Response to anonymous referee #1:

This paper summarizes a large and long data set. The paper is descriptive and concludes that DIC drawdown is greatest inshore, redfield ratios are not always followed with nutrient depletion, and the balance of freshwater flux and biological production is a strong determinant of change in aragonite saturation state. The paper does not increase understanding of what was driving change in the region, but it is a useful descriptor of the variability in DIC and other carbon parameters. I did find at times the relationship between the various parameters or why various some changes were selected to describe difficult to follow (see below). This caused me to have to stop reading and search through the paper for other information.

For example, for most of the paper DIC, TA and nutrient data were available and why a TA vs salinity relationship was calculated in an early section was not apparent until later when salinity and year-round pCO2 measurements were used to calculate aragonite saturation state while the other measurements were Summertime only.

Response:
We agree with the reviewer that the use of the salinity vs TA relationship was not clear. We therefore merged section 2.4 with section 3.4 and reworded the text. This should clarify that the TA-salinity relationship, in combination with surface pCO2 measurements, was used to calculate Ω_{arag} for fall, winter and spring when DIC and TA bottle data are not available. Because nutrient data are also not available for these seasons, we did not use nutrients to predict salinity, even though we agree with the reviewer that it would probably improve the TA prediction. These changes were made to the following to paragraphs:

Lines: 536-557

“3.4 Seasonal variability
To get insights into the carbon dynamics during winter, spring, and fall, when direct measurements of DIC, TA and nutrients are either scarce or not available, we developed a regional TA algorithm (based on PAL-LTER summertime data). In combination with seasonal LDEO pCO₂, salinity and temperature data, we calculated Ω_{arag} for the missing seasons. Due to the weak correlation between PAL-LTER temperature and TA ($r = 0.50$), we based the TA algorithm on salinity only (Figure A2, $r = 0.88$). Applying the Akaike information criterion [Burnham and Anderson, 2002], we determined that TA along the WAP will be best
represented by a first order linear model. We then randomly divided the PAL-LTER surface measurements (depth <5 m) into 10 data subsets using the 10-fold cross validation method [Stone, 1974; Breiman, 1996]. Using 9 of the ten data sets we derived a regression model, predicted the TA with the model, and calculated the model coefficients and root mean square errors (RMSE). We repeated these steps so every data subset was left out once. The coefficients for the final model were calculated from the mean of the ten regression coefficients.

We found the best fit in the following equation:

\[
\text{TA}^{\text{pred}} (\mu\text{mol kg}^{-1}) = 57.01 (\pm 0.88) \times S + 373.86 (\pm 35.26),
\]

which resulted in a linear correlation coefficient of \(r = 0.88 \) and a RMSE of 15.2 \(\mu\text{mol kg}^{-1} \) (Figure A2). In combination with the pCO₂ measurement precision of 3 \(\mu \text{atm} \), the RMSE of TA prediction resulted in a mean error in calculated \(\Omega_{\text{arag}} \) of 0.0219 units and pHT of 0.0043 [Glover et al., 2011]. Note that the calculated \(\Omega_{\text{arag}} \) and pHT estimates implicitly require that the approximately linear summertime TA-salinity relationship holds for the other seasons, a reasonable assumption if dilution and mixing substantially affect TA patterns.

The change in sea ice in the region is also mentioned a number of times in the paper, but there is no description of how sea ice is changing for the region (seasonally, interannual and spatial change over 20 years) apart from one sentence in the introduction. If there is more information on sea-ice change, it seems important to include and discuss the relevance in influencing the biogeochemical properties.

Also, I was also not able to find a good description of the physical oceanography of the region data are presented from. Again, there are mentions here and there in the text, but it is scattered and difficult to follow.

Response:
To address this comment we added text and several citations to the Introduction Section to better describe in more detail the regional ocean physical circulation.

Lines 98-110:
“The physical oceanography of the region is strongly influenced by equatorward flow at the continental shelf/slope break associated with the eastward flowing Antarctic Circumpolar Current that abuts the continental slope along the WAP region. On the shelf, there are indications of one or more cyclonic circulation cells with poleward flow inshore [Hofmann et al., 1996; Dinniman and Klinck, 2004; Martinson et al., 2008]. Water mass properties are strongly influenced by subsurface intrusions onto the continental shelf of warm, nutrient and DIC rich Upper Circumpolar Deep Water (UCDW), that appears to be modulated by topographic depressions and canyons [Martinson et al. 2008; Dinniman et al., 2011; Martinson and McKee, 2012]. In winter, respiration processes and the entrained deep CO₂-rich water increase the DIC concentration in surface waters to supersaturated levels of CO₂ with respect to the atmosphere [Carrillo et al.,]
Changes of sea ice and their potential influence on biogeochemistry are discussed in the introduction and discussion. Readers interested in more details on climate and sea-ice trends are referred to the cited articles including (Ducklow et al., 2007 and 2012; Stammerjohn et al., 2012).

Other comments:
p 6931, lines 9-11: It is not clear how La Niña years influence the carbon cycle dynamics. Do more intense storms and a poleward displacement of the polar jet have an influence. There is a description of possible changes in carbon cycling for SAM. What does the literature indicate is happening to sea ice extent over the period?

Response:
We adjusted the text in response to these questions>
Lines 137-145:
“During La Niña years, storms become longer and more intense, temperatures increase and sea ice extent decreases in the WAP region as a result of a strong low-pressure system driven by the poleward displacement of the polar jet [Yuan, 2004]. Positive SAM phases are also associated with positive temperature anomalies over the Antarctic Peninsula and decreased sea-ice extent [Kwok, 2002; Stammerjohn et al., 2008]. Furthermore, the SAM brings the Southern Hemisphere westerly winds closer to Antarctica, which amplifies the typical features of La Niña. During these periods, nutrient and CO₂-rich Circumpolar Deep Water intrudes more frequently on to the shelf [Martinson et al., 2008], potentially increasing [CO₂] on the shelf.”

p 6933, section 2.1: Nutrient data are used in the paper, but I cannot find information on how these data were measured and where to access these.

Response:
We agree with the referee that more detailed information about the nutrient sampling technique is required. To address this concern we added the following text:

Line 192-216 “
“Water for inorganic nutrient analysis was subsampled from Niskin bottles into acid washed 50 mL Falcon tubes and frozen at -70 °C. The samples were analyzed using a Lachat Quickchem 8000 autoanalyzer at the University of California at Santa Barbara Marine Science Institute Analytical Lab from 1993-2007 and later at the Marine Biological Laboratory (Woods Hole MA, 2008 – 2012). Inorganic nutrient data reach a precision of ± 1%. All PAL-LTER data and a detailed description of the sampling methodology are publicly available at
p 6935, line 7: how many outlier (per cent) were excluded out of the total number of samples? The text suggests there may be an analytical problem. I suspect this isn’t the case, but the sentence beginning "These outliers included..." indicates there were many more than described in the section.

Response:
There were only 4 outliers. We agree that this sentence was confusing and adjusted it (Lines 263-265):
“Four PAL-LTER pCO\textsubscript{2} outliers that underestimate/overestimate pCO\textsubscript{2} relative to the underway observations by more than 150 μatm were removed.”

p 6935, lines 10-19: I am not sure what the point of this regression analysis broken down into different years is. I first thought the intercept might be meaningful, but it seems more like the authors are trying to check the internal consistency of their measurements. Why not consider the residuals? Is the need to split the years used to compare pCO\textsubscript{2} measured and pCO\textsubscript{2} calculated an indication that the quality of the measurements has issues some years? If so, please state what years and why?

Response:
In this paragraph we are discussing potential reasons why the correlation between the calculated PAL-LTER pCO\textsubscript{2} and the measured LDEO pCO\textsubscript{2} is not >0.82. Among matching issues and the resulting large pCO\textsubscript{2} set-offs, we believe that years with a smaller range of pCO\textsubscript{2} variability may be responsible for a large error of the intercept parameter, leading to a lower correlation. We agree that this may be confusing and not useful and therefore adjusted text and figure accordingly.

Lines 265-273:
“Analysis of the corrected data set with a Linear Regression Type II model suggests a correlation of r = 0.82 (Figure A1, Table 1). Some of the observed discrepancies may be attributed to errors in matching the times of bottle samples with those of underway pCO\textsubscript{2} measurements. Seawater inorganic carbon chemistry is highly variable along the WAP due to the influence of productivity, respiration, freshwater and upwelling of CO\textsubscript{2}-rich subsurface water [Carrillo et al., 2004]. Small matching errors may therefore introduce small DIC and TA offsets, which would translate into larger fractional differences in pCO\textsubscript{2} due to the large Revelle Factor (\frac{\partial \ln pCO_2}{\partial \ln DIC}) common in the region [Sarmiento and Gruber, 2006].”
P 6936, section 2.4: Why are nutrient concentrations ignored in the TA vs salinity relationship given what appears to be a large range in pCO2 and presumably nutrient concentrations? Nutrient data are used with TA on page 6939. I am also unclear on the relevance of this salinity vs TA relationship. Most of the following sections in the paper do not seem to use the relationship as there are TA, DIC and nutrient data used to calculate the carbonate system parameters, or is this incorrect? Section 3.4 does use the relationship and it would be helpful to state in section 2.4 that it is used later with data pCO2 data to calculate the saturation state in fall, winter and spring seasons when bottle data are not available.

Response:
We agree with the reviewer that the use of the salinity vs TA relationship was not clear. We therefore merged section 2.4 with section 3.4 and reworded the text. This should clarify that the TA-salinity relationship, in combination with surface pCO2 measurements, was used to calculate Ω_{arag} for fall, winter and spring when DIC and TA bottle data are not available. Because nutrient data are also not available for these seasons, we did not use nutrients to predict salinity, even though we agree with the reviewer that it would probably improve the TA prediction. These are the first two paragraphs of the newly merged section 3.4:

Lines: 536-557

"3.4 Seasonal variability
To get insights into the carbon dynamics during winter, spring, and fall, when direct measurements of DIC, TA and nutrients are either scarce or not available, we developed a regional TA algorithm (based on PAL-LTER summertime data). In combination with seasonal LDEO pCO2, salinity and temperature data, we calculated Ω_{arag} for the missing seasons. Due to the weak correlation between PAL-LTER temperature and TA (r = 0.50), we based the TA algorithm on salinity only (Figure A2, r = 0.88). Applying the Akaike information criterion [Burnham and Anderson, 2002], we determined that TA along the WAP will be best represented by a first order linear model. We then randomly divided the PAL-LTER surface measurements (depth <5 m) into 10 data subsets using the 10-fold cross validation method [Stone, 1974; Breiman, 1996]. Using 9 of the ten data sets we derived a regression model, predicted the TA with the model, and calculated the model coefficients and root mean square errors (RMSE). We repeated these steps so every data subset was left out once. The coefficients for the final model were calculated from the mean of the ten regression coefficients. We found the best fit in the following equation:

\[\text{TA}^{\text{pred}} (\mu\text{mol kg}^{-1}) = 57.01 (\pm 0.88) \times S +373.86 (\pm 35.26), \]

which resulted in a linear correlation coefficient of \(r = 0.88 \) and a RMSE of 15.2 \(\mu\text{mol kg}^{-1} \) (Figure A2). In combination with the pCO2 measurement precision of 3 \(\mu\text{atm} \), the RMSE of TA prediction resulted in a mean error in calculated Ω_{arag} of 0.0219 units and pHT of 0.0043 [Glover et al., 2011]. Note that the calculated
\(\Omega_{\text{arag}}\) and pH estimates implicitly require that the approximately linear summertime TA-salinity relationship holds for the other seasons, a reasonable assumption if dilution and mixing substantially affect TA patterns."

p 6937, section 3.1: This is OK, but it averages data from the Summer, when there is large variability. The point that there are large and persistent decreases inshore relative to offshore is well defined. However, the section does not indicate the range of values used in the averaging. For example, what range of sDIC and salinity values occurs inshore compared to offshore for the averaged data points. It would be good to get some idea of the variability.

