 

to study the environmental drivers of phenology (Reed et al., 2009), however, the majority of studies 59 

have focused on northern deciduous and boreal forests (e.g. Delbart et al., 2006; White et al., 2009; 60 

Yang et al., 2012).  While fewer studies have focused on remote sensing of phenology in semi-arid 61 

systems, Zhang et al. (2005) found a strong relationship between greenness onset and the start of the 62 

rainy season across the semi-arid parts of Africa. They found a weaker relationship, however, 63 

between dormancy and the end of rainy seasons, and they attribute this weakness to differences in 64 

soil properties. Similarly, Ma et al. (2013) found a strong relationship between greenness and rainfall 65 

in northern Australia in both seasonal timing and amplitude and Bradley et al. (2011) found a close 66 

relationship between rainfall and seasonality in Amazonian savannas. Interestingly, in Africa Zhang 67 

et al. (2005) also showed a strong relationship between latitude and both green-up and dormancy 68 

onset, even in the narrow band of the Sahelian and Sub-Sahelian region, suggesting a possible link 69 
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between phenology and subtle changes in photoperiod at least in northern Africa. Recently Guan et 70 

al. (2014) showed a relationship between woody plant cover and phenological timing in African 71 

savannas. 72 

In this study we address three questions related to the representation of drought deciduous 73 

phenology in the CLM. (1) How well does the CLM capture phenological patterns of LAI among 74 

different drought deciduous plant functional types (PFTs) as compared to satellite-derived 75 

estimates?; (2) Which parameters in the current version of the CLM have the most leverage on 76 

woody plantdrought deciduous phenology?; and (3) Do changes in the phenology algorithms in the 77 

CLM improve the model’s representation of seasonal cycles regionally? 78 

 79 

2 Methods 80 

2.1 Model Description 81 

The CLM is the terrestrial component of the Community Earth System Model (CESM; 82 

Lawrence et al., 2011); it simulates biogeophysical and biogeochemical processes including radiation 83 

interactions with vegetation and soil, heat transfer in soil and snow, hydrology, and plant 84 

photosynthesis and respiration. In this paper we use the most recent release of the Community Land 85 

Model with active biogeochemistry, CLM4.5BGC (Oleson et al., 2013). Henceforth, references in 86 

this paper to the “CLM” will refer to CLM4.5BGC. 87 

The CLM is run here on a 1.25o x 0.9375o grid, and each grid cell is, where applicable, 88 

divided into fractions representing vegetated land, lakes, glaciers, and urban areas. Within the 89 

vegetated fraction of a grid cell there may be multiple PFTs representing a coarse division of 90 

biodiversity along its major axes of variation: trees/shrubs/grass, broadleaf/needleaf, C3/C4 91 

photosynthesis mechanisms and phenological habit (evergreen, cold deciduous and stress/drought 92 
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deciduous).  There are currently 15 non-crop PFTs in the CLM, four of which follow the drought 93 

deciduous phenology algorithm (Oleson et al., 2013). Figure 1 shows where these different PFTs 94 

dominate the globe.  Over time the relative cover of the PFTs may shift, as may the overall fraction 95 

of vegetation, depending on shifts in land use, though these shifts are minor in recent decades. In 96 

the simulations used in this paper these shifts in PFT fractions and cover are prescribed from 97 

satellite observations (Lawrence and Chase, 2007) as opposed to emerging from vegetation 98 

competition (Bonan et al., 2003). 99 

In the CLM, drought deciduous plants are represented by the ‘stress deciduous’ phenology 100 

type, as distinct from the evergreen or ‘seasonal’ (cold) deciduous phenology types. This designation 101 

allows for plants to lose their leaves either via the impact of cold, via the impact of drought, or via 102 

the onset of short days thus allowing the model to simulate, for example, grass vegetation growing in 103 

an environment that is both seasonally cold and seasonally dry. If the triggers for offset are not 104 

reached in a given year, drought deciduous vegetation will follow the evergreen phenology 105 

algorithm, gaining and losing fixed fractions of carbon with each time step. This stress deciduous 106 

algorithm, described in more detail below and in Oleson et al. (2013), was developed in part from 107 

White et al. (1997), though that study was particularly focused on grass phenology. 108 

The deciduous algorithms are hierarchical, such that plants classified as ‘stress deciduous’ but 109 

growing at high latitudes or in cold climates will follow the same onset/offset rules as 110 

cold/seasonally deciduous plants. From the beginning of a dormant period a ‘freezing day 111 

accumulator’ is activated whereby time steps with a temperature below freezing (0o C) are summed 112 

and if this sum exceeds 15 days then the plants will follow both the winter deciduous and drought 113 

deciduous algorithms. Leaf onset can only be triggered if day length is greater than 6 hours, a 114 

latitude-specific sum of growing degree days has been reached (described in Oleson et al. (2013)) and 115 

the soil wetness criteria described below have been met. 116 
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In seasonally dry, warm regions (the focus of this paper) where day length is never less than 117 

6 hours, leaf onset for the stress deciduous phenology type is determined by soil wetness. At the end 118 

of the previous offset period an accumulated soil water index (SWI) is set to zero and accumulation 119 

is calculated as: 120 

 𝑆𝑊𝐼𝑛 = {
𝑆𝑊𝐼𝑛−1 + 𝑓𝑑𝑎𝑦   for 𝜓𝑠𝑜𝑖𝑙 3 ≥  𝜓𝑜𝑛𝑠𝑒𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑆𝑊𝐼𝑛−1                for 𝜓𝑠𝑜𝑖𝑙 3 <  𝜓𝑜𝑛𝑠𝑒𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (1) 121 

Where n and n-1 refer to the values in the previous and current time steps, soil 3 is the soil water 122 

potential (MPa) in the third soil layer (6.23 cm – 9.06 cm), thresholdonset is -2 MPa, and fday is a time 123 

step (30 minutes in CLM) as a fraction of a day. Onset is triggered when SWI exceeds 15 days. 124 

The rate of leaf onset (fraction of onset per time step), which in the CLM is represented as 125 

the transfer of C and N from a storage pool to the ‘display’ leaf pool, is determined by the number 126 

of days prescribed for onset, here fixed at 30 days. The rate (ronset) at each time step is defined as: 127 

