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Abstract. Carbon allocation and flow through ecosystems regulates land surface–28!

atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic 29!

models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked 30!

carbon allocation through a young Pinus taeda stand following pulse-labeling with 13CO2 31!

and two levels of shading. The field component of this project provided process-oriented 32!

data that was used to evaluate terrestrial biosphere model simulations of rapid shifts in 33!

carbon allocation and hydrological dynamics under varying environmental conditions. 34!

Here we tested the performance of the Community Land Model version 4 (CLM4) in 35!

capturing short-term carbon and water dynamics in relation to manipulative shading 36!

treatments, and the timing and magnitude of carbon fluxes through various compartments 37!

of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of 38!

closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-39!

labeling 13C values. Over the 3-week treatment period, CLM4 generally reproduced the 40!

impacts of shading on soil moisture changes, relative change in stem carbon, and soil 41!

CO2 efflux rate. Transpiration under moderate shading was also simulated well by the 42!

model, but even with optimization we were not able to simulate the high levels of 43!

transpiration observed in the heavy shading treatment, suggesting that the Ball-Berry 44!

conductance model is inadequate for these conditions. The calibrated version of CLM4 45!

gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 46!

three weeks of shade treatment, but lacks mechanisms needed to track the labeling pulse 47!

through plant tissues on shorter time-scales. We developed a conceptual model for 48!

photosynthate transport based on the experimental observations, and discussed conditions 49!

under which the hypothesized mechanisms could have an important influence on model 50!
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behavior in larger-scale applications. Implications for future experimental studies are 51!

described, some of which are already being implemented in follow-on studies. 52!

!53!

1 Introduction  54!

Accurate projection of the changing global climate, given a particular scenario of future 55!

greenhouse gas emissions or concentrations, is largely determined by adequate 56!

representation of mechanistic processes in Earth System Models (ESMs) (Taylor et al., 57!

2012). Land Surface Models (LSMs) and their associated biogeophysical and 58!

biogeochemical parameterizations are key determinants of the ESMs’ fidelity in 59!

characterizing and quantifying complex feedbacks in the Earth System (Arora et al., 60!

2013; Friedlingstein et al., 2006; Pitman, 2003). Modeling studies have increasingly used 61!

observational data and mechanistic knowledge of processes to advance the development 62!

of LSMs (Best et al., 2011; Dai et al., 2003; Krinner et al., 2005; Oleson et al., 2013; 63!

Wang et al., 2011). Global and regional observations of land surface fluxes, states, and 64!

dynamic vegetation change offer insights into the large-scale interactions between the 65!

land surface and atmosphere, and hence facilitate model improvements at relevant scales 66!

in space and time (Beer et al., 2010; Huntzinger et al., 2012; Luo et al., 2012; Randerson 67!

et al., 2009). However, to better quantify and reduce uncertainties arising from 68!

deficiencies in model process representation, parameters, driver datasets and initial 69!

conditions, there has been significant effort to evaluate and to calibrate LSMs against 70!

site-scale observations and experimental manipulations (Baldocchi et al., 2001; De 71!

Kauwe et al., 2014; Hanson et al., 2004; Ostle et al., 2009; Raczka et al., 2013; 72!

Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010; Stoy et al., 2013; 73!
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Walker et al., 2014; Williams et al., 2009; Zaehle et al., 2014). Further, model 74!

development from these focused site-scale studies, especially in close collaboration with 75!

experimentalists, can inform and prioritize new experiments and observations that are 76!

specifically designed to advance understanding of critical terrestrial ecosystems and 77!

processes (Shi et al., 2015). 78!

The Community Land Model (CLM) is an advanced LSM with a comprehensive 79!

mechanistic parameterization of carbon (C), water, and energy budgets for diverse land 80!

types that can be applied across multiple temporal scales (Oleson et al., 2010). CLM has 81!

been evaluated against observations from a wide range of sources, and these evaluations 82!

have resulted in improved model performance (Bauerle et al., 2012; Bonan et al., 2011, 83!

2012; Koven et al., 2013; Lawrence et al., 2011; Mao et al., 2012a, 2012b, 2013; Oleson 84!

et al., 2008; Randerson et al., 2009; Riley et al., 2011; Shi et al., 2011, 2013, 2015; 85!

Thornton et al., 2007). Nevertheless, little attention has been paid to CLM’s ability to 86!

replicate short-term manipulative experiments, which provide an avenue for exploring 87!

and validating model response to sudden, large changes in environmental drivers that 88!

control physiological and ecological responses (Amthor et al., 2001; Bonan et al., 2013). 89!

Processes operating over short time scales can have long-lived ecosystem consequences 90!

through indirect effects; e.g., stomatal conductance varies on timescales of hours or 91!

shorter, but indirect effects on site-level water balance through controls on transpiration 92!

can extend to annual timescales and beyond. Combined model-experiment projects can 93!

focus efforts on specific mechanistic processes whose representation in the model may be 94!

neither adequate nor appropriate for specific sites (Walker et al., 2014; Zaehle et al., 95!

2014). Extending these model-experiment evaluations and ensuing model refinements to 96!
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additional sites of the same and different ecosystem types improves confidence in the 97!

regional and global scale adequacy of the LSM’s mechanistic process representation and 98!

parameterization. 99!

Photosynthetic C assimilation, the allocation of photosynthetic products into 100!

tissues with different turnover rates, and the respiration of C back into the atmosphere 101!

areimportant determinants of CO2 exchange between the terrestrial biosphere and the 102!

atmosphere (Schimel et al., 2001). Biosphere-atmosphere C exchange is dynamically 103!

mediated by weather, soil conditions, vegetation community composition and phenology, 104!

and natural and anthropogenic disturbances (Cannell and Dewar, 1994; Litton et al., 105!

2007). Mechanistic characterization of the fate of photosynthetically-fixed C, in 106!

particular the magnitude and timing of C allocation among plant compartments, is a 107!

major challenge for experimental and modeling communities (Epron et al., 2012). 108!

Various C-allocation schemes have been proposed and implemented in LSMs to capture 109!

both the dynamic changes in C allocation and response to external conditions of C 110!

allocation (De Kauwe et al., 2014). They generally employ either fixed coefficients or in 111!

some cases dynamic coefficients that are functions of time or time-varying external 112!

conditions to allocate assimilated C to different plant components (e.g., leaves, stems, 113!

and roots). These allocation schemes and coefficients are generally not well constrained 114!

by observations. More process-based understanding, better measurement techniques, and 115!

targeted experimental manipulations are needed to better constrain allocation within the 116!

model structure and the models’ representations of C dynamics.  117!

Carbon isotopes provide important constraints on specific processes and can be 118!

used in labeling experiments to track pulses of carbon through plant and soil components.  119!
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Both diffusion through stomata and enzyme activity during photosynthesis discriminate 120!

against the accumulation of 13C in plant tissue, making 13C measurement a useful 121!

constraint on stomatal conductance (Farquhar et al., 1989). Exposing plants to 13C 122!

enriched CO2 can provide important constraints on simulated C allocation (Ehleringer et 123!

al., 2000). The post-treatment carbon isotope composition (δ13C) of organic matter and 124!

respired CO2 can serve as a tracer of plant C allocation (Atkin 2015; Bahn et al., 2012).  125!

We evaluated the integrated response of a simulated tree-soil system to an 126!

imposed alteration of shortwave radiation, the main environmental driver for 127!

photosynthesis, and compared the observed trajectory of labeled carbon pulses through 128!

that system with approximations of carbon allocation that are typical of a global-scale 129!

model. We used a version of CLM4.0 that has been modified to allow convenient 130!

application of the global-scale modeling algorithms at single points (PTCLM, described 131!

in Oleson et al., 2013). We evaluated the model against observations and experimental 132!

results from the “Partitioning in Trees and Soils” (PiTS) experiment established in a 133!

young loblolly pine stand in Oak Ridge, Tennessee, USA (Warren et al., 2013). The 134!

project exposed a young loblolly pine (Pinus taeda) stand to a pulse of air enriched with 135!
13CO2, then tracked that label from photosynthetic uptake, through the leaves, stem, and 136!

roots and ultimately out of the soil as respiratory flux photosynthetically active radiation 137!