Response:
We agree with the reviewer that this section should describe the large interannual variability. We adjusted the text accordingly:

Lines 362-371:
“Surface waters in the PAL-LTER region exhibited high spatial and interannual variability of DIC (min = 1850 \(\mu\)mol kg\(^{-1}\) and max = 2173 \(\mu\)mol kg\(^{-1}\)), TA (min = 2087 \(\mu\)mol kg\(^{-1}\) and max = 2396 \(\mu\)mol kg\(^{-1}\)), and salinity (min = 30.3 and max = 33.9) across the shelf. As a result, surface \(\Omega_{\text{arag}}\) reached levels as low as 0.98 in 1996, while maximum \(\Omega_{\text{arag}}\) values were > 3 in several years (Figure 3). Offshore, DIC (min = 2072 \(\mu\)mol kg\(^{-1}\) and max = 2255 \(\mu\)mol kg\(^{-1}\)), TA (2265 \(\mu\)mol kg\(^{-1}\) and 2355 \(\mu\)mol kg\(^{-1}\)), and salinity (min = 33.4 and max = 34) were less variable, resulting in a smaller \(\Omega_{\text{arag}}\) range (min = 1.14 and max = 2.41). Additional aragonite undersaturation was detected between 100 and 200 m depth in 2005 and 2007 (Figure 3). At depths > 70 m, which is below the mixed layer depth, \(\Omega_{\text{arag}}\) was < 1.5 in all years.”

Response:
We agree and added the citation:
Lines: 470-472: “According to the Redfield ratios (C/N/P = 106:16:1, [Redfield, 1958]), photosynthetic utilization of 1 mole of NO\(_3\) increases TA by 1 umol kg\(^{-1}\) [Wolf-Gladrow et al., 2007] and decreases DIC by 106/16 (6.6).”

p 6943, line 6: I could not find any mention in the Anderson et al 2000 paper on how glacial meltwater influences aragonite saturation state. It is in the Yamamoto-Kawai paper.

Response:
We think that the Anderson paper is an appropriate citation here as it presents a nice dataset of alkalinity measurements from glacial streams. Both citations refer to the fact that DIC and TA are much lower in sea ice (Yamato-Kawai) and glacial (Anderson) meltwater. The part of the sentence that mixing of seawater with meltwater leads to dilution of \([\text{CO}_3^{2-}]\) is an explanation for the reader of the effect of lower TA and does not need a citation.

p 6944, lines 11-12: These refer to DIC drawdown in the WW layer as biological, which seems reasonable as an ultimate cause of drawdown. I suppose this drawdown will occur in the summer season? Is this correct and why can't the DIC decrease in Figure 5 be due to mixing of surface water into the WW layer or mixing of lower DIC WW water from other regions.

Response:
We agree with the reviewer that in addition to biological DIC drawdown in the WW layer, other physical mechanisms may have an influence. For example, vertical mixing could play a role either by mixing in low DIC surface waters during the summer or during the prior winters when low DIC surface water is contributing to the formation of winter water, which then carries a signal of past surface productivity.

Lines 758-762:
"The observed DIC drawdown in the winter water (Figure 5 and A3) may be a result of biological productivity, which is supported by previous observations of Chl \(a\) maxima in the euphotic part of the winter water, likely due to increased iron concentrations there [Garibotti et al., 2003; Garibotti, 2005]. However, it is also likely that lateral advection or vertical mixing of low DIC water into the winter water have caused this signal.

p 6944, lines 14-18: Is the text here referring to Figure 5? This is the only figure I could locate that shows anything that might relate to the text.

Response:
This text does not refer to a specific figure. The information was taken out of a numerical analysis and discusses the low levels measured off-shore (see section 3.1). We now mention that there is no figure for this statement.

Lines 764-766:
"Low \(\Omega_{\text{arag}}\) values (< 1.35) observed offshore coincided with surface waters supersaturated with regard to atmospheric \(\text{CO}_2\), salinities >33.5, and temperatures between 1.3 – 1.5 °C (not shown)."

p 6945, lines 10-25: Why would not accounting for the drivers of TA influence the
TA vs salinity relationship? If TA+nutrients are used, it may help the relationship with salinity, but the authors have not done this. Invoking ikaite is unlikely to explain the differences. The occurrence of ikaite in sea ice is limited and it is not clear how changes in a 1-2 m sea ice layer spread over a 50m mixed layer could have much effect (ie any effect would be diluted in the 50m thick mixed layer). This section is not much more than a statement that TA variability could be explained by just about any process. One other possible explanation is the TA measurements have a large amount of error although the methods section states the measurements are high accuracy.

Response:
We constructed the TA relationship to estimate seasonal TA and Ω_{arag}. Because there are no nutrients available for the other seasons, there was no use in constructing a TA relationship based on nutrients. This is now more clearly described in the following lines:

Lines 536-540: “To get insights into the carbon dynamics during winter, spring, and fall, when direct measurements of DIC, TA and nutrients are either scarce or not available, we developed a regional TA algorithm (based on PAL-LTER summertime data), and in combination with seasonal LDEO pCO$_2$, salinity and temperature data, calculated Ω_{arag} for the missing seasons”

We don’t see why we can’t discuss potential reasons for the large TA variability and therefore did not change the text.

p 6946 line 16-20: Why have two high values been singled out to consider the decadal rates of change in the central sub-region? The fall and spring are when rapid change might occur and it is not clear from Table 3 or the text if this is a persistent pattern each year or due to limited data. The more interesting data may be for winter when biological effects are small compared to Spring. Here, the decadal trend is small in the central region and similar to the atmospheric increase in the north region. Do these changes agree with Takahashi’s previous estimates and why the differences? The same applies to the fall and spring rates of change (ie why the regional differences?).

Response:
We redid the trend analysis based on the corrected version of the LDEO pCO$_2$ data set that was recently published (Takahashi et al., 2015). Furthermore, we restricted our analysis to the central sub-region, which corresponds with the LTER sampling region. As a result, none of the trends are significant anymore, which shows how difficult it is to distinguish between real secular trends and natural variability. It also corresponds with analysis done by Munroe et al., [in press]. This correction led to a variety of adjustments in the text and table 3:
Even though we did not detect any statistically significant long-term trends, the combination of ongoing ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.

3.5 Temporal trends

Trend analysis of the PAL-LTER data showed no statistically significant annual trends (at the 95% confidence level) in the measured carbon parameters, temperature or salinity in surface waters in summer between 1993 and 2012 (Table 2). As a comparison, we conducted a trend analysis for the LDEO surface underway pCO2 data set (1999 – 2013) in the same region. LDEO observations show an increasing, but not statistically significant trend in surface pCO2, supporting our results above (Table 3). The largest increasing trend was found in fall, (1.9 ± 0.95 μatm yr⁻¹), but this trend was also slightly outside the confidence interval and therefore statistically not significant.

The large uncertainties in our estimated temporal trends are caused inherently by the large spatial and temporal variability of our data. Nevertheless, our mean rates of 1.45 ± 2.97 for summer and 0.43± 0.77 μatm yr⁻¹ for winter suggest that the surface water pCO2 has been increasing at a slower rate than the atmospheric pCO2 rate of about 1.9 μatm yr⁻¹, and that the air-to-sea CO2 driving potential has been increasing. Our results may be compared with the recent analysis of the 2002-2015 time-series data obtained across the Drake Passage by Munro et al. [in press]. In the waters south of the Polar Front (their Zone 4, closest to the LTER area), they observed that the surface water pCO2 increased at a rate of 1.30 ± 0.85 μatm yr⁻¹ in summer and 0.67 ± 0.39 μatm yr⁻¹ in winter, which are comparable with ours along the WAP. We observed the strongest but still insignificant increase in surface pCO2 in fall (1.9 μatm year⁻¹, p = 0.0685). This increase corresponds with the mean atmospheric pCO2 increase of 1.9 μatm per year, which causes a pH decrease of about 0.02 per decade [Takahashi et al., 2014]. Interestingly, Stammerjohn et al., [2008a, 2008b] found that sea ice extent and wind are also changing most rapidly in spring and fall, which may enhance sea-air gas exchange and therefore facilitate positive pCO2 trends. Furthermore, it is likely that the strong counter effect of biological productivity successfully masks the pCO2 trend in summer, and decreased gas exchange due to sea ice weakens the trend in winter. However, the WAP climate and oceanography are regulated by large-scale atmospheric patterns, such as El Niño Southern Oscillation and Southern Annular Model [Stammerjohn et al., 2008a], which may also influence the region’s inorganic carbon chemistry on an interannual scale. A longer measurement period may be needed in order to be able to distinguish with certainty between natural variability and secular trends.
Response to anonymous referee #2:
This manuscript represents a very important evaluation of one of the highlights of longtem monitoring of the carbonate system in the Southern Ocean – the PAL-LTER program. The wider utilization of the summertime data to enable extrapolation to annual scales in conjunction with the more prolific surface pCO2 data illuminates the changing nature of the carbonate system and thus ocean acidification. The structure of the work done is very logical and well laid out. The carbonate system reporting and data analysis is generally performed and well described in accordance with common practice. However, data normalization to deep water values between cruises is not performed. Certain broad assumptions are made regarding the development of carbonate system proxies, nutrient utilization and the physical setting that weaken the scientific merit of the paper and subsequent interpretation of the results. The language of this manuscript would benefit from a general sharpening of the text. The sentences are often long and statements and descriptions of scenarios are repeated. Overall, this manuscript is a valuable contribution to the scientific field and after I suggest that this manuscript be accepted for publication after successfully addressing or challenging the comments laid out below.