 𝑟𝑜𝑛𝑠𝑒𝑡 =  {

2

𝑡𝑜𝑛𝑠𝑒𝑡
 for 𝑡𝑜𝑛𝑠𝑒𝑡 ≠ ∆𝑡

1

∆𝑡
        for 𝑡𝑜𝑛𝑠𝑒𝑡 =  ∆𝑡

 (2) 128 

where tonset is time remaining in the current onset period in seconds and t is the length of a time step 129 

(108000 seconds1800 seconds). The flux of C out of the storage pool is then defined as the amount 130 

in the C storage pool at that time step multiplied by ronset. These functions result in a linearly 131 

decreasing flux out of the transfer pool, so the rate of increase in LAI over the onset period steadily 132 

decreases as C moves from the storage pool to the display pool (see Fig 14.1 in Oleson et al. (2013)).  133 

During the onset period C and N are also transferred from storage pools for fine roots, live and 134 

dead stem, and live and dead coarse roots into these components’ respective displayed growth pools. 135 

During the growing season, C and N taken up by the plant are accumulated in transfer pools, to be 136 

used in the next growing season. 137 



7 
 

As long as the leaf onset period is complete, leaf offset can be triggered by short (<6 hr) day 138 

length, a period of cold temperatures has been reached (described in Oleson et al. (2013)) or if the 139 

soil dryness criteria described below has been met. 140 

The offset soil wetness index (OSWI) can potentially start accumulating time steps once the 141 

previous leaf onset phase is complete. The algorithm differs slightly from the onset trigger, in that 142 

OSWI can increase or decrease as described below. 143 

𝑂𝑆𝑊𝐼𝑛 = {
𝑂𝑆𝑊𝐼𝑛−1 + 𝑓𝑑𝑎𝑦           for 𝜓𝑠𝑜𝑖𝑙 3 ≤  𝜓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑜𝑓𝑓𝑠𝑒𝑡

max (𝑂𝑆𝑊𝐼𝑛−1 − 𝑓𝑑𝑎𝑦 , 0)      for 𝜓𝑠𝑜𝑖𝑙 3 >  𝜓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑜𝑓𝑓𝑠𝑒𝑡

 (3) 144 

where thresholdoffset is -2 MPa, and leaf offset is triggered when OSWI equals 15 days. 145 

Similar to the rate of leaf onset, leaf offset rate is a function of the amount of time left in the 146 

offset period, here fixed at 15 days: 147 

 𝑟𝑜𝑓𝑓𝑠𝑒𝑡 =  
2∆𝑡

𝑡𝑜𝑓𝑓𝑠𝑒𝑡
 2  (4) 148 

Carbon fluxes into the litter pool are only calculated for leaves and fine roots (stems and coarse 149 

roots cannot shrink). Nitrogen fluxes into the litter pool reflect retranslocation of N prior to offset. 150 

See Oleson et al. (2013)) for more details. 151 

The model runs used in the global simulations described here ran for 45 years, and were 152 

started from an equilibrium baseline state generated by a standard CLM 4.5BGC spin up run, (as 153 

described in detail by Koven et al., 2013), cycling meteorological conditions of 1948-1972. The 154 

present-day run (1965 – 2010) usedas documented in (Oleson et al., 2013) and using CRU-NCEP 155 

meteorological reanalysis data (N. Vivoy, pers. comm.; data available at: 156 

http://dods.ipsl.jussieu.fr/igcmg/IGCM/BC/OOL/OL/CRU-NCEP/) and transient CO2 157 

concentrations to drive the model. Soil type and land cover are prescribed in the model, and recent 158 

http://dods.ipsl.jussieu.fr/igcmg/IGCM/BC/OOL/OL/CRU-NCEP/
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work has suggested that the soil resistance parameterization may be unrealistic in arid ecosystems 159 

(Swenson and Lawrence, 2014). More details on CLM are available in Oleson et al. (2013). 160 

2.2 Satellite derived LAI 161 

We compared the model-derived estimates of LAI to those estimated from the Advanced 162 

Very High Resolution Radiometer sensors (AVHRR) onboard the National Oceanic and 163 

Atmospheric Administration satellites. These data are available bimonthly and span from 1981 to 164 

2011.  They are supplied at 1/12 degree resolution. A detailed description of the development of the 165 

LAI product (hereafter LAI3g) is in Zhu et al. (2013). 166 

To ensure the most appropriate comparison possible, the LAI3g dataset was rescaled to 167 

match the mean monthly LAI output from the CLM. First, the two LAI3g maps generated for each 168 

month were averaged, then the LAI3g pixels were aggregated (averaged) to match the size of a CLM 169 

grid cell (~165 pixels per grid cell). If more than 80% of the grid cell did not have values in LAI3g 170 

(mostly applicable at high latitudes), the entire grid cell was removed from further analysis. Finally, 171 

the aggregated LAI3g data was resampled using a nearest neighbor approach to align with the CLM 172 

grid for further analysis.First, the two LAI3g maps generated for each month were averaged, then 173 

the LAI3g pixels within a CLM gridcell were averaged. If more than 80% of the gridcell did not have 174 

values in LAI3g (mostly applicable at high latitudes), the entire gridcell was removed from further 175 

analysis. Finally, the resized LAI3g data was resampled using a nearest neighbor approach to align 176 

with the CLM grid. All spatial and statistical analyses were performed in R (R Core Team, 2013) 177 

using the ncdf (Pierce, 2011), raster (Hijmans and van Etten, 2013) and rgdal (Bivand et al., 2013) 178 

packages. 179 

2.3 Comparing LAI3g to CLM LAI 180 
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We first compared LAI3g to the CLM output for 1982 (the first full year of LAI3g) to 2010 181 

(the last available year of the CRU-NCEP forcing dataset for CLM), aggregating values by zones 182 

based on dominant PFT and hemisphere. To aggregate into PFT classes, we only considered grid 183 

cells dominated by a single drought deciduous PFT (>50% cover), permitting six possible 184 

comparisons with a sufficient number of grid cells for comparison: northern hemisphere (NH) 185 

temperate C3 grasses (n = 180), NH C4 grasses (n = 234), tropical deciduous trees (n = 242), 186 

southern hemisphere (SH) deciduous shrubs (n = 68), SH C3 grasses (n = 160), and SH C4 grasses 187 

