

Supplement of

Probing the past 30 year phenology trend of US deciduous forests

X. Yue et al.

Correspondence to: X. Yue (xuyueseas@gmail.com)

Supporting Information

Derivation of phenological observations

One difficulty in analyzing trend of forest phenology is the missing of long-term records. In this study, we derive phenological observations in combination of date records, leaf area index (LAI), and photos. Date records are complete and last for >20 years at Harvard Forest and Hubbard Brook. However, the data are incomplete at US-UMB and US-MMS. Budburst dates are documented for 10 years at US-UMB (Fig. S2a). We use the LAI measurements from 1999 to gap fill the missing dates. In this procedure, the budburst dates are defined as the days when the interpolated or extrapolated LAI is equal to a selected threshold (LAIt), which may vary from 0.5 to 2.0. As shown in Fig. S2a, a different LAIt can determine an independent time series. The most reasonable LAIt is determined if the derived time series has the lowest RMSE against the available date records. For example, the RMSE for derived phenology is 5.6 days with LAIt=1.3 m² m⁻², 3.2 days with LAIt=1.5 m² m⁻², and 4.1 days with LAIt=1.7 m² m⁻². As a result, we select LAIt = $1.5 \text{ m}^2 \text{ m}^{-2}$ as the standard threshold to derive the missing budburst dates. A similar procedure is performed for US-MMS and a lower LAIt of 1.4 m² m⁻² is selected for this site (not shown).

In case that the LAI measurements are also incomplete, we derive those missing dates using photos from PhenoCam (http://phenocam.sr.unh.edu/webcam/). Different from the quantitative estimate with LAI, the derivation with photo is qualitative. We define the budburst date as the middle of the few days when tree colors change rapidly from gray to light green. On the contrary, a dormancy start date is defined as the middle of days with rapid color changes from brown to gray. An example of autumn dormancy at US-UMB is shown in Fig. S3. The comparison shows that the photo-derived dates are not largely different from the LAI-derived ones (Fig. S2b). We aggregate all the available dates to develop the most complete dataset for validation (Fig. 1). In case of data overlap from different sources, we select date records as the primary choice and that derived from LAI as the secondary.

Figure S1. Observed (markers) and regressed (black lines) phenology at four DBF sites (top row). At each site, sensitivity tests of regressions for the *d*th day of the year are performed with different budburst dates (D1), growing length (L1), offset start dates (D2), and falling length (L2) as follows:

$$P(d) = \begin{cases} \max\{0, \min[(d-D1)/L1, 1]\}, & d \le 213\\ \max\{0, \min[(L2+D2-d)/L2, 1]\}, & d > 213 \end{cases}$$

The 213th day of year is correspondent to August 1st. Contour maps of the root-meansquare error (RMSE) for these regressions against observations are shown for spring (middle row) and autumn (bottom row). The optimized regressions with specific dates (D1, L1, D2, and L2), which result in a minimum regression RMSE, are shown as the bold lines in the top figures.

Figure S2. Derived (a) budburst and (b) dormancy state date with different LAI thresholds at site US-UMB. Observations from date records are indicated as blue points. Dates derived from photos (see Fig. S3) are shown as magenta pentagrams.

Figure S3. Photos of autumn phenology at US-UMB sites. A dormancy start date is defined as the middle of a few days with rapid color changes from brown to gray The photos after 2008 have better quality relative to earlier years due to an update of equipment.

Figure S4. Comparison of predicted (blue) budburst dates at Harvard Forest with observations (red) for 1992-2012. Each panel represents results using a spring phenology model (Table 5).

Figure S5. The same as Fig. S4 but for the site at Hubbard Brook.

Figure S6. The same as Fig. S4 but for the site at US-UMB for 1999-2012.

Figure S7. The same as Fig. S4 but for the site at US-MMS for 1999-2012.

Figure S8. Comparison of predicted (blue) dormancy onset dates at Harvard Forest with observations (red) for 1992-2012. Each panel represents results using an autumn phenology model (Table 5).