General comment:
Regular mispelling of ueq – replace with _meq. Use pHT throughout to clearly denote the scale.

Response:
We changed pH to pHT. We measured/reported TA in ueq/kg and it is therefore not a misspelling. Since ueq/kg TA is equivalent to umol/kg and because this is becoming the more commonly used unit, we changed it throughout the document.

Abstract
P6930
L5 “this” dynamic system Done
L6 change “The discrete” to “Discrete” Done
L8 remove “Analysis shows”. Propose “Large spatial gradients were seen in: : :“ Done
L8 total alkalinity Done
L9 remove “from values” and bracket (<1 to 3.9) Done
L17 These were not “predictions”. They were calculated values but even this is not necessary here. Just use aragonite saturation.
The seasonal values of aragonite saturation state were salinity-based
predictions. To clarify, we added “Seasonal salinity-based predictions of \(\Omega_{\text{arag}} \).”

L19 again remove prediction. Replace with measurements? See above.

L23 replace “pointing towards” with “indicating”? substituted “with which could be”

L24 replace “provoke” by “induce”? Done

L25 remove “what” Done

Introduction

P6931
L5 use general “change” Done
L9 higher trophic organisms. Krill and fish are not species. Done
L11 oceanographic Done

P6932
L1 not sure what you mean by “timing of sampling”. Time of year? Added Lines 132-133: “…, but possibly also the timing of sampling in relation to the timing of sea ice retreat and phytoplankton blooms”
L1-2 remove “dark” and “months”. Done
L8 remove “a” and change timescale to timescales Done
L22. Replace “has” with “have”. Done

P6933
L11 remove “of each transit” Done
L26 “variables” not “parameters” Done

P6934
L20 replace “calculations” with “procedure” or “program” Done
L24 remove “well” Done

P6935
L18 remove “of” Done
L24. They are “offsets” in CT and AT and not “errors” Done
L25 “differences” not “errors” Done

P6936
L6. There is no direct AT v T plot and no correlation information in Figure A2. Response:
The correlation information is in the text. We now point to the figure in relation to the salinity-TA algorithm:

Lines 540-541:
“Due to the weak correlation between PAL-LTER temperature and TA (\(r = 0.50 \)), we based the TA algorithm on salinity only (Figure A2, \(r = 0.88 \)).”

L20. An evaluation of the error in calculated pH would be useful here too. Done

Lines 552-554:
“In combination with the pCO\(_2\) measurement precision of 3 uatm, the RMSE of
TA prediction resulted in a mean error in calculated Ω_{arag} of 0.0219 units pHT of 0.0043 [Glover et al., 2011]."

Response: We agree with the reviewer that some data show surprisingly high ammonium stocks in this region. But typical levels are around ~1 uM/liter over much of the study area, which are much lower than NO3 (Serebrennikova and Fanning, 2004). Furthermore, net community production, which is therefore likely based on NO3 uptake, is responsible for the DIC drawdown.

This is clarified here:
Lines 421 – 425: “Since nitrate is more abundant than ammonium in WAP surface waters [Serebrennikova and Fanning, 2004], nitrate was assumed as the nitrogen source. With a Redfield stoichiometry of 6.6 mol C/mol N then TA should increase by $1/6.6 = +0.15$ mol TA per umol DIC consumed. Precipitation of biological CaCO$_3$ material reduces both DIC and TA with the effect on TA twice as large as that on DIC (2 umol /umol)."

Response: We think that constant atmospheric pCO2 is good enough for this back-of-the-
envelop calculation, especially given the fact that we only have seawater pCO2 measurements from January or February, which are extrapolated to rest of the summer months.

L26 Is this globally averaged transfer rate representative of the Southern Ocean?
Response:
The gas transfer rate used for this calculation is the estimated gas transfer rate for the Southern Ocean and is not as previously stated a global mean. We thank the reviewer for paying close attention and are glad that we caught this mistake. Lines 480-484: “To account for DIC concentration changes due to gas exchange with the atmosphere, we assumed a constant atmospheric concentration of 390 μatm between 1993 and 2012, and a gas transfer rate (k) of 5 (±1) milli-mol CO₂ m⁻² μatm⁻¹ month⁻¹, which is the estimated mean rate for the Southern Ocean area south of 62 °S [Takahashi et al. 2009].”

P6940
L3 As the MLD can be easily calculated from the CTD profiles, why choose a “d” of 50m. The episodic nature of wind-stress and a rapidly evolving MLD require that a much more locally informed, at a minimum a monthly climatological value should be used.
Response:
There are no CTD profiles for the months November and December. We therefore chose to use the published value of summer average mixed layer depth.

P6943
L7 sDIC We don’t understand this comment.

P6944
L14 replace “overlapped” with “coincided” Done

P6946
L18 replace “what was” with “that” Done
L25 Calculate not predicted pH replaced with “estimated”

P6947
L2 Replace “Additional decades” with e.g. “A longer measurement period” Done
L4 replace “predicted” with “calculated” replaced with “estimated”
L16 “to” be able to Done
Table 1.
Legend: Remove “statistics for” Done
Why were only selected years chosen for Figure A1? Figure now shows all years. Table 2. According to your criterion, none of the trends are statistically significant. This needs to be stated more clearly. Why are the regional trends not shown? These are much more important than the dataset mean.
Response:

“3.5 Temporal Trends” states this clearly; Lines 630-637: “Trend analysis of the PAL-LTER data showed no statistically significant annual trends (at the 95% confidence level) in the measured carbon parameters, temperature or salinity in surface waters in summer between 1993 and 2012 (Table 2).”

Trends from the north are not shown because PAL-LTER data is only available from the central sub-region.

Figure 2. These plots clearly show the offset between cruises in the deep water. Why were the data not corrected according to the practice adopted for CARINA, for example? Or can you show that the offset are due to spatial differences?

Response:

Since 1980s, DIC measurements were calibrated using the CRM (produced by A. Dickson, SIO), which was, in turn, based upon C. D. Keeling’s manometric CO₂ determinations. The CRM used are reported to be accurate to ± 1 umol/kg. The WOCE/CLIVAR section and Palmer time-series ocean DIC data presented in Fig. 2 are all based upon the CRM, and the precision of the shipboard DIC measurements has been estimated to be about ± 2 umol/kg. Although measurements are also subjected to expedition-to-expedition variability, differences in DIC values exceeding ± 3 umol/kg may be attributed to time-space variability of the ocean. We will add a brief mention of underlying commonality of the CRM calibration to the text (Line 241).

As noted by the reviewer some inorganic carbon synthesis projects such as GLODAP and Carina have used deep-water cross-over analysis and related techniques to generate suggested corrections for DIC. In the regional deep-water DIC data shown in Figure 2, we did not feel that there were sufficient offsets between the Palmer DIC data and the WOCE/CLIVAR DIC to warrant any offset.

Figure 3. This is not a very clear figure. The data density is too great and the colour coding is too similar for many of the years. Please simplify or remove.

Response:

We agree with the reviewer. We changed the color-coding to all black (now Figure 3) and just pointed out a few special data points that were mentioned in the text.

Figure 5. This figure does not, contrary to its legend, depict the physical and biological controls on inorganic carbon chemistry. We removed the title.

Figure 6. Similarly, the legend is misleading. Not all the processes leading to the movement in TA/DIC space are of biological nature. The grey dots and lines should have a slightly darker shading. We removed the title and adjusted the figure.

Figure 7. Please explain better the plot in the legend. “Nutrient consumption” is
incomplete and incorrect regarding the lower plot. “Nutrient consumption” is removed
Figure 8. There are no “dynamics” shown in this plot. Replaced with “system”
Figure 9. Here is stated that after “clear outliers were removed”. In both plots
there are differences between the two approaches of 150ppm. What criterion was used to define that these were also not clear outliers?
Response:
As stated in the text, we removed all outliers that showed a bigger difference than 150 ppm. To make this more clear, we added the following sentence to the figure caption:
Lines 1159-1160:
PAL-LTER pCO2 outliers that underestimate/overestimate pCO2 relative to the underway observations by more than 150 uatm were removed

Please also see the figure below, which shows that the difference between the two datasets is < 150 uatm after removing the outliers.

Figure A2. Remove “prediction”. Plot a. is the specific alkalinity relationship. Plot b. x-axis label “observed” Done
Figure A3.
Correct “temperature” Done
Two decades of inorganic carbon dynamics along the Western Antarctic Peninsula

Claudine Hauri1,2, Scott C. Doney3, Taro Takahashi4, Matthew Erickson5, Grant Jiang6, and Hugh W. Ducklow5

1 International Pacific Research Center, SOEST, University of Hawai‘i, Honolulu, HI, USA.
2 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA.
3 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
4 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.
5 Antarctic Support Contractor, Arlington, VA, USA.
6 School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia.

Correspondence to: C. Hauri (chauri@hawaii.edu)

Keywords: Southern Ocean, carbon dioxide, ocean acidification, climate change, trend, Redfield ratio
Abstract

We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO$_2$ measurements provide unique insights into the spatial, seasonal and interannual variability of this dynamic system. Discrete measurements from depths >2000 m align well with World Ocean Circulation Experiment observations across the time-series and underline the consistency of the data set. Surface total alkalinity and dissolved inorganic carbon data showed large spatial gradients, with a concomitant wide range of Ω$_{arag}$ (< 1 up to 3.9). This spatial variability was mainly driven by increasing influence of biological productivity towards the southern end of the sampling grid and melt water input along the coast towards the northern end. Large inorganic carbon drawdown through biological production in summer caused high near-shore Ω$_{arag}$ despite glacial and sea-ice melt water input. In support of previous studies, we observed Redfield behavior of regional C/N nutrient utilization, while the C/P (80.5 ± 2.5) and N/P (11.7 ± 0.3) molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal salinity-based predictions of Ω$_{arag}$ suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than 20% of the predictions for winters and springs between 1999 and 2013 resulted in Ω$_{arag}$ < 1.2. Such low levels of Ω$_{arag}$ may have implications for important organisms such as pteropods. Even though we did not detect any statistically significant long-term trends, the combination of ongoing ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.
1 Introduction

Antarctic continental shelves are viewed as strong anthropogenic CO$_2$ sinks and therefore play an important role in global biogeochemical cycles [Arrigo et al., 2008]. These highly productive regions also support ecosystems that are exposed to rapid environmental change [Ducklow et al., 2007, 2012]. Conditions along the western shelf of the Antarctic Peninsula (WAP, Figure 1) are characterized by rapid ocean-atmosphere warming, sea-ice retreat and melting of glaciers [Ducklow et al., 2012; Stammerjohn et al., 2012; Meredith et al., 2013], impacting phytoplankton concentrations [Montes-Hugo et al., 2009] and higher trophic level organisms such as krill, fish, and Adélie Penguins [Ducklow et al., 2007, 2012; Schofield et al., 2010]. Climate and oceanographic trends are also mirrored in the inorganic carbon dynamics, which could feed back to global carbon cycling and/or enhance the projected fast progression of Southern Ocean acidification [McNeil and Matear, 2008; Steinacher et al., 2009; Bopp et al., 2013], thereby imposing additional environmental stressors on the ecosystem.