(n = 271). Note that the actual number of grid cells compared from year to year varied slightly with 188 

changes in land cover and, in the case of LAI3g, available data. The counts listed here are the 189 

averages for each PFT.  To visually assess the comparison between LAI3g and CLM we plotted the 190 

monthly means and standard deviations for these seven regions. We also computed the R2 and root 191 

mean squared error (RMSE) across all 29 years’ monthly values to assess CLM’s ability to fit the 192 

seasonality and the magnitude of the LAI3g values. Due to the temporal coarseness of these data 193 

and the irregular seasonal patterns found in many of our areas of interest, we did not fit a 194 

continuous function to these data.  195 

2.4 Point Simulations and Parameter Sensitivity Tests 196 

Given the observed mismatches between LAI3g seasonality and CLM predictions among 197 

drought deciduous woody plants (see Discussion), we conducted an analysis of how the parameters 198 

determining phenology in the model affect the model outcome.  The use of global or regional 199 

simulations to assess the sensitivity of models to their structural and parametric assumptions is 200 

problematic on account of both the computational requirements to do so and the high-201 

dimensionality of the model outputs, which can hinder understanding. To avoid these issues, we 202 

conducted a sensitivity test to the major model parameters that control seasonality in LAI at the 203 

point scale. In these point simulations we focused on low-latitude drought-deciduous ecosystems, 204 
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and selected six locations dominated by tropical deciduous trees, grasses, or a combination of the 205 

two (Table 1). 206 

The phenology model contains three empirical parameters that collectively describe the leaf 207 

onset and offset algorithms.  208 

1. Critical soil water potential (onset/offsetthreshold) values for leaf onset and offset (default = -2 209 

MPa) 210 

2. Soil water potential days to onset/offset (SWI/OSWI) threshold (default = 15 days) 211 

3. Quantity of carbon assimilation which is directed to current leaf growth rather than 212 

storage (Fcurrent) (default = 0.0)  213 

To determine what impact the choice of these parameters has on the model outcome, we 214 

conducted a Latin-hypercube analysis (McKay et al., 1979), beginning the model from a spun-up 215 

state with default parameters. We then perturbed the parameters and ran the model forwards until a 216 

new LAI equilibrium condition was detected.  Because the nitrogen cycle is active in CLM, soil 217 

biogeochemical equilibrium can in some circumstances (particularly at high latitudes) take many 218 

decades or even centuries achieve, therefore we set a threshold for the new equilibrium state as the 219 

absence of a trend in LAI resulting in a 2% increase over a five year period.   Given the high 220 

temperature and relatively low biomass and productivity of the ecosystems in question, in our 221 

simulations LAI equilibrium was in practice typically reached after the first 5 year period of the 222 

simulation.  As with the global simulations, we used the CRU-NCEP reanalysis forcing data, 223 

extracted at the six points of interest, to drive the point simulations. 224 

The Latin hypercube methodology is a particularly efficient means of investigating a multi-225 

dimensional parameter space, because each run of the model perturbs every parameter, and the 226 

algorithm ensures that the distribution of sampled points is distributed efficiently (but not 227 
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uniformly) through parameter space.  For this study, since we were comparing the model output to 228 

monthly satellite observations, we did not manipulate the number of days for onset (30) or offset 229 

(15) to occur. We also did not consider the growing degree days and day length parameters because 230 

the focus of this study was on tropical and subtropical regions where these components of the 231 

algorithm are not active.To determine what impact the choice of these parameters has on the model 232 

outcome, we conducted a Latin-hypercube analysis (McKay et al., 1979),  beginning the model from 233 

a spun-up state with default parameters. We then perturbed the parameters and ran the model 234 

forwards until a new LAI equilibrium condition was detected.  The Latin hypercube methodology is 235 

a particularly efficient means of investigating a multi-dimensional parameter space, because each run 236 

of the model perturbs every parameter, and the algorithm ensures that the distribution of sampled 237 

points is distributed efficiently (but not uniformly) through parameter space.  238 

Because the nitrogen cycle is active in CLM, soil biogeochemical equilibrium can in some 239 

circumstances (particularly at high latitudes) take many decades or even centuries achieve, therefore 240 

we set a threshold for the new equilibrium state as the absence of a trend in LAI resulting in a 2% 241 

increase over a five year period.   Given the high temperature and relatively low biomass and 242 

productivity of the ecosystems in question, in our simulations LAI equilibrium was in practice 243 

typically reached after the first 5 year period of the simulation.  As with the global simulations, we 244 

used the CRU-NCEP reanalysis forcing data, extracted at the six points of interest, to drive the 245 

point simulations. 246 

For this study, since we were comparing the model output to monthly satellite observations, 247 

we did not manipulate the number of days for onset (30) or offset (15) to occur. We also did not 248 

consider the growing degree days and day length parameters because the focus of this study was on 249 

tropical and subtropical regions where these components of the algorithm are not active. 250 
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For the critical soil moisture potential threshold, onset/offsetthreshold, we investigated values from 251 

0 to -3.5MPa (where the default value is -2 MPa). Theis upper end of this range is the maximum 252 

possible value for saturated soils, whereas the bottom end of the range was determined from a prior 253 

set of sensitivity tests which determined that sensitivity below this range was very low (i.e. the soil 254 

moisture potential in the third layer rarely drops below -3.5 MPpa, and so leaves remain on 255 

continuously for those simulations at our locations of interest). For the number of days of onset, 256 