Figure S9. The same as Fig. S8 but for the site at Hubbard Brook.

Figure S10. The same as Fig. S8 but for the site at US-UMB for 1999-2012.

Figure S11. The same as Fig. S8 but for the site at US-MMS for 1999-2012.

Figure S12. Comparison of the simulated (a, b) budburst and (c, d) dormancy dates with *in situ* observations (colored circles) from the USA National Phenology Network for 2011. Simulations are performed with the spring model S9 and autumn model A4. The number of the sites and the correlation coefficients are shown in the scatter plots.

Figure S13. The same as Fig. S12 but for the year 2012.

Figure S14. Trend in the simulated (a, b, c) budburst and (d, e, f) dormancy dates for deciduous forests in the U.S. during different periods. Significant trends (p<0.05) are denoted with dots.

Figure S15. Trend of surface air temperature for (a, b) December, (c, d) April, and (e, f) September during 2000-2012. The temperature data are from (a, c, e) MERRA reanalyses and (b, d, f) USHCN Network. The results are shown only for the grid squares where the fraction of deciduous forest is larger than 3%. Significant trends are denoted with dots (a, c, e) or solid points (b, d, f).

(a) Trend in start of budburst date for 1982-2012

(b) Trend in start of dormancy date for 1982-2012

Figure S16. Trend in the simulated (a) budburst and (b) dormancy dates for deciduous forests in the U.S. during 1982-2012 using models without (a) chilling requirement and (b) photoperiod limit. The results are shown only for the grid squares where the fraction of deciduous forest is larger than 3%. Significant trends (p<0.05) are denoted with dots.

Species	Latin Name	Common Name	Sites	Trees	Records
ACMA	Acer Macrophyllum	Bigleaf Maple	26	41	129
ACNE	Acer Negundo	Boxelder Maple	27	32	685
ACPE	Acer Pensylvanicum	Striped Maple	6	11	42
ACPL	Acer Plantanoides	Norway Maple	6	12	160
ACRU	Acer Rubrum	Red Maple	177	306	4239
ACSA1	Acer Saccharinum	Silver Maple	11	14	154
ACSA2	Acer Saccharum	Sugar Maple	75	123	1652
AEFL	Aesculus Flava	Yellow Buckeye	3	17	327
ALRU	Alnus Rubra	Red Alder	13	14	163
AMLA	Amerlanchier Laevis	Serviceberry	2	3	58
BEAL	Betula Alleghaniensis	Yellow Birch	16	39	301
BELE	Betula Lenta	Sweet Birch	9	13	86
BEPA	Betula Papyrifera	Paper Birch	38	63	1226
CACA	Carpinus Caroliniana	American Hornbeam	11	40	142
CAGL	Carya Glabra	Pignut Hickory	13	28	492
CAIL	Carya Illinoinensis	Pecan	14	36	217
CAOV	Carya Ovata	Shagbark Hickory	5	7	45
CECA	Cercis Canadensis	Redbud	60	94	1574
CEOC	Celtis Occidentalis	Hackberry	11	40	243
COFL	Cornus Florida	Flowering Dogwood	85	115	1193
DIVI	Diospyros Virginiana	Persimmon	12	17	262
FAGR	Fagus Grandifolia	American Beech	37	59	1458
FRAM	Fraxinus Americana	White Ash	12	16	135
FRPE	Fraxinus Pennsylvanica	Green Ash	20	38	489
GIBI	Ginkgo Biloba	Ginkgo	5	10	81
GLTR	Gleditsia Triacanthos	Honey Locust	8	15	101
HAVI	Hamamelis Virginia	Witch Hazel	17	26	280
ILVE	Ilex Verticillata	Winterberry	2	3	57
JUNI	Juglans Nigra	Black Walnut	27	48	579
LIST	Liquidambar Styraciflua	Sweetgum	33	55	511
LITU	Liriodendron Tulipifera	Tuliptree	44	89	716
NYSY	Nyssa Sylvatica	Black Gum	9	16	156
OXAR	Oxydendrum Arboreum	Sourwood	3	5	26
PLOC	Platanus Occidentalis	Sycamore	4	5	24
PODE	Populus Deltoides	Eastern Cottonwood	7	7	54
POTR	Populus Tremuloides	Trembling Aspen	75	135	3410
PRAM	Prunus Americana	American Plum	16	16	136
PRSE	Prunus Serotina	Black Cherry	43	73	1582
QUAL	Quercus Alba	White Oak	40	59	1158