(PAR) (Warren et al., 2012). We addressed two questions: (i) Is the model able to 138!

represent the biophysical and ecophysiological behavior of the experimental system in 139!

terms of pretreatment dynamics and stand-level response to the manipulated radiation 140!

environment? (ii) Do the biases inherent in a very simple model of storage and allocation 141!

propagate beyond the time scale of fast turnover storage pools? We hypothesized that it 142!
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would be possible to parameterize the global model using site-level ecophysiological 143!

measurements, and have it realistically capture the site-level influence of the shade 144!

manipulation. We further hypothesized that, in spite of missing mechanisms to track 145!

short-term storage and allocation of C, the parameterized model could capture both 146!

pretreatment 13C discrimination as well as post-treatment effects once the labeling pulse 147!

had traveled through the plant.   148!

!149!

2 Methodology  150!

2.1 Site description, experimental manipulation, and observations   151!

The field component of the project was conducted in a young loblolly pine stand at the 152!

University of Tennessee Forest Resources AgResearch and Education Center in Oak 153!

Ridge, Tennessee. The soil is classified as a silt-clay-loam (13.3% sand; 35.7% clay; 154!

51.0% silt), with bulk density ranging from 1.2 to 1.4 g cm-3 at 10 to 70 cm depth. One-155!

year-old seedlings (1 g C m-2 (Griffin et al., 1995)) were planted at 2.5 × 3 m spacing in 156!

2003, and the experiment was conducted in 2010 when the trees were ~7 m tall. 157!

    In 2010, a subset of eight of the trees, adjacent to one another, and their soils, were 158!

instrumented with automated sensors to continuously measure soil temperature, soil 159!

moisture vertically throughout the soil profile, soil surface 12CO2 and 13CO2 efflux, root 160!

production at 10 and 30 cm depths, stem sap flow, and stem diameter (Warren et al., 161!

2012). Various measurements were manually collected periodically, including predawn 162!

foliar water potential, photosynthetic light- and CO2-response curves, root biomass, 163!

growth, and mortality, and soil C and nutrient content. Meteorological data were 164!

collected every 30 minutes at 2 m height in an adjacent open field, and included wind 165!
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speed, air temperature, photosynthetically active and shortwave radiation, precipitation, 166!

and relative humidity.  167!

Following several weeks of pretreatment measurements, the eight study trees 168!

were enclosed with plastic film stretched over a frame surrounding the trees, and then 169!

trees were exposed to 53 liters of 99 atom % 13CO2 for 45 minutes. The plastic was 170!

removed and replaced with light shade (LS) or heavy shade (HS) cloth, each of which 171!

covered four trees and provided differential levels of PAR at the canopy surface for 3 172!

weeks following the labeling. The LS and HS cloths were designed to allow passage of 173!

70% and 10%, respectively, of the incident PAR.  174!

To assess actual conditions under the shade cloth treatments, short-term 175!

measurements of temperature, humidity, wind speed, and PAR were collected at the 176!

canopy surface following shade cloth installation. Linear regressions between 177!

meteorological data from under the shade cloth and from the open field were used to 178!

estimate conditions at the canopy surface during the experimental period. Temperature 179!

was ~0.11°C (± 0.82 °C; ± 1 SD) lower, relative humidity (Hr) was ~6% (± 5%; ± 1 SD) 180!

higher, and wind speed (u) was ~45% (± 15%; ± 1 SD) lower, under both levels of 181!

shading than in the adjacent open field (Fig. 1a, b). The shade cloths performed very 182!

close to design, with 68% and 11% passage of PAR through the LS and HS cloths, 183!

respectively (Fig. 1c). 184!

  Non-destructive measurements of soil moisture, soil temperature, soil respiration, 185!

sap flow and stem growth were made prior to the labeling and for the duration of the 186!

shade treatment. During the shade treatment, destructive measurements of foliage, stem 187!

phloem tissue, roots and soil were collected to assess presence of the 13C label, and linked 188!
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to concurrent automated measurements of 13CO2 from the soil surface (Warren et al., 189!

2012). Experimental results and additional details on the site and experimental design are 190!

in Warren et al. (2012) and datasets are available online (Warren et al., 2013). 191!

2.2 Model description  192!

We used CLM4 (Oleson et al., 2010), the land component of the Community Earth 193!

System Model (CESM) (Gent et al., 2011), to simulate the pretreatment and manipulated 194!

processes in the PiTS study. This CLM version includes fully prognostic carbon and 195!

nitrogen representations for its vegetation, litter, and soil biogeochemistry components 196!

(Oleson et al., 2010, 2013; Thornton et al., 2007; Thornton and Rosenbloom, 2005).  197!

Carbon allocation in this version of CLM is simplistic. After maintenance 198!

respiration demands are calculated and subtracted from gross primary productivity 199!

(GPP), and following a step that downregulates GPP on the basis of static allocation 200!

parameters, fixed tissue C:N stoichiometry, and plant mineral N uptake,  the available 201!

carbon is allocated to new growth, storage for growth in subsequent growing seasons, and 202!

associated growth respiration.  The model includes pools for leaf, fine root, and several 203!

categories of stem and coarse root, with over-season storage pools associated with each 204!

of these “displayed” growth pools. The allocation ratio between stem and leaf is a 205!

function of the previous year’s net primary productivity (NPP; higher fractional 206!

allocation to stem with higher annual NPP), while all other allocation ratios are fixed 207!

throughout the simulation for a given vegetation type. For 13C, stomatal diffusion and 208!

photosynthetic fractionation are calculated and photosynthetically fixed 13C is 209!

immediately allocated to plant pools following the above description. There is no further 210!

fractionation in within-plant processes or during decomposition (Oleson et al., 2013).   211!
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Several major developments of CLM performed specifically for this study 212!

include: (1) introducing the ability to represent the shade effect and experimental labeling 213!

by driving the model with observed atmospheric 13CO2 concentrations, where before 214!
13CO2 was assumed to be a constant fraction of CO2, (2) developing a site-level 215!

simulation workflow that leverages PTCLM capability to reproduce actual field 216!

experiments, (3) calibration of the selected model parameters to improve predictions and 217!

reveal structural errors, and (4) adding a stand-alone testing capability for the 218!

photosynthesis subroutines. 219!

2.2.1 Description of PTCLM simulation 220!

To perform simulations at the PiTS site, we used PTCLM, a scripting framework to run 221!

site-level simulations of CLM efficiently with site-specific forcing and initialization data 222!

(Oleson et al., 2013). We performed the standard 600 years of accelerated decomposition 223!

spinup, in which soil organic matter decomposition rates are increased (Thornton and 224!

Rosenbloom, 2005), followed by 1000 years of normal spinup, in which the 225!

decomposition rates are returned to their normal values, and a transient simulation 226!

between 1850-2010 using historically varying CO2, 13CO2, nitrogen deposition, and 227!

aerosol forcing data. Long-term meteorological driver data were not available at the PiTS 228!

site, and instead were taken from the nearby Walker Branch and Chestnut Ridge eddy 229!

covariance sites (Hanson et al., 2004) for the years 2000-2010. These input data were 230!

cycled continuously to drive the model through the spinup and transient simulations. On 231!

model date 1 January 2003, we simulated a harvest disturbance by removing existing 232!

vegetation biomass and simulating planting of seedlings using a biomass of 1 g C m-2. 233!

The model then simulated growth of the young stand through the year 2010. For the 234!
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spinup and transient phases through 2002, default temperate evergreen needleleaf model 235!

parameters were used. Beginning in 2003, model parameters were modified to simulate 236!

the planted loblolly trees, based on ecophysiological measurements and model calibration 237!

(see Section 2.2.2). 238!

To simulate the treatment period, we replaced the meteorology from the eddy 239!

covariance sites with observed data at the treatment sites starting at day of 13CO2 labeling 240!

in September 2010 (Warren et al., 2012). The 13CO2 pulse was applied in the model 241!

(assuming 100% 13CO2) during a time matching the labeling period. Thermal infrared 242!

camera measurements under both light and heavy shade cloth made during various sky 243!

conditions indicated the need to modify the model input for incoming longwave radiation 244!

under the heavy shade treatment, by assuming that the heavy shade cloth emitted 245!

downward longwave at a blackbody temperature equal to the open field air temperature 246!

(data not shown). For the light shade case, we applied the model’s internal estimate of 247!

incoming longwave radiation, which uses clear-sky assumptions about atmospheric 248!

temperature and emissivity (Idso, 1981).  249!

2.2.2 Model calibration for pre- and post-treatment periods 250!

Model evaluations are complicated by the co-occurrence of parametric and structural 251!

uncertainty, which confounds the attribution of model errors (Keenan et al., 2011). A 252!

model’s performance might be negatively impacted by misrepresentation of mechanistic 253!

processes, poor parameterization of otherwise sound functional representations, or both. 254!

Parameter optimization, however, can help to isolate structural deficiencies in the model. 255!

In this study, we applied model calibration, by optimizing model parameters, as a tool to 256!

highlight areas for model development rather than simply improving predictive skill. We 257!
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optimized selected CLM parameters against pretreatment data. We then evaluated the 258!

performance of the calibrated CLM in the pretreatment phase and again in the post-259!

treatment phase without recalibration following simulation of the canopy shading and 260!
13CO2 treatments. Our intention is that by applying robust parameter optimization to the 261!

pretreatment simulations we will reduce parametric uncertainty (Fox et al., 2009; 262!

Ricciuto et al., 2011), leading to greater insight regarding model structural uncertainty in 263!

evaluation of the post-treatment results.   264!

We first calibrated the model to simulate the pretreatment conditions using 265!

observations and prior information about model parameters. Data constraints for the 266!

calibration consisted of single pretreatment estimates for leaf, stem, and root biomass 267!

from allometric relationships for similarly aged loblolly pine (Baldwin, 1987; Naidu et 268!

al., 1998; Vanlear et al., 1986), a pretreatment δ13C measurement for leaves, a 269!

pretreatment δ13C measurement for bulk roots, and daily sap flow and soil respiration 270!

observations from each of the 20 days preceding the 13CO2 labeling and shading 271!

treatments. Because CLM predicts canopy transpiration but not sap flow, daily 272!

transpiration during the experiment was estimated by scaling the sap flow measurements 273!

using sapwood area and ground area covered by the rooting system (Wullschleger et al., 274!

2001; Warren et al., 2011). Here we assume the rooting system of each tree occupied 7.5 275!

m2 of ground area based on the spacing between the trees. For consistency, sap flow is 276!

hereafter called transpiration for both the observational and modeled results.  277!

Some model parameters were specified directly from observations (Table 1). 278!

Other parameters for which direct estimation was not possible were optimized to 279!

maximize fit between model results and the observed calibration data (Table 1). The 280!
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selection of parameters for optimization was based on formal sensitivity analysis 281!

(Sargsyan et al., 2013) and prior experience with the model. We defined the sum of 282!

squared errors (SSE) between simulation and observations weighted by data uncertainty 283!

as the cost function for the optimization. We used a genetic algorithm (Runarsson and 284!

Yao, 2000) to find a set of parameters that minimizes the cost function. Simulations were 285!

performed in parallel using 2 populations of 32 ensemble members in parallel over 100 286!

iterations for a total of 6400 model simulations.  287!

For the pretreatment (pre-labeling) period, we compared the standard ‘parameter’ 288!

version of the model (PRE-STD) with the optimized ‘parameter’ version (PRE-OPT). 289!

The model with optimized parameters was used in simulations for the shading treatment 290!

period for both the high shade and low shade treatments. Because of uncertainties 291!

associated with simulated stomatal conductance and transpiration in high-shade 292!

conditions, we performed additional parameter calibrations for the parameters mp (slope 293!

of the Ball-Berry stomatal conductance formulation) and bp (intercept of the Ball-Berry 294!

stomatal conductance formulation) during the shade treatment period using the genetic 295!

algorithm with transpiration and stem growth data as constraints (HS_MB), with results 296!

discussed below. 297!

2.2.3 Evaluation of CLM photosynthesis functions 298!

 Since we are interested in understanding the fate of photosynthetically fixed carbon as it 299!

is allocated to various tissues and fluxes, and how allocation dynamics respond to 300!

changes in photosynthesis as driven by changes in PAR, it is useful to evaluate model 301!

predictions of photosynthesis over a range of light levels. We used a functional unit 302!

testing framework (Wang et al. 2014) to evaluate CLM’s representation of the 303!
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photosynthetic light response at the scale of individual leaves against light-response 304!

curves obtained by Warren et al. (2012) for foliage in the upper canopy of trees at the 305!

PiTS experimental site prior to the shade treatment. This approach isolates the targeted 306!

model process to allow a direct comparison between instrumental data and simulation 307!

output, driving the model component with specified environmental conditions and 308!

parameter values.  309!

!310!

3 Results  311!

3.1  Environmental forcing conditions 312!

Mean surface air temperature adjacent to the site decreased from days -20 to 4 (day 313!

numbering is negative prior to the addition of 13CO2 and shading treatments), then 314!

recovered somewhat and remained without obvious trend for the rest of the post-labeling 315!

period (days 5 to 25). Multiple rainfall events were recorded in the pre-treatment and 316!

treatment periods (Fig. 2a). The shortwave and longwave radiation drivers for our 317!

simulations, based on a combination of observations and estimation as described above, 318!

showed variance associated with weather patterns during the experiment, with the 319!

superimposed influence of the light and heavy shading treatments (Fig. 2b). 13CO2 320!

concentrations followed historical background values except during the labeling period 321!

on day 0 (Fig. 2b).  322!

3.2  Pretreatment and treatment evaluation  323!

The model predicted approximately exponential growth in all biomass pools during the 8 324!

years of pretreatment simulation, with some evidence of slowing growth in the final years 325!

(Fig. 3a). Using default global-scale ecophysiological parameters the model significantly 326!
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overestimated biomass accumulation in leaf, stem, and root pools, by 85%, 36%, and 327!

76%, respectively on Sep. 1st of year 2010 (PRE_STD curves, Fig. 3a). Replacing default 328!

parameters with observed (lower) leaf N concentration and with calibrated (higher) 329!

allocation ratios for stem:leaf and root:leaf (complete set of parameter changes shown in 330!

Table 2) brought the biomass accumulation curves in better agreement with observations 331!

(Fig. 3a). Using the PRE_OPT parameters, the bias for leaf, stem, and root biomass 332!

accumulations was -9%, -4%, and -16%, respectively, compared to observed values.  333!

Comparison of predicted vs. observed photosynthesis light response curves was 334!

used as an independent assessment of the model performance before and after calibration 335!

across a range of PAR values characteristic of mid-day values in the open field and under 336!

the LS and HS treatments (Fig. 3b). In the range of PAR from 750 to 1588 µmol m-2 s-1, 337!

typical of mid-day conditions in the pre-treatment period (days -25 to -1), default 338!

parameterization (PRE_STD) resulted in overestimates of photosynthesis, while data-339!

constrained and calibrated parameterization (PRE_OPT) eliminated the bias, placing 340!

predictions within +/- 1 SD of observed values. For light conditions characteristic of mid-341!

day values in the LS treatment (648 +/- 232 µmol m-2 s-1) the overprediction bias for the 342!

optimized model was reduced, but at least at PAR = 500 µmol m-2 s-1 the optimized 343!

model predicted photosynthesis was still biased high. For the range of PAR characteristic 344!

of the HS treatment (131 +/- 47 µmol m-2 s-1) the model with optimized parameters 345!

underestimated photosynthesis, while the model with default parameters was in good 346!

agreement (low end of the range) or was biased high (high end of the HS range). 347!

Soil temperature predicted by the optimized model at 0-5 cm depth had a 348!

consistent overestimation bias of 1-2 °C, but the model closely reproduced the daily 349!
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variation and decreasing tendency in near-surface soil temperature in both the 350!

pretreatment and post-treatment periods (Fig. 4a). No clear influence of shading 351!

treatments on soil temperature was seen in either the observations or model simulations. 352!

Substantial variability in observed soil moisture (integrated for 15-95 cm depth) was 353!

found among samples taken near different trees under the same shading treatment (Fig. 354!

4b). Pretreatment observations of soil water content were not made, but observed LS soil 355!

water was lower than that of the HS soil water at the start of the treatment period, perhaps 356!

reflecting local differences in soil properties and pretreatment evapotranspiration. 357!

Although modeled soil water content at the start of the treatment was higher than 358!

observed (by 5-7%, measured as volume % of water in soil), the maximum observed and 359!

simulated excursions in soil water content between rain events during the treatment 360!

period were similar (4% and 3.5%, respectively). Predicted soil water content declined 361!

more slowly than observed during days 16-25. There is some evidence of both observed 362!

and predicted LS water content declining more rapidly than HS in this same period, 363!

suggesting higher rates of evaporation for LS than HS.   364!

Observed transpiration during the pretreatment period was higher for HS than LS 365!

plots, likely a consequence of the higher biomass and leaf area of the HS trees (Warren et 366!

al., 2012) and perhaps also higher soil water content (Fig. 4b). We used the pretreatment 367!

transpiration data to calibrate CLM, and the model simulated the pretreatment 368!

observations well in terms of both magnitude and temporal variations (Fig. 4c). After the 369!

treatment initiation, decreased transpiration was seen in both observations and model 370!

simulations for the HS and LS trees. For the LS case, CLM captured the observed 371!

transpiration well. However in the HS case, CLM predicted a sharp reduction in 372!
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transpiration, whereas the observations differed relatively little from the LS case. To 373!

investigate this difference further, we performed a second optimization for the Ball-Berry 374!

stomatal conductance slope and intercept terms (HS_MB). However, despite increasing 375!

these parameters to near the maximum acceptable values (Table 1), the HS_MB 376!

optimization failed to reproduce the measured transpiration.  377!

   Both HS and LS trees showed increasing trend in stem carbon during the 378!

pretreatment period, as inferred from stem thickness measurements. While the LS stems 379!

continued to grow during the treatment period, the observed HS stem size declined (Fig. 380!

5a).  Modeled relative increase in stem carbon was more rapid during the pretreatment 381!

period than observed, and while the modeled LS trees continued to accumulate carbon 382!

during the treatment period (at a somewhat reduced rate) the modeled HS tree growth 383!

essentially stopped. The observed shorter-term (3-5 day) variation in stem carbon (based 384!

on diameter change) under shading (Fig. 5a) was attributed primarily to precipitation 385!

events and changing soil moisture (Fig. 2a and Fig. 4b), and the accompanying swelling 386!

and shrinkage of stem diameter, which translates through the allometric functions to 387!

apparent changes in stem biomass. Apart from whole-plant mortality and fire, the model 388!

has no physiological mechanisms allowing for negative growth of stems.    389!

Both observed and simulated soil respiration tended to decline over the study 390!

period (after Day-10 in the observations) (Fig. 5b). The observed pretreatment soil 391!

respiration beneath the trees chosen for the HS treatment was 30% higher than under 392!

those selected for the LS treatment. After the application of the shade treatments, relative 393!

differences between the observed HS and LS soil respiration were reduced, but 394!

respiration from HS soil remained higher. In contrast, simulated soil respiration was 395!
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slightly higher under LS, although the difference is quite small. The observed short-term 396!

variability in soil respiration under both HS and LS was not well simulated. While 397!

observations showed a reduced soil respiration coinciding with large precipitation events 398!

around Days -10, +10, and +15, simulated soil respiration rose on those days.  399!

3.3 13C evaluation 400!

Observations of foliar δ13C show that LS and HS leaves acquired a similar 401!

concentration of labeled C, as intended by the experimental design (Fig. 6a). Observed 402!

appearance of the labeled C in phloem shows that photosynthate was rapidly moved out 403!

of leaves and into phloem, with peak observed phloem concentrations on day 2 for both 404!

LS and HS trees (Fig. 6b). Labeled C was observed in CO2 at the soil surface, with peak 405!

concentrations around day 4 indicating a transfer through phloem to roots and 406!

metabolism belowground either as root respiration or as heterotrophic respiration of root 407!

exudate or root tissue (Fig. 6d). Increase in labeled C was observed in root tissue for both 408!

LS and HS trees, with large variability in measurements (Fig. 6c). Leaf, phloem, and root 409!

tissues showed remaining labeled C at day 20, and the label was still evident in soil 410!

surface CO2 at day 15. For both phloem and soil surface CO2, the LS plots showed lower 411!

label concentrations than the HS plots throughout the observed rise and fall of the labeled 412!

pulse. Differences between label dynamics for LS and HS roots are difficult to assess due 413!

to variability in measurements. 414!

The model reproduced observed pretreatment values for foliar, phloem, and root 415!

tissue δ13C, and for δ13C in soil CO2 flux to within 1.5‰ (Fig. 6), indicating reasonable 416!

model parameterizations for 13C discrimination through the stomatal conductance and 417!

photosynthesis pathways.  The model allocation approach deploys new photosynthate 418!
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immediately throughout the plant to meet current maintenance and growth respiration 419!

demands. The belowground component of the modeled autotrophic respiration is seen as 420!

a large spike in labeled C in soil surface CO2 on day 0. Other similar spikes were 421!

simulated in association with respiration of aboveground plant parts (results not shown). 422!

Lacking a representation for multi-day transport of photosynthate to sites of growth, 423!

either acropetally towards new canopy growth or basipetally towards stem or root 424!

growth, the model allocates labeled C to new growth pools immediately, where it is 425!

considered well-mixed with the existing plant tissues. There was thus a rapid increase and 426!

then a relative stabilization of the δ13C label in foliage and root tissue. The model does 427!

include storage pools, which hold photosynthate for deployment as new growth in 428!

following growing seasons. Those pools were lumped for comparison to the phloem 429!

observations (Fig. 6b), and they followed a pattern similar to the predicted leaf and root 430!

tissue pools. 431!

The model predicted a steady dilution of labeled C in leaf, root, and storage pools 432!

for the LS trees, compared to their HS counterparts. With a severe reduction in PAR, 433!

GPP was greatly reduced in the modeled HS treatment, and what little photosynthate 434!

produced was prioritized for maintenance respiration, so the label appeared quickly in 435!

tissues and remained relatively constant for that treatment. For the LS treatment GPP 436!

remained relatively high following the labeling and initiation of the shade treatment. In 437!

this case unlabeled C continued to accumulate as new growth, causing a steady decline in 438!

the label concentration for LS trees over the course of the experimental period (Fig. 439!

6a,b,c, insets). In contrast to the plant pools, modeled soil surface CO2 shows a gradual 440!

increase in label concentration after the initial root respiration pulse on day 0, with HS 441!
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consistently showing a higher concentration of label than LS for the simulated soil 442!

surface CO2 through the end of the treatment period (Fig. 6d, inset). The modeled process 443!

of leaf and fine root litterfall is continuous throughout the year for evergreen vegetation, 444!

and this modeled rise in soil surface CO2 concentration of labeled C is due to litterfall and 445!

subsequent metabolism by heterotrophs.  446!

Toward the end of the experimental period, the observed multi-day pulses of 447!

labeled C in phloem and soil surface CO2 approached the relatively stable values 448!

predicted by the model. The observed trajectory for label concentration in leaves fell 449!

below modeled values for the final ten days of treatment. Variation in observed root label 450!

concentration toward the end of the experiment makes it difficult to assess 451!

correspondence with model results for that tissue. 452!

 453!

4 Discussion  454!

4.1 Assessment of model performance in pretreatment period  455!

 Default model physiological parameters most appropriate to our site are based on 456!

averages taken across numerous datasets collected in evergreen needleleaf forests. There 457!

is considerable variation within that broad type classification for all of the measured 458!

parameters (White et al. 2000), and any time a site-level evaluation is used to assess 459!

model behavior (as here) it is helpful to constrain within this range according to the local 460!

species or species mixture. We used measurements taken directly from the site where 461!

available, and constrained the optimization of other parameters based on the observed 462!

ranges for loblolly pine, when available. The fine-root to leaf allocation ratio increased 463!

from 1.0 to 1.24, which is well within the range of reported values (White et al., 2000). 464!
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The fraction of leaf nitrogen in RuBisCO was 70% higher than the model default value, 465!

and while on the high end, is consistent with measurements of other loblolly pine trees 466!

(Tissue et al., 1995). The temperature sensitivity of maintenance respiration (Q10mr) 467!

nearly doubled from the default value of 1.5 to 2.83. This is higher than most values in 468!

the literature but is consistent with the value of 2.71 reported by Hamilton et al. (2001) 469!

for loblolly pine, although this value only pertains to leaf respiration. The optimized 470!

value for stem to leaf allocation ratio also is higher than in the default model, but it falls 471!

well within the observed range for loblolly pine (White et al. 2000).  472!

The optimized model delivered very reasonable simulations of pretreatment tree 473!

biomass, transpiration, and leaf δ13C (Figs. 3a, 4c, and 6a). Including multiple 474!

independent observational metrics in the optimization cost function is a more challenging 475!

test of correct model structure, compared to optimization targeting a single model output 476!

variable (Sacks et al. 2006; Richardson et al., 2010; Ricciuto et al., 2011). The fact that 477!

our optimized model delivers good results for all three components simultaneously 478!

(biomass, transpiration, and leaf δ13C) supports the notion that stand-scale model 479!

structure is reasonable.   480!

Independent evaluation of model results at the leaf-scale demonstrated that the 481!

optimized parameters either reduced biases (LS and open-field light levels) or gave 482!

mixed results (HS light levels) at this scale. This provides additional confirmation that the 483!

optimization approach was reasonable, and was not generating unrealistic parameter 484!

values to compensate for gross structural deficiencies in the model. This is further 485!

confirmed by the fact that optimized parameters (Table 1) controlling stomatal 486!

conductance changed only modestly from default values.   487!
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Independent evaluation of model against pretreatment δ13C in phloem and in soil 488!

surface CO2 shows good agreement, consistent with the targeted pretreatment value for 489!

δ13C in leaves. Simulated bulk root δ13C is biased slightly high (Fig. 6c), indicating 490!

possible errors in root turnover time, or the model’s failure to account for post-491!

photosynthetic fractionation (Badeck et al., 2005).  492!

Though several changes in the canopy photosynthesis scheme were made in the 493!

version 4.5 of CLM (Bonan et al., 2011; Oleson et al., 2013), in this work, the canopy 494!

photosynthesis process of CLM4.0 did a reasonably good job against our evaluation 495!

metrics, including the leaf-level light response data.  The ability of our optimized model 496!

to reproduce pretreatment biomass, transpiration, 13C discrimination, and leaf-scale 497!

photosynthetic response to light gives confidence in the model’s ability to simulate the 498!

shading effect, and the model’s ability to scale leaf-level processes to growth at the 499!

whole-tree scale. 500!

4.2 Assessment of model performance in treatment period 501!

 We did not attempt to optimize model predictions for soil temperature or soil 502!

moisture content. The model overestimation of soil temperature while faithfully 503!

reproducing the multi-day excursions in temperature is consistent through the 504!

pretreatment and treatment periods. Soil surface temperatures were not measured, so it is 505!

not clear if the overestimation bias is related to a surface energy balance bias, to a bias in 506!

the overlying air temperature, or to parameterization error in thermal diffusivity and its 507!

relationship to soil texture and surface layer properties. 508!

 The overestimation bias in modeled soil moisture during the treatment period 509!

(there were no pretreatment observations) suggests a parameterization error for soil 510!
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texture or variation in texture with depth. Small differences in the clay fraction, for 511!

example, could cause the observed offset in mean soil water content, and clearly there is 512!

variability in soil moisture states across the site, both within and between the shade 513!

treatments (Fig. 4b). We used a single estimate of sand, silt, and clay fractions from the 514!

site, and were satisfied that the model was able to capture pretreatment transpiration with 515!

that soil parameterization, and that the multi-day excursions of soil moisture were of 516!

similar magnitude in the model compared to observations during the treatment period.  517!

We also note that modeled stomatal conductance was not impacted by lack of soil water 518!

in these simulations. Periodic rainfall kept soils relatively wet throughout the pre-519!

treatment and treatment periods, minimizing effects of bias in soil moisture on simulated 520!

photosynthesis or transpiration.  521!

 The very large difference between modeled and measured transpiration for the HS 522!

treatment is the most confounding result from our study. All evidence indicates that the 523!

model carbon and water dynamics are well-behaved for the pretreatment period, and the 524!

model also captures the influence of light shading on transpiration accurately. Stem 525!

growth results indicate that reduced growth of LS trees, and the cessation of growth for 526!

HS trees, is captured properly by the model. Through the Ball-Berry approximation 527!

linking stomatal conductance to photosynthetic rate, the model is forced into a state of 528!

reduced transpiration for the HS treatment, even with additional optimization that placed 529!

Ball-Berry parameters at their outer observational limits.  It is possible that the sapflow 530!

measurements in the HS treatment are biased, and that the actual tree-scale transpiration 531!

is not as high as suggested by these measurements, but if true we would expect that bias 532!

to occur for both pretreatment and treatment periods, and not only to appear in the 533!



!

! 24!

treatment period, as observed. Connected to that hypothesis, it is possible that actual leaf 534!

stomatal conductance shut down during the HS treatment, but that water continued to 535!

accumulate in the stem, moving past the sapflow sensors and filling a capacitance in the 536!

xylem tissue. However, the sustained sapflow over the long duration of the treatment 537!

period and the negative observed trend in stem diameter for HS trees argue against that 538!

interpretation.  539!

Alternatively, if we assume that the sapflow measurements reflect actual high 540!

levels of transpiration in the HS trees, then we are forced to conclude that the Ball-Berry 541!

relationship as implemented in CLM (De Kauwe et al., 2013; Oleson et al., 2010, 2013). 542!

breaks down under these rather extreme experimental conditions. Under that hypothesis, 543!

it would seem that there is some “memory” of the expected range of light levels in the 544!

tree, and that even when photosynthesis is nearly extinguished due to experimentally 545!

forced reduction in PAR, stomatal conductance remains at a relatively high level. 546!

Another possibility is that these trees exhibit a strong nonlinearity in the relationship 547!

between stomatal conductance and net photosynthesis, which has been observed at low 548!

light levels and strongly impacts estimated transpiration (Barnard and Bauerle, 2013). 549!

This type nocturnal transpiration may indeed have been greater for the HS trees if the 550!

vapor pressure deficit was larger (Domec et al. 2012). Errors in modeled leaf temperature 551!

and leaf boundary layer vapor pressure deficit may also contribute to the discrepancy 552!

with observations. Conductance may have been maintained to some extent by vapor 553!

pressure differences between the foliage and the shade cloth – indeed, dew was observed 554!

on unshaded trees in early morning, yet not on the shaded trees. This hypothesis could be 555!

tested in future studies with additional leaf-level measurements under HS treatments, 556!
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sampling both the diurnal cycle and the multi-day behavior of leaf physiology in trees 557!

subjected to high levels of shading. While the HS conditions are unlikely to be realized 558!

for extended periods under natural conditions, understanding this failure of the 559!

commonly-used Ball-Berry parameterization may be helpful in understanding and 560!

predicting the broader case of adaptation of stomatal behavior to environmental change, 561!

which is known to influence water and carbon cycle predictions under future climates 562!

(Damour et al., 2010). 563!

 Stem diameter can shrink or swell based on changes in stem xylem water content, 564!

bark water content, and cambial growth, and is dependent on xylem water potential, 565!

vapor pressure deficit, C availability, non-structural carbohydrate concentrations, and C 566!

allocation (Vandegehuchte et al., 2014). C allocation to stem growth is revealed by a 567!

step-wise increase in stem diameter that occurs in response to favorable conditions, and 568!

that is maintained under less favorable conditions. The LS treatment clearly displayed the 569!

step-wise increases in stem diameter, while the HS treatment displayed a reduction in 570!

stem diameter. The shrinking stem diameter of HS trees indicates a decline in xylem and 571!

phloem water content likely linked to phloem sugar concentration. The HS treatment 572!

certainly reduced foliar C uptake and C available for phloem loading and allocation to 573!

cambial growth (Warren et al., 2012).  574!

The modeled difference between LS and HS in biomass accumulation in stems is 575!

in good agreement with observations based on stem diameter, with increases of 1.9% and 576!

1.6% by treatment day 19 for model and observations, respectively (Fig. 5a). Given the 577!

previously discussed pretreatment results for biomass accumulation and leaf-scale 578!

photosynthesis, we are confident in the optimized model’s ability to capture carbon 579!
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dynamics at the plant scale on time scales of years to tens of days. It is reassuring to see 580!

that the model prediction of soil respiration falls in the observed range, although this 581!

could be the result of good luck as much as good performance. While soil respiration on 582!

an annual basis is closely related to litter inputs and belowground plant respiration, it is 583!

possible for compensating errors between decomposition rates and litter inputs, or 584!

between litter inputs and root respiration, to result in good model-observation agreement 585!

for the approximately monthly timescale examined here. We note a potential bias in the 586!

model relationship between soil respiration and soil moisture: while the observed soil 587!

respiration is depressed after large precipitation events, the model estimates an increase. 588!

Neither CLM4’s carbon allocation to roots nor its predicted root respiration is dependent 589!

on soil water conditions. CLM4’s heterotrophic contribution to soil respiration may also 590!

have too little sensitivity and the timing of soil respiration response to soil water variation 591!

may also be too simplistic. A more mechanistic treatment of water-air-microbe 592!

interactions at the scale of soil pore space might help to eliminate these differences. 593!

Resolved vertical transport of respired CO2 in the soil column might also help to correct 594!

this bias. 595!

 Beyond noting the obvious discrepancy in observed vs. modeled δ13C dynamics 596!

associated with the lack of short-term photosynthate storage pools in CLM, we are 597!

interested in using this study to develop hypotheses explaining the observed patterns in 598!

δ13C, identifying the simplest mechanisms that explain observed patterns, and 599!

understanding the consequences of ignoring those mechanisms in a model like CLM. To 600!

the extent that simple mechanisms can be identified, and significant consequences of 601!

ignoring those mechanisms articulated, we leave it to future efforts to deploy and 602!
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evaluate those mechanisms in new model versions and with new observational and 603!

experimental constraints. 604!

 Given that LS and HS leaves seem to have photosynthesized the pre-shading 605!

labeled pulse of CO2 at similar rates (Fig. 6a) as intended by the experimental design, we 606!

can make some inferences about the dynamics of photosynthate storage and transport 607!

based on the timing of the pulse as it exits the foliage and passes through the phloem of 608!

the trunk, and based on differences in timing and concentration of the labeled pulse in LS 609!

and HS trees. First, the fact that observed peak label concentration is higher in phloem 610!

than in foliage, even though that peak comes two days later in phloem than in foliage, 611!

indicates that the phloem pool in the vicinity of the labeling source (the leaf) is smaller 612!

than the leaf pool itself. That is, even though the label is passing into the leaf prior to 613!

entering the phloem, the label pulse is relatively small compared to the leaf carbon pool 614!

as a whole, while it is relatively large compared to the part of the phloem pool nearest the 615!

leaf at the time of labeling. Second, the observation that δ13C in foliage declines rapidly 616!

over the first ten days, and declines at about the same rate for LS and HS leaves, indicates 617!

that the movement of newly-fixed photosynthate from leaves and into phloem does not 618!

depend strongly on production of new photosynthate in subsequent days. Third, the 619!

similar timing between LS and HS trees for peak label concentration in phloem, and later 620!

in soil surface CO2, indicates that the velocity of material movement through the phloem 621!

does not depend strongly on current photosynthesis rate. Since the HS treatment clearly 622!

reduced growth and transport belowground (Fig. 5), the logical conclusion is that the 623!

cross-sectional area of active phloem tissue responsible for transport of photosynthate 624!

away from leaves and out to roots is lower in the HS than in the LS treatment. One 625!
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possible interpretation is that the rate of flow within a given phloem pathway is relatively 626!

constant, and that more phloem pathways towards the roots are active when production of 627!

photosynthate is high. A logical consequence of that arrangement would be that at any 628!

given point along the transport pathway towards the roots, or at any point in time at a 629!

given location along the pathway, the concentration of a common-sized label would be 630!

lower for a tree with high rate of ongoing photosynthesis than for a tree with low rate of 631!

ongoing photosynthesis, due to dilution of the fixed-size label into a larger number 632!

(larger cross-sectional area) of transport pathways, all with a common transport velocity 633!

(conceptual model shown in Fig. 7). This is in fact the observed relationship of LS to HS 634!

concentration at all points in time for both the phloem measurements (fixed point on the 635!

trunk) and for the soil surface CO2, lending support to the hypothesized mechanism. 636!

  Plant storage pools in the form of non-structural carbohydrates are known to play 637!

an important role in regulating allocation to structural pools, and may make up a 638!

significant portion of total biomass (e.g. Hoch et al., 2003). Simple models that account 639!

for non-structural carbohydrates better compare with observed 14C and stem growth, 640!

indicating the importance of the pools over seasonal to decadal timescales (Richardson et 641!

al., 2013). The question remains: What are the consequences for a CLM like model of 642!

ignoring the shorter timescale (monthly) storage dynamics? (see Fig. 7). If we show that 643!

the modeled and observed label concentrations tend to converge over monthly timescales, 644!

we can argue that ignoring these short-term pools is not a first-order impediment to good 645!

estimates of allocation and growth. Other more subtle aspects of the problem could, 646!

however, have important implications for plot-scale and even global scale vegetation-soil 647!

ecosystem dynamics and feedbacks. For example, the labeled soil surface CO2 efflux is a 648!
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result from a combination of root respiration and heterotrophic respiration. The 649!

heterotrophic component can be supplied by fresh litter inputs or by root exudation of 650!

non-structural carbohydrate, which can be a significant fraction of net primary production 651!

in some systems (Högberg et al., 2010). The difference between root mortality and root 652!

exudation in terms of substrate quality, nutrient content, and interactions with soil 653!

microbial communities could be very significant, especially as integrated over long 654!

periods and under conditions of changing climate, changing atmospheric CO2 655!

concentration, and anthropogenic modifications to nutrient cycles. 656!

Representing the existence and dynamics of short-term photosynthate storage 657!

pools in a model like CLM could also help to resolve the mechanisms relating nutrient 658!

mineralization and availability in soils with plant-microbe competition for available 659!

nutrients and the influence of nutrient uptake on leaf-scale photosynthesis. In addition to 660!

the shading treatments described here, other manipulations that would be useful to 661!

explore include elevated CO2 during and/or after the labeling pulse, imposed nutrient 662!

limitations, and fertilization.  Replicating these studies in other vegetation types would 663!

help to assess the generality of storage pool structure and function, and would support 664!

operational inclusion of these mechanisms in a global-scale model.  665!

4.3 Implications for experimental design  666!

Limitations identified in this first PiTS model-experiment interaction have already led to 667!

improvements in follow-on experiments. For new experiments in a nearby dogwood 668!

stand, additional observations include multiple treatments in different seasons, a 669!

collection of absolute destructive tree biomass at the end of the study (rather than highly 670!

uncertain estimates based on allometric relationships), seasonal leaf-level photosynthetic 671!
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measurements, assessment of mycorrhizal C flux, and improved meteorological 672!

measurements. Although model parameters can be improved through optimization as in 673!

this study, model parameters are being measured where possible. These additional 674!

observational data are necessary for more detailed model evaluation and improvement of 675!

model routines of C and allocation patterns at various time scales.  Additional effort is 676!

being devoted to characterizing the system prior to manipulation, including 677!

measurements of biomass, soil physical and soil biogeochemical states.     678!

 679!

5 Conclusions 680!

The point version of CLM4 was implemented, calibrated and evaluated against carbon 681!

and hydrology observations from a shading and labeling experiment in a stand of young 682!

loblolly pines. We found that a combination of parameters measured on-site and 683!

calibration targeting biomass, transpiration, and 13C discrimination gave good agreement 684!

with pretreatment measurements, including independent evaluation metrics at the leaf-685!

scale. We showed that the calibrated model captured the tree-scale and monthly temporal 686!

dynamics of a light-shade treatment as it influenced carbon and water fluxes. The 687!

calibrated model also captured the monthly time-scale carbon dynamics of a heavy-shade 688!

treatment, but persistently estimated low levels of transpiration for the heavy-shade 689!

treatment, while observed transpiration in that treatment remained nearly as high as for 690!

the light-shade.  We have suggested several possible explanations for the discrepancy, but 691!

this remains a puzzling problem requiring further investigation. 692!

 Although the model lacks short-term photosynthate storage and transport 693!

mechanisms that are clearly present in the real plants, first-order monthly time-scale 694!
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dynamics for carbon allocation and growth do not seem to suffer greatly. We used 695!

observations from the experiment to develop a conceptual model (hypothesis) of short-696!

term photosynthate storage and transport, and suggested further studies that could be 697!

carried out to evaluate the generality of the hypothesized mechanisms. We suggested 698!

several research problems, which, if the proposed mechanism turns out to be generally 699!

valid, would benefit from model-experimental study in which the new mechanisms are 700!

incorporated into the model structure.  701!
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Table 1. 1042!

1043!
* stem-leaf allocation is a function of annual NPP.  2.2 is the nominal value at NPP = 800 gC m-2 yr-1 1044!
 1045!
Table 2. 1046!

 1047!
 1048!

Captions of Tables and Figures  1049!

Table 1. Default PFT-level, site-specific and optimized parameters for the PiTS site used 1050!

in CLM 4.0.  PFT-level parameters are for the temperate evergreen needleleaf forest 1051!

(ENF) type.  Optimized values were obtained using the pretreatment data (PRE_OPT), 1052!

and for the transpiration data during the shading period (HS_MB).  In the HS_MB 1053!

optimization, only the mp and bp parameters were optimized, while other parameters 1054!

retain their pretreatment optimization values.  1055!

Table 2. Pretreament state variables included in the optimization. Simulated values were 1056!

obtained using the default parameters (PRE_STD) and the optimized parameters 1057!

(PRE_OPT). The bias reduction (%) caused by the optimization is listed in the last 1058!

Parameter Description Units Default PRE_OPT HS_MB
measured
slatop Top(of(canopy(specific(leaf(area((SLA) m2/gC 1.00E>02 1.02E>02 1.02E>02
dsladlai Change(in(SLA(through(per(unit(LAI gC>1 1.25E>03 0 0
leafcn leaf(C:N(ratio gC/gN 35 50 50
optimized
mp Ball>Berry(stomatal(conductance(slope none 6 5.59 71.3
bp Ball>Berry(stomatal(conductance(intercept µmol(m>2(s>1 5000 4960 61100
froot_leaf fine(root(to(leaf(allocation(ratio none 1 1.24 1.24
stem_leaf stem(to(leaf(allocation(ratio none 2.2* 3.29 3.29
flnr fraction(of(leaf(N(in(RuBisCO none 0.05 0.0845 0.0845
q10_mr maintenance(respiration(t>sensitivity none 1.5 2.83 2.83

State%variable Units Observed PRE_STD PRE_OPT Bias%reduction%(%)
Leaf%carbon gC/m

2 [182,221] 419 209 96.55

Stem%carbon gC/m
2 [973,1220] 1455 1027 88.49

Root%carbon gC/m
2 488 859 408 78.44

Aboveground%biomass gC/m
3 [728,1758] 1645 1236 98.26

δ13C%leaf per%mil H27.99 H27.38 H27.49 18.03

δ13C%phloem per%mil H28.48 H27.38 H27.50 10.91

δ13C%Root per%mil H28.86 H27.36 H27.39 2.13

Sap%flow mm/day 2.40 3.70 2.37 97.85

Soil%respiration µmol%m
H2
%s

H1 3.63 5.20 3.26 76.58
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column. In the case of leaf, root and aboveground biomass, we use allometric equations 1059!

from multiple sources (Baldwin, 1987; Naidu et al., 1998; Vanlear et al., 1986) that went 1060!

into producing a range. The bias calculation uses the mean of the range. For sap flow and 1061!

soil respiration, daily observations were made, but the values represent a mean over the 1062!

25 pretreatment days over both LS and HS periods. δ13C values represent observed and 1063!

simulated values on the day before treatments began. 1064!

Figure 1 (a) Air temperature (T, °C), relative humidity (Hr, %) and (b) wind speed (u, m 1065!

s-1) under the shade cloth at the top of the canopy compared with open field 1066!

measurements at 2 m height; (c) Typical diurnal patterns of photosynthetically active 1067!

radiation (PAR, µmol m-2 s-1) at the site under full sun, light shade or heavy shade 1068!

treatments. 1069!

Figure 2 (a) Daily air temperature (°C) and precipitation (mm d-1) for the pretreatment 1070!

and treatment of light shade (LS) and heavy shade (HS) (Day -20 to 25), (b) change in 1071!

daily atmospheric long wave radiation (LW, W m-2), short wave radiation (SW, W m-2) 1072!

and 13CO2 (PPMV) prior to and after exposure to shade treatments. Dashed gray line 1073!

represents the starting day of the treatment. 1074!

Figure 3 (a) CLM simulated change of leaf carbon (PRE_STD_LeafC), stem carbon 1075!

(PRE_STD_StemC) and root carbon (PRE_STD_RootC) with default parameters, and 1076!

change of those (PRE_OPT_LeafC, PRE_OPT_StemC and PRE_OPT_RootC) simulated 1077!

with optimized parameters for the pretreatment period between year 2003 and Sep. 1st 1078!

(dashed gray line) of year 2010. Observational estimations of leaf (OBS_LeafC, which 1079!

are 221.1 g C m-2, 283.8 g C m-2 and 181.9 g C m-2), stem (OBS_StemC, which are 1080!

1011.2 g C m-2, 973.8 g C m-2 and 1220.1 g C m-2) and root (OBS_RootC, which is 488.4 1081!
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g C m-2) are based on measured stem diameters at breast height and allometric 1082!

relationships from similarly aged loblolly pine (Baldwin, 1987; Naidu et al., 1998; 1083!

Vanlear et al., 1986). Note that y-axis is log10-scaled. (b) Comparison of observed and 1084!

simulated light response of top of the canopy leaves of loblolly pine at the PiTS-1 site.  1085!

Solid black circles are mean ± 1 std dev of observations.  Solid red and green circles are 1086!

simulated results from the net photosynthesis module of the functional unit testing 1087!

framework using site-observed parameters (PRE_STD) and optimized parameters 1088!

(PRE_OPT), respectively (see section 2.2.2). Simulations are with the mean observed 1089!

internal CO2 concentrations (Ci) and leaf temperatures (Tleaf) at the observed light 1090!

(PAR) levels and the site’s observed leaf nitrogen (Na). Three grey bars represent the 1091!

mean ± 1 std dev of midday PAR levels under the light shade treatment (LS), heavy 1092!

shade treatment (HS) and open field condition (OF).  1093!

Figure 4 (a) Observed (obs) and CLM simulated (sim) daily soil temperature at 0-5cm 1094!

depth (standard deviation, SD = 0.6-1.4 °C), (b) volumetric soil water content at 15-95cm 1095!

depth (±SD) and (c) the transpiration before and after initiation of light shade (LS) or 1096!

heavy shade (HS) treatments (SD = 0.1-1.7 mm day-1). “HS – opt” represents the CLM 1097!

simulation with optimized leaf conductance parameters. The vertical dashed lines 1098!

indicate the starting day of the shade treatments. 1099!

Figure 5 (a) Observed (obs) and CLM simulated (sim) daily stem carbon relative to day 1100!

0 (±SD), and (b) soil respiration prior to and after exposure to light shade (LS) and heavy 1101!

shade (HS) treatments (±SD). Both observed and simulated stem carbon were normalized 1102!

to 1 at Day 0. The simulated soil respiration is the combination of autotrophic respiration 1103!
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from roots and heterotrophic respiration from the decay of litter and soil organic matter. 1104!

The vertical dashed lines indicate the starting day of the treatments. 1105!

Figure 6 (a) Observed (black) and CLM simulated (blue) change in δ13C (parts per 1106!

thousand (‰)) of (a) leaf, (b) phloem, (c) bulk root and (d) soil surface efflux δ13C for the 1107!

light shade (LS, open circle) and heavy shade (HS, filled circle) pretreatment and 1108!

treatment periods (± standard error (SE)). The modeled δ13C values were calculated from 1109!

the CLM simulated 13C and 12C variables and the reference standard (0.0112372) using 1110!

the equation described in https://en.wikipedia.org/wiki/Δ13C. The 13CO2 labeling pulse 1111!

was initiated on Sep. 1st in year 2010 (Day 0). Dashed gray line represents the starting 1112!

day (again Day 0) of the shading treatment. To better visualize the model results, inset 1113!

figures illustrate the CLM simulated δ13C values for the light shade (open triangle) and 1114!

heavy shade (filled triangle) treatments from Day 1 to Day 25. 1115!

Figure 7. Conceptual model of label transport, assuming a constant velocity (V) of 1116!

phloem stream with a cross-sectional area for the phloem pathway that varies as a 1117!

function of ongoing photosynthetic rate. Cross-sectional area is conceptualized here as a 1118!

varying number of similar phloem elements, with white elements in an active state, and 1119!

dark elements inactive. The experimental case with a higher photosynthetic rate for the 1120!

LS treatment and lower photosynthetic rate for the HS treatment is illustrated. Flux from 1121!

roots (FR) includes root respiration, root exudation, and turnover of root tissue. The 1122!

entire label is assumed to exit the leaf and enter the active phloem stream, at a rate that is 1123!

independent of the ongoing rate of photosynthesis, as observed in the experiment. 1124!

 1125!
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Figure 1 (a) Air temperature (T, °C), relative humidity (Hr, %) and (b) wind speed (u, m s-1) under the shade cloth at the 

top of the canopy compared with open field measurements at 2 m height; (c) Typical diurnal patterns of 

photosynthetically active radiation (PAR, µmol m-2 s-1) at the site under full sun, light shade or heavy shade treatments. 

(a) 

(b) 

(c) 
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Figure 2 (a) Daily air temperature (°C) and precipitation (mm d-1) for the pretreatment and treatment of light shade (LS) 

and heavy shade (HS) (Day -20 to 25), (b) change in daily atmospheric long wave radiation (LW, W m-2), short wave 

radiation (SW, W m-2) and 13CO2 (PPMV) prior to and after exposure to shade treatments. Dashed gray line represents 

the starting day of the treatment. 
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Figure 3 (a) CLM simulated change of leaf carbon (PRE_STD_LeafC), stem carbon (PRE_STD_StemC) and root 

carbon (PRE_STD_RootC) with default parameters, and change of those (PRE_OPT_LeafC, PRE_OPT_StemC and 

PRE_OPT_RootC) simulated with optimized parameters for the pretreatment period between year 2003 and Sep. 1st 
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(dashed gray line) of year 2010. Observational estimations of leaf (OBS_LeafC, which are 221.1 g C m-2, 283.8 g C m-2 

and 181.9 g C m-2), stem (OBS_StemC, which are 1011.2 g C m-2, 973.8 g C m-2 and 1220.1 g C m-2) and root 

(OBS_RootC, which is 488.4 g C m-2) are based on measured stem diameters at breast height and allometric 

relationships from similarly aged loblolly pine (Baldwin, 1987; Naidu et al., 1998; Vanlear et al., 1986). Note that y-

axis is log10-scaled. (b) Comparison of observed and simulated light response of top of the canopy leaves of loblolly 

pine at the PiTS-1 site.  Solid black circles are mean ± 1 std dev of observations.  Solid red and green circles are 

simulated results from the net photosynthesis module of the functional unit testing framework using site-observed 

parameters (PRE_STD) and optimized parameters (PRE_OPT), respectively (see section 2.2.2). Simulations are with the 

mean observed internal CO2 concentrations (Ci) and leaf temperatures (Tleaf) at the observed light (PAR) levels and the 

site’s observed leaf nitrogen (Na). Three grey bars represent the mean ± 1 std dev of midday PAR levels under the light 

shade treatment (LS), heavy shade treatment (HS) and open field condition (OF). 
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Figure 4 (a) Observed (obs) and CLM simulated (sim) daily soil temperature at 0-5cm depth (standard deviation, SD = 

0.6-1.4 °C), (b) volumetric soil water content at 15-95cm depth (±SD) and (c) the transpiration before and after initiation 

of light shade (LS) or heavy shade (HS) treatments (SD = 0.1-1.7 mm day-1). “HS – opt” represents the CLM simulation 

with optimized leaf conductance parameters. The vertical dashed lines indicate the starting day of the shade treatments. 
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Figure 5 (a) Observed (obs) and CLM simulated (sim) daily stem carbon relative to day 0 (±SD), and (b) soil respiration 

prior to and after exposure to light shade (LS) and heavy shade (HS) treatments (±SD). Both observed and simulated 

stem carbon were normalized to 1 at Day 0. The simulated soil respiration is the combination of autotrophic respiration 

from roots and heterotrophic respiration from the decay of litter and soil organic matter. The vertical dashed lines 

indicate the starting day of the treatments. 
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Figure 6 (a) Observed (black) and CLM simulated (blue) change in δ13C (parts per thousand (‰)) of (a) leaf, (b) 

phloem, (c) bulk root and (d) soil surface efflux δ13C for the light shade (LS, open circle) and heavy shade (HS, filled 

circle) pretreatment and treatment periods (± standard error (SE)). The modeled δ13C values were calculated from the 
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CLM simulated 13C and 12C variables and the reference standard (0.0112372) using the equation described in 

https://en.wikipedia.org/wiki/Δ13C. The 13CO2 labeling pulse was initiated on Sep. 1st in year 2010 (Day 0). Dashed 

gray line represents the starting day (again Day 0) of the shading treatment. To better visualize the model results, inset 

figures illustrate the CLM simulated δ13C values for the light shade (open triangle) and heavy shade (filled triangle) 

treatments from Day 1 to Day 25. 
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Figure 7. Conceptual model of label transport, assuming a constant velocity (V) of phloem stream with a cross-sectional 

area for the phloem pathway that varies as a function of ongoing photosynthetic rate. Cross-sectional area is 

conceptualized here as a varying number of similar phloem elements, with white elements in an active state, and dark 

elements inactive. The experimental case with a higher photosynthetic rate for the LS treatment and lower 

photosynthetic rate for the HS treatment is illustrated. Flux from roots (FR) includes root respiration, root exudation, 

and turnover of root tissue. The entire label is assumed to exit the leaf and enter the active phloem stream, at a rate that 

is independent of the ongoing rate of photosynthesis, as observed in the experiment. 
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