SWI days, we followed a similar protocol, and found that the range of sensitivity was focused 257 

between 5 and 35 days (where the default is 15 days).  For the fraction of displayed assimilated 258 

carbon (Fcurrent) we varied the values between 0 and 0.5, (where the default is zero). Sensitivity of 259 

average LAI to this parameter was low in all cases, but it has an impact on the intraannual cycle, 260 

since the LAI is unchanging through a single growing season if Fcurrent = 0. 261 

To assess the performance of the different models in the Latin hypercube test we originally 262 

plotted the coefficients of determination between the different models’ LAI values and the LAI3g 263 

data at those points. However, this result did not illustrate any clear optimum in model performance 264 

either for the parameters of the existing model, nor for the rainfall threshold. We illustrate this using 265 

the time-series data in Fig. 4, which highlight the unusual behavior of the model and to assess 266 

whether the extra green-up period during the dry season had been eliminated in any of the 267 

parametric permutations.  We ascribe the lack of a clear parametric signal to two effects.  First, the 268 

LAI3g data were necessarily aggregated to monthly values, meaning that the primarily sub-monthly 269 

variation between ensemble members was masked. Second, the timing of the secondary  leaf-on 270 

period in the dry season was the emergent property of the oscillatory (and thus somewhat chaotic) 271 

dynamics of the soil-vegetation feedback on soil moisture. 272 
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Once we determined that we could not eliminat the dry season green-up by changing the 273 

existing model parameters, we considered four possible additions to the model. The first three are 274 

described here but, for brevity, are not quantified in the results. First, we considered that using the 275 

third soil layer in CLM may be an arbitrary choice of soil depth, and that usage of the soil moisture 276 

potential derived drought index (‘BTRAN’, (Oleson et al., 2013)), which is weighted by vertical root 277 

fraction across the whole rooting depth profile, might provide a more physiologically relevant metric 278 

and be less prone to increases due to upwards moisture diffusion in the dry season.  However, since 279 

the exponential root profile in the CLM weights the top soil layers (including layer 3) more strongly 280 

than the lower layers with fewer roots, this metric was just as prone to increasing water potential 281 

during the dry season as soil water potential in the third soil layer. 282 

Second, we implemented leaf onset as function of a total column soil moisture content 283 

threshold rather than soil moisture potential. We postulated that the redistribution of water causes 284 

the erroneous behavior and that this would not impact total column moisture. However, the 285 

establishment a single global threshold for total soil moisture is challenging, as a number of different 286 

variables impact soil moisture, including the variation in soil water retention capacities between 287 

different land points, and by the interaction between leaf area, evaporation rate and deep soil 288 

moisture content. Variation in rainfall and evaporation rates affects the equilibrium water content of 289 

deep soils, which changes the total column soil moisture content between locations and years, but 290 

not the physiologically relevant upper soil moisture potential. Therefore, we abandoned this metric 291 

of phenological trigger.  292 

Third, we considered a metric of triggering leaf flush by the rate of change of total column 293 

soil moisture, rather than soil moisture potential. However, this methodology also generates 294 

erroneous behavior, on account of the ability of the CLM hydrology model to extract water from the 295 

water table or aquifer along a water potential gradient. Thus, when water potential is low in the 296 
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bottom soil layer in the dry season, the rate of change of total soil moisture can be positive without 297 

any input from rainfall. 298 

2.5 Rainfall Model 299 

To correct biases uncovered in the model output (described below) we introduced a simple 300 

trigger into the model, that time-averaged 10-day precipitation must exceed a given threshold before 301 

leaf onset is triggered. This approach requires the addition of a new parameter, rain_threshold, into the 302 

model, which is the threshold over which 10-day precipitationthe sum of precipitation over 10 days 303 

must be for leaf-on to occur. Leaf onset is thus triggered if 10 day rain is higher than rain_threshold 304 

and if the SWI is greater than 15 days days. 305 

We then used a Latin hypercube approach again to determine the sensitivity of the model to 306 

rain_threshold at our six chosen geographical points.  We considered a range of rainfall rates, requiring 307 

that it rain 20 mm over the course of 5 to 60 days in order for plants to begin growing 308 

leaves.Requiring that it rain 20 mm over the course of 10 days in order for plants to begin growing 309 

leaves best fit the LAI3g data in our six points. To test the global impact of these parameter changes 310 

we ran CLM4.5BGC with the new rainfall-based trigger and compared the results both at several 311 

points and globally. 312 

2.6 Global Simulations 313 

We used a number of different metrics to globally compare CLM4.5BGC to the LAI3g data 314 

and, later, to the modified version of the model (CLM-MOD). First we compared maps of 315 

maximum annual LAI and differences between the three maps. We also developed an algorithm to 316 

count the number of LAI peaks per year in all three data sets on grid cells with a range greater than 317 

one, by counting the number of times per year that the difference between one month’s LAI and the 318 

next was negative, then taking the mode across all 29 years. Finally, we calculated the coefficient of 319 
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determination (R2) in each grid cell, comparing the monthly LAI3g data to CLM4.5BGC and CLM-320 

MOD to identify areas with strong agreement between the remotely sensed data and the models, 321 

and areas with weak relationships. 322 

The recent focus on land model benchmarking has led to a number of additional suggested 323 

methods for assessing seasonality in models compared to data (e.g. Randerson et al., 2009, Kelley et 324 

al., 2013), however, none of the proposed metrics would capture the central issue addressed in this 325 

paper – model output with two or more peaks per year, data with only one – as they begin with the 326 

unstated assumption that seasonality is unimodal over the course of a year, as do measures of the 327 

start and end of the growing season. In Randerson et al (2009) seasonality is assessed by identifying 328 

the month of peak LAI and comparing that to MODIS LAI (MOD15A2), and in Kelley et al (2014) 329 

several more complicated metrics are introduced (equations 7-9) to again produce single numbers to 330 

compare a model’s seasonality to a benchmark data set. In these examples, as in other benchmarking 331 

studies, the focus is on producing a single number, which, while useful, can miss important details. 332 

 333 

3. Results 334 

3.1 Seasonal Patterns in CLM 335 

We found generally good agreement between LAI3g and CLM averaged across grass-336 

dominated regions. In a comparison of monthly values from 1982 to 2010 for the single PFT 337 

dominated regions in Fig. 1, R2 values ranged from 0.54 to 0.9 (Table 2) with the majority of the 338 

grass R2 greater than 0.7. Figure 2 shows the monthly values across all years, and we see similar 339 

results – generally good correspondence, especially in seasonal pattern, between LAI3g and the CLM 340 

runs in the grass-dominated regions. The root mean squared error (RMSE) values in Table 2, as 341 
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well as Fig. 2B and C show that CLM does not always capture the appropriate LAI values in 342 

grasslands, but the seasonal cycle is reasonably correct. 343 

In contrast, CLM does not successfully capture phenological patterns or values in areas 344 

dominated by woody drought deciduous vegetation.  Among tropical deciduous trees CLM 345 

predicted LAI appears to be both too high and out of phase with the satellite observations (Fig. 2E) 346 

while CLM shows no apparent seasonality among deciduous shrubs in the southern hemisphere 347 