In the WAP, carbon biogeochemistry is controlled by an interplay of physical and biological mechanisms, which include photosynthesis, respiration, freshwater input, gas exchange, sea-ice cover, winds, and horizontal advection [Carrillo and Karl, 1999; Carrillo et al., 2004; Wang et al., 2009; Montes-Hugo et al., 2010]. The physical oceanography of the region is strongly influenced by equatorward flow at the continental shelf/slope break associated with the eastward flowing Antarctic Circumpolar Current that abuts the continental slope along the WAP region. On the shelf, there are indications of one or more cyclonic circulation cells with poleward flow inshore [Hofmann et al., 1996; Dinniman and Klinck, 2004; Martinson et al., 2008]. Water mass properties are strongly influenced by subsurface intrusions onto the continental shelf of warm, nutrient and DIC rich Upper Circumpolar Deep Water (UCDW), that appears to be modulated by topographic depressions and canyons [Martinson et al. 2008; Dinniman et al., 2011; Martinson and McKee, 2012]. In winter, respiration processes and the entrained deep CO$_2$-rich water increase the DIC concentration in surface waters to supersaturated levels of CO$_2$ with respect to the atmosphere [Carrillo et al., 2004; Wang et al., 2009; Tortell et al., 2014; Legge et al., 2015]. From austral spring through summer, sea-ice retreats from north to south and from offshore to inshore [Smith and Stammerjohn, 2001]. If not...
counteracted by strong winds, freshwater from melting sea-ice, glaciers and snow

[Meredith et al., 2013] stabilizes the water column in close proximity to the inshore and

southward moving sea-ice edge. Stratification and presumably iron availability provide

favorable conditions for phytoplankton blooms [Garibotti et al., 2003, 2005; Vernet et

al., 2008], resulting in a strong downwelling of dissolved inorganic carbon (DIC) and flux

of CO$_2$ from the atmosphere into the ocean [Carrillo et al., 2004; Montes-Hugo et al.,

2009; Wang et al., 2009]. Subsequent iron depletion results in a decreasing trend of

chlorophyll a (Chl a) from onshore to offshore, with interannual differences in the

gradient strength, depending on the onset of the sea-ice retreat [Garibotti, 2005; Garibotti

et al., 2005], but possibly also the timing of sampling in relation to the timing of sea ice

retreat and phytoplankton blooms.

The inorganic carbon dynamics are further complicated by large-scale

atmospheric patterns. The El Niño Southern Oscillation (ENSO) and Southern Annular

Mode (SAM) drive the WAP climate and oceanography on interannual to multidecadal
timescales [Yuan and Martinson, 2001; Stammerjohn et al., 2008a]. During La Niña

years, storms become longer and more intense, temperatures increase and sea ice extent

decreases in the WAP region as a result of a strong low-pressure system driven by the

poleward displacement of the polar jet [Yuan, 2004]. Positive SAM phases are also

associated with positive temperature anomalies over the Antarctic Peninsula and

decreased sea-ice extent [Kwok, 2002; Stammerjohn et al., 2008]. Furthermore, the SAM

brings the Southern Hemisphere westerly winds closer to Antarctica, which amplifies the
typical features of La Niña. During these periods, nutrient and CO$_2$-rich Circumpolar

Deep Water intrudes more frequently on to the shelf [Martinson et al., 2008], potentially

increasing [CO$_2$] on the shelf. On the other hand, weaker and fewer storms and spatial

and temporal extension of sea-ice coverage are observed in negative phases of SAM, with

associated stronger stratification of the water column and enhanced biological

productivity [Saba et al., 2014]. These features are further intensified when a negative

SAM coincides with El Niño [Stammerjohn et al., 2008b].

The WAP oceanography and ecosystem have been intensely observed as part of

the PAL-LTER (Palmer Long Term Ecological Research) program

(http://pal.lternet.edu/) over the past two decades [Ducklow et al., 2007, 2012]. Since
1993, this multifaceted data set also contains seawater inorganic carbon measurements
taken each January along transects shown in Figure 1. We complement the summertime
inorganic carbon measurements from PAL-LTER with surface underway pCO₂
measurements that cover all four seasons [Takahashi et al., 2015]. Here, we describe the
spatial, seasonal and interannual variability of the inorganic carbon system over the past
two decades with the intention to improve our understanding of the main physical and
biological controls. Furthermore, such a uniquely long data set allows us to gain first
insights into the impacts of ocean acidification on the region.

2 Data and Methods

2.1 In situ data and calculation of carbonate system variables
We used discrete measurements of seawater DIC, total alkalinity (TA) and nutrients
collected from ship-based cruises as part of the PAL-LTER program, along with
temperature and salinity from CTD casts. The data were gathered along the PAL-LTER
sampling grid (Figure 1), which runs 500 km along the coast and 250 km across the shelf.
The along shelf transects were spaced every 100 km, with 20 km between the stations.
The data were collected on an annual summertime cruise each January - February from
1993 through 2012. Carbon system sample collection and analysis were performed by
David Karl and Chris Carrillo for data prior to 2003, and by Hugh Ducklow and Matthew
Erickson for data from 2003 onward, with the exception that DIC analysis was done by
Taro Takahashi in 2003 and 2004. No TA data were collected during 2003-2004.

Following the WOCE-JGOFS protocols, discrete samples of DIC and TA (300
ml) from Niskin bottle casts were preserved with 200 μl saturated HgCl₂ solution and
sealed [Dickson and Goyet, 1994]. DIC was analyzed by coulometric determination of
extracted CO₂ [Johnson et al., 1987]. TA was measured with the potentiometric titration
method. Certified Reference Materials (provided by A.G. Dickson, Scripps Institution of
Oceanography) were used to assure internal consistency of data with a precision of ±2
μmol kg⁻¹ for DIC and ±5 μmol kg⁻¹ for TA. Water for inorganic nutrient analysis was
subsampled from Niskin bottles into acid washed 50 mL Falcon tubes and frozen at -70
°C. The samples were first analyzed using a Lachat Quickchem 8000 autoanalyzer at the
University of California at Santa Barbara Marine Science Institute Analytical Lab (1993-
243 Inorganic nutrient data reach a precision of ±1%. All PAL-LTER data and a detailed description of the sampling methodology are publicly available at http://pal.lternet.edu/(dissolved inorganic nutrients, PAL-LTER dataset 27).

247 Calculated pH and saturation state for aragonite (Ω_{arag}) were determined from DIC, TA, temperature, salinity, phosphate, silicate and pressure using the CO2SYS MATLAB version [van Heuven et al., 2011]. To determine the carbonate variables we applied the dissociation constants for carbonic acid by Dickson and Millero, [1987] (refit from Mehrbach et al., [1973]). The CO2 solubility equations of Weiss, [1974], and dissociation constants for boric acid by Dickson, [1990] were also used to determine pH and Ω_{arag}. pH is reported on the total H+ ion concentration scale (pHT).

249 The Lamont-Doherty Earth Observatory (LDEO) measured underway-surface pCO2 with a precision of ±0.5%, together with salinity and temperature in various seasons between 1999 and 2013, using a shower-type water-gas equilibrator and infrared CO2 gas analyzer (see www.ldeo.columbia.edu/pi/CO2 for the operational and engineering details [Takahashi et al., 2015]). A range of five standard gas mixtures spanning between 100 ppm and 700 ppm mole fraction CO2 certified by the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA) was used to calibrate the system every four hours.

252 2.2 Comparison with deep-water WOCE/CLIVAR inorganic carbon system data

254 We checked the consistency of the PAL-LTER DIC and TA data by comparing PAL-LTER deep-water (> 2000 m), offshore TA and DIC measurements to deep-water data collected during the World Ocean Circulation Experiment (WOCE) and Climate and Ocean – Variability, Predictability, and Change (CLIVAR) cruises along parts of sections A21 and S4P that were overlapping with the PAL-LTER grid (data available at http://www.nodc.noaa.gov/woce/wdiu/). The WOCE and CLIVAR shipboard measurements were calibrated using seawater certified reference materials (prepared by A. G. Dickson, Scripps Institute of Oceanography), leading to an estimated precision of ±2 μmol kg$^{-1}$ DIC was measured on all cruises. When necessary, TA was calculated from DIC and either fCO2 or pCO2 following the same procedure as described in Section.
2.1. Figure 2a shows the stations along the WAP where deep-water samples were taken during PAL-LTER and WOCE cruises. PAL-LTER DIC and TA measurements were within the range of sampled/calculated DIC and TA from the WOCE and CLIVAR cruises, (Figures 2b and c). After removing five outliers, mean deep-water DIC (DIC\text{mean} = 2260.6 ± 3.8 µmol kg\(^{-1}\)) and TA (TA\text{mean} = 2365.4 ± 7.0 µmol kg\(^{-1}\)) from PAL-LTER cruises corresponded well with the data measured/calculated from WOCE cruises (DIC\text{mean} = 2261.8 ± 3.0 µmol kg\(^{-1}\) ; TA\text{mean} = 2365.9 ± 9.3 µmol kg\(^{-1}\)).

2.3 Comparison with underway-surface pCO\(_2\) data

We also undertook a quality check of the PAL-LTER discrete surface DIC and TA data (depth < 5 m) by comparing PAL-LTER pCO\(_2\), which was calculated using observed DIC and TA values, to LDEO pCO\(_2\). LDEO pCO\(_2\) samples that were collected during the PAL-LTER cruises were spatially matched with the PAL-LTER derived pCO\(_2\) values by choosing the nearest latitude and longitude pair within a 1 km distance. Four PAL-LTER pCO\(_2\) outliers that underestimate/overestimate pCO\(_2\) relative to the underway observations by more than 150 µatm were removed. Analysis of the corrected data set with a Linear Regression Type II model suggests a correlation of \(r = 0.82 \) (Figure A1, Table 1). Some of the observed discrepancies may be attributed to errors in matching the time of bottle samples with those of underway pCO\(_2\) measurements. Seawater inorganic carbon chemistry is highly variable along the WAP due to the influence of productivity, respiration, freshwater and upwelling of CO\(_2\)-rich subsurface water [Carrillo et al., 2004]. Small matching errors may therefore introduce small DIC and TA offsets, which would translate into larger fractional differences in pCO\(_2\) due to the large Revelle Factor (\(\frac{\partial pCO_2}{\partial DIC} \)) in pCO\(_2\) / DIC common in the region [Sarmiento and Gruber, 2006].

3 Results

Here, we examine the observed spatial summer patterns of DIC, TA, pH and \(\Omega_{arag} \) along the WAP and explore the underlying biological and physical drivers. We then discuss regional carbon – nutrient drawdown ratios and present our seasonal \(\Omega_{arag} \) predictions that give initial insights into the chemical environment in the more poorly sampled spring, fall...
and winter months. Finally, using the LTER and LDEO data sets, we investigate temporal trends over the past two decades.

3.1 Spatial summertime patterns of the inorganic carbon system

Surface waters in the PAL-LTER region exhibited high spatial and interannual variability of DIC (min = 1850 µmol kg\(^{-1}\) and max = 2173 µmol kg\(^{-1}\)), TA (min = 2087 µmol kg\(^{-1}\) and max = 2396 µmol kg\(^{-1}\)), and salinity (min = 30.3 and max = 33.9) across the shelf. As a result, surface \(\Omega_{arag}\) reached levels as low as 0.98 in 1996, while maximum \(\Omega_{arag}\) values were > 3 in several years (Figure 3). Off-shore, DIC (min = 2072 µmol kg\(^{-1}\) and max = 2255 µmol kg\(^{-1}\)), TA (2265 µmol kg\(^{-1}\) and 2355 µmol kg\(^{-1}\)), and salinity (min = 33.4 and max = 34) were less variable, resulting in a smaller \(\Omega_{arag}\) range (min = 1.14 and max = 2.41). Additional aragonite undersaturation was detected between 100 and 200 m depth in 2005 and 2007 (Figure 3). At depths > 70 m, which is below the mixed layer depth, \(\Omega_{arag}\) was ≤ 1.5 in all years.

To gain a spatial overview of the general summertime surface features (upper 5 m), we linearly interpolated the observations in space and averaged across years with available DIC and TA (or nutrient) measurements. Averages are only shown for regions where samples were taken in more than 5 years (Figure 4). The resulting pCO\(_2\), pH, \(\Omega_{arag}\), TA, salinity, DIC, and nutrient fields exhibited clear onshore–offshore gradients. With the exception of DIC, all variables also followed a north-south gradient. Mean summertime surface pCO\(_2\) was lowest (<200 µatm) in the southern coastal region and was about 60 to 70 µatm lower than in the northern near-shore regions (Figure 4a). The highest mean summertime pCO\(_2\) values were found in the northern slope region (300-325 µatm). The opposite pattern was reflected in \(\Omega_{arag}\) and pH, with highest values (\(\Omega_{arag}\) max = 2.6 and pH max = 8.3) close to the coast and south of 66.5°S (Figures 3b and c), decreasing along the coast towards the north to pH ~8.2 and \(\Omega_{arag}\) ~1.9, and reaching the lowest levels in northern offshore waters (pH min = 8.1; \(\Omega_{arag}\) min = 1.7). TA also exhibited north-south and onshore–offshore gradients, with values as low as 2185 µmol kg\(^{-1}\) in the northern near-shore regions and as high as > 2300 µmol kg\(^{-1}\) offshore. The low TA values along the northern part of the coast coincided with the lowest salinity values of 31.8, suggesting dilution of TA due to freshwater input (Figures 3d and e). Higher TA
values offshore were also reflected in increased DIC and salinity concentrations, with temperatures between 1.3 – 1.5 °C. DIC also exhibited an onshore–offshore gradient with values about 80 to 100 µmol kg⁻¹ lower in the near shore region compared to offshore, but there was no significant north-south gradient despite the presence of freshwater in the north (Figure 4f). Salinity normalized DIC (sDIC, normalized with UCDW salinity = 34.7) was lowest in the southern region, thereby indicating that biological processes likely counteracted the expected north-south DIC gradient due to the pronounced freshwater influence on DIC in the north (Figure 4g).

3.2 Physical and biological drivers of the inorganic carbon system

In this section we examine the physical and biological mechanisms that control the observed variability in DIC and TA. DIC can decrease (increase) through dilution with freshwater (evaporation), organic matter production (remineralization), CO₂ outgassing to the atmosphere (CO₂ uptake) and/or precipitation of CaCO₃ (dissolution). While positive net community production decreases DIC, the biological effect of organic matter production on TA depends on the source of nitrogen, where nitrate consumption increases TA and ammonium consumption decreases TA [Goldman and Brewer, 1980]. Since nitrate is more abundant than ammonium in WAP surface waters [Serebrennikova and Fanning, 2004], nitrate was assumed as the nitrogen source. With a Redfield stoichiometry of 6.6 mol C/mol N then TA should increase by 1/6.6 = +0.15 umol TA per µmol DIC consumed. Precipitation of biological CaCO₃ material reduces both DIC and TA with the effect on TA twice as large as that on DIC (2 umol/µmol). TA is not affected by gas exchange but does vary as a result of dilution and evaporation.

Indications of surface reductions in TA and DIC due to freshwater input are evident along the WAP, and therefore freshwater processes (sea-ice and glacial melt, precipitation) [Meredith et al., 2013] appear to be important factors influencing the summertime carbon dynamics along the WAP. Figure 5 shows TA (circles) and DIC (diamonds) as a function of salinity. The black lines represent the dilution lines for TA and DIC, which were calculated following Yamamoto-Kawai et al., [2009]. UCDW end members are based on average TA and DIC concentrations in the water mass identified as...
UDCW (black frames) [Martinson et al., 2008]. Upper-ocean TA follows its dilution line closely, with stronger positive deviations of about 35 \(\mu \text{mol kg}^{-1} \) on average. In contrast, DIC values fall considerably below the dilution line. A DIC drawdown of about 60 \(\mu \text{mol kg}^{-1} \) is visible in the winter water (grey diamonds), which increased to more than 200 \(\mu \text{mol kg}^{-1} \) in the mixed layer, leading to \(\Omega_{\text{mix}} \) as low as 1.5 and as high as 3.9.

The DIC drawdown relative to the salinity mixing-dilution line is most likely due to biological production of organic matter. Figure 6 shows sDIC as a function of salinity-normalized TA (sTA) for waters shallower than UCDW (orange dots). The regression line (solid black line, sTA = -0.11 x sDIC + 2601, RMSE = 18.6) ± 2\(\sigma \) (dashed lines) for estimated measurement precision (\(\sigma = +/- 5 \mu \text{mol kg}^{-1} \)) is similar to the nitrate-based photosynthesis line (blue line), indicating that the large decrease in DIC with the concomitant smaller increase in TA was mainly due to net biological production of organic matter. The photosynthesis line is based on winter water (WW) DIC and TA end-members (blue dots) and a slope of -1/6.2. According to the Redfield ratios (C/N/P = 106:16:1, [Redfield, 1958]), photosynthetic utilization of 1 mole of NO\(_3\) increases TA by 1 \(\mu \text{mol kg}^{-1} \) [Wolf-Gladrow et al., 2007] and decreases DIC by 106/16 (6.6). However, since the TA titration was performed to a pH\(_T\) of about 3, the TA values include residual PO\(_4\)\(^3-\), which leads to this slightly shallower slope of 6.2.

The intense, biologically driven DIC drawdown and resulting pCO\(_2\) undersaturation in the mixed layer may have led to some CO\(_2\) uptake from the atmosphere that tends to reduce the apparent DIC deficit; thus the estimated biological drawdown from observed DIC values in Figure 6 may be underestimated and needs to be corrected for air-sea CO\(_2\) gas exchange from the period of biological drawdown to the sampling time. To account for DIC concentration changes due to gas exchange with the atmosphere, we assumed a constant atmospheric concentration of 390 \(\mu \text{atm} \) between 1993 and 2012, and a gas transfer rate (k) of 5 (±1) \(\text{milimol CO}_2 \text{ m}^{-2} \text{ day}^{-1} \text{ month}^{-1} \), which is the estimated mean rate for the Southern Ocean area south of 62 \(^\circ \)S [Takahashi et al. 2009]. The change in DIC (\(\mu \text{mol kg}^{-1} \text{ month}^{-1} \)) due to gas transfer into the mixed layer (ML) of d meters depth is:

\[
\Delta \text{DIC} = k \star A \star \Delta \text{pCO}_2 / d.
\]
ΔpCO$_2$ (pCO$_2$$_{atm}$ - pCO$_2$$_{ML}$) was between -143 µatm and 312 µatm, indicating that there was potential for both oceanic CO$_2$ uptake and outgassing. Assuming that d = 50 m [Ducklow et al., 2013], we estimate that the monthly ΔDIC due to air-to-sea CO$_2$ gas exchange was in the range of -14 to 31 µmol kg$^{-1}$ month$^{-1}$. Since the first large phytoplankton blooms generally occur after the sea-ice retreats in November (Δt ~ 3 months), we assume that by the time of sampling at the end of January, ΔDIC would fall in the range -43 to 94 µmol kg$^{-1}$. The DIC corrected for gas exchange is illustrated as grey dots in Figure 6. While applying the gas exchange correction flattens the regression line (grey line) somewhat, the photosynthesis line (blue) still remains within the estimated error bounds of the gas exchange corrected regression line (grey dotted lines), further emphasizing that photosynthesis is the key biological driver of the summertime carbonate system west of the Antarctic Peninsula.

3.3 Nutrient vs. carbon drawdown

Ocean carbon, nitrogen and phosphorus cycles are governed by organic matter production and subsequent remineralization and are strongly correlated on a global average with the proportions C/N/P = 106:16:1 [Redfield, 1958]. Our findings suggest that the carbon-nutrient cycles along the WAP depart from the standard Redfield values (Figure 7). In a few samples, the standing stock of PO$_4^{3-}$ became depleted before NO$_3^-$, and overall the regression indicates a low N:P ratio of 9.8 ± 0.4 in the mixed layer (Figure 7a, black) and N:P = 11.7 ± 0.3 for all data (dark grey) relative to the standard Redfield value of 16 molN/mol P. The mole/mole C:P ratio was also considerably smaller than the Redfield ratio (Figure 7b). C:P yielded 43.1 ± 2.3 in the mixed layer and 55.0 ± 1.7 for all data. However, after applying the gas exchange correction on DIC (see section 3.2), the C:P ratio shifted closer to the Redfield Ratio and resulted in a value of 80.5 ± 2.5 (light grey dots and lines). Correcting the DIC for gas exchange shifted the molar ratio from 4.5 ± 0.2 (mixed layer depth) and 4.7 ± 0.1 (all data) to 6.7 ± 0.2 and resulted in a Redfield-like C:N ratio.

3.4 Seasonal variability
To get insights into the carbon dynamics during winter, spring, and fall, when direct measurements of DIC, TA and nutrients are either scarce or not available, we developed a regional LDEO algorithm (based on PAL-LTER summertime data). In combination with seasonal LDEO pCO₂, salinity and temperature data, we calculated Ω₌ₑgas for the missing seasons. Due to the weak correlation between PAL-LTER temperature and TA (r = 0.50), we based the TA algorithm on salinity only (Figure A2, r = 0.88). Applying the Akaike information criterion [Burnham and Anderson, 2002], we determined that TA along the WAP will be best represented by a first order linear model. We then randomly divided the PAL-LTER surface measurements (depth <5 m) into 10 data subsets using the 10-fold cross validation method [Stone, 1974; Breiman, 1996]. Using 9 of the ten data sets we derived a regression model, predicted the TA with the model, and calculated the model coefficients and root mean square errors (RMSE). We repeated these steps so every data subset was left out once. The coefficients for the final model were calculated from the mean of the ten regression coefficients. We found the best fit in the following equation:

\[
\text{TA}^{\text{pred}} \text{ (µmol kg}^{-1}\text{) } = 57.01 \pm (0.88) \times S + 373.86 \pm (35.26),
\]

which resulted in a linear correlation coefficient of \(r = 0.88\) and a RMSE of 15.2 µmol kg\(^{-1}\) (Figure A2). In combination with the pCO₂ measurement precision of 3 µatm, the RMSE of TA prediction resulted in a mean error in calculated Ω₃ₑgas of 0.0219 units and pHₐ of 0.0043 [Glover et al., 2011]. Note that the calculated Ω₃ₑgas and pHₐ estimates implicitly require that the approximately linear summertime TA-salinity relationship holds for the other seasons, a reasonable assumption if dilution and mixing substantially affect TA patterns.

Summertime LDEO underway pCO₂ values were, on average, lower than during the rest of the year (Figure 8a). While only a small percentage of these summertime values reached levels higher than the atmospheric CO₂ concentration, 70% of the water samples taken in winter were supersaturated with regard to atmospheric CO₂ (>390 µatm). Spring and fall pCO₂ values were also generally higher than summertime measurements and ranged from 207 to 506 µatm and 90 to 414 µatm.

Our salinity-based algorithm predicted the majority of all TA ranging between 2200 and 2300 µmol kg\(^{-1}\) in all seasons, with the most frequent occurrence of highest TA...
in winter and spring (Figure 8b). Some summertime TA was predicted to be as low as 2056 μmol kg⁻¹.

The largest increasing trend was found in fall (at the 95% confidence level) for the LDEO data set (1999 – 2013) in the same region. LDEO observations show an increasing, but not statistically significant trend in surface pCO₂, supporting our results above (Table 3). The largest increasing trend was found in fall (1.9 ± 0.5 μatm yr⁻¹), but this trend was also slightly outside the confidence interval and therefore statistically not significant.

4 Discussion

The 20 year-long PAL-LTER seawater inorganic carbon time-series showed a distinct upper-ocean spatial pattern of onshore–offshore and north – south gradients and suggests that the summertime carbon dynamics are primarily controlled by biological productivity and freshwater input in near-shore areas.

Surface Ωₐrag was distributed across a wide range (<1 to values > 3) in freshwater-influenced areas with salinities S < 32 (Figure 5). To better understand how such a wide range of Ωₐrag at relatively low salinities was possible, we quantified the effect of freshwater and biological production. Mixing of seawater with sea-ice or glacial
meltwater leads to a ‘dilution’ of CO$_3^{2-}$ ions and a decrease in Ω_{arag} because TA and DIC in glacial and sea-ice meltwater are much lower than in seawater [Anderson et al., 2000; Yamamoto-Kawai et al., 2009]. Calculations of salinity normalized Ω_{arag} using sDIC and sTA showed that freshwater input decreased Ω_{arag} by up to 0.2 units along the coast. Despite the negative effect of freshwater on Ω_{arag}, the water in the south was nonetheless highly supersaturated with CaCO$_3$. The salinity normalized DIC in the near-shore southern region of the PAL-LTER sampling grid was up to 177 µmol kg$^{-1}$ lower than elsewhere, suggesting that near-shore phytoplankton blooms balanced out the negative effect of freshwater on Ω_{arag} and even increased Ω_{arag} by up to 2 units. In 2005, when the above-described pattern was particularly conspicuous, high Chl a (up to 20 µg/L) in the southern coastal area of the sampling grid provides further evidence that high primary productivity led to the observed high Ω_{arag} despite the presence of freshwater. Similar results were found after the calving event of the Mertz glacier tongue in eastern Antarctica, where enhanced primary productivity increased the Ω_{arag} and thereby counteracted the effect of dilution by meltwater input [Shadwick et al., 2013].

Our findings of onshore-offshore and latitudinal gradients of carbon parameters are supported by previous results that suggest similar patterns for several physical and biogeochemical parameters. Summertime surface temperature, salinity and NO$_3^-$ + NO$_2^-$ are generally lower close to the coast, while Chl a, primary production, Si(OH)$_2$ and water column stability decrease from the coast toward the open ocean [Smith, 2001; Garibotti et al., 2003; Vernet et al., 2008]. The freshwater along the coast may originate, to a large part, from melting of glacial ice and snow [Meredith et al., 2013]. Such glacial and snow-melt plumes have been correlated with increased primary production due to a stabilization of the mixed layer, which creates favorable conditions for phytoplankton blooms [Dierssen et al., 2002]. This in turn is thought to be the dominant control of the onshore-offshore gradient of phytoplankton variability and associated biologically-impacted parameters. The north-south gradients possibly reflect the timing of phytoplankton blooms in the north and south. As such, blooms in the north occur sooner than blooms in the south [Smith et al., 2008] – thus on average the PAL-LTER January cruise takes place after the bloom in the north, and during the blooms in the south. This may also be the reason for the nutrient depletion along the coast, despite low biological
productivity at the time of sampling in the north (Figure 4h and i). However, it is important to note that as a result of changes in ice cover, cloud formation and wind over the past 30 years, biological productivity has increased in the southern part of the WAP and significantly decreased north of 63°S [Montes-Hugo et al., 2009]. The observed DIC drawdown in the winter water (Figure 5 and A3) may be a result of biological productivity, which is supported by previous observations of Chl a maxima in the euphotic part of the winter water, likely due to increased iron concentrations there [Garibotti et al., 2003; Garibotti, 2005]. However, it is also likely that lateral advection or vertical mixing of low DIC water into the winter water have caused this signal.

Low Ω_{arag} values (< 1.35) observed offshore coincided with surface waters supersaturated with regard to atmospheric CO$_2$, salinities >33.5, and temperatures between 1.3 – 1.5 °C (not shown). These physical properties are associated with modified UCDW, a mixture between UCDW and Antarctic Surface Water [Smith et al., 1999] and indicate that upwelling of DIC and TA rich water into the mixed layer may lead to lower Ω_{arag} conditions offshore [Carrillo et al., 2004].

The PNL-LTER data indicate N:P uptake ratios lower than the Redfield ratio of 16:1, and uptake ratios similar to our findings (14:1) are common for the polar region of the Southern Ocean [Weber and Deutsch, 2010; Martiny et al., 2013]. Our observed low ratio may be the result of a high abundance of diatoms with low N/P ratios in this cold and nutrient-rich environment [Arrigo, 1999; Arrigo et al., 2002; Green and Sambrotto, 2006; Martiny et al., 2013]. Rubin et al., [1998] observed a similar N/P ratio of 13.0 ± 1.2 in the mixed layer south of the Polar Front, and an even lower N/P ratio of 11.3 ± 0.3 was observed in the iron-spiked mixed layer during the iron fertilization experiment in the Subantarctic South Pacific [Hales and Takahashi, 2012]. Consistent with the low N/P ratio, the observed C:P ratio (80.5 ± 2.5, corrected for gas exchange) was also lower than the classic Redfield ratio. This indicates that the regional phosphate cycle shows non-Redfield behavior, which is in agreement with the observed C:P ratio of 91.4 ± 7.9 in the mixed layer south of the Polar Front [Rubin et al., 1998]. For the same region, Rubin et al., [1998] describe Redfield behavior of C/N nutrient utilization, which corresponds with our gas exchange corrected C/N nutrient utilization ratio of 6.7 ± 0.2. Recently published work suggests that C/N/P ratios exhibit a latitudinal pattern, with a range of 66:11:1 to
749 74:13:1 at higher latitudes in the Southern Ocean [Martiny et al., 2013] and can therefore be significantly lower than what we found in this study.

750 TA variability was largely driven by dilution through freshwater input and mixing (Figure 5), which is well characterized by the salinity-derived TA relationship presented in section 3.4. However, biological mechanisms such as photosynthesis, respiration, CaCO$_3$ precipitation and dissolution also played an important role in controlling TA concentrations in the water column and at the surface (Figure 6). Neglecting these important drivers may be responsible for the large RMSE of our predicted TA (Figure A2) relative to other studies that either had additional parameters at hand (i.e. O$_2$ or nutrients) to derive inorganic carbon system parameters in coastal environments [Jurane et al., 2009; Kim et al., 2010; Evans et al., 2013] or that used salinity algorithms to predict TA in open-ocean regions [Takahashi et al., 2014]. Furthermore, TA varied by more than 70 µmol kg$^{-1}$ at salinities >33.7, which led to an unbalanced distribution of residuals (Figure A2c). Increasing TA at higher salinities and nearly constant DIC concentrations has been observed before in Arctic and Antarctic regions [Dieckmann et al., 2008; Fransson et al., 2011; Rysgaard et al., 2012; Shadwick et al., 2014; Legge et al., 2015] and may be due to formation of ikaite crystals (CaCO$_3$.6H$_2$O) [Suess et al., 1982] that store TA in sea-ice and, upon melting, release the excess TA into the surface water [Rysgaard et al., 2012, 2013]. However, reasons for the observed increasing TA at higher salinities along the WAP remain speculative, since direct evidence of ikaite formation/dissolution such as an increase in DIC associated with TA increase is missing (Figure 6). A combination of other mechanisms, such as upwelling of high salinity – high TA waters concomitant with biological DIC drawdown, could have increased TA:DIC ratios at high salinities. Finally, the WAP region is very dynamic, with large seasonal changes that may affect the carbon system in ways not representable by one algorithm and may therefore require seasonally adjusted algorithms.

Despite of the above-described shortcomings in our salinity-derived TA algorithm, the estimated Ω_{arag} values give a useful overview of the seasonal distribution and variability of Ω_{arag} [Figure 8]. Error propagation of pCO$_2$ measurement precision and TA prediction accuracy suggests that the predicted error for Ω_{arag} may be as little as 0.02 [Glover et al., 2011]. The seasonal estimations of Ω_{arag} suggest that some winter and...
springtime Ω_{arag} were near $\Omega_{arag} = 1$ and 20% were between 1.0 and 1.2 (Figure 8). Short-term exposure to low levels of Ω_{arag} may cause severe dissolution of live pteropod shells and has already been observed in the Scotia Sea [Bednaršek et al., 2012]. Surface aragonite undersaturation along the WAP may be a result of ocean acidification and may not have been common during preindustrial times [Hauri et al., under review].

The large uncertainties in our estimated temporal trends are caused inherently by the large spatial and temporal variability of our data. Nevertheless, our mean rates of 1.45 ± 2.97 for summer and 0.43 ± 0.77 µatm yr⁻¹ for winter suggest that the surface water pCO₂ has been increasing at a slower rate than the atmospheric pCO₂ rate of about 1.9 µatm yr⁻¹, and that the air-to-sea CO₂ driving potential has been increasing. Our results may be compared with the recent analysis of the 2002-2015 time-series data obtained across the Drake Passage by Munro et al. [in press]. In the waters south of the Polar Front (their Zone 4, closest to the LTER area), they observed that the surface water pCO₂ increased at a rate of 1.30 ± 0.85 µatm yr⁻¹ in summer and 0.67 ± 0.39 µatm yr⁻¹ in winter, which are comparable with ours along the WAP. We observed the strongest but still insignificant increase in surface pCO₂ in fall (1.9 µatm year⁻¹, $p = 0.0685$). This increase corresponds with the mean atmospheric pCO₂ increase of 1.9 µatm per year, which causes a pH decrease of about 0.02 per decade [Takahashi et al., 2014]. Interestingly, Stammerjohn et al., [2008a, 2008b] found that sea ice extent and wind are also changing most rapidly in spring and fall, which may enhance sea-air gas exchange and therefore facilitate positive pCO₂ trends. Furthermore, it is likely that the strong counter effect of biological productivity successfully masks the pCO₂ trend in summer, and decreased gas exchange due to sea ice weakens the trend in winter. However, the WAP climate and oceanography are regulated by large-scale atmospheric patterns, such as El Niño Southern Oscillation and Southern Annular Model [Stammerjohn et al., 2008a], which may also influence the region’s inorganic carbon chemistry on an interannual scale. A longer measurement period may be needed in order to be able to distinguish with certainty between natural variability and secular trends [Henson et al., 2010].

5 Conclusions
This study gives new insights into the spatial and temporal variability of the WAP inorganic carbon system and its main physical and biological drivers. In particular, we found that large inorganic carbon drawdown through biological production in summer caused high near-shore Ω_{arag}, despite glacial and sea-ice melt water input. Furthermore, the data do not show a significant long-term trend in any of the inorganic carbon chemistry variables measured. Continuation and expansion of the inorganic carbon chemistry timeseries across other seasons is necessary to distinguish between natural variability and secular trends and to better understand synergistic effects of ocean acidification and climate change. Due to the region’s physical complexity of circulation and forcing, and strong dynamic response to climate variability, we recommend development of a highly resolved biogeochemical model to complement our observational work. Implementation of modeling studies will improve our mechanistic understanding of how interannual variability and anthropogenic climate change impact the inorganic carbon chemistry along the WAP, which is imperative to predict the potential impact on the unique WAP ecosystem.

Author Contributions

Designed research: HD and TT. Field sampling and analytical measurements: TT, HD and ME. Data analysis and interpretation: CH with help from all co-authors. Wrote the paper: CH with help from SD, TT, and HD.

Acknowledgements

We thank past and present members of the Palmer LTER program as well as the captains and crew of the U.S. Antarctic research vessels. We are especially grateful to Richard Iannuzzi and James Conners for their support with data management, and to Tim Newberger for underway pCO$_2$ measurements. We gladly acknowledge support from the National Science Foundation Polar Programs (NSF OPP-90-11927, OPP-96-32763, OPP-02-17282, OPP-08-23101, and PLR-1440435). TT and the Ship of Opportunity Observation Program (SOOP) were supported by a grant (NA10OAR4320143) from the United States NOAA. This is International Pacific Research Center contribution number 1117.

References

Van Heuven, S., D. Pierrot, J. W. B. Rae, E. Lewis, and D. W. R. Wallace (2011), MATLAB Program Developed for CO2 System Calculations,

Saba, G. K. et al. (2014), Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula, *Nat. Commun.*, 5, 4318, doi:10.1038/ncomms5318.

Figures.

Figure 1. Map of the Western Antarctic Peninsula (WAP) and study area of the Palmer Antarctica Long Term Ecological Research (PAL-LTER) project. The red box shows the main study grid that has been sampled for inorganic carbon chemistry since 1993, and is defined in this study as the central sub-region. The black squares indicate the stations (20 km apart) arranged in onshore to offshore lines spaced 100 km apart along the peninsula. The inorganic carbon measurements from stations south of the central sub-region were only added in 2009. The central sub-region also contains surface underway pCO$_2$ observations that were used in the trend analysis (Section 3.5). P: Palmer Station on Anvers Island; A: Adelaide Island; and MB: Marguerite Bay.

Figure 2. Comparison of deep-water (off shelf) dissolved inorganic carbon (DIC, μmol kg$^{-1}$) and total alkalinity (TA, μmol kg$^{-1}$) data from Palmer Station Long Term Ecological Research (PAL-LTER) with other available cruise data. a) Station locations, b) DIC and c) TA depth profiles from PAL-LTER cruises (1998–2012), World Ocean Circulation Experiment (WOCE) and Ocean – Variability, Predictability, and Change (CLIVAR) cruises along parts of sections A21 (2006, 2009) and S4P (1992, 2011). The directly measured parameters are listed in the parentheses and were used to calculate TA if not directly measured.

Figure 3. Depth profiles of aragonite saturation state (Ω_{arag}) for the years 1993 through 2012. The aragonite saturation horizon for each year is located where the profile crosses the black line ($\Omega_{\text{arag}} = 1.0$).

Figure 4. Maps of summertime averages of surface a) pCO$_2$, b) pH, c) aragonite saturation state (Ω_{arag}), d) total alkalinity (TA, μmol kg$^{-1}$), e) salinity, f) dissolved inorganic carbon (DIC, μmol kg$^{-1}$), and g) salinity-normalized DIC (sDIC, μmol kg$^{-1}$) across years with available DIC and TA measurements (1993-1999, 2001-2002, and 2005-2012). Salinity-normalized PO$_4^{3-}$ (s PO$_4^{3-}$, μmol kg$^{-1}$) and salinity normalized NO$_3^-$ (s NO$_3^-$, μmol kg$^{-1}$) were averaged across 1993-1996, 1999, and 2001-2012. Averages
are only shown for regions where samples were taken in five or more years. Occupied stations are shown by black dots.

Figure 5. Scatter plots of dissolved inorganic carbon (DIC, μmol kg$^{-1}$) illustrated as diamonds and total alkalinity (TA, μmol kg$^{-1}$) illustrated as dots as a function of salinity. The data points are color coded by the aragonite saturation state (Q_{arag}). The solid lines illustrate the dilution lines using $S = 34.7$, TA = 2350 μmol kg$^{-1}$, and DIC = 2253 μmol kg$^{-1}$ as end members for UCDW, and $S = 0$, TA = 300 μmol kg$^{-1}$, and DIC = 300 μmol kg$^{-1}$ as end members for melt water [Yamamoto-Kawai et al., 2009]. WW = Winter water ($T <= -1.2^\circ C$; $33.85 <= S <= 34.13$), UCDW = Upper Circumpolar Deep Water ($1.7^\circ C <= T <= 2.13^\circ C$; $34.54 <= S <= 34.75$) following [Martinson et al., 2008].

Figure 6. Salinity-normalized total alkalinity (sTA, μmol kg$^{-1}$) as a function of salinity-normalized dissolved inorganic carbon (sDIC, μmol kg$^{-1}$) for waters shallower than the Upper Circumpolar Deep Water (UCDW, black circles). A linear fit between sTA and sDIC is shown by the black solid line. The dotted black lines indicate 2σ for estimated measurement precision of $\sigma = +/- 5$ μmol kg$^{-1}$. The blue line illustrates the trend if sTA and sDIC of the winter water (WW) were only influenced by photosynthesis (1:-6.2). Grey dots represent sTA as a function of sDIC corrected for gas exchange in the waters above the WW, and the linear fits with the estimated measurement precision are the grey solid and dashed lines respectively. WW: $T <= -1.2^\circ C$; $33.85 <= S <= 34.13$, UCSW: $1.7^\circ C <= T <= 2.13^\circ C$; $34.54 <= S <= 34.75$, following [Martinson et al., 2008].

Figure 7. Plot of salinity-normalized nutrients and dissolved inorganic carbon (sDIC, μmol kg$^{-1}$), a) sPO$_4^{3-}$ (μmol kg$^{-1}$) versus sNO$_3^-$ (μmol kg$^{-1}$), b) sPO$_4^{3-}$ versus sDIC, and c) sNO$_3^-$ versus sDIC. Observations within the mixed layer (~ depth < 50 m) are illustrated by black circles. The light grey dots in b) and c) show sDIC corrected for gas exchange as a function of sPO$_4^{3-}$ and sNO$_3^-$, respectively. A linear fit is represented by the solid black line for the mixed layer, by the solid grey line for all data, and by the light grey line for the gas-exchange corrected sDIC in b) and c). The dashed black lines are the nutrient

Field Code Changed
Claudine Hauri 8/26/15 2:05 PM
Deleted: more than 63

Field Code Changed
Claudine Hauri 8/24/15 9:13 AM
Deleted: Physical and biological controls of inorganic carbon chemistry.

Field Code Changed
Claudine Hauri 8/24/15 9:13 AM
Deleted: Field Code Changed

Field Code Changed
Claudine Hauri 8/24/15 9:14 AM
Deleted: Biological controls of inorganic carbon chemistry.

Field Code Changed
Claudine Hauri 8/24/15 9:14 AM
Deleted: Field Code Changed

Field Code Changed
Claudine Hauri 8/24/15 9:14 AM
Deleted: Field Code Changed

Field Code Changed
Claudine Hauri 8/24/15 9:14 AM
Deleted: Field Code Changed

Field Code Changed
Claudine Hauri 8/24/15 9:19 AM
Deleted: Nutrient consumption.
drawdown lines using the corresponding Redfield ratio and data from the Upper Circumpolar Deep Water (UCDW) as end-members.

Figure 8. Seasonal variability of inorganic carbon system. Relative frequency distribution of a) measured underway surface partial pressure pCO$_2$ (µatm), b) predicted surface total alkalinity (TA, µmol kg$^{-1}$) from underway salinity, and c) predicted surface aragonite saturation state (Ω_{arag}) in summer (red), fall (orange), winter (blue), and spring (yellow). The x-axis represents the range of Ω_{arag}, TA, and pCO$_2$ with a relative frequency distribution \geq 0.0001.
Table 1. Comparison of Lamont-Doherty Earth Observatory of Columbia University (LDEO) underway pCO$_2$ (µatm) data [Takahashi et al., 2015] with the pCO$_2$ (µatm) derived from PAL-LTER discrete surface samples over the Palmer-Long Term Ecological Research (PAL-LTER) sampling grid. The PAL-LTER discrete pCO$_2$ sample values were computed using the dissolved inorganic carbon (DIC, µmol kg$^{-1}$) and total alkalinity (TA, µmol kg$^{-1}$). The analysis is based on the data after removing outliers as explained in the text.

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean (µatm)</th>
<th>r</th>
<th>Slope (µatm)</th>
<th>Intercept (µatm)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>LDEO: 293 (79)</td>
<td>0.94</td>
<td>1.05 (±0.06)</td>
<td>-45.7 (±17.0)</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 322 (75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>LDEO: 248 (46)</td>
<td>0.90</td>
<td>0.95 (±0.06)</td>
<td>13.2 (±15.5)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 248 (48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>LDEO: 261 (61)</td>
<td>0.87</td>
<td>1.04 (±0.08)</td>
<td>-4.7 (±18.2)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 237 (59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>LDEO: 340 (28)</td>
<td>0.53</td>
<td>0.61 (±0.14)</td>
<td>158 (±42.5)</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 299 (37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>LDEO: 318 (24)</td>
<td>0.58</td>
<td>0.47 (±0.13)</td>
<td>179 (±37.9)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 292 (37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>LDEO: 327 (35)</td>
<td>0.54</td>
<td>1.62 (±0.57)</td>
<td>-167 (±174)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 305 (27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>LDEO: 226 (98)</td>
<td>0.93</td>
<td>0.37 (±0.92)</td>
<td>6.60 (±21.4)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 233 (101)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>LDEO: 354 (36)</td>
<td>0.46</td>
<td>1.44 (±0.63)</td>
<td>-47.7 (±172)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>PAL-LTER: 279 (30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>LDEO: 290 (62)</td>
<td>0.82</td>
<td>1.05 (±0.04)</td>
<td>-25.7 (±12.2)</td>
<td>300</td>
</tr>
</tbody>
</table>
Table 2. Mean annual trend (1993-2012) of Palmer-Long Term Ecological Research (PAL-LTER) surface (depth < 5 m) carbonate chemistry and hydrography from the Western Antarctic Peninsula (central sub-region). Regression statistics include the mean annual rate (yr\(^{-1}\)), standard error (SE), number of measurements (NM), number of years (NY), \(r^2\), and p-value for aragonite saturation state (\(\Omega_{\text{arag}}\)), \(pHT\), dissolved inorganic carbon (DIC, \(\mu\text{mol kg}^{-1}\)), total alkalinity (TA, \(\mu\text{mol kg}^{-1}\)), temperature (°C), and salinity. Trends with a p-value < 0.05 are statistically significant at the 95 % confidence level (values bolded). Points that were outliers at 95 % probability level were excluded (o).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rate (yr(^{-1})) ± SE</th>
<th>NM(o)</th>
<th>NY</th>
<th>(r^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface (< 5 m depth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Omega_{\text{arag}})</td>
<td>0.001 ± 0.01</td>
<td>892(17)</td>
<td>18</td>
<td>0.04</td>
<td>0.9127</td>
</tr>
<tr>
<td>(pHT)</td>
<td>0.002 ± 0.002</td>
<td>892(8)</td>
<td>18</td>
<td>0.03</td>
<td>0.2784</td>
</tr>
<tr>
<td>DIC ((\mu\text{mol kg}^{-1}))</td>
<td>-0.18 ± 1.03</td>
<td>907(0)</td>
<td>18</td>
<td>0.00</td>
<td>0.8677</td>
</tr>
<tr>
<td>TA ((\mu\text{mol kg}^{-1}))</td>
<td>0.58 ± 0.63</td>
<td>907(0)</td>
<td>18</td>
<td>0.05</td>
<td>0.3681</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>-0.01 ± 0.02</td>
<td>1076(8)</td>
<td>20</td>
<td>0.01</td>
<td>0.4629</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.01 ± 0.01</td>
<td>1060(8)</td>
<td>20</td>
<td>0.12</td>
<td>0.1349</td>
</tr>
</tbody>
</table>
Table 3. Trend analysis (1999-2013) of Lamont-Doherty Earth Observatory of Columbia University (LDEO) surface continuous underway pCO\(_2\) (µatm), salinity and temperature (°C) measurements from within the central sub-region of the Palmer-Long Term Ecological Research (PAL-LTER) sampling grid (Figure 1, red box). Regression statistics include mean rate, standard error (SE), number of measurements (NM), number of years (NY), r-square, and p-value. Trends with a p-value < 0.05 would be considered statistically significant at the 95% confidence level.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Season</th>
<th>Rate ± SE</th>
<th>NM</th>
<th>NY</th>
<th>r(^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCO(_2) (µatm yr(^{-1}))</td>
<td>Summer</td>
<td>1.45 ± 2.97</td>
<td>94774</td>
<td>12</td>
<td>0.01</td>
<td>0.6361</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>1.90 ± 0.95</td>
<td>42655</td>
<td>14</td>
<td>0.26</td>
<td>0.0685</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>0.43 ± 0.77</td>
<td>26314</td>
<td>11</td>
<td>0.04</td>
<td>0.6304</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>1.22 ± 2.72</td>
<td>14813</td>
<td>9</td>
<td>0.03</td>
<td>0.6678</td>
</tr>
<tr>
<td>Temperature (°C yr(^{-1}))</td>
<td>Summer</td>
<td>0.03 ± 0.05</td>
<td>94774</td>
<td>13</td>
<td>0.03</td>
<td>0.5515</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>0.00 ± 0.05</td>
<td>42655</td>
<td>14</td>
<td>0.01</td>
<td>0.9279</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>0.00 ± 0.04</td>
<td>26314</td>
<td>13</td>
<td>0.00</td>
<td>0.9262</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>0.01 ± 0.03</td>
<td>14813</td>
<td>9</td>
<td>0.04</td>
<td>0.8598</td>
</tr>
<tr>
<td>Salinity (yr(^{-1}))</td>
<td>Summer</td>
<td>-0.02 ± 0.02</td>
<td>53713</td>
<td>12</td>
<td>0.10</td>
<td>0.3294</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>0.02 ± 0.01</td>
<td>55823</td>
<td>13</td>
<td>0.14</td>
<td>0.0988</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>-0.01 ± 0.01</td>
<td>28063</td>
<td>10</td>
<td>0.01</td>
<td>0.6631</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>-0.01 ± 0.01</td>
<td>53713</td>
<td>11</td>
<td>0.05</td>
<td>0.1422</td>
</tr>
</tbody>
</table>
Figure 2

![Diagram](image)

a) PAL-LTER 1993-2012 (DIC, TA)
b) A21 2006 (DIC, pH)
c) A21 2006a (DIC, TA)
d) S4P 2010 (DIC, TA)
e) A21 2008b (DIC, pCO2)
f) S4P 1992 (DIC, pCO2)
Figure 5: Salinity vs. DIC (μmol kg⁻¹) and TA (μmol kg⁻¹).ucdw

- UCDW
- WW

DIC (μmol kg⁻¹) and TA (μmol kg⁻¹)
Figure 7

(a)

(b)

(c)

\[\text{\textit{Figure 7}} \]
Figure 8

a) Relative frequency distribution

b) Relative frequency distribution

c) Relative frequency distribution

- TA (ȝPRONJ -1)
- pCO₂ (ȝPRO)

- Summer
- Fall
- Winter
- Spring

Claudine Hauri 9/2/15 4:21 PM

Formatted: Font:(Default) Times New Roman
Appendix

Figure A1. Comparison of Lamont-Doherty Earth Observatory of Columbia University (LDEO) continuous underway pCO$_2$ (µatm) over the Palmer-Long Term Ecological Research (PAL-LTER) sampling grid (Takahashi et al., 2015) with pCO$_2$ (µatm) derived from PAL-LTER dissolved inorganic carbon (DIC, µmol kg$^{-1}$) and total alkalinity (TA, µmol kg$^{-1}$) from discrete samples taken during the same cruise (2005-2012). PAL-LTER pCO$_2$ outliers that underestimate/overestimate pCO$_2$ relative to the underway observations by more than 150 µatm were removed. The two data sets were spatially matched, with a 1 km distance threshold. See Table 1 for statistics.

Figure A2. Evaluation of total alkalinity (TA) algorithm. a) Measured TA as a function of salinity and temperature (color), b) measured TA vs. *predicted* TA, and c) residuals vs. salinity.

Figure A3 Scatterplots of depth and inorganic carbon chemistry superimposed on potential temperature-salinity diagrams. Shown in color are a) depth, b) dissolved inorganic carbon (DIC, µmol kg$^{-1}$), c) total alkalinity (TA, µmol kg$^{-1}$), and d) aragonite saturation state (Ω_{arag}). The bold black line illustrates the freezing point as a function of temperature and salinity. Grey lines mark densities. Water masses are indicated and labeled in a): WW = Winter Water, AASW = Antarctic Surface Water in summer, ACC-core UCDW = Antarctic Circumpolar Current-core Upper Circumpolar Deep Water, DW = local Deep Water end member, following Martinson *et al.*, [2008].
Figure A1

LDEO pCO$_2$ = 1.08(\pm0.04)PAL-LTER pCO$_2$ - 5.57(\pm12.23)

$r = 0.82$

$n = 300$

"in situ" data

model

1:1 curve
Figure A2

a) Temperature (°C)

b) Predicted TA (μmol kg⁻¹)

Observed TA (μmol kg⁻¹)

c) Residuals

Salinity
Figure A3

Potential Temperature (°C) vs. Salinity

Potential Temperature (°C) vs. Depth (m)

DIC (µmol kg⁻¹) vs. Salinity

TA (µmol kg⁻¹) vs. Potential Temperature (°C)

Ω_m Academic

ACC-core
UCDW
DW
WW

AASW

Claudine Hauri 9/2/15 4:21 PM
Claudine Hauri 9/11/15 11:23 AM
Claudine Hauri 9/2/15 4:21 PM
Claudine Hauri 9/2/15 4:21 PM

Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman
Formatted: Font: Times New Roman, 12 pt

Deleted: