
 

1 

Influence of wood density in tree-ring based annual 1 

productivity assessments and its errors in Norway 2 

spruce. 3 

 4 

 5 

O. Bouriaud1, M. Teodosiu1, A. V. Kirdyanov2, C. Wirth3,4 6 

 7 

[1] {Forest Research and Management Institute, Station Câmpulung Moldovenesc, 8 

Calea Bucovinei 73b, 725100 Câmpulung Moldovenesc, Romania} 9 

[2] {V.N. Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 10 

660036 Russia} 11 

[3] {Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, 12 

Germany} 13 

[4] {German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 14 

Deutscher Platz 5e, 04103 Leipzig, Germany} 15 

Correspondence to: O. Bouriaud (obouriaud@gmail.com) 16 

17 



 

2 

Abstract 18 

Estimations of tree annual biomass increments are used by a variety of studies related 19 

to forest productivity or carbon fluxes. Biomass increment estimations can be easily 20 

obtained from diameter surveys or historical diameter reconstructions based on tree 21 

rings records. However, the biomass models rely on the assumption of a constant 22 

wood density. Converting volume increment into biomass also requires assumptions 23 

on the wood density. Wood density has been largely reported to vary both in time and 24 

between trees. In Norway spruce, wood density is known to increase with decreasing 25 

ring width. This could lead to underestimating the biomass or carbon deposition in 26 

bad years. The variations between trees of wood density has never been discussed but 27 

could also contribute to deviations. A modelling approach could attenuate these 28 

effects but will also generate errors. 29 

Here were developed a model of wood density variations in Norway spruce, and an 30 

allometric model of volume growth. We accounted for variations in wood density 31 

both between years and between trees, based on specific measurements. We compared 32 

the effects of neglecting each variation source on the estimations of annual biomass 33 

increment. We also assessed the errors of the biomass increment predictions at tree 34 

level, and of the annual productivity at plot level. 35 

Our results showed a partial compensation of the decrease in ring width in bad years 36 

by the increase in wood density. The underestimation of the biomass increment in 37 

those years reached 15%. The errors related to the use of an allometric model of 38 

volume growth were modest, around ±15%. The errors related to variations in wood 39 

density were much larger, the biggest component being the inter-tree variability. The 40 

errors in plot-level annual biomass productivity reached up to 40%, with a full 41 

account of all the error sources. 42 

 43 

Key words: Forest biomass, Uncertainty propagation, Bayesian framework, Wood 44 

density, Norway spruce, tree-ring 45 
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1 Introduction 47 

Predicting trees biomass increment is a key step in quantifying and understanding 48 

forest productivity. Considerable efforts have been spent to evaluate forest 49 

productivity and carbon sink strength (Ciais et al., 2008). While productivity has long 50 

referred to volume growth, amply used in the forest management and displayed in 51 

yield tables, the focus recently switched to biomass, for its relationships with energy 52 

or carbon storage. Field-based estimations of biomass growth have a wide variety of 53 

applications, from forestry to carbon fluxes estimation, for example in comparison 54 

against eddy covariance (Barford et al., 2001; Rocha et al., 2006; Gough et al., 2008; 55 

Curtis et al., 2011; Ilvesniemi et al., 2011). Considerable efforts have been spent to 56 

estimate annual forest productivity in relation to climate fluctuations and forests 57 

carbon sink strength (Richardson et al., 2010; Wu et al., 2013). The importance of 58 

having both annual resolution and high spatial coverage has been illustrated by 59 

numerous studies (e.g. Reichstein et al., 2003; Ciais et al., 2005; Beer et al., 2010). 60 

Several methods are used to estimate forest productivity and carbon sink: eddy 61 

covariance, modelling, or field-based estimations such as inventories or tree-ring 62 

studies. Tree-ring based studies have the advantage of offering a large spatial 63 

covering, a potentially long time scale and also an annual resolution. They are 64 

therefore amply used to produce reference annual biomass production estimations, to 65 

compare against other methods (Beck et al., 2011; Babst et al., 2014a) or to bring 66 

complementary information (Babst et al., 2013). However several issues are 67 

associated to the use of tree-ring based estimations and the estimation of their error 68 

remains a critical poorly documented (Nickless et al., 2011). 69 

In the reconstruction of the annual productivity or of the above-ground carbon uptake 70 

from field-based studies, one limiting element is the estimation of the wood density 71 

variations (Babst et al., 2014a). Indeed, volume increment time series can be produced 72 

by a variety of methods, such as the reconstruction of the diameter growth based on 73 

tree rings (Wirth et al., 2004; Rocha et al., 2006) or inventory reconstruction (Ohtsuka 74 

et al., 2007), but none of these methods bring information on the variation of wood 75 

density. Converting volume into biomass requires an estimation of the wood density, 76 

which is most likely based on literature and therefore neither related to site conditions, 77 

nor to trees growth rate, as for example in Vila et al., (2013). In the same manner, 78 

biomass equations implicitly rely on the use of an average and constant wood density 79 
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despite the many evidences of substantial wood density variations. In both cases, 80 

wood density is considered constant in time, and equal between trees. 81 

Wood density has however been acknowledged as a highly variable characteristic and 82 

several major sources of annual density variations have been identified. Very high 83 

precision in the description of the wood density variations with new techniques (e.g. 84 

SilviScan, Evans, 1994) are possible but not widely available, while other techniques 85 

based on X-ray are rather time consuming and thus not applied to forest productivity 86 

studies. Within-tree variations occur at distinct time scales (Jyske et al., 2007). Over 87 

medium or long scales, annual wood density was proved to be related to ring age or to 88 

tree diameter, with higher values close to the pith in many species (Schweingruber, 89 

1988). At inter-annual scale, wood density variations can be substantial. There were 90 

several reports that (annual) ring density decreases with increasing ring width, for 91 

instance in Norway spruce (Bergqvist, 1998; Dutilleul et al., 1998; Lundgren, 2004; 92 

Bouriaud et al., 2005; Franceschini et al., 2010; 2013). Wood density was also proved 93 

to vary between trees (Wilhelmsson et al., 2002; Guilley et al., 2004), a fact which is 94 

never accounted for in studies using diameter surveys to produce biomass increment 95 

estimations. 96 

The variations of wood density between trees and between years could compensate 97 

the variations in annual volume increment, or at least soften them. Recent studies 98 

brought evidences of such compensation, proving that neglecting annual wood density 99 

fluctuations could lead to substantial errors or bias in estimating the biomass (Molto 100 

et al., 2013; Babst et al., 2014a). The errors generated by neglecting the variations in 101 

wood density have been considered as small compared to those resulting from that of 102 

the volume increment estimation, but to our knowledge, such assumptions were never 103 

tested and the consequences not documented. 104 

To be properly quantified, the consequences of neglecting wood density fluctuations 105 

between years and between trees had to be tested using an integrated approach, 106 

whereby the errors of the density model are propagated and combined with those of 107 

the model for volume growth. Such chain can be decomposed, and the impact of each 108 

step studied by modelling the steps into a single Monte Carlo Markov Chain (MCMC) 109 

process (e.g. Molto et al., 2013). Analytical solutions to estimate the biomass 110 

estimation error, based e.g. on Taylor expansion can sometimes be determined, 111 

depending on the model’s complexity. But the errors of biomass increment, obtained 112 
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by subtracting subsequent estimations, are anyhow less predictable and particularly 114 

challenging at the plot level, when summing tree-level estimations (Nickless et al., 115 

2011). The MCMC approach therefore appears as the most suitable to estimate the 116 

biomass increment, where such estimations and the propagation of the errors from one 117 

model to another is done without assumptions. 118 

Our study aimed at quantifying the impact of density variations, both between years 119 

and between trees, on the estimations of annual biomass increment in Norway spruce 120 

(Picea abies), and compare it with the impact of volume increment estimation errors. 121 

The objectives were: (i) to quantify and model the influence of annual radial growth 122 

variations on wood density, (ii) to quantify the consequences of annual and between 123 

tree variations of wood density on biomass increment estimations and (iii) to compare 124 

the errors related to wood density estimations to those of volume increment. 125 

 126 

 127 

2 Material and methods 128 

 129 

2.1 Site, sampling and data 130 

All samples analysed for this study were taken from the Wetzstein site near the village 131 

of Lehesten in Thüringia, Central Germany (50º45’N, 11º46’E, ~ 760 m a.s.l.), which 132 

was amply used for eddy covariance measurements (e.g. Anthoni et al., 2004) or 133 

biomass modeling (Wirth et al., 2004). The site is characterised by mono-specific 134 

Norway spruce (Picea abies L.) stands. The climate is typical for the mid-elevation 135 

montane sites with an annual mean temperature of 6ºC and a mean annual 136 

precipitation sum of ~1000 mm. Soils have a sandy loam texture. The footprint of the 137 

eddy covariance tower is dominated by an extensive 80 (±2.1 SD) year old stand. This 138 

stand is mostly even-aged but also contains pockets of regeneration and scattered 139 

emergent trees. The footprint stand is surrounded by three even-aged stands with a 140 

mean age of 15 (±0.86), 38 (±7.9) and 116 (±1.3) years. The four stands representing 141 

the site are referred as W15, W38, W72 and W116   142 

This study combines data from three successive samplings realized in this site: (i) 143 

Stem analysis performed to quantify the relationship between breast-height radial 144 
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growth and stem volume increment. This was achieved in connection with a biomass 146 

harvest of the four stands (see below). (ii) Wood density measurements were done for 147 

selected harvest trees to establish a relation between ring-width and wood density 148 

variations, and (iii) a dendro-chronological analysis of inter-annual growth variation 149 

of many trees using micro-cores for scaling up to the plot-scale. The volume 150 

increment and wood density and volume increment measurements are used 151 

exclusively to develop models, while the micro-cores sampling is used as an 152 

application to quantify and compare the errors of each model on this representative 153 

case study. 154 

2.1.1 Stem analysis for volume increment 155 

The stem volume increment model was fit based on a stem analysis realized on 22 156 

trees – seven samples in the footprint stand W72 and five in each of the additional 157 

stands (W15, W33, W116). Trees were selected to represent seven/five dbh (diameter 158 

at breast height) classes defined based on the population of all inventoried trees (W15: 159 

n = 144, W38: n = 59, W72: n = 133, W116: n = 68). Jointly, the 22 trees represented 160 

the size range (dbh between 7.3 and 59.5 cm) and age range (between 14 and 117 161 

years) of Norway spruce trees at the Wetzstein site. This comprehensiveness ensures 162 

applicability of the models for all trees in the inventories of the test site. Trees were 163 

felled in the context of a full biomass harvest. The circumference was measured every 164 

meter along the bole where a 3-8 cm thick disc was cut in order to determine annual 165 

increment along the entire stem. All discs were dried and sanded with a belt grinder. 166 

The ring width series was measured along four radii on each disc. The average 167 

diameter increment measured on the lower and upper disc of each 1 to 2 m segment 168 

was used to calculate the increment of under bark volume in successive years using 169 

the formula for a truncated cone. The difference in volumes of all segments per tree of 170 

successive annual time steps yielded stem dry wood production of individual trees. 171 

The dendrochronological analysis was carried out using a digital tree ring 172 

measurement device (LINTAB III Digital Linear Table; 410-1/100-HF-130, Frank 173 

Rinn Distribution, Heidelberg, Germany) in combination with the software TSAP 174 

(Time Series Analysis Program, Frank Rinn Distribution, Heidelberg, Germany). 175 

 176 
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2.1.2 Wood density measurements 177 

For the annual wood density (WD) measurements wood discs were sampled at breast 178 

height from trees representing the lowest, the central and the highest diameter class in 179 

each of the four stands. This yielded a total of 12 sample trees, again representing the 180 

size and age range of Norway spruce tree at the site. Two 1-2 cm-wide slices from 181 

opposite radii were sawn from the wood discs, for which wood density was measured 182 

by X-ray densitometry in the densitometric Laboratory of Krasnoyarsk, Russia 183 

(Walesch Electronics, Switzerland) using the standard procedure described by 184 

Schweingruber (1988). Longitudinal strips with a constant thickness of 1.2 mm were 185 

sawn, air dried, and exposed to X-ray radiations for 1 h on a Kodak TL film using 186 

standard exposure conditions: acceleration tension of 8.5 kV, flux intensity of 15.0 187 

mA, distance to the source of 3.5 m. Annual wood density (WD, kg m-3) values were 188 

obtained from density profiles of single tree-rings as the total mass of earlywood and 189 

latewood divided by tree-ring width. X-ray derived densities represent dry wood. 190 

Rescaling to fresh wood dimensions was not done as all ring-width series (stem 191 

analysis and micro-cores) were measured on dry wood. 192 

 193 

2.1.3 Application dataset 194 

The volume increment and WD models were applied together on an independent set 195 

of trees sampled in 13 randomly placed inventory plots inside the footprint stand 196 

W72. The plots were established within the context of the project FORCAST (Rey 197 

and Jarvis, 2006). From 31 to 62 trees per plots (551 in total) with diameter varying 198 

from 8 to 51 cm (thus well within the range of the sample trees) were sampled for 199 

historical diameter reconstruction based on micro-cores. The micro-cores enabled the 200 

reconstruction of the past growth over the last 10 years only, since these short cores 201 

are ~2 cm long. The diameter was reconstructed based on the simple assumption of 202 

proportionality of the bark thickness to the diameter using the external diameter of the 203 

trees at sampling. 204 

2.2 Wood density and annual volume increment modelling 205 

Models of WD or annual volume increment were fit using both maximum likelihood 206 

methods and MCMC approach. The structure of the two models was first determined 207 
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using likelihood fits before being implemented in a Bayesian MCMC framework 209 

using WinBUGS 1.4 (Spiegelhalter et al., 2003), based on the same datasets exactly, 210 

using non-informative flat priors. The maximum-likelihood estimations were realized 211 

using the nlme package (version 3.1-102, Pinheiro et al., 2011) of R (R version 3.0.1, 212 

R Development Team, 2014). 213 

 214 

2.2.1 The wood density model 215 

Following recent publications on Norway spruce wood density (Franceschini et al., 216 

2010; 2013), the diameter and the ring cambial age (as counted from the pith) were 217 

used as independent variables. The selection of the model was based both on the AIC 218 

(Akaike Information Criterion) and the examination of the residual distribution. Fixed 219 

and random tree-level effects were considered. The principle of parsimony was also 220 

followed in the model building process, and random effect parameters were 221 

considered only if improvements were observed based on the likelihood ratio test. 222 

Several candidate models were tested, as follows 223 

WDij = a0 + a1RWij + a2RWij
2 +

a3
Xij

+εij  (1) 224 

WDij = a0 +
a1

1+ RWij

+
a2
Xa3
ij

+εij  (2) 225 

WDij = a0 + a1RWij
a2 +

a3
Xij

a4
+εij  (3) 226 

where i denotes the tree and j the year, a0…a4 are fixed effects and potentially random 227 

tree-level effects, X is either DBH or cambial age, ε ≈ N(0, σ2). Random effects are 228 

assumed to be normally distributed. 229 

 230 

2.2.2 The annual volume increment model 231 

The annual volume increment was modelled as a non-linear function of ring width 232 

and tree diameter, based on the annual estimations of volume growth resulting from 233 

the detailed stem analysis. The model reflects the fact that, for a given ring width, 234 

volume increment depends strongly on the current size of the tree, here its diameter, 235 
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mostly for geometrical reasons. The taper was therefore not supposed to be constant 238 

in time, and the trends in tree growth with age were directly absorbed in the model 239 

since the volume increments resulted directly from the stem analysis measurements, 240 

not from using models. Another specificity of this model was the specification of a 241 

variance function in order to cope with the heteroscedasticity in the errors. The 242 

resulting model is given in equation 4 and includes random coefficients for the 243 

exponent b3: 244 

ΔVolij = b0 + b1DBHij
b2RWij

b3 +εij  (4) 245 

where b3,i = c3 + d3,i is the sum of a fixed parameter c3 and a random tree-level term 246 

d3,i ~ N(0,σ d3)  that varied for each tree i. 247 

The residual εij  was modeled as a power function of the diameter: 248 

εij = b4 +DBH
b5  (5) 249 

 250 

2.3 Application to a case study, scenarios of biomass increment 251 

The micro-cores dataset was used as a concrete case study for estimating the 252 

consequences of wood density variations and comparing the errors resulting from the 253 

wood density and from the volume increment model. Both models were fit based on 254 

their specific datasets within the MCMC framework, then the parameters and the 255 

variance terms estimated were applied to compute the biomass increment of the 256 

micro-cores trees, which represents an external set. The models were therefore fit 257 

using the same structure as that used in the likelihood method, the parameters 258 

estimated being further used to produce estimations of WD or annual volume 259 

increment on the micro-core trees. Having both the fitting and the application run in a 260 

single MCMC loop enables the propagation of the errors of each model. 261 

The tree-level biomass increment estimations were the product of the WD and the 262 

volume increment, then summed up to obtain stand-level per-ha biomass estimations 263 

based also on the plot size. But according to the way the errors could be accounted 264 

for, four different scenarios were distinguished: 265 
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1) The baseline scenario was using a constant wood density set to be equal to the 267 

average observed value across the dataset (475 kg m-3). The volume increment is 268 

estimated based on the model fitted but without considering random tree-level 269 

variations (using the fixed part of the model only) and without residual error (εij =0). 270 

Thus, for tree i and year j, the biomass increment was computed as 271 

ΔBij = 0.475 ⋅ ΔVolij  where ΔVolij = b0 + b1DBHij
b2RWij

b3  272 

Only the fixed part of the parameters b0 to b3 was used. 273 

2) In the second scenario, the annual wood density was held constant but the volume 274 

increment included both the random tree-level variation and the residual error. 275 

For tree i and year j, the biomass increment was computed as: 276 

ΔBij = 0.475 ⋅ ΔVolij  with ΔVolij = b0 + b1DBHij
b2RWij

b3,i +εij  (6) 277 

where b3,i = c3 + d3,i is the sum of a fixed parameter c3 and a random tree-level term 278 

that varied for each tree i and sampled as: d3,i ~ N(0,σ d3) , σ d3  being estimated from  279 

the volume increment fit dataset. Thus, the parameter d3 for the application varies 280 

from tree to tree and is being sampled from within the variability observed in the fit 281 

set.  ε  (the residual variation) is computed as a function of the diameter as presented 282 

in Eq. 5. All the parameters and the variance estimations were made by the Bayesian 283 

model within the MCMC loop. 284 

3) In the third scenario, the biomass increment was defined as the product of the 285 

parametric estimations of both the WD and the annual volume increment: here only 286 

the fixed part of the models was used to produce both the WD and the volume 287 

increment estimations, while not accounting for random effects or residual variance. 288 

This represents the most common and probable use of such models, when no data are 289 

available for a calibration. 290 

ΔBij = WDij ⋅ ΔVolij  where  291 

WDij = a0 + a1RWij
a2 + a2

DBHij
a3

 and ΔVolij = b0 + b1DBHij
b2RWij

b3 . 292 

Only the fixed part of the parameters are used. 293 
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4) In the last scenario, a full error propagation was conducted: the random and the 294 

residual errors of both the WD and the volume increment models were used to 295 

produce the biomass increment estimation. 296 

ΔBij = WDij ⋅ ΔVolij  with WDij = a0,i + a1,iRWij
a2 +

a3,i
DBHij

a4
+ ε ij  297 

having ∀k ∈ 0,1,3( ), ak,i =α k + ak,i where αk is the fixed part of the parameter, ak 298 

the random component, ak,i ~ N(0,σ ak )  and εii ~ N(0,σWD )  where σWD  is the residual 299 

variance, estimated on the WD fit set. 300 

ΔVolij = b0 + b1DBHij
b2RWij

b3,i +εij  with b3,i = c3 + d3,i  and d3,i ~ N(0,σ d3)  as in scenario 301 

2, and εii ~ N(0,σΔVol )  where σΔVol  is the residual variance, estimated on the 302 

volume increment fit set. 303 

Thus, four different biomass increment estimations were produced, according to the 304 

density estimation and the error propagation, and their difference summed at plot 305 

level. In all the scenarios, volume increment was estimated based on measured ring 306 

width series and the historical diameter of the trees. 307 

The MCMC process generated posterior distributions of the model parameter 308 

estimates, with their associated errors, and the estimations of the variance of the 309 

random effects based on the Metropolis-Hastings algorithm over 104 iterations. It also 310 

produced estimations of wood density, a volume increment computed from the fitted 311 

model and applied to new data, along with a prediction uncertainty interval, here 312 

represented by the range between 2.5 and 97.5% of the estimates distribution density. 313 

The first 4000 iterations were used as pre-convergence and thus were excluded from 314 

estimations, which were based on subsequent iterations only. 315 

 316 

3 Results 317 

 318 
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3.1 Describing wood density variability 319 

The (annual) ring wood density (WD) varied from 287 to 787 kg m-3 with within-trees 320 

variations as considerable as variations between trees. Individual tree-ring series 321 

showed a reduced WD in the first 5-10 years, followed by a linear increase up to 60 322 

years and then fluctuated around a tree-specific sill (Fig. 1a). Variations difference 323 

between two successive years reached 200 kg m-3. 324 

 325 

Figure 1. 326 

 327 

Variations in WD were mostly related to ring width with a linear correlation of -0.75 328 

(t = -39.23, df = 1199, p-value < 10-4) when pooling the data from all cores (Fig. 1b). 329 

As shown in figure 1, WD series with very distinct average density values were 330 

seemingly following the same linear pattern. The correlation with age was not as high 331 

(RPearson = 0.38, t = 14.25, df = 1199, p-value < 10-4). 332 

 333 

3.2 Modelling annual wood density variability 334 

The selection of the WD model resulted from the comparison of several models based 335 

on independent variables such as ring width, cambial age and diameter. The models 336 

offered very comparable results (Table 1) although model 2 had a greater Root Mean 337 

Square Root (RMSE) and bias. Using cambial age or diameter as second independent 338 

variable did not lead to significant differences in the fit according to the Likelihood 339 

Ratio Test (LRT). Nevertheless, models differed in the ease of the convergence or on 340 

the sensitivity to initial parameters provided. The exponent parameters a2 and a4 of the 341 

independent variables (RW and X) being close to 0.5 in model 3, a simplification was 342 

tested which enabled to reduce the number of parameters and considerably eased the 343 

fitting, whereby both exponents were fixed to 0.5. This simplification did not lead to a 344 

significant change in the AIC. The model retained was therefore the model 4 derived 345 

from Eq. 3 with exponent parameters set to 0.5, and with the DBH as second 346 

independent variable, which is also a variable easier to measure than the cambial age. 347 

 348 
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Table 1. 355 

 356 

3.3 Modelling the annual volume increment 357 

The volume increment model was fit as a function of diameter and ring width, with 358 

fixed and random tree-level effects, to a set of 22 trees. The intercept was kept free 359 

after testing its significance using the LRT by comparing models with intercept held 360 

constant or forced to 0. It appeared that a free intercept increases the likelihood, while 361 

the estimated value of the intercept was very realistic. The use of a weight function 362 

(constant plus power) was also amply confirmed by the LRT (L.ratio=1368, 363 

p<0.0001). Thus, the final model consisted in a function of diameter and ring width, 364 

with fixed and random (tree level) parameters weighting (Table 2). The adequacy of 365 

the model was confirmed by the standardized residuals plot (Fig. 2). 366 

 367 

Figure 2. 368 

Table 2. 369 

 370 

3.4 The compensation problem: WD buffers annual volume increment 371 

variations 372 

Provided that there was an overall decrease in wood density with increasing ring 373 

width, a compensation of ring width annual variability by wood density was also 374 

probable. The ring width series showed peak years of growth (e.g. 1967, 1989) or 375 

depressions (1976, 1983). In these years, the radial growth was much more affected 376 

than the wood density, as suggested by the deviations relative to the mean value 377 

calculated over the entire series length. The deviations peaked in 1967 at +30±12% 378 

(±standard error), which means a radial growth greater than average by 30%, while 379 

the reduction of density was only -5±2%. In 1976, the growth reduction was -30±6% 380 

but the density did not significantly increase: +1±2%. The consequences for biomass 381 

increment of neglecting the annual WD variations is further shown in Fig 3 where the 382 

biomass increment was estimated for the trees used for WD measurements. The 383 

annual volume increment was estimated by applying the model fitted (Eq. 4), 384 
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multiplied by either the annual WD values or by the mean WD for each tree and 385 

radius. The deviation between the two estimates are expressed as a percentage of the 386 

annual biomass increment using annual WD values. Although the deviations seemed 387 

random (Fig. 3a), their ordination in time proved that they were not, and that they 388 

exceeded 15% on average among all trees during extreme years (Fig. 3b). 389 

 390 

Figure 3. 391 

 392 

3.5 Application to an independent data set 393 

The two models presented and fitted above were introduced in the Bayesian 394 

framework, with the same structure exactly and on the same data, and further re-fitted 395 

using the MCMC method. A comparison of the parameters estimated by both methods 396 

is presented in table 2. Expectedly, the parameters were not exactly the same but very 397 

close, and the correlation between the predictions was very high. 398 

When applied on the independent application set, the estimated wood density varied 399 

from 278 to 541 kg m-3, with a mean of 425 (±35) kg m-3 as a result of the variable 400 

ring-width and diameter input values. The model reproduced large between-tree 401 

differences for a given year, up to 225 kg m-3. Including random effects did not affect 402 

the prediction mean (Fig. 4). The overall (pooling trees from all plots together) 403 

average difference between the two predictions was only 0.1 kg m-3. The inclusion of 404 

the random effects changed the predictions only very marginally but increased the 405 

prediction interval five times: it jumped from ±20-40 kg m-3 to ±160 kg m-3. 406 

Accounting for the residual variation (the epsilon term in Eq. 3) increased only 407 

slightly the prediction interval: it added an extra ±10 kg m-3. 408 

Comparable results were obtained with the volume increment model: the contribution 409 

of the random effects and the inclusion of the residual variance inflated substantially 410 

the prediction interval (Fig. 4). Nevertheless, the relative prediction interval were 411 

substantially lower than that of the wood density: typically less than 40% of the 412 

predicted value, against 60% for WD. 413 

 414 
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Figure 4. 415 

 416 

3.6 Consequences of WD variations and error sources for the biomass 417 

increment estimations 418 

3.6.1 At tree level 419 

The annual variations of the predicted biomass increment resulting from considering a 420 

dynamic wood density were always smaller than predictions based on a constant 421 

density (Fig. 5). The prediction uncertainty was considerably higher when accounting 422 

for random effects on either the WD or the volume increment. The full error 423 

propagation (sc4) had a relative prediction uncertainty up to 60% of the predicted 424 

value on average, occasionally reaching or overcoming 100%. Constant density 425 

predictions had logically the lowest uncertainties (less than 10%) since they include 426 

only the error from the volume increment estimation. Wood density had the greatest 427 

contribution to the prediction uncertainty, and mainly through the between-tree 428 

variations. The parametric estimation (sc3) had a prediction interval four times lower 429 

than the full error propagation prediction (sc4), showing an underestimation of the 430 

error made by considering the uncertainty related to the regression coefficients only. 431 

 432 

Figure 5. 433 

  434 

3.6.2 At plot level 435 

At plot level, which is the aggregation of the tree-level predictions and errors, the 436 

prediction errors tended to compensate each other since the relative prediction 437 

intervals of the annual biomass production were smaller than at tree-level (Fig. 6). 438 

Thus the interval of biomass production estimates varied from ~7% (sc1: no random 439 

effect, no residual error) to 10-30% (sc4: full error accounting) at stand level. It is 440 

noticeable that the relative prediction interval at 95% was never greater than 40% 441 

despite the combined errors of the two models (wood density and volume increment) 442 

plus the errors related to the random tree-level variations. 443 

 444 
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Figure 6. 453 

 454 

The variation between years in the prediction error was also very low (Fig. 6) despite 455 

contrasted ring widths. The error of the predictions based on regression errors only 456 

(sc1 and sc3) did not vary with increasing number of trees in the plot (Fig. 6). In 457 

contrast, the predictions error decreased slightly with increasing number of trees for 458 

the scenarios that used a (tree-level) random-effect term (sc2 and sc4). 459 

 460 

4 Discussion 461 

4.1 Overestimations of the variations in annual biomass increment under 462 

constant density 463 

Wood density was found to decrease when ring width increased, in agreement with 464 

previous studies on Norway spruce (e.g. Olesen, 1976; Lindström, 1996; Dutilleul et 465 

al., 1998). Despite the seemingly high correlation between ring width and WD, the 466 

decrease of WD was not enough to compensate the increase in ring width but 467 

contributed to attenuate its effects. The order of magnitude of the WD variability was 468 

not -and by far- as large as that of ring width. Hence, it is logical to find a moderate 469 

compensation between radial growth and wood density variations even in extreme 470 

years such as 1976: 15% at plot level. Nevertheless, when the focus is put on key 471 

years, such as years of climatic extremes, the measurements of WD is necessary to 472 

avoid a systematic underestimation of the biomass increment or carbon uptake. 473 

Climate is indeed probably the most important driver of WD variations with 474 

influences at both inter- and intra-annual time steps (e.g. Gindl et al. 2000, Bouriaud 475 

et al. 2015). These results are consistent with those reported in Babst et al. (2014a) 476 

showing that accounting for the variations in WD strongly improved the match 477 

between the tree-ring based above-ground wood biomass increment estimations and 478 

the seasonal CO2 fluxes measured by eddy covariance. 479 

A constant value of wood density, such as implicitly used in a biomass equations, can 480 

generate systematic deviations because it has only few chances to be equal to the 481 

mean density of the trees to which the model is applied. Even if using a site-specific 482 

WD value, neglecting the radial increment of WD (i.e. the age-related trend) will also 483 
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lead to under-estimating the biomass increment. This source of error can 487 

unfortunately not be compensated by a larger sampling since it affects all the trees 488 

simultaneously. This has consequences not only for the annual productivity 489 

estimations but also for periodical productivity assessments, such as those conducted 490 

on permanent sample plots over a 5 or 10-year period. 491 

Compensations of increased growth rate by a decrease in wood density was 492 

documented for Norway spruce but over a long time scale (Bontemps et al., 2013). 493 

The trends in radial growth and in WD reported for many species could lead to such 494 

deviations between the actual WD and the modelled or implicit WD. In this context, a 495 

local calibration would reduce such errors but cannot solve the problem of the 496 

variations between years and between trees.  497 

The anticorrelation between ring width and wood density seems to be a general 498 

feature in Norway spruce according to the literature (e.g. Olesen, 1976; Lindström, 499 

1996; Dutilleul et al., 1998) but the phenomenon is not limited to this species (Babst 500 

et al., 2014). The attenuation therefore probably occurs at a large scale. The between-501 

tree variability in the relationship has also been reported in several studies and 502 

probably is a widespread feature with potentially large consequences on the error of 503 

annual biomass increment predictions, as demonstrated by this study. The fact that the 504 

trees used to assess both the wood density variations and to model the volume 505 

increment came from the same site as those used for the error estimations has ruled 506 

out the issues of using locally inappropriate models. Additional errors should be 507 

considered in practice when using models that may not be locally valid. 508 

4.2 Predictions uncertainty 509 

The inventory-based or tree-ring-based estimations of annual biomass production or 510 

carbon uptake are often used for comparisons against other methods such as remote 511 

sensing, vegetation models or eddy covariance (Beck et al., 2011; Bunn et al. 2013; 512 

Babst et al., 2014a). To be conclusive, the benchmarking however supposes that 513 

prediction errors are known or can be estimated. High prediction errors would 514 

invalidate the biometric approaches but the errors are not always accounted for. 515 

Analytical solutions are indeed not always available to estimate the errors of the 516 

allometric models, and their estimation remains very complex or based on 517 

assumptions. In the case of the biomass increment, the error results from the 518 
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combination of several models, and the estimation is even more challenging. The use 519 

of the MCMC framework here avoids the cumbersome analytical approximations for 520 

prediction variances (e.g. Wutzler et al., 2008). 521 

The prediction interval at plot level was on average between 20 and 40% of the 522 

predicted biomass increment value. The uncertainty related to the regression 523 

parameters were about 10% only for both models. Reduced variance may be inherent 524 

to the use of local trees and the Bayesian modelling (Zapata-Cuartas et al., 2012) but 525 

these values are similar to those found by Nickless et al. (2011) for biomass 526 

estimations following a parametric approach -as opposed to the MCMC method used 527 

here. Unlike our results, this study did however not include the random tree-level 528 

variations, which appeared to be quite an important source of uncertainty. Indeed, 529 

accounting for random tree-level variations in the relation between wood density and 530 

ring width increased the prediction interval of the tree-level biomass increment 531 

drastically (i.e. decreased the prediction confidence), by a factor of 5. Further errors 532 

related to the residual non-explained variance, were, in comparison, very small. 533 

Consequently, the prediction interval of the biomass annual increment at plot level 534 

increased twofold by accounting for the random-tree effects. Hence, the contribution 535 

of WD to the prediction error of the biomass increment was much larger than that of 536 

the volume increment model. 537 

The tree-level prediction error (in percentage of the prediction value) was found to be 538 

greater than those at plot level. Thus, the compensations occurred at plot level when 539 

summing up trees predictions. We speculate that these compensations happen because 540 

the variations are centred by construction around zero and have both negative and 541 

positive values. This explains also why the mean prediction values were always 542 

unaffected by accounting for random effects. Hence, neglecting random effects 543 

affected more the prediction interval than the predictions themselves. 544 

 545 

4.3 Variations between trees 546 

The relation between wood density, ring width and cambial age were proven to 547 

fluctuate between trees sampled within a same stand for many species: oak (Guilley et 548 

al., 2004; Bergès et al., 2008), common beech (Bouriaud et al., 2004), Norway spruce 549 

(Mäkinen et al., 2002; Jaakola et al., 2005; Franceschini et al., 2010). For a given 550 
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radial growth rate, the trees are building more or less biomass and so storing more or 551 

less carbon, according to the density of the wood.  552 

This fluctuation is considered random because it cannot be attributed to a measurable 553 

factor. Random tree-level variations were nevertheless reported as a major source of 554 

wood density variations in a population (Zhang et al., 1994; Guilley et al., 2004; 555 

Bouriaud et al., 2004; Jaakola et al., 2005). It is often hypothesized to be related to the 556 

genetics, although not proven.  Provenience studies brought some insight on it (Hylen, 557 

1999; Rozenberg et al., 2004), but much of the determinism remains unknown. Other 558 

factors, such as crown development (Lindström, 1996), could also be invoked to 559 

explain this variation source in wood density. 560 

The changes in silvicultural practices, whereby the focus is put on targeted 561 

individuals, further stress the importance of errors in tree-level estimations of biomass 562 

and biomass increments. The tree-level variations were the largest error source and 563 

showed that the inter-tree variations can be seen as a limitation to the tree-level 564 

biomass prediction. Despite the many evidences of tree-level random effects, this 565 

variation source was largely ignored. Our study proved that the between-tree 566 

variations in the relation between ring width and wood density -although within the 567 

same species- contributed the most to the uncertainty in the biomass increment 568 

predictions. The variations are hypothesized to follow a normal distribution 569 

(Lindström and Bates, 1990). Thus, at plot level, a compensation is likely to occur. 570 

But this situation may not be true for all samplings, and certain designs could generate 571 

additional biases in the biomass production estimations. In this study, all the trees in a 572 

plot were sampled. Other samplings, for instance the selection of the biggest trees in a 573 

plot as classically done in dendrochronology, could lead to serious deviations as it 574 

could involve sampling faster-growing trees. Apart from the bias in productivity 575 

caused by a sampling focusing on faster-growing trees (Nehrbass-Ahles et al., 2014), 576 

the productivity at stand level would probably generate an over-estimation related to a 577 

decreased wood density as trees producing larger rings would be sampled. Another 578 

issue in using the tree-ring parameters (width and density) to produce annual 579 

productivity estimations is the presence of autocorrelation or carry-over effects in the 580 

series, which are reflected in the derived productivity estimations but are generally 581 

not observed in the carbon fluxes measured or modeled (Babst et al. 2014a, b, 582 

Ramming et al. 2015). 583 
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 584 

4.4 Modelling wood density for biomass increment 585 

Apart from the climate, the two foremost used variables used to model annual WD 586 

variations are ring width and ring (cambial) age. The relation between WD and radial 587 

growth was strong in our study and probably dominant in Norway spruce but may not 588 

be so for other species. In beech, for example, the relation between ring width and 589 

WD was shown to be weak (Bouriaud et al., 2004) and there was no clear trend in 590 

WD related to the age neither. Several studies reported a lack of significant 591 

correlations between ring width and WD for Norway spruce (e.g. Dutilleul et al., 592 

1998). The relative stability in annual WD values is not calling for a correction of the 593 

biomass increment in such situation. It is probable that variations in WD would affect 594 

the estimation of biomass increment in species for which a relationship with ring 595 

width was already observed such oaks (Zhang et al., 1993; Bergès et al., 2008) or 596 

larch (Karlman et al., 2005). The contribution to the error in the prediction of biomass 597 

production is however likely to be important. 598 

Conversely to ring width, ring age was found to be only slightly influent on the annual 599 

wood density in Norway spruce. Ring age is often considered in density models for 600 

representing the age trend or for the variations observed near the pith –the juvenile 601 

versus mature wood transition (e.g. Franceschini et al., 2010). WD in Norway spruce 602 

has been shown to present an age-dependent trend from pith to bark (Dutilleul et al., 603 

1998; Hylen, 1999; Mäkinen et al., 2002), apart from the juvenile wood effect. In our 604 

study, the juvenile effect was not included for simplicity (series were pruned to 605 

exclude the first 3 years) but also because rings near pith anyway are often missing 606 

when working with increment cores. Part of the age effect can be absorbed by the 607 

irregular ring width variations exhibited by trees growing in stands where thinnings 608 

induce successive episodes of growth surge. 609 

Wood density should not be mistaken for stem specific gravity (Williamson et al., 610 

2010). Bark has a different mass to volume ratio than wood. The contribution of bark 611 

to the annual increment is however negligible. The approximation made consist in 612 

stating that the variations in specific gravity are proportional to that of wood density. 613 

Variations in ring width and WD at upper stem positions were however documented 614 

for different species (Bouriaud et al., 2005; Repola, 2006; Van der Maaten-615 

Olivier Bouriaud� 11/7/15 11:58
Deleted:	
  T616 



 

21 

Theunissen and Bouriaud, 2012). These variations were mostly in the sense of a lesser 617 

reduction in growth of upper stem parts during years of limited growth. Altogether 618 

with the WD density effect, these effects show that the reaction of trees to 619 

unfavourable climate conditions are exacerbated or over-estimated by the breast-620 

height radial growth. 621 

 622 

5 Conclusion 623 

Annual variations in wood density were proved to compensate partially (up to 15%) 624 

the variations in radial growth. Ignoring the relation between ring width and wood 625 

density would result in an underestimation of the biomass production in bad years. 626 

The use of allometric equations generated estimations with large prediction intervals 627 

at tree level, up to 60%, but the prediction errors at plot level compensated each other. 628 

Most of the error in the prediction of a tree’s annual biomass increment comes from 629 

the great between tree variability in wood density. Plot-level errors were found to 630 

range between 10 and 20% only. This study validates the approach based on historical 631 

diameter records for estimating tree annual biomass increment and stand annual 632 

biomass production, but a local calibration of the allometric models reduces 633 

considerably the prediction errors. 634 
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Tables and figure captions 833 

Table 1. Fit statistics and parameters for the wood density models. 834 

Table 2. Comparison of the fixed parameters estimated for the wood density and the 835 

volume models, obtained by maximum likelihood and MCMC. Standard deviations 836 

are provided in brackets. 837 

 838 

Figure 1. Relation between annual wood density and cambial age (left) or ring width 839 

(right) at tree level. Two trees with very distinct average wood density were 840 

highlighted (dark gray/black colors). 841 

 842 

Figure 2. Observed and fitted annual volume increment model and standardized 843 

residuals of the volume increment model fit. 844 

 845 

Figure 3. Left, Comparison of biomass increment estimations for Norway spruce trees 846 

growing in Wetzstein, based on constant density hypothesis vs actual wood density 847 

measurements; Right, time-course of the average ratio of biomass increment 848 

estimations (actual over constant density) and time-course of the detrended mean ring 849 

width (spline smoothing, for illustration purposes). 850 

The ±2sd interval for the average biomass ratio is displayed as a gray band. 851 

 852 

Figure 4. Left, variations of the MCMC annual predictions and prediction intervals 853 

(95%) of wood density and volume increment for one given tree randomly chosen 854 

while accounting for different error sources: regression only/regression and random 855 

effects/regression, random effects and residual variance; Right, distribution density of 856 

the relative prediction interval (expressed in percentage of the prediction) for all trees 857 

used for the simulation, according to the error sources included. 858 

 859 

Figure 5. Annual biomass increment (posterior MCMC distribution) for one given tree 860 

chosen as representative with its associated prediction error for scenario 1 and 2 (a) or 861 
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scenario 3 and 4 (b); c) distribution density of relative prediction interval (expressed 863 

in percent of the prediction) for all trees used for the simulation, according to the 864 

scenario. Scenario 1 is based on constant WD and no random or residual error from 865 

the volume increment model, Scenario 2 is based on constant WD and random error 866 

in the volume increment model, Scenario 3 is based on modelled WD but without 867 

random and residual error accounting, Scenario 4 is based on modelled WD and 868 

volume increment with a full error accounting (see section 2.3 for more details). 869 

 870 

Figure 6. Plot-level annual relative prediction intervals of the biomass increment as a 871 

function of the number of trees sampled in the plot for the 4 scenarios (a). Distribution 872 

density of the relative prediction interval of the biomass increment at plot level, all 873 

plots pooled, (b). 874 

 875 
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Table 1 881 

 882 

Eq. Model Fixed effect df AIC RMSE Bias 

     kg.m-3 kg.m-3 

1 WD = 
a0+a1.RW+a2.RW2+a3/X0.5 

RW, CBA 12 12549 44.62 0.135 

  RW, DBH 12 12567 44.90 0.135 

2 WD = a0+a1/(1+RW)+a2/X0.5 RW, CBA 11 12770 60.24 0.874 

  RW, DBH 11 12802 64.70 0.674 

3 WD = a0+a1.RWa2+a3/Xa4 RW, CBA 12 12554 44.90 0.018 

  RW, DBH 12 12569 45.15 -0.046 

4 WD = a0+a1RW0.5+a2/X0.5 RW, CBA 11 12552 44.92 -0.019 

  RW, DBH 11 12567 45.20 -0.073 

 883 
WD: (annual) wood density, RW: (annual) ring width, X: either cambial age (CBA) or diameter 884 
(DBH). 885 
Models 1 to 3 correspond to equations 1-3 presented in the section 2.2.1, and model 4 corresponds to 886 
equation 3 with parameter a2 and a4 set to 0.5. 887 
They were 1201 observations, 10 groups. 888 
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Table 2 891 

 892 
Model Parameters Likelihood fit MCMC fit 

WD = 
a0+a1RW0.5+a2/DBH0.5+e 

a0 594.33 (16.11) 555.10 (20.04) 

 a1 -10.09 (0.43) -9.23 (0.70) 

 a2 13.93 (41.21) 17.13 (29.00) 

 e 2054 2083 (93) 

∆V = b0+b1DBHb2RWb3+e b0 0.284 (0.041) 0.047 (0.005) 

 b1 0.161 (0.012) 0.009 (0.001) 

 b2 1.820 (0.034) 1.733 (0.011) 

 b3 0.645 (0.019) 0.649 (0.019) 

 e = b4+ DBHb5 9.316e-03 0.283 (0.136) 

 b4
 15.505 -0.093 (0.009) 

 b5
 1.871 0.225 (0.005) 

WD: (annual) wood density, RW: (annual) ring width, DBH: (annual) breast-height diameter, e: 893 
residual error. 894 
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Figure 1 896 
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Figure 2 899 
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Figure 3 903 
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Figure 4 908 
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Figure 5 911 
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Figure 6 914 
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