(Fig. 2F), while LAI3g shows a slight cycle ranging from 0.4 to 0.7 LAI. 348 

3.2 Point simulations & sensitivity tests 349 

To look more closely at seasonal patterns in drought deciduous locations we selected six 350 

points around the globe across a range of latitudes dominated by a mixture of broadleaf deciduous 351 

tropical trees, C3 and C4 grasses (Table 1) (all of which use the same stress deciduous phenology 352 

algorithm).  To better understand the phenological patterns, we re-ran CLM globally using the same 353 

methods as described above but recording daily outputs of relevant parameters (including LAI, soil 354 

water potential, rainfall, and others). Plots of the seasonal cycles at these specific points using daily 355 

model output (solid green lines in Fig. 3) revealed an apparent pattern whereby CLM appears to put 356 

leaves on during the “brown season” in the LAI3g data in some of the points in addition to during 357 

the LAI3g green season. We note, however, that some areas in reality do have two separate growing 358 

seasons per year (e.g. Fig. 3E). Despite the lack of rainfall, soil water potential in the third soil layer 359 

in CLM rises during the dry season and is extremely variable in the dry season, on account of 360 

periods of high transpiration when plants leaf out (blue dot-dashed line in Fig. 3). 361 

We used the output from the Latin hypercube approach at these six points to vary the 362 

parameters of interest (days to onset/offset, critical soil water potential, carbon assimilation) to 363 

assess whether modification of parameter values could ameliorate the problem of plants leafing out 364 
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during the dry season in CLM.  We found, however, that simply varying the parameters of the 365 

existing model within the parameter space investigated (and assuming no large non-linearities in the 366 

model response surface) did not remove the dry season leaf out in the model (Fig. 4). 367 

In order to address this issue, we considered a number of structural perturbations to the leaf-368 

on and leaf-off algorithms (described in the discussion below), but ultimately decided on adding a 369 

new parameter, rain_threshold, to the model. We then used the same Latin hypercube approach to 370 

determine the best fitting values for this parameter (Fig. 5). This additional leaf-on criterion, set so 371 

that 20 mm of rain must accumulate over 10 days in order for leaf onset to occur, led to a removal 372 

of the “brown season” leaf out in CLM (dashed green line in Fig. 3) without preventing two green 373 

seasons per year, as is possible in some semi-arid regions (e.g. parts of Ethiopia, Fig. 3E). While this 374 

new rainfall threshold improved model performance both at our points and globally (see below), we 375 

note that the model did not appear to be particularly sensitive to the amount of rain that fell, as long 376 

as some rain did fall, but this threshold, and the drought deciduous algorithm as a whole, deserves 377 

more research into seasonal drivers. 378 

3.3 Global simulations 379 

To test how well the additional rainfall parameter performed globally, we ran CLM with the 380 

new rainfall parameter for 45 years (CLM-MOD) from the same equilibrium baseline state as was 381 

used in the first run described. Measures of maximum LAI (Fig. 6) and mean LAI (data not shown) 382 

in CLM-MOD showed closer matches to LAI3g than CLM4.5BGC. While CLM values remain far 383 

too high in the evergreen tropics, the maximum LAI values in deciduous savanna regions did 384 

increase appropriately in CLM-MOD to better match the LAI3g data in deciduous savanna regions. 385 

To test whether the poor fit between CLM and LAI3g was due to multiple annual LAI peaks 386 

in CLM we counted the number of peaks per year in each data set (Fig. 7). We found that in the 387 
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observations, only areas in the humid tropics had multiple peaks in the LAI3g data (“peaks” in these 388 

cases being relatively small fluctuations), while CLM showed multiple peaks per year throughout 389 

many of the savanna regions of the world. CLM-MOD has more areas with only one peak, 390 

particularly in Sub-Saharan Africa. To quantify these changes to the model we constructed 391 

confusion matrices to compare the peak counts in LAI3g to those in CLM and CLM-MOD (Table 392 

3) for grid cells with >50% drought deciduous cover (Fig. 1). Overall, CLM-MOD had a slightly 393 

poorer performance, matching the number of peaks in the LAI3g dataset 42.5% of the time, while 394 

CLM matched LAI3g 43.7% of the time. However, these unweighted summary numbers mask 395 

improvements in CLM-MOD. CLM only correctly predicted a single peak 8.9% of the time, while 396 

CLM-MOD correctly predicted single peaks 59% of the time, and never did CLM-MOD predict 397 

more than two peaks in a year, matching the LAI3g data. The overall degradation in CLM-MOD is 398 

due to fewer correctly identified grid cells with zero or two peaks. 399 

We compared monthly data and mapped the point-wise coefficients of determination (R2) 400 

globally to consider how well CLM LAI seasonality matched the LAI3g dataset (Fig. 8A). There 401 

were moderate to good relationships (R2 >0.4) in the higher latitudes for the standard model, but 402 

notably poorer relationships in the lower latitudes, particularly in savanna regions. In contrast, a 403 

comparison between LAI3g and CLM-MOD showed improvements in savanna regions, with the 404 

most dramatic improvements in Sub-Saharan Africa (Fig. 8B). Predicting the phenology of the 405 

Brazilian Cerrado continues to be a challenge in CLM-MOD, shifting from two peaks in 406 

CLM4.5BGC to no peaks in CLM-MOD, but the heterogeneity revealed in the LAI3g dataset 407 

suggests that this region may need closer consideration and a separate phenology algorithm. 408 