Table S1. Detailed information of phenological records for 52 species from the National Phenology Network during 2011-2012.

QUMA	Quercus Macrocarpa	Bur Oak	23	38	549
QUPA	Quercus Palustris	Pin Oak	7	9	33
QURU	Quercus Rubra	Red Oak	45	57	1191
QUVE	Quercus Velutina	Black Oak	5	6	65
RHCA	Rhamnus Cathartica	Common Buckthorn	5	5	121
RHGL	Rhus Glabra	Smooth Sumac	2	2	111
ROPS	Robinia Pseudoacacia	Black Locust	14	19	362
SAAL	Sassafras Albidum	Sassafras	5	5	69
SAPU	Sambucus Pubens	Red Elderberry	8	16	781
ГІАМ	Tilia Americana	American Basswood	17	21	553
ULAM	Ulmus Americana	American Elm	13	34	236
VACO	Vaccinium Corymbosum	Highbush Blueberry	12	25	737
VIAL	Viburnum Alnifolium	Hobblebush	2	4	129

Species	Latin Name	Common Name	Trees	Records	Start	End
SYCH	Syringa Chinensis	Red Rothomagensis lilac	68	1770	2004	2012
SYVU	Syringa Vulgaris	Common Lilac	108	1581	2004	2012
LOTA	Lonicera Tatarica-arnoldred	Arnold Red honeysuckle	13	725	2004	2012
FOSP	Forsythia Spp	Forsythia	2	38	2005	2010
COCA	Cornus Canadensis	Bunchberry Dogwood	1	34	2006	2012
ACRU	Acer Rubrum	Red Maple	1	56	2006	2012
COFL	Cornus Florida	Flowering Dogwood	2	27	2007	2012

Table S2. Detailed information of phenological records for 7 species from the NationalPhenology Network during 2004-2012.

Variables	Description	Units	Value	Reference	
T _c	Base temperature for budburst forcing	°C	5	Murray et al. (1989)	
а	Parameters for budburst threshold G_b	Degree day	-110	Calibrated	
b	Parameters for budburst threshold G_b	Degree day	550	Calibrated	
r	Parameters for budburst threshold G_b	Dimensionless	-0.01	Murray et al. (1989)	
$L_{ m g}$	Growing length constraint	Degree day	380	Calibrated	
$T_{\rm b}$	Base temperature for senescence forcing	°C	20	Dufrene et al. (2005)	
F_{s}	Threshold for leaf fall	Degree day	140	Calibrated	
$L_{ m f}$	Falling length constraint	Degree day	410	Calibrated	
$P_{\rm x}$	Daylength threshold for leaf fall	Minutes	695	Calibrated	
P_{i}	Daylength threshold for full dormancy	Minutes	585	Calibrated	

Table S3. Parameters for the phenology models (S9+A4) selected for the regional simulations.

References

- Dufrene, E., Davi, H., Francois, C., le Maire, G., Le Dantec, V., and Granier, A.: Modelling carbon and water cycles in a beech forest Part I: Model description and uncertainty analysis on modelled NEE, Ecol Model, 185, 407-436, doi:10.1016/J.Ecolmodel.2005.01.004, 2005.
- Murray, M. B., Cannell, M. G. R., and Smith, R. I.: Date of Budburst of fifteen Tree Species in Britain Following Climatic Warming, J Appl Ecol, 26, 693-700, doi:10.2307/2404093, 1989.