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Abstract. Carbon allocation and flow through ecosystems regulates land surface–28	

atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic 29	

models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked 30	

carbon allocation through a young Pinus taeda stand following pulse-labeling with 13CO2 31	

and two levels of shading. The field component of this project provided process-oriented 32	

data that was used to evaluate terrestrial biosphere model simulations of rapid shifts in 33	

carbon allocation and hydrological dynamics under varying environmental conditions. 34	

Here we tested the performance of the Community Land Model version 4 (CLM4) in 35	

capturing short-term carbon and water dynamics in relation to manipulative shading 36	

treatments, and the timing and magnitude of carbon fluxes through various compartments 37	

of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of 38	

closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-39	

labeling 13C values. Over the 3-week treatment period, CLM4 generally reproduced the 40	

impacts of shading on soil moisture changes, relative change in stem carbon, and soil 41	

CO2 efflux rate. Transpiration under moderate shading was also simulated well by the 42	

model, but even with optimization we were not able to simulate the high levels of 43	

transpiration observed in the heavy shading treatment, suggesting that the Ball-Berry 44	

conductance model is inadequate for these conditions. The calibrated version of CLM4 45	

gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 46	

three weeks of shade treatment, but lacks mechanisms needed to track the labeling pulse 47	

through plant tissues on shorter time-scales. We developed a conceptual model for 48	

photosynthate transport based on the experimental observations, and discussed conditions 49	

under which the hypothesized mechanisms could have an important influence on model 50	
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behavior in larger-scale applications. Implications for future experimental studies are 51	

described, some of which are already being implemented in follow-on studies. 52	

	53	

1 Introduction  54	

Accurate projection of the changing global climate, given a particular scenario of future 55	

greenhouse gas emissions or concentrations, is largely determined by adequate 56	

representation of mechanistic processes in Earth System Models (ESMs) (Taylor et al., 57	

2012). Land Surface Models (LSMs) and their associated biogeophysical and 58	

biogeochemical parameterizations are key determinants of the ESMs’ fidelity in 59	

characterizing and quantifying complex feedbacks in the Earth System (Arora et al., 60	

2013; Friedlingstein et al., 2006; Pitman, 2003). Modeling studies have increasingly used 61	

observational data and mechanistic knowledge of processes to advance the development 62	

of LSMs (Best et al., 2011; Dai et al., 2003; Krinner et al., 2005; Oleson et al., 2013; 63	

Wang et al., 2011). Global and regional observations of land surface fluxes, states, and 64	

dynamic vegetation change offer insights into the large-scale interactions between the 65	

land surface and atmosphere, and hence facilitate model improvements at relevant scales 66	

in space and time (Beer et al., 2010; Huntzinger et al., 2012; Luo et al., 2012; Randerson 67	

et al., 2009). However, to better quantify and reduce uncertainties arising from 68	

deficiencies in model process representation, parameters, driver datasets and initial 69	

conditions, there has been significant effort to evaluate and to calibrate LSMs against 70	

site-scale observations and experimental manipulations (Baldocchi et al., 2001; De 71	

Kauwe et al., 2014; Hanson et al., 2004; Ostle et al., 2009; Raczka et al., 2013; 72	

Richardson et al., 2012; Schaefer et al., 2012; Schwalm et al., 2010; Stoy et al., 2013; 73	
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Walker et al., 2014; Williams et al., 2009; Zaehle et al., 2014). Further, model 74	

development from these focused site-scale studies, especially in close collaboration with 75	

experimentalists, can inform and prioritize new experiments and observations that are 76	

specifically designed to advance understanding of critical terrestrial ecosystems and 77	

processes (Shi et al., 2015). 78	

The Community Land Model (CLM) is an advanced LSM with a comprehensive 79	

mechanistic parameterization of carbon (C), water, and energy budgets for diverse land 80	

types that can be applied across multiple temporal scales (Oleson et al., 2010). CLM has 81	

been evaluated against observations from a wide range of sources, and these evaluations 82	

have resulted in improved model performance (Bauerle et al., 2012; Bonan et al., 2011, 83	

2012; Koven et al., 2013; Lawrence et al., 2011; Mao et al., 2012a, 2012b, 2013; Oleson 84	

et al., 2008; Randerson et al., 2009; Riley et al., 2011; Shi et al., 2011, 2013, 2015; 85	

Thornton et al., 2007). Nevertheless, little attention has been paid to CLM’s ability to 86	

replicate short-term manipulative experiments, which provide an avenue for exploring 87	

and validating model response to sudden, large changes in environmental drivers that 88	

control physiological and ecological responses (Amthor et al., 2001; Bonan et al., 2013; 89	

Shi et al., 2015). Processes operating over short time scales can have long-lived 90	

ecosystem consequences through indirect effects; e.g., stomatal conductance varies on 91	

timescales of hours or shorter, but indirect effects on site-level water balance through 92	

controls on transpiration can extend to annual timescales and beyond. Combined model-93	

experiment projects can focus efforts on specific mechanistic processes whose 94	

representation in the model may be neither adequate nor appropriate for specific sites 95	

(Walker et al., 2014; Zaehle et al., 2014). Extending these model-experiment evaluations 96	
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and ensuing model refinements to additional sites of the same and different ecosystem 97	

types improves confidence in the regional and global scale adequacy of the LSM’s 98	

mechanistic process representation and parameterization. 99	

Photosynthetic C assimilation, the allocation of photosynthetic products into 100	

tissues with different turnover rates, and the respiration of C back into the atmosphere are 101	

important determinants of CO2 exchange between the terrestrial biosphere and the 102	

atmosphere (Schimel et al., 2001). Biosphere-atmosphere C exchange is dynamically 103	

mediated by weather, soil conditions, vegetation community composition and phenology, 104	

and natural and anthropogenic disturbances (Cannell and Dewar, 1994; Litton et al., 105	

2007). Mechanistic characterization of the fate of photosynthetically-fixed C, in 106	

particular the magnitude and timing of C allocation among plant compartments, is a 107	

major challenge for experimental and modeling communities (Epron et al., 2012). 108	

Various C-allocation schemes have been proposed and implemented in LSMs to capture 109	

both the dynamic changes in C allocation and response to external conditions of C 110	

allocation (De Kauwe et al., 2014). They generally employ either fixed coefficients or in 111	

some cases dynamic coefficients that are functions of time or time-varying external 112	

conditions to allocate assimilated C to different plant components (e.g., leaves, stems, 113	

and roots). These allocation schemes and coefficients are generally not well constrained 114	

by observations. More process-based understanding, better measurement techniques, and 115	

targeted experimental manipulations are needed to better constrain allocation within the 116	

model structure and the models’ representations of C dynamics.  117	

Carbon isotopes provide important constraints on specific processes and can be 118	

used in labeling experiments to track pulses of carbon through plant and soil components.  119	



	

	 6	

Both diffusion through stomata and enzyme activity during photosynthesis discriminate 120	

against the accumulation of 13C in plant tissue, making 13C measurement a useful 121	

constraint on stomatal conductance (Farquhar et al., 1989). Exposing plants to 13C 122	

enriched CO2 can provide important constraints on simulated C allocation (Ehleringer et 123	

al., 2000). The post-treatment carbon isotope composition (δ13C) of organic matter and 124	

respired CO2 can serve as a tracer of plant C allocation (Atkin 2015; Bahn et al., 2012).  125	

We evaluated the integrated response of a simulated tree-soil system to an 126	

imposed alteration of shortwave radiation, the main environmental driver for 127	

photosynthesis, and compared the observed trajectory of labeled carbon pulses through 128	

that system with approximations of carbon allocation that are typical of a global-scale 129	

model. We used a version of CLM4.0 that has been modified to allow convenient 130	

application of the global-scale modeling algorithms at single points (PTCLM, described 131	

in Oleson et al., 2013). We evaluated the model against observations and experimental 132	

results from the “Partitioning in Trees and Soils” (PiTS) experiment established in a 133	

young loblolly pine stand in Oak Ridge, Tennessee, USA (Warren et al., 2013). The 134	

project exposed a young loblolly pine (Pinus taeda) stand to a pulse of air enriched with 135	
13CO2, then tracked that label from photosynthetic uptake, through the leaves, stem, and 136	

roots and ultimately out of the soil as respiratory flux (Warren et al., 2012). We addressed 137	

two questions: (i) Is the model able to represent the biophysical and ecophysiological 138	

behavior of the experimental system in terms of pretreatment dynamics and stand-level 139	

response to the manipulated radiation environment? (ii) Do the biases inherent in a very 140	

simple model of storage and allocation propagate beyond the time scale of fast turnover 141	

storage pools? We hypothesized that it would be possible to parameterize the global 142	
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model using site-level ecophysiological measurements, and have it realistically capture 143	

the site-level influence of the shade manipulation. We further hypothesized that, in spite 144	

of missing mechanisms to track short-term storage and allocation of C, the parameterized 145	

model could capture both pretreatment 13C discrimination as well as post-treatment 146	

effects once the labeling pulse had traveled through the plant.   147	

	148	

2 Methodology  149	

2.1 Site description, experimental manipulation, and observations   150	

The field component of the project was conducted in a young loblolly pine stand at the 151	

University of Tennessee Forest Resources AgResearch and Education Center in Oak 152	

Ridge, Tennessee. The soil is classified as a silt-clay-loam (13.3% sand; 35.7% clay; 153	

51.0% silt), with bulk density ranging from 1.2 to 1.4 g cm-3 at 10 to 70 cm depth. One-154	

year-old seedlings (1 g C m-2 (Griffin et al., 1995)) were planted at 2.5 × 3 m spacing in 155	

2003, and the experiment was conducted in 2010 when the trees were ~7 m tall. 156	

    In 2010, a subset of eight of the trees, adjacent to one another, and their soils, were 157	

instrumented with automated sensors to continuously measure soil temperature, soil 158	

moisture vertically throughout the soil profile, soil surface 12CO2 and 13CO2 efflux, root 159	

production at 10 and 30 cm depths, stem sap flow, and stem diameter (Warren et al., 160	

2012). Various measurements were manually collected periodically, including predawn 161	

foliar water potential, photosynthetic light- and CO2-response curves, root biomass, 162	

growth, and mortality, and soil C and nutrient content. Meteorological data were 163	

collected every 30 minutes at 2 m height in an adjacent open field, and included wind 164	
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speed, air temperature, photosynthetically active and shortwave radiation, precipitation, 165	

and relative humidity.  166	

Following several weeks of pretreatment measurements, the eight study trees 167	

were enclosed with plastic film stretched over a frame surrounding the trees, and then 168	

trees were exposed to 53 liters of 99 atom % 13CO2 for 45 minutes. The plastic was 169	

removed and replaced with light shade (LS) or heavy shade (HS) cloth, each of which 170	

covered four trees and provided differential levels of photosynthetically active radiation 171	

(PAR) at the canopy surface for 3 weeks following the labeling. The LS and HS cloths 172	

were designed to allow passage of 70% and 10%, respectively, of the incident PAR.  173	

To assess actual conditions under the shade cloth treatments, short-term 174	

measurements of temperature, humidity, wind speed, and PAR were collected at the 175	

canopy surface following shade cloth installation. Linear regressions between 176	

meteorological data from under the shade cloth and from the open field were used to 177	

estimate conditions at the canopy surface during the experimental period. Temperature 178	

was ~0.11°C (± 0.82 °C; ± 1 SD) lower, relative humidity (Hr) was ~6% (± 5%; ± 1 SD) 179	

higher, and wind speed (u) was ~45% (± 15%; ± 1 SD) lower, under both levels of 180	

shading than in the adjacent open field (Fig. 1a, b). The shade cloths performed very 181	

close to design, with 68% and 11% passage of PAR through the LS and HS cloths, 182	

respectively (Fig. 1c). 183	

  Non-destructive measurements of soil moisture, soil temperature, soil respiration, 184	

sap flow and stem growth were made prior to the labeling and for the duration of the 185	

shade treatment. During the shade treatment, destructive measurements of foliage, stem 186	

phloem tissue, roots and soil were collected to assess presence of the 13C label, and linked 187	
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to concurrent automated measurements of 13CO2 from the soil surface (Warren et al., 188	

2012). Experimental results and additional details on the site and experimental design are 189	

in Warren et al. (2012) and datasets are available online (Warren et al., 2013). 190	

2.2 Model description  191	

We used CLM4 (Oleson et al., 2010), the land component of the Community Earth 192	

System Model (CESM) (Gent et al., 2011), to simulate the pretreatment and manipulated 193	

processes in the PiTS study. This CLM version includes fully prognostic carbon and 194	

nitrogen representations for its vegetation, litter, and soil biogeochemistry components 195	

(Oleson et al., 2010, 2013; Thornton et al., 2007; Thornton and Rosenbloom, 2005).  196	

Carbon allocation in this version of CLM is simplistic. After maintenance 197	

respiration demands are calculated and subtracted from gross primary productivity 198	

(GPP), and following a step that downregulates GPP on the basis of static allocation 199	

parameters, fixed tissue C:N stoichiometry, and plant mineral N uptake,  the available 200	

carbon is allocated to new growth, storage for growth in subsequent growing seasons, and 201	

associated growth respiration.  The model includes pools for leaf, fine root, and several 202	

categories of stem and coarse root, with over-season storage pools associated with each 203	

of these “displayed” growth pools. The allocation ratio between stem and leaf is a 204	

function of the previous year’s net primary productivity (NPP; higher fractional 205	

allocation to stem with higher annual NPP), while all other allocation ratios are fixed 206	

throughout the simulation for a given vegetation type. For 13C, stomatal diffusion and 207	

photosynthetic fractionation are calculated and photosynthetically fixed 13C is 208	

immediately allocated to plant pools following the above description. There is no further 209	

fractionation in within-plant processes or during decomposition (Oleson et al., 2013).   210	
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Several major developments of CLM performed specifically for this study 211	

include: (1) introducing the ability to represent the shade effect and experimental labeling 212	

by driving the model with observed atmospheric 13CO2 concentrations, where before 213	
13CO2 was assumed to be a constant fraction of CO2, (2) developing a site-level 214	

simulation workflow that leverages PTCLM capability to reproduce actual field 215	

experiments, (3) calibration of the selected model parameters to improve predictions and 216	

reveal structural errors, and (4) adding a stand-alone testing capability for the 217	

photosynthesis subroutines. 218	

2.2.1 Description of PTCLM simulation 219	

To perform simulations at the PiTS site, we used PTCLM, a scripting framework to run 220	

site-level simulations of CLM efficiently with site-specific forcing and initialization data 221	

(Oleson et al., 2013). We performed the standard 600 years of accelerated decomposition 222	

spinup, in which soil organic matter decomposition rates are increased (Thornton and 223	

Rosenbloom, 2005), followed by 1000 years of normal spinup, in which the 224	

decomposition rates are returned to their normal values, and a transient simulation 225	

between 1850-2010 using historically varying CO2, 13CO2, nitrogen deposition, and 226	

aerosol forcing data. Long-term meteorological driver data were not available at the PiTS 227	

site, and instead were taken from the nearby Walker Branch and Chestnut Ridge eddy 228	

covariance sites (Hanson et al., 2004) for the years 2000-2010. These input data were 229	

cycled continuously to drive the model through the spinup and transient simulations. On 230	

model date 1 January 2003, we simulated a harvest disturbance by removing existing 231	

vegetation biomass and simulating planting of seedlings using a biomass of 1 g C m-2. 232	

The model then simulated growth of the young stand through the year 2010. For the 233	
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spinup and transient phases through 2002, default temperate evergreen needleleaf model 234	

parameters were used. Beginning in 2003, model parameters were modified to simulate 235	

the planted loblolly trees, based on ecophysiological measurements and model calibration 236	

(see Section 2.2.2). 237	

To simulate the treatment period, we replaced the meteorology from the eddy 238	

covariance sites with observed data at the treatment sites starting at day of 13CO2 labeling 239	

in September 2010 (Warren et al., 2012). The 13CO2 pulse was applied in the model 240	

(assuming 100% 13CO2) during a time matching the labeling period. Thermal infrared 241	

camera measurements under both light and heavy shade cloth made during various sky 242	

conditions indicated the need to modify the model input for incoming longwave radiation 243	

under the heavy shade treatment, by assuming that the heavy shade cloth emitted 244	

downward longwave at a blackbody temperature equal to the open field air temperature 245	

(data not shown). For the light shade case, we applied the model’s internal estimate of 246	

incoming longwave radiation, which uses clear-sky assumptions about atmospheric 247	

temperature and emissivity (Idso, 1981).  248	

2.2.2 Model calibration for pre- and post-treatment periods 249	

Model evaluations are complicated by the co-occurrence of parametric and structural 250	

uncertainty, which confounds the attribution of model errors (Keenan et al., 2011). A 251	

model’s performance might be negatively impacted by misrepresentation of mechanistic 252	

processes, poor parameterization of otherwise sound functional representations, or both. 253	

Parameter optimization, however, can help to isolate structural deficiencies in the model. 254	

In this study, we applied model calibration, by optimizing model parameters, as a tool to 255	

highlight areas for model development rather than simply improving predictive skill. We 256	
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optimized selected CLM parameters against pretreatment data. We then evaluated the 257	

performance of the calibrated CLM in the pretreatment phase and again in the post-258	

treatment phase without recalibration following simulation of the canopy shading and 259	
13CO2 treatments. Our intention is that by applying robust parameter optimization to the 260	

pretreatment simulations we will reduce parametric uncertainty (Fox et al., 2009; 261	

Ricciuto et al., 2011), leading to greater insight regarding model structural uncertainty in 262	

evaluation of the post-treatment results.   263	

We first calibrated the model to simulate the pretreatment conditions using 264	

observations and prior information about model parameters. Data constraints for the 265	

calibration consisted of single pretreatment estimates for leaf, stem, and root biomass 266	

from allometric relationships for similarly aged loblolly pine (Baldwin, 1987; Naidu et 267	

al., 1998; Vanlear et al., 1986), a pretreatment δ13C measurement for leaves, a 268	

pretreatment δ13C measurement for bulk roots, and daily sap flow and soil respiration 269	

observations from each of the 20 days preceding the 13CO2 labeling and shading 270	

treatments. Because CLM predicts canopy transpiration but not sap flow, daily 271	

transpiration during the experiment was estimated by scaling the sap flow measurements 272	

using sapwood area and ground area covered by the rooting system (Wullschleger et al., 273	

2001; Warren et al., 2011). Here we assume the rooting system of each tree occupied 7.5 274	

m2 of ground area based on the spacing between the trees. For consistency, sap flow is 275	

hereafter called transpiration for both the observational and modeled results.  276	

Some model parameters were measured directly from observations (Table 1). 277	

Other parameters for which direct estimation was not possible were optimized to 278	

maximize fit between model results and the observed calibration data (Table 1). The 279	
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selection of parameters for optimization was based on formal sensitivity analysis 280	

(Sargsyan et al., 2013) and prior experience with the model. We defined the sum of 281	

squared errors (SSE) between simulation and observations weighted by data uncertainty 282	

as the cost function for the optimization. We used a genetic algorithm (Runarsson and 283	

Yao, 2000) to find a set of parameters that minimizes the cost function. Simulations were 284	

performed in parallel using 2 populations of 32 ensemble members in parallel over 100 285	

iterations for a total of 6400 model simulations.  286	

For the pretreatment (pre-labeling) period, we compared the standard ‘parameter’ 287	

version of the model (PRE-STD) with the optimized ‘parameter’ version (PRE-OPT). 288	

The model with optimized parameters was used in simulations for the shading treatment 289	

period for both the high shade and low shade treatments. Because of uncertainties 290	

associated with simulated stomatal conductance and transpiration in high-shade 291	

conditions, we performed additional parameter calibrations for the parameters mp (slope 292	

of the Ball-Berry stomatal conductance formulation) and bp (intercept of the Ball-Berry 293	

stomatal conductance formulation) during the shade treatment period using the genetic 294	

algorithm with transpiration and stem growth data as constraints (HS_MB), with results 295	

discussed below. 296	

2.2.3 Evaluation of CLM photosynthesis functions 297	

 Since we are interested in understanding the fate of photosynthetically fixed carbon as it 298	

is allocated to various tissues and fluxes, and how allocation dynamics respond to 299	

changes in photosynthesis as driven by changes in PAR, it is useful to evaluate model 300	

predictions of photosynthesis over a range of light levels. We used a functional unit 301	

testing framework (Wang et al. 2014) to evaluate CLM’s representation of the 302	
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photosynthetic light response at the scale of individual leaves against light-response 303	

curves obtained by Warren et al. (2012) for foliage in the upper canopy of trees at the 304	

PiTS experimental site prior to the shade treatment. This approach isolates the targeted 305	

model process to allow a direct comparison between instrumental data and simulation 306	

output, driving the model component with specified environmental conditions and 307	

parameter values.  308	

	309	

3 Results  310	

3.1  Environmental forcing conditions 311	

Mean surface air temperature adjacent to the site decreased from days -20 to 4 (day 312	

numbering is negative prior to the addition of 13CO2 and shading treatments), then 313	

recovered somewhat and remained without obvious trend for the rest of the post-labeling 314	

period (days 5 to 25). Multiple rainfall events were recorded in the pre-treatment and 315	

treatment periods (Fig. 2a). The shortwave and longwave radiation drivers for our 316	

simulations, based on a combination of observations and estimation as described above, 317	

showed variance associated with weather patterns during the experiment, with the 318	

superimposed influence of the light and heavy shading treatments (Fig. 2b). 13CO2 319	

concentrations followed historical background values except during the labeling period 320	

on day 0 (Fig. 2b).  321	

3.2  Pretreatment and treatment evaluation  322	

The model predicted approximately exponential growth in all biomass pools during the 8 323	

years of pretreatment simulation, with some evidence of slowing growth in the final years 324	

(Fig. 3a). Using default global-scale ecophysiological parameters, the model significantly 325	
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overestimated biomass accumulation in leaf, stem, and root pools, by 85%, 36%, and 326	

76%, respectively on Sep. 1st of year 2010 (PRE_STD curves, Fig. 3a). Replacing default 327	

parameters with observed (lower) leaf N concentration and with calibrated (higher) 328	

allocation ratios for stem:leaf and root:leaf (complete set of parameter changes shown in 329	

Table 2) brought the biomass accumulation curves in better agreement with observations 330	

(Fig. 3a). Using the PRE_OPT parameters, the bias for leaf, stem, and root biomass 331	

accumulations was -9%, -4%, and -16%, respectively, compared to observed values.  332	

Comparison of predicted vs. observed photosynthesis light response curves was 333	

used as an independent assessment of the model performance before and after calibration 334	

across a range of PAR values characteristic of mid-day values in the open field and under 335	

the LS and HS treatments (Fig. 3b). In the range of PAR from 750 to 1588 µmol m-2 s-1, 336	

typical of mid-day conditions in the pre-treatment period (days -25 to -1), default 337	

parameterization (PRE_STD) resulted in overestimates of photosynthesis, while data-338	

constrained and calibrated parameterization (PRE_OPT) eliminated the bias, placing 339	

predictions within +/- 1 SD of observed values. For light conditions characteristic of mid-340	

day values in the LS treatment (648 +/- 232 µmol m-2 s-1) the overprediction bias for the 341	

optimized model was reduced, but at PAR = 500 µmol m-2 s-1 the optimized model 342	

predicted photosynthesis was still biased high. For the range of PAR characteristic of the 343	

HS treatment (131 +/- 47 µmol m-2 s-1) the model with optimized parameters 344	

underestimated photosynthesis, while the model with default parameters was in good 345	

agreement (low end of the range) or was biased high (high end of the HS range). 346	

Soil temperature predicted by the optimized model at 0-5 cm depth had a 347	

consistent overestimation bias of 1-2 °C, but the model closely reproduced the daily 348	
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variation and decreasing tendency in near-surface soil temperature in both the 349	

pretreatment and post-treatment periods (Fig. 4a). No clear influence of shading 350	

treatments on soil temperature was seen in either the observations or model simulations. 351	

Substantial variability in observed soil moisture (integrated for 15-95 cm depth) was 352	

found among samples taken near different trees under the same shading treatment (Fig. 353	

4b). Pretreatment observations of soil water content were not made, but observed LS soil 354	

water was lower than that of the HS soil water at the start of the treatment period, perhaps 355	

reflecting local differences in soil properties and pretreatment evapotranspiration. 356	

Although modeled soil water content at the start of the treatment was higher than 357	

observed (by 5-7%, measured as volume % of water in soil), the maximum observed and 358	

simulated excursions in soil water content between rain events during the treatment 359	

period were similar (4% and 3.5%, respectively). Predicted soil water content declined 360	

more slowly than observed during days 16-25. There is some evidence of both observed 361	

and predicted LS water content declining more rapidly than HS in this same period, 362	

suggesting higher rates of evaporation for LS than HS.   363	

Observed transpiration during the pretreatment period was higher for HS than LS 364	

plots, likely a consequence of the higher biomass and leaf area of the HS trees (Warren et 365	

al., 2012) and perhaps also higher soil water content (Fig. 4b). We used the pretreatment 366	

transpiration data to calibrate CLM, and the model simulated the pretreatment 367	

observations well in terms of both magnitude and temporal variations (Fig. 4c). After the 368	

treatment initiation, decreased transpiration was seen in both observations and model 369	

simulations for the HS and LS trees. For the LS case, CLM captured the observed 370	

transpiration well. However in the HS case, CLM predicted a sharp reduction in 371	



	

	 17	

transpiration, whereas the observations differed relatively little from the LS case. To 372	

investigate this difference further, we performed a second optimization for the Ball-Berry 373	

stomatal conductance slope and intercept terms (HS_MB). However, despite increasing 374	

these parameters to near the maximum acceptable values (Table 1), the HS_MB 375	

optimization failed to reproduce the measured transpiration.  376	

   Both HS and LS trees showed increasing trend in stem carbon during the 377	

pretreatment period, as inferred from stem thickness measurements. While the LS stems 378	

continued to grow during the treatment period, the observed HS stem size declined (Fig. 379	

5a).  Modeled relative increase in stem carbon was more rapid during the pretreatment 380	

period than observed, and while the modeled LS trees continued to accumulate carbon 381	

during the treatment period (at a somewhat reduced rate) the modeled HS tree growth 382	

essentially stopped. The observed shorter-term (3-5 day) variation in stem carbon (based 383	

on diameter change) under shading (Fig. 5a) was attributed primarily to precipitation 384	

events and changing soil moisture (Fig. 2a and Fig. 4b), and the accompanying swelling 385	

and shrinkage of stem diameter, which translates through the allometric functions to 386	

apparent changes in stem biomass. Apart from whole-plant mortality and fire, the model 387	

has no physiological mechanisms allowing for negative growth of stems.    388	

Both observed and simulated soil respiration tended to decline over the study 389	

period (after Day-10 in the observations) (Fig. 5b). The observed pretreatment soil 390	

respiration beneath the trees chosen for the HS treatment was 30% higher than under 391	

those selected for the LS treatment. After the application of the shade treatments, relative 392	

differences between the observed HS and LS soil respiration were reduced, but 393	

respiration from HS soil remained higher. In contrast, simulated soil respiration was 394	
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slightly higher under LS, although the difference is quite small. The observed short-term 395	

variability in soil respiration under both HS and LS was not well simulated. While 396	

observations showed a reduced soil respiration coinciding with large precipitation events 397	

around Days -10, +10, and +15, simulated soil respiration rose on those days.  398	

3.3 13C evaluation 399	

Observations of foliar δ13C show that LS and HS leaves acquired a similar 400	

concentration of labeled C, as intended by the experimental design (Fig. 6a). Observed 401	

appearance of the labeled C in phloem shows that photosynthate was rapidly moved out 402	

of leaves and into phloem, with peak observed phloem concentrations on day 2 for both 403	

LS and HS trees (Fig. 6b). Labeled C was observed in CO2 at the soil surface, with peak 404	

concentrations around day 4 indicating a transfer through phloem to roots and 405	

metabolism belowground either as root respiration or as heterotrophic respiration of root 406	

exudate or root tissue (Fig. 6d). Increase in labeled C was observed in root tissue for both 407	

LS and HS trees, with large variability in measurements (Fig. 6c). Leaf, phloem, and root 408	

tissues showed remaining labeled C at day 20, and the label was still evident in soil 409	

surface CO2 at day 15. For both phloem and soil surface CO2, the LS plots showed lower 410	

label concentrations than the HS plots throughout the observed rise and fall of the labeled 411	

pulse. Differences between label dynamics for LS and HS roots are difficult to assess due 412	

to variability in measurements. 413	

The model reproduced observed pretreatment values for foliar, phloem, and root 414	

tissue δ13C, and for δ13C in soil CO2 flux to within 1.5‰ (Fig. 6), indicating reasonable 415	

model parameterizations for 13C discrimination through the stomatal conductance and 416	

photosynthesis pathways. The model allocation approach deploys new photosynthate 417	
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immediately throughout the plant to meet current maintenance and growth respiration 418	

demands. The belowground component of the modeled autotrophic respiration is seen as 419	

a large spike in labeled C in soil surface CO2 on day 0. Other similar spikes were 420	

simulated in association with respiration of aboveground plant parts (results not shown). 421	

Lacking a representation for multi-day transport of photosynthate to sites of growth, 422	

either acropetally towards new canopy growth or basipetally towards stem or root 423	

growth, the model allocates labeled C to new growth pools immediately, where it is 424	

considered well-mixed with the existing plant tissues. There was thus a rapid increase and 425	

then a relative stabilization of the δ13C label in foliage and root tissue. The model does 426	

include storage pools, which hold photosynthate for deployment as new growth in 427	

following growing seasons. Those pools were lumped for comparison to the phloem 428	

observations (Fig. 6b), and they followed a pattern similar to the predicted leaf and root 429	

tissue pools. 430	

The model predicted a steady dilution of labeled C in leaf, root, and storage pools 431	

for the LS trees, compared to their HS counterparts. With a severe reduction in PAR, 432	

GPP was greatly reduced in the modeled HS treatment, and what little photosynthate 433	

produced was prioritized for maintenance respiration, so the label appeared quickly in 434	

tissues and remained relatively constant for that treatment. For the LS treatment GPP 435	

remained relatively high following the labeling and initiation of the shade treatment. In 436	

this case unlabeled C continued to accumulate as new growth, causing a steady decline in 437	

the label concentration for LS trees over the course of the experimental period (Figs. 438	

6a,b,c, insets). In contrast to the plant pools, modeled soil surface CO2 shows a gradual 439	

increase in label concentration after the initial root respiration pulse on day 0, with HS 440	



	

	 20	

consistently showing a higher concentration of label than LS for the simulated soil 441	

surface CO2 through the end of the treatment period (Fig. 6d, inset). The modeled process 442	

of leaf and fine root litterfall is continuous throughout the year for evergreen vegetation, 443	

and this modeled rise in soil surface CO2 concentration of labeled C is due to litterfall and 444	

subsequent metabolism by heterotrophs.  445	

Toward the end of the experimental period, the observed multi-day pulses of 446	

labeled C in phloem and soil surface CO2 approached the relatively stable values 447	

predicted by the model. The observed trajectory for label concentration in leaves fell 448	

below modeled values for the final ten days of treatment. Variation in observed root label 449	

concentration toward the end of the experiment makes it difficult to assess 450	

correspondence with model results for that tissue. 451	

 452	

4 Discussion  453	

4.1 Assessment of model performance in pretreatment period  454	

 Default model physiological parameters most appropriate to our site are based on 455	

averages taken across numerous datasets collected in evergreen needleleaf forests. There 456	

is considerable variation within that broad type classification for all of the measured 457	

parameters (White et al. 2000), and any time a site-level evaluation is used to assess 458	

model behavior (as here) it is helpful to constrain within this range according to the local 459	

species or species mixture. We used measurements taken directly from the site where 460	

available, and constrained the optimization of other parameters based on the observed 461	

ranges for loblolly pine, when available. The fine-root to leaf allocation ratio increased 462	

from 1.0 to 1.24, which is well within the range of reported values (White et al., 2000). 463	
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The fraction of leaf nitrogen in RuBisCO was 70% higher than the model default value, 464	

and while on the high end, is consistent with measurements of other loblolly pine trees 465	

(Tissue et al., 1995). The temperature sensitivity of maintenance respiration (Q10mr) 466	

nearly doubled from the default value of 1.5 to 2.83. This is higher than most values in 467	

the literature but is consistent with the value of 2.71 reported by Hamilton et al. (2001) 468	

for loblolly pine, although this value only pertains to leaf respiration. The optimized 469	

value for stem to leaf allocation ratio also is higher than in the default model, but it falls 470	

well within the observed range for loblolly pine (White et al. 2000).  471	

The optimized model delivered very reasonable simulations of pretreatment tree 472	

biomass, transpiration, and leaf δ13C (Figs. 3a, 4c, and 6a). Including multiple 473	

independent observational metrics in the optimization cost function is a more challenging 474	

test of correct model structure, compared to optimization targeting a single model output 475	

variable (Sacks et al. 2006; Richardson et al., 2010; Ricciuto et al., 2011). The fact that 476	

our optimized model delivers good results for all three components simultaneously 477	

(biomass, transpiration, and leaf δ13C) supports the notion that stand-scale model 478	

structure is reasonable.   479	

Independent evaluation of model results at the leaf-scale demonstrated that the 480	

optimized parameters either reduced biases (LS and open-field light levels) or gave 481	

mixed results (HS light levels) at this scale. This provides additional confirmation that the 482	

optimization approach was reasonable, and was not generating unrealistic parameter 483	

values to compensate for gross structural deficiencies in the model. This is further 484	

confirmed by the fact that optimized parameters (Table 1) controlling stomatal 485	

conductance changed only modestly from default values.   486	
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Independent evaluation of model against pretreatment δ13C in phloem and in soil 487	

surface CO2 shows good agreement, consistent with the targeted pretreatment value for 488	

δ13C in leaves. Simulated bulk root δ13C is biased slightly high (Fig. 6c), indicating 489	

possible errors in root turnover time, or the model’s failure to account for post-490	

photosynthetic fractionation (Badeck et al., 2005).  491	

Though several changes in the canopy photosynthesis scheme were made in the 492	

version 4.5 of CLM (Bonan et al., 2011; Oleson et al., 2013), in this work, the canopy 493	

photosynthesis process of CLM4.0 did a reasonably good job against our evaluation 494	

metrics, including the leaf-level light response data.  The ability of our optimized model 495	

to reproduce pretreatment biomass, transpiration, 13C discrimination, and leaf-scale 496	

photosynthetic response to light gives confidence in the model’s ability to simulate the 497	

shading effect, and the model’s ability to scale leaf-level processes to growth at the 498	

whole-tree scale. 499	

4.2 Assessment of model performance in treatment period 500	

 We did not attempt to optimize model predictions for soil temperature or soil 501	

moisture content. The model overestimation of soil temperature while faithfully 502	

reproducing the multi-day excursions in temperature is consistent through the 503	

pretreatment and treatment periods. Soil surface temperatures were not measured, so it is 504	

not clear if the overestimation bias is related to a surface energy balance bias, to a bias in 505	

the overlying air temperature, or to parameterization error in thermal diffusivity and its 506	

relationship to soil texture and surface layer properties. 507	

 The overestimation bias in modeled soil moisture during the treatment period 508	

(there were no pretreatment observations) suggests a parameterization error for soil 509	
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texture or variation in texture with depth. Small differences in the clay fraction, for 510	

example, could cause the observed offset in mean soil water content, and clearly there is 511	

variability in soil moisture states across the site, both within and between the shade 512	

treatments (Fig. 4b). We used a single estimate of sand, silt, and clay fractions from the 513	

site, and were satisfied that the model was able to capture pretreatment transpiration with 514	

that soil parameterization, and that the multi-day excursions of soil moisture were of 515	

similar magnitude in the model compared to observations during the treatment period.  516	

We also note that modeled stomatal conductance was not impacted by lack of soil water 517	

in these simulations. Periodic rainfall kept soils relatively wet throughout the pre-518	

treatment and treatment periods, minimizing effects of bias in soil moisture on simulated 519	

photosynthesis or transpiration.  520	

 The very large difference between modeled and measured transpiration for the HS 521	

treatment is the most confounding result from our study. The model carbon and water 522	

dynamics are well-behaved for the pretreatment period, and the model also captures the 523	

influence of light shading on transpiration accurately. Stem growth results indicate that 524	

reduced growth of LS trees, and the cessation of growth for HS trees, is captured properly 525	

by the model. Through the Ball-Berry approximation linking stomatal conductance to 526	

photosynthetic rate, the model is forced into a state of reduced transpiration for the HS 527	

treatment, even with additional optimization that placed Ball-Berry parameters at their 528	

outer observational limits.  It is possible that the sapflow measurements in the HS 529	

treatment are biased, and that the actual tree-scale transpiration is not as high as 530	

suggested by these measurements, but if true we would expect that bias to occur for both 531	

pretreatment and treatment periods, and not only to appear in the treatment period, as 532	
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observed. Connected to that hypothesis, it is possible that actual leaf stomatal 533	

conductance shut down during the HS treatment, but that water continued to accumulate 534	

in the stem, moving past the sapflow sensors and filling a capacitance in the xylem tissue. 535	

However, the sustained sapflow over the long duration of the treatment period and the 536	

negative observed trend in stem diameter for HS trees argue against that interpretation.  537	

Alternatively, if we assume that the sapflow measurements reflect actual high 538	

levels of transpiration in the HS trees, then we are forced to conclude that the Ball-Berry 539	

relationship as implemented in CLM (De Kauwe et al., 2013; Oleson et al., 2010, 2013) 540	

breaks down under these rather extreme experimental conditions. Under that hypothesis, 541	

it would seem that there is some “memory” of the expected range of light levels in the 542	

tree, and that even when photosynthesis is nearly extinguished due to experimentally 543	

forced reduction in PAR, stomatal conductance remains at a relatively high level. 544	

Another possibility is that these trees exhibit a strong nonlinearity in the relationship 545	

between stomatal conductance and net photosynthesis, which has been observed at low 546	

light levels and strongly impacts estimated transpiration (Barnard and Bauerle, 2013). 547	

This type of nocturnal transpiration may indeed have been greater for the HS trees if the 548	

vapor pressure deficit was larger (Domec et al. 2012). Errors in modeled leaf temperature 549	

and leaf boundary layer vapor pressure deficit may also contribute to the discrepancy 550	

with observations. Conductance may have been maintained to some extent by vapor 551	

pressure differences between the foliage and the shade cloth – indeed, dew was observed 552	

on unshaded trees in early morning, yet not on the shaded trees. This hypothesis could be 553	

tested in future studies with additional leaf-level measurements under HS treatments, 554	

sampling both the diurnal cycle and the multi-day behavior of leaf physiology in trees 555	
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subjected to high levels of shading. While the HS conditions are unlikely to be realized 556	

for extended periods under natural conditions, understanding this failure of the 557	

commonly-used Ball-Berry parameterization may be helpful in understanding and 558	

predicting the broader case of adaptation of stomatal behavior to environmental change, 559	

which is known to influence water and carbon cycle predictions under future climates 560	

(Damour et al., 2010). 561	

 Stem diameter can shrink or swell based on changes in stem xylem water content, 562	

bark water content, and cambial growth, and is dependent on xylem water potential, 563	

vapor pressure deficit, C availability, non-structural carbohydrate concentrations, and C 564	

allocation (Vandegehuchte et al., 2014). C allocation to stem growth is revealed by a 565	

step-wise increase in stem diameter that occurs in response to favorable conditions, and 566	

that is maintained under less favorable conditions. The LS treatment clearly displayed the 567	

step-wise increases in stem diameter, while the HS treatment displayed a reduction in 568	

stem diameter. The shrinking stem diameter of HS trees indicates a decline in xylem and 569	

phloem water content likely linked to phloem sugar concentration. The HS treatment 570	

certainly reduced foliar C uptake and C available for phloem loading and allocation to 571	

cambial growth (Warren et al., 2012).  572	

The modeled difference between LS and HS in biomass accumulation in stems is 573	

in good agreement with observations based on stem diameter, with increases of 1.9% and 574	

1.6% by treatment day 19 for model and observations, respectively (Fig. 5a). Given the 575	

previously discussed pretreatment results for biomass accumulation and leaf-scale 576	

photosynthesis, we are confident in the optimized model’s ability to capture carbon 577	

dynamics at the plant scale on time scales of years to tens of days. It is reassuring to see 578	
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that the model prediction of soil respiration falls in the observed range, although this 579	

could be the result of good luck as much as good performance. While soil respiration on 580	

an annual basis is closely related to litter inputs and belowground plant respiration, it is 581	

possible for compensating errors between decomposition rates and litter inputs, or 582	

between litter inputs and root respiration, to result in good model-observation agreement 583	

for the approximately monthly timescale examined here. We note a potential bias in the 584	

model relationship between soil respiration and soil moisture: while the observed soil 585	

respiration is depressed after large precipitation events, the model estimates an increase. 586	

Neither CLM4’s carbon allocation to roots nor its predicted root respiration is dependent 587	

on soil water conditions. CLM4’s heterotrophic contribution to soil respiration may also 588	

have too little sensitivity and the timing of soil respiration response to soil water variation 589	

may also be too simplistic. A more mechanistic treatment of water-air-microbe 590	

interactions at the scale of soil pore space might help to eliminate these differences. 591	

Resolved vertical transport of respired CO2 in the soil column might also help to correct 592	

this bias. 593	

 Beyond noting the obvious discrepancy in observed vs. modeled δ13C dynamics 594	

associated with the lack of short-term photosynthate storage pools in CLM, we are 595	

interested in using this study to develop hypotheses explaining the observed patterns in 596	

δ13C, identifying the simplest mechanisms that explain observed patterns, and 597	

understanding the consequences of ignoring those mechanisms in a model like CLM. To 598	

the extent that simple mechanisms can be identified, and significant consequences of 599	

ignoring those mechanisms articulated, we leave it to future efforts to deploy and 600	
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evaluate those mechanisms in new model versions and with new observational and 601	

experimental constraints. 602	

 Given that LS and HS leaves seem to have photosynthesized the pre-shading 603	

labeled pulse of CO2 at similar rates (Fig. 6a) as intended by the experimental design, we 604	

can make some inferences about the dynamics of photosynthate storage and transport 605	

based on the timing of the pulse as it exits the foliage and passes through the phloem of 606	

the trunk, and based on differences in timing and concentration of the labeled pulse in LS 607	

and HS trees. First, the fact that observed peak label concentration is higher in phloem 608	

than in foliage, even though that peak comes two days later in phloem than in foliage, 609	

indicates that the phloem pool in the vicinity of the labeling source (the leaf) is smaller 610	

than the leaf pool itself. That is, even though the label is passing into the leaf prior to 611	

entering the phloem, the label pulse is relatively small compared to the leaf carbon pool 612	

as a whole, while it is relatively large compared to the part of the phloem pool nearest the 613	

leaf at the time of labeling. Second, the observation that δ13C in foliage declines rapidly 614	

over the first ten days, and declines at about the same rate for LS and HS leaves, indicates 615	

that the movement of newly-fixed photosynthate from leaves and into phloem does not 616	

depend strongly on production of new photosynthate in subsequent days. Third, the 617	

similar timing between LS and HS trees for peak label concentration in phloem, and later 618	

in soil surface CO2, indicates that the velocity of material movement through the phloem 619	

does not depend strongly on current photosynthesis rate. Since the HS treatment clearly 620	

reduced growth and transport belowground (Fig. 5), the logical conclusion is that the 621	

cross-sectional area of active phloem tissue responsible for transport of photosynthate 622	

away from leaves and out to roots is lower in the HS than in the LS treatment. One 623	
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possible interpretation is that the rate of flow within a given phloem pathway is relatively 624	

constant, and that more phloem pathways towards the roots are active when production of 625	

photosynthate is high. A logical consequence of that arrangement would be that at any 626	

given point along the transport pathway towards the roots, or at any point in time at a 627	

given location along the pathway, the concentration of a common-sized label would be 628	

lower for a tree with high rate of ongoing photosynthesis than for a tree with low rate of 629	

ongoing photosynthesis, due to dilution of the fixed-size label into a larger number 630	

(larger cross-sectional area) of transport pathways, all with a common transport velocity 631	

(conceptual model shown in Fig. 7). This is in fact the observed relationship of LS to HS 632	

concentration at all points in time for both the phloem measurements (fixed point on the 633	

trunk) and for the soil surface CO2, lending support to the hypothesized mechanism. 634	

  Plant storage pools in the form of non-structural carbohydrates are known to play 635	

an important role in regulating allocation to structural pools, and may make up a 636	

significant portion of total biomass (e.g. Hoch et al., 2003). Simple models that account 637	

for non-structural carbohydrates better compare with observed 14C and stem growth, 638	

indicating the importance of the pools over seasonal to decadal timescales (Richardson et 639	

al., 2013). The question remains: What are the consequences for a CLM like model of 640	

ignoring the shorter timescale (monthly) storage dynamics? (see Fig. 7). If we show that 641	

the modeled and observed label concentrations tend to converge over monthly timescales, 642	

we can argue that ignoring these short-term pools is not a first-order impediment to good 643	

estimates of allocation and growth. Other more subtle aspects of the problem could, 644	

however, have important implications for plot-scale and even global scale vegetation-soil 645	

ecosystem dynamics and feedbacks. For example, the labeled soil surface CO2 efflux is a 646	
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result from a combination of root respiration and heterotrophic respiration. The 647	

heterotrophic component can be supplied by fresh litter inputs or by root exudation of 648	

non-structural carbohydrate, which can be a significant fraction of net primary production 649	

in some systems (Högberg et al., 2010). The difference between root mortality and root 650	

exudation in terms of substrate quality, nutrient content, and interactions with soil 651	

microbial communities could be very significant, especially as integrated over long 652	

periods and under conditions of changing climate, changing atmospheric CO2 653	

concentration, and anthropogenic modifications to nutrient cycles. 654	

Representing the existence and dynamics of short-term photosynthate storage 655	

pools in a model like CLM could also help to resolve the mechanisms relating nutrient 656	

mineralization and availability in soils with plant-microbe competition for available 657	

nutrients and the influence of nutrient uptake on leaf-scale photosynthesis. In addition to 658	

the shading treatments described here, other manipulations that would be useful to 659	

explore include elevated CO2 during and/or after the labeling pulse, imposed nutrient 660	

limitations, and fertilization. Replicating these studies in other vegetation types would 661	

help to assess the generality of storage pool structure and function, and would support 662	

operational inclusion of these mechanisms in a global-scale model.  663	

4.3 Implications for experimental design  664	

Limitations identified in this first PiTS model-experiment interaction have already led to 665	

improvements in follow-on experiments. For new experiments in a nearby dogwood 666	

stand, additional observations include multiple treatments in different seasons, a 667	

collection of absolute destructive tree biomass at the end of the study (rather than highly 668	

uncertain estimates based on allometric relationships), seasonal leaf-level photosynthetic 669	
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measurements, assessment of mycorrhizal C flux, and improved meteorological 670	

measurements. Although model parameters can be improved through optimization as in 671	

this study, model parameters are being measured where possible. These additional 672	

observational data are necessary for more detailed model evaluation and improvement of 673	

model routines of C and allocation patterns at various time scales.  Additional effort is 674	

being devoted to characterizing the system prior to manipulation, including 675	

measurements of biomass, soil physical and soil biogeochemical states.     676	

 677	

5 Conclusions 678	

The point version of CLM4 was implemented, calibrated and evaluated against carbon 679	

and hydrology observations from a shading and labeling experiment in a stand of young 680	

loblolly pines. We found that a combination of parameters measured on-site and 681	

calibration targeting biomass, transpiration, and 13C discrimination gave good agreement 682	

with pretreatment measurements, including independent evaluation metrics at the leaf-683	

scale. We showed that the calibrated model captured the tree-scale and monthly temporal 684	

dynamics of a light-shade treatment as it influenced carbon and water fluxes. The 685	

calibrated model also captured the monthly time-scale carbon dynamics of a heavy-shade 686	

treatment, but persistently estimated low levels of transpiration for the heavy-shade 687	

treatment, while observed transpiration in that treatment remained nearly as high as for 688	

the light-shade. We have suggested several possible explanations for the discrepancy, but 689	

this remains a puzzling problem requiring further investigation. 690	

 Although the model lacks short-term photosynthate storage and transport 691	

mechanisms that are clearly present in the real plants, first-order monthly time-scale 692	
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dynamics for carbon allocation and growth do not seem to suffer greatly. We used 693	

observations from the experiment to develop a conceptual model (hypothesis) of short-694	

term photosynthate storage and transport, and suggested further studies that could be 695	

carried out to evaluate the generality of the hypothesized mechanisms. We suggest 696	

several research problems, which, if the proposed mechanism turns out to be generally 697	

valid, would benefit from model-experimental study in which the new mechanisms are 698	

incorporated into the model structure.  699	

  700	

Acknowledgements.  This work is supported by the US Department of Energy (DOE), 701	

Office of Science, Biological and Environmental Research. Oak Ridge National 702	

Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-703	

00OR22725. 704	

	705	

References  706	

Amthor, J. S., Chen, J. M., Clein, J. S., Frolking, S. E., Goulden, M. L., Grant, R. F., 707	

Kimball, J. S., King, A. W., McGuire, A. D., Nikolov, N. T., Potter, C. S., Wang, S., 708	

and Wofsy, S. C.: Boreal forest CO2 exchange and evapotranspiration predicted by 709	

nine ecosystem process models: Intermodel comparisons and relationships to field 710	

measurements, J. Geophys. Res.-Atmos., 106, 33623-33648, 2001. 711	

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., 712	

Bonan, G., Bopp, L., Brovkin, V., and Cadule P.: Carbon–concentration and carbon–713	

climate feedbacks in CMIP5 Earth system models, J. Climate, 26, 5289-5314, 2013. 714	



	

	 32	

Atkin, O.: New phytologist and the ‘fate’ of carbon in terrestrial ecosystem, New Phytol, 715	

205,1-3, 2015. 716	

Badeck, F. W., Tcherkez, G., Nogues, S., Piel, C., and Ghashghaie, J.: Post-photo 717	

synthetic fractionation of stable carbon isotopes between plant organs - a widespread 718	

phenomenon, Rapid Commun Mass Sp, 19(11), 1381-1391, 2005. 719	

Bahn, M., Buchmann, N., and Knohl, A.: Preface "Stable Isotopes and Biogeochemical 720	

Cycles in Terrestrial Ecosystems'', Biogeosciences, 9, 3979-3981, 2012. 721	

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 722	

Bernhofer, C., Davis, K., and Evans R.: FLUXNET: A new tool to study the temporal 723	

and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux 724	

densities, B. Am. Meteorol. Soc., 82, 2415-2434, 2001. 725	

Baldwin, V. C. and Feduccia, D. P.: Loblolly pine growth and yield prediction for 726	

managed west Gulf plantations, USDA For. Ser. Res. Pap., SO-236, New Orleans, LA: 727	

U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 728	

27 pp., 1987. 729	

Barnard, D. M., and Bauerle, W. L.: The implications of minimum stomatal conductance 730	

on modeling water flux in forest canopies, J. Geophys. Res.-Biogeo., 118, 1322-1333, 731	

2013. 732	

Bauerle, W. L., Oren, R., Way, D. A., Qian, S. S., Stoy, P. C., Thornton, P. E., Bowden, 733	

J. D., Hoffman, F. M., and Reynolds, R. F.:, Photoperiodic regulation of the seasonal 734	

pattern of photosynthetic capacity and the implications for carbon cycling, P. Natl. 735	

Acad. Sci. USA, 109, 8612-8617, 2012. 736	



	

	 33	

Beer, C., Reichstein, M., Tomerlleri, E., Ciais, P., Jung, M., Carvalhai, N., Rodenbeck, 737	

C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., 738	

Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., 739	

Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial 740	

gross carbon dioxide uptake: global distribution and covariation with climate, Science, 741	

329, 834-838, 2010. 742	

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Menard, C. B., 743	

Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M. Sitch, S., 744	

Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint 745	

UK Land Environment Simulator (JULES), model description - Part 1: Energy and 746	

water fluxes, Geosci. Model Dev., 4, 677-699, 2011. 747	

Bonan, G. B., Hartman, M. D., Parton, W. J., and Wieder, W. R.:  Evaluating litter 748	

decomposition in earth system models with long-term litterbag experiments: an 749	

example using the Community Land Model version 4 (CLM4), Glob. Change Biol., 750	

19, 957-974, 2013. 751	

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., 752	

Lawrence, D. M., and Swenson, S. C.: Improving canopy processes in the Community 753	

Land Model version 4 (CLM4) using global flux fields empirically inferred from 754	

FLUXNET data, J. Geophys. Res.-Biogeo., 116 ,2011. 755	

Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., and Reichstein, M.: Reconciling 756	

leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET 757	

databases in the Community Land Model version 4, J. Geophys. Res.-Biogeo., 117, 758	

2012. 759	



	

	 34	

Cannell, M. G. R. and Dewar R. C.: Carbon allocation in trees - a review of concepts for 760	

modeling, Adv. Ecol. Res., 25, 59-104, 1994. 761	

Dai, Y. J., Zeng, X. B., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., 762	

Denning, A. S., Dimeyer, P. A., Houser, P. A., Niu, G. Y., Oleson, K. W., Scholosser, 763	

C. A., and Yang, Z., L.: The common land model, B. Am. Meteorol. Soc., 84, 1013-+, 764	

doi: 10.1175/BAMS-84-8-1013, 2003. 765	

Damour, G., Simonneau, T., Cochard, H., and Urban, L.: An overview of models of 766	

stomatal conductance at the leaf level, Plant Cell Environ., 33, 1419-1438, 2010. 767	

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., 768	

Jain, A. K., Luo, Y. Q., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., 769	

Wang, S. S., Wang, Y. P., Warlind, D., Weng, E. S., Crous, K. Y., Ellsworth, D. S., 770	

Hanson, P. J., Seok Kim, H., Warren, J. M., Oren, R., and Norby R. J.,: Forest water 771	

use and water use efficiency at elevated CO2: a model-data intercomparison at two 772	

contrasting temperate forest FACE sites, Glob. Change Biol., 19, 1759-1779, 2013. 773	

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., 774	

Luo, Y. Q., Jain, A. K., El-Masri, B., Hickler, T., Warlind, D., Weng, E. S., Parton, W. 775	

J., Thornton, P. E., Wang, S. S., Prentice, I. C., Asao, S., Smith, B., McCarthy, H. R., 776	

Iversen, C. M., Hanson, P. J., Warren, J. M., Oren, R., and Norby, R. J.: Where does 777	

the carbon go? A model–data intercomparison of vegetation carbon allocation and 778	

turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytol., 779	

203, 883-899, 2014. 780	

Domec J.C., Ogée J, Noormets A., Jouangy J. Gavazzi M., Treasure E., Sun G., McNulty 781	

S. and J.S. King. 2012. Interactive effects of nocturnal transpiration and climate 782	



	

	 35	

change on the root hydraulic redistribution and carbon and water budgets of Southern 783	

US pine plantations. Tree Physiology 32(6): 707-723. 784	

Ehleringer, J. R., Buchmann, N., and Flanagan, L. B.: Carbon isotope ratios in 785	

belowground carbon cycle processes, Ecological Applications, 10, 412-422, 2000. 786	

Epron, D., Bahn, M., Derrien, D., Lattanzi, F. A., Pumpanen, J., Gessler, A., Hogberg, P., 787	

Maillard, P., Dannoura, M., Gerant, D., and Buchmann, N.: Pulse-labelling trees to 788	

study carbon allocation dynamics: a review of methods, current knowledge and future 789	

prospects, Tree Physiol., 32, 776-798, 2012. 790	

Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick: Carbon Isotope Discrimination and 791	

Photosynthesis, Annu Rev Plant Phys, 40, 503-537, 1989. 792	

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, 793	

D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Van Wijk, M. T.: The 794	

REFLEX project: Comparing different algorithms and implementations for the 795	

inversion of a terrestrial ecosystem model against eddy covariance data, Agr. Forest 796	

Meteorol., 149, 1597-1615, 2009. 797	

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., 798	

Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., 799	

Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., 800	

Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., 801	

Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: Results from 802	

the (CMIP)-M-4 model intercomparison, J. Climate, 19, 3337-3353, 2006. 803	

Gent, P. R., Danabasoglu, G., Donner L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., 804	

Lawrence, K. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley P. H., Yang Z. L, 805	



	

	 36	

and Zhang, M. H.: The Community Climate System Model Version 4, J. Climate, 24, 806	

4973-4991, 2011. 807	

Griffin, K. L., Winner, W. E., and Strain, B. R.: Growth and dry matter partitioning in 808	

loblolly and ponderosa pine seedlings in response to carbon and nitrogen availability, 809	

New Phytol., 129, 547-556, 1995. 810	

Hamilton, J. G., Thomas, R. B., and Delucia, E. H.: Direct and indirect effects of elevated 811	

CO2 on leaf respiration in a forest ecosystem, Plant Cell Environ., 24, 975-982, 2001. 812	

Hanson, P. J., Amthor, J. S., Wullschleger, S. D., Wilson, K. B., Grant, R. F., Hartley, A., 813	

Hui, D., Hunt, E. R., Johnson, D. W., Kimball, J. S., King, A. W., Luo, Y., McNulty, 814	

S. G., Sun, G., Thornton, P. E., Wang, S., Williams, M. Baldocchi, D. D., and 815	

Cushman, R. M.: Oak forest carbon and water simulations: Model intercomparisons 816	

and evaluations against independent data, Ecol Monogr., 74, 443-489. 2004. 817	

Hoch, G., Richter, A., and Korner, C.: Non-structural carbon compounds in temperate 818	

forest trees, Plant Cell Environ, 26(7), 1067-1081, 2003. 819	

Högberg, M. N., Briones, M. J. I., Keel, S. G., Metcalfe, D. B., Campbell, C., Midwood, 820	

A. J., Thornton, B., Hurry, V., Linder, S., Näsholm, T., and Högberg, P.: 821	

Quantification of effects of season and nitrogen supply on tree below-ground carbon 822	

transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New 823	

Phytol. 187, 485-493, 2010. 824	

Huntzinger, D. N., Post, W. M., Wei, Y., Michalak, A. M., West, T. O., Jacobson, A. R., 825	

Baker, I. T., Chen, J. M, Davis, K. J., Hayes, D. J., Hoffman, F. M., Jain, A. K., Liu, 826	

S., McGuire, A. D., Neilson, R. P., Potter, C., Poulter, B., Price, D., Raczka, B. M., 827	

Tian, H. Q., Thornton, P. E., Tomelleri, E., Viovy, N., Xiao, J., Yuan, W., Zeng, N., 828	



	

	 37	

Zhao, M., and Cook, R.: North American Carbon Program (NACP) regional interim 829	

synthesis: Terrestrial biospheric model intercomparison, Ecol. Model., 232, 144-157, 830	

2012. 831	

Idso, S. B.: A set of equations for full spectrum and 8-mu-m to 14-mu-m and 10.5-mu-m 832	

to 12.5-mu-m thermal-radiation from cloudless skies, Water Resour. Res., 17., 295-833	

304, 1981. 834	

Keenan, T. F., Carbone, M. S., Reichstein, M., and Richardson, A. D.: The model-data 835	

fusion pitfall: assuming certainty in an uncertain world, Oecologia, 167, 587-597, 836	

2011. 837	

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan, 838	

G. B., Lawrence, D. M., and Swenson S. C.: The effect of vertically resolved soil 839	

biogeochemistry and alternate soil C and N models on C dynamics of CLM4, 840	

Biogeosciences, 10, 7109-7131, 2013. 841	

Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., 842	

Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies 843	

of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, 2005. 844	

Lawrence, D. M., Oleson, K. W., Fanner, M. G., Thornton, P. E., Swenson, S. C., 845	

Lawrence, P. J., Zeng, X. B., Yang, Z. L., Levis, S., Sakaguchi, K., Bonan, G. B., and 846	

Slater, A. G.: Parameterization improvements and functional and structural advances 847	

in version 4 of the Community Land Model, J. Adv. Model Earth Sy., 3., M03001, 848	

2011. 849	

Li, H. Y., Huang, M. Y., Wigmosta, M. S., Ke, Y. H., Coleman, A. M., Leung, L. R., 850	

Wang, A. H., and Ricciuto, D. M.: Evaluating runoff simulations from the Community 851	



	

	 38	

Land Model 4.0 using observations from flux towers and a mountainous watershed, J. 852	

Geophys. Res.-Atmos., 116, 2011. 853	

Litton, C. M., Raich, J. W., and Ryan, M. G.: Carbon allocation in forest ecosystems, 854	

Glob. Change Biol., 13, 2089-2109, 2007. 855	

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., 856	

Ciais, P., Dalmonech, D., Fisher, J. B., Fisher, R., Friedlingstein, P., Hibbard, K., 857	

Hoffman, F., Hunzinger, D., Jones, D. D., Koven, C., Lawrence, D., Li, D. J., 858	

Mahecha, M., Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I. C., 859	

Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J. Y., Zaehle, S., and Zhou, 860	

X. H.: A framework for benchmarking land models, Biogeosciences, 9, 3857-3874, 861	

2012. 862	

Mao, J. F., Shi, X. Y., Thornton, P. E., Piao, S. L., and Wang, X. H.: Causes of spring 863	

vegetation growth trends in the northern mid-high latitudes from 1982 to 2004, 864	

Environ. Res. Lett., 7, 014010, 2012a. 865	

Mao, J. F., Thornton, P. E., Shi, X. Y., Zhao, M. S., and Post, W. M.: Remote sensing 866	

evaluation of CLM4 GPP for the period 2000-09, J. Climate, 25, 5327-5342, 2012b. 867	

Mao, J. F., Shi, X. Y., Thornton, P. E., Hoffman, F. M., Zhu, Z. C., and Myneni, R. B.: 868	

Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 869	

1982-2009, Remote Sens.-Basel, 5, 1484-1497, 2013. 870	

Naidu, S. L., DeLucia, E. H., and Thomas, R. B.: Contrasting patterns of biomass 871	

allocation in dominant and suppressed loblolly pine, Can. J. Forest Res., 28, 1116-872	

1124, 1998. 873	



	

	 39	

Oleson, K., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., 874	

Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S., Thornton, P. E., Bozbiyik, 875	

A., Fisher R.,. Heald, C. L, Kluzek, E., Lamarque, J. -F., Lawrence, P. J., Leung, L. R., 876	

Lipscomb, W., Muszala, S. P., Ricciuto, D. M., Sacks, W. J., Sun, Y., Tang, J., and 877	

Yang, Z. -L.: Technical description of version 4.5 of the Community Land Model 878	

(CLM), NCAR Technical Note NCAR/TN-503+STR, The National Center for 879	

Atmospheric Research (NCAR): Boulder, CO, USA,420 pp., 2013. 880	

Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Lawrence, P., 881	

J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., 882	

Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J. –F., Mahowald, N., Niu, G. –Y., 883	

Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stoeckli, R., Wang, A, 884	

Yang, Z. –L., Zeng, X. D., and Zeng, X. B.: Technical description of version 4.0 of the 885	

Community Land Model (CLM), NCAR Technical Note NCAR/TN 478+STR; The 886	

National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 257 pp., 887	

2010. 888	

Oleson, K. W., Niu, G. –Y., Yang, Z. –L., Lawrence, D. M., Thornton, P. E., Lawrence, 889	

P. J., Stoeckli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: 890	

Improvements to the Community Land Model and their impact on the hydrological 891	

cycle, J. Geophys. Res.-Biogeo., 113, G01021, 2008. 892	

Ostle, N. J., Smith, P., Fisher, R., Woodward, F. I., Fisher, J. B., Smith, J. U., Galbraith, 893	

D., Levy, P., Meir, P., McNamar, N. P., and Bardgett, R. D.: Integrating plant-soil 894	

interactions into global carbon cycle models, J. Ecol., 97, 851-863, 2009. 895	



	

	 40	

Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for 896	

climate models, Int. J. Climatol., 23, 479-510, 2003. 897	

Raczka, B. M., Davis, K. J., Huntzinger, D., Neilson, R. P., Poulter, B., Richardson, A. 898	

D., Xiao, J. F., Baker, I., Ciais, P., Keenan, T. F., Law, B., Post, W. M., Ricciuto, D., 899	

Schaefer, K., Tian, H. Q., Tomelleri, E., Verbeeck, H., and Viovy, N.:. Evaluation of 900	

continental carbon cycle simulations with North American flux tower observations, 901	

Ecol. Monogr., 83., 531-556, 2013. 902	

Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N. M., Lindsay, K., Lee, 903	

Y. H., Nevison, C. D., Doney, S. C., Bonan, G., Stoeckli, R., Covey, C., Running, S. 904	

W., and Fung, I. Y.: Systematic assessment of terrestrial biogeochemistry in coupled 905	

climate-carbon models, Glob. Change Biol., 15 2462-2484, 2009. 906	

Ricciuto, D. M., King, A. W., Dragoni, D., and Post, W. M.: Parameter and prediction 907	

uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining 908	

variables and data record length, J. Geophys. Res.-Biogeo., 116, 2011. 909	

Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., 910	

Murakami, P., Schaberg, P. G., and Xu X. M.: Seasonal dynamics and age of 911	

stemwood nonstructural carbohydrates in temperate forest trees, New Phytol, 197(3), 912	

850-861, 2013. 913	

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G. S., 914	

Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Garrity, 915	

S. R., Gough, C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., 916	

Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B., Raczka, B. M., Ricciuto, 917	

D. M., Sahoo, A. K., Schaefer, K., Tian, H. Q., Vargas, R., Verbeeck, H., Xiao, J. F., 918	



	

	 41	

and Xue, Y. K.: Terrestrial biosphere models need better representation of vegetation 919	

phenology: results from the North American Carbon Program Site Synthesis, Glob. 920	

Change Biol., 18, 566-584, 2012. 921	

Richardson, A. D., Williams, M., Hollinger, D., Moore, D., Dail, D., Davidson, E., Scott, 922	

N., Evans, R., Hughes, H., Lee, J., Ro- drigues, C., and Savage, K.: Estimating 923	

parameters of a forest ecosystem C model with measurements of stocks and fluxes as 924	

joint constraints, Oecologia, 164, 25–40, 2010.  925	

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., 926	

Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial 927	

methane fluxes: analyses using CLM4Me, a methane biogeochemistry model 928	

integrated in CESM, Biogeosciences, 8, 1925-1953, 2011. 929	

Runarsson, T. P., and Yao X.: Stochastic ranking for constrained evolutionary 930	

optimization, IEEE T. Evolut. Comput., 4., 284-294, 2000. 931	

Sargsyan, K., Safta, C., Habib, N. N., Debusschere, B. J., Ricciuto, D., and Thornton, P. 932	

E.: Dimensionality reduction for complex models via bayesian compressive sensing, 933	

Int. J. Uncertain. Quant., 4, 63-93, 2013. 934	

Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A., Chen, J. M., Davis, 935	

K. J., Dimitrov, D., Hilton, T. W., Hollinger, D. Y., Humphreys, E., Poulter, B., 936	

Raczka, B. M., Richardson, A. D., Sahoo, A., Thornton, P. E., Vargas, R., Verbeeck, 937	

H., Anderson, R., Baker, I., Black T. A., Bolstad, P., Chen, J. Q., Curtis, P. S., Desai, 938	

A. R., Dietze, M., Dragoni, D., Gough, C., Grant, R. F., Gu, L. H., Jain, A., Kucharik, 939	

C., Law, B., Liu, S. G., Lokipitiya, E., Margolis, H. A., Matamala, R., McCaughey, J. 940	

H., Monson, R., Munger, J. W., Oechel, W., Peng, C. H., Price, D. T., Ricciuto, D., 941	



	

	 42	

Riley, W. J., Roulet, N