 409 

4. Discussion 410 
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4.1 Comparing LAI3g to CLM LAI 411 

By comparing the satellite LAI3g data to output from CLM4.5BGC we found that while the 412 

model performed reasonably well in temperate grasslands both in seasonal cycle and in magnitude, it 413 

performed poorly in areas of tropical grasslands, mixed grassland and drought deciduous trees 414 

(savannas) and areas dominated by drought deciduous trees. Closer examination of individual grid 415 

cells in tropical regions revealed that these points often have a leaf flush during the dry season in the 416 

model, which is not the case in the satellite data, or in reality. This additional leaf flush not only 417 

impacts the phenological cycle, but also affects the overall amount of carbon stored in plants and 418 

their maximum LAI, as plants spend their stored carbon unnecessarily in the dry season, leaving less 419 

carbon available during the wet season for growing leaves. This addition of leaf carbon in the dry 420 

season also may affect the fire cycle in varying ways around the dry tropics. While these runs of the 421 

model were not coupled to a dynamic atmosphere, we expect that this dry season leaf flush could 422 

also impact the climate, potentially having an unrealistic cooling effect by moving more water in to 423 

the atmosphere during what should be a very dry time of year, but also darkening the land surface, 424 

possibly leading to a slight warming. 425 

The mechanism behind the dry season leaf flush is an increase in soil water potential in the 426 

dry season to levels above the prescribed leaf-out threshold. These increases derive from the 427 

assumption that all of the land surface in CLM sits on top of an unconfined aquifer. In most cases 428 

this aquifer is either irrelevant because plenty of soil water is available or it is essential to plant 429 

survival in areas where aquifers do exist in the real world. In semi-arid systems, however, this extra 430 

pool of soil water becomes problematic in the dry season. The top soil layers dry out due to soil 431 

evaporation and, when plants are active, evapotranspiration, establishing a water potential gradient, 432 

which causes water to be transferred by mass flow from the aquifer up through the soil column to 433 

the shallow soil layers, until eventually the moisture potential reaches the trigger for plants to leaf 434 
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out. Per the drought deciduous phenology algorithm, once leaf out is triggered it must be completed, 435 

so plants begin to grow leaves but then the increased evapotranspiration rate quickly draws the soil 436 

moisture down below leaf off threshold levels, so leaf drop begins again, typically as soon as the leaf 437 

out period (30 days) has ended. The degree to which aquifers in reality contribute to dry season 438 

evapotranspiration is largely unconstrained because there are no global data sets for depth to water 439 

table, making it impossible to non-arbitrarily define where plants should have access to ground water 440 

and where they should not. Refinements of the soil water algorithms in CLM and access to new data 441 

sources like the NASA Soil Moisture Active Passive mission (SMAP; Entekhabi et al., 2014) will 442 

likely improve this part of the model, but like many aspects of the CLM, more global-scale data is 443 

needed. 444 

4.2 Soil water and rainfall in CLM 445 

To address the erroneous dry season leaf flush we tested a number of different model 446 

alterations, beginning with the least invasive – adjusting existing parameters – and ending with 447 

adding an additional rule to the existing drought deciduousness algorithm. We experimented with 448 

four alternative methodologies for triggering leaf onset, described in the methods (section 449 

2.4)described below, but for brevity we have only shown results from the last and most effective 450 

approach.   451 

First, we considered that using the third soil layer in CLM may be an arbitrary choice of soil 452 

depth, and that usage of the soil moisture potential derived drought index (‘BTRAN’, (Oleson et al., 453 

2013)), which is weighted by vertical root fraction across the whole rooting depth profile, might 454 

provide a more physiologically relevant metric and be less prone to increases due to upwards 455 

moisture diffusion in the dry season.  However, since the exponential root profile in the CLM 456 

weights the top soil layers (including layer 3) more strongly than the lower layers with fewer roots, 457 
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this metric was just as prone to increasing water potential during the dry season as soil water 458 

potential in the third soil layer. 459 

Second, we implemented leaf onset as function of a total column soil moisture content 460 

threshold rather than soil moisture potential. We postulated that the redistribution of water causes 461 

the erroneous behavior and that this would not impact total column moisture. However, the 462 

establishment a single global threshold for total soil moisture is challenging, as a number of different 463 

variables impact soil moisture, including the variation in soil water retention capacities between 464 

different land points, and by the interaction between leaf area, evaporation rate and deep soil 465 

moisture content. Variation in rainfall and evaporation rates affects the equilibrium water content of 466 

deep soils, which changes the total column soil moisture content between locations and years, but 467 

not the physiologically relevant upper soil moisture potential. Therefore, we abandoned this metric 468 

of phenological trigger.  469 

Third, we considered a metric of triggering leaf flush by the rate of change of total column 470 

soil moisture, rather than soil moisture potential. However, this methodology also generates 471 

erroneous behavior, on account of the ability of the CLM hydrology model to extract water from the 472 

water table or aquifer along a water potential gradient. Thus, when water potential is low in the 473 

bottom soil layer in the dry season, the rate of change of total soil moisture can be positive without 474 

any input from rainfall.   475 

These hydrological issues in CLM are complex, and derive from the need to operate an 476 

internally consistent global model of the water cycle in the absence of critical data at the appropriate 477 

scale (depth to water table, the unsaturated hydraulic conductivity of deep soils, etc).  In an ideal 478 

case, improvements in hydrology might allow the existing phenological model to operate correctly. 479 

However, here we took a more pragmatic approach and sofor a fourth method we partially 480 
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decoupled the soil hydrology and the phenology models, allowing rainfall inputs to directly impact 481 

on leaf phenology without interacting with the assumptions of the soil hydrology model. Leaving the 482 

condition of soil water potential in the third soil layer in place, we then added an additional 483 

condition which was that the rainfall accumulated over the last 10 days should be higher than a 484 

threshold value (20 mm). Thus, if soil moisture rose above the threshold level, but little or no rain 485 

had fallen, plants would not put on leaves. The new model performs better both for the point 486 

simulations and in global simulations, both in terms of the seasonal cycle of LAI, where the average 487 

point-wise coefficient of determination (R2) between modelled and observed monthly satellite LAI 488 

of drought deciduous dominated points (>50% drought deciduous cover) is significantly higher for 489 

the new model (0.31 vs 0.13). While there was no substantial change in the overall peak count 490 

accuracy (Table 3), CLM-MOD had zero drought deciduous dominated grid cells with >2 peaks and 491 

a substantial improvement in the identification of single-peak grid cells (8.9 to 59%). The added 492 

rainfall trigger did, however, reduce the number of zero peak and two peak grid cells correctly 493 

identified. This result highlights the need for more research into the diversity of drought deciduous 494 

phenology drivers around the world. 495 

4.3 Impacts of modifications to the model 496 

This relatively small change to the drought deciduous phenology algorithm had wide ranging 497 

impacts within the CLM. Because carbon was not being unnecessarily spent to grow leaves during 498 

the dry season, which was then not replenished since there was not enough water to maintain 499 

photosynthesis, CLM-MOD showed substantially higher overall carbon stores in savanna regions 500 

(Fig. 10, blue lines). Over time, this increase in vegetation carbon could lead to more realistic soil 501 

carbon levels, which have been shown to be too low in savanna regions in CLM (Wieder et al., 502 

2013). 503 
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Fire is a critical component of savanna ecology and has been a focus of recent efforts to 504 

improve the CLM (Li et al., 2014). Our change to the drought deciduous phenology algorithm does 505 

have an slight impact on the fire cycle, but unfortunately, though not surprisingly, it degrades the fire 506 

model’s performance relative to a global fire data set (GFED4; Giglio et al., 2013). Comparing the 507 

average total annual fire fractions for each grid cell with drought deciduous cover greater than 50% 508 

across the time period for which we have both GFED4 data and CLM output (1996-2010) we find a 509 

correlation between GFED4 and CLM4.5BGC of 0.35 (global correlation = 0.44), and a correlation 510 

of 0.23 with CLM-MOD (global correlation = 0.33). This degradation of fire model performance is 511 

not surprising, however, given that the fire model was developed using CLM4.0CN with the 512 

erroneous dry season green up and a different forcing dataset. As shown in Fig. 9, fraction of area 513 

burned per grid cell decreases in many areas in CLM-MOD, likely due to the fact that less fuel is 514 

being produced in the dry season, and seasonality shifts as well (Fig. 10, red lines). Future work will 515 

include exploring the impacts of this change to CLM on fire and other ecosystem properties. 516 

Two other outstanding questions about LAI in CLM remain. First, in savanna regions in the 517 

CLM LAI drops to zero during the dry season, implying that across an entire grid cell all vegetation 518 

is perfectly drought deciduous (Figs. 3-6). Reality is, of course, far more complex, as reflected in the 519 

LAI3g dataset which rarely drops below 1.0 in savanna regions when aggregated to the CLM grid. 520 

The focus of this study was on improving the timing and magnitude of peak LAI, however, 521 

improving dry season values is also a concern. This is a deeper question in the CLM, as it relates to 522 

the overall land cover data. It is possible, for example, that there is evergreen vegetation in these grid 523 

cells, while the land cover classification determines that all grid cells with a significant seasonal LAI 524 

signal are 100% ‘drought deciduous’.  Even if drought deciduous and evergreen vegetation types did 525 

not co-exist in the same ecosystem type, within grid cell spatial heterogeneity might also allow their 526 

coexistence within a whole grid cell  (e.g. riparian areas or areas with shallow ground water that are 527 
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able to stay green year round). Second, though also not the focus of this study, it is clear from Fig. 6 528 

that across the mesic regions of the terrestrial biosphere CLM is dramatically overestimating LAI. 529 

This issue, often masked when only mean annual values or zonal means are considered, deserves 530 

more attention, and it is likely that recent detailed studies of carbon allocation (e.g. Doughty et al., 531 

2014) could improve this part of the model. 532 

A question also remains as to whether our new representation of leaf phenology, in spite of 533 

its improved performance, constitutes a better predictive model of current and future ecosystem 534 

behavior. In general, we hope to construct ecosystem models that represent hypotheses of how 535 

plants function, that we might test against observations. In this case, we find that the existing 536 

hypothesis - that plants respond to the soil water potential of the upper soil - does not adequately 537 

represent phenological patterns. However, this explanation is complicated because the predictions 538 

depend also on the properties of soil water in the model. Given a perfect representation of soil 539 

moisture, we might find that the existing leaf-on hypothesis is a good approximation of average 540 

vegetation behavior. However, at present the coupling of these two complex systems produces 541 

unexpected results. By tying the vegetation behavior to the actual climate drivers we are reducing the 542 

complexity of the problem, however, we are also reducing the capacity of the model to be 543 

responsive to the nuances of climate drivers. For example, the same rainfall amount in high and low 544 

humidity regimes will have different impacts on net soil moisture.  545 

Ideally, models should represent the mechanisms by which ecological processes operate in as 546 

much fidelity as we understand. The representation of drought phenology is interesting; however, as 547 

we suspect that there are many different phenological strategies in the tropics that the CLM classifies 548 

with the same algorithm (e.g. Archibald & Scholes, 2007).  This means that, in the absence of the 549 

representation of these numerous pheonological strategies in the model, we are really representing 550 

the net behavior of ecosystems, rather than the exact mechanisms pertaining to a single species. The 551 

(E) Tropical Deciduous 
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fact that CLM-MOD improved model performance most significantly in Africa and less so in 552 

Australia and South America by some metrics (Fig. 7) suggests that evolutionary differences 553 

between plants could play a significant role in determining phenological patterns between 554 

continents. In a higher-fidelity land surface model, we might ideally allow numerous phenological 555 

algorithms to compete for light and water resources, and the ecosystem LAI profile would reflect 556 

the net behavior of the successful algorithms. This type of modelling is now theoretically possible 557 

(e.g. Fisher et al., 2010, 2015), and will be investigated in future versions of the CLM.   558 

 559 

5. Conclusions 560 

By comparing satellite derived estimates of LAI to LAI values produced by the latest version 561 

of the CLM we revealed a small but significant issue in the CLM – the tendency for leaves to flush 562 

during the dry season in drought deciduous PFTs due to unrealistic upwards movement of water 563 

through the soil column. We tested a number of different approaches to address this issue, however 564 

we found that tying leaf flushing to rainfall directly produced results that best better matched the 565 

satellite data. While this change to the drought deciduous phenology algorithm does not reflect our 566 

understanding of how plants respond to their environment in the real world, without better data on 567 

soil water movement at scales relevant to global land surface modeling it is difficult to rely on the 568 

soil water model to drive plant physiology. Changing the drought deciduous phenology algorithm to 569 

remove dry season leaf flushes improved overall LAI values in savanna systems as well as changed 570 

the amount of carbon stored in these systems and altered the fire cycle. We also emphasize that this 571 

issue would have been impossible to detect with a standard ‘benchmarking’ type of metric for 572 

measuring seasonality and was difficult to identify until daily model outputs were reported and 573 

analyzed (i.e. Fig. 3). Future work will include exploring different drought deciduous phenology 574 
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algorithms for different PFTs and testing the importance of this change in a coupled Earth system 575 

model. 576 
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Table 1. List of locations for point simulations and percent cover of plant functional types (PFTs). 721 

PFTs with no coverage at any point are not listed. 722 

point.name 
Latitu
de 

Longit
ude 

Bare 
groun
d 

Broadl
eaf 
Evergr
een 
Tree 
Tropic
al 

Broadl
eaf 
Evergr
een 
Tree 
Tempe
rate 

Broadl
eaf 
Decid
uous 
Tree 
Tropic
al 

C3 
Grasse
s 

C4 
Grasse
s Crops 

Brasilia -15 -51 0.46 1.69 0 16.52 8.83 62.35 10.15 

western 
Brazil -6 -39 2.66 0 0 35.4 9.04 40.6 12.3 

South Chad 11 18 1.34 0 0 34.26 0.03 60.22 4.16 

eastern 
Zambia -13 32 0.22 0.56 1.27 26.4 37.81 26.39 7.35 

south 
Ethiopia 5.5 40 8.75 0.13 0.02 63.1 19.12 5.42 3.47 

Darwin 
Australia -15 130.5 15.94 0 0 35.73 0 48.33 0 

 723 

Table 2. R2 and RMSE of AVHRR LAI3g v. CLM4.5BGC monthly data for all 29 yrs.  724 

  
NH C3 
grass 

NH C4 
grass 

tropical 
DT SH DS 

SH C3 
grass 

SH C4 
grass 

CLM4.5BGC 
R2 0.79 0.72 0.08 0.05 0.41 0.85 

RMSE 0.15 0.29 0.18 0.10 0.27 0.13 

* PFT = plant functional type, NH = northern hemisphere, DS = deciduous shrub, DT = 725 

deciduous tree, SH = southern hemisphere 726 
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Table 3. Confusion matrices comparing grid cell peak counts between LAI3g and the two model 728 

data sets. “%” rows and columns are the percent of the correct values (diagonal) compared to the 729 

sums for the respective rows and columns. 730 

A. LAI3g vs. CLM 

 

B. LAI3g vs CLM-MOD 

 
LAI3g 

 
LAI3g 

0 1 2 >2 % 0 1 2 >2 % 

CLM 

0 436 164 145 0 58.5 

CLM-
MOD 

0 365 279 277 0 39.6 

1 28 74 130 0 31.9 1 242 439 407 0 43.2 

2 196 555 499 0 39.9 2 60 63 125 0 50.4 

>2 7 42 35 0 0 > 2 0 0 0 0 NA 

% 65.4 8.9 61.7 NA 43.7 % 54.7 59.0 15.5 NA 42.5 

 731 

 732 

733 
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FIGURE CAPTIONS 734 

Figure 1. (A) Areas of the globe dominated by a single PFT (>50%) grouped where appropriate 735 

(e.g. there are actually three grass PFTs). (B) Percent cover of drought deciduous PFTs within the 736 

natural vegetation component of each grid cell; gray areas have zero percent cover of drought 737 

deciduous vegetation. For visual clarity, grid cells with < 50% natural vegetation (e.g. grid cells that 738 

are mostly water) are not shown in both maps. 739 

Figure 2. Annual LAI cycles for LAI3g and CLM4.5BGC averaged for 1982-2010; shaded areas 740 

represent one standard deviation. Each plot is averaged across a region as shown in Fig. 1. (A) 741 

Northern hemisphere (NH) C3 grasses; (B) NH C4 grasses; (C) Southern hemisphere (SH) C3 742 

grasses; (D) SH C4 grasses; (E) Tropical deciduous trees; (F) SH broadleaved deciduous shrubs. 743 

Figure 3. Seasonal cycles of rainfall (mm day-1, gray bars); leaf area index (LAI, green lines and black 744 

dots) and soil water potential in the third layer (MPa, blue lines) in CLM4.5BGC and CLM-MOD 745 

for one year (2001). 746 

Figure 4. Illustration of Latin hypercube (LH) variable exploration analysis results – here each line 747 

represents one simulation all from one year of the LH analysis without the additional rainfall trigger. 748 

Each line is from a model run with slightly different values for the variables considered. In actuality 749 

100 simulations were performed, but for visual clarity we are showing a selection of 10 simulations. 750 

Figure 5. Illustration of Latin hypercube (LH) variable exploration analysis results as with Fig. 4 – 751 

here each line represents one simulation all from one year of the LH analysis with the additional 752 

rainfall trigger.  753 

Figure 6. Maximum annual LAI averaged across the 29 year time period (1982-2010) in LAI3g, 754 

CLM4.5BGC, and CLM-MOD, and the differences between these three maps 755 
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Figure 7. Mode of annual peak count analysis for the three simulations. (A) LAI3g; (B) 756 

CLM4.5BGC; (C) CLM-MOD 757 

Figure 8. Coefficients of determination (R2) between LAI3g and the two model versions. 758 

Figure 9. Average burned area fraction per year across the time period where data was available 759 

(1996-2010) for GFED4, CLM4.5BGC, and CLM-MOD, and the differences between these maps. 760 

Figure 10. Seasonal cycles of rainfall (mm day-1; gray bars), total vegetation carbon (gC m-2; blue 761 

lines), and grid cell burned fraction (day-1; red lines) in CLM4.5BGC and CLM-MOD for one year 762 

(2001). 763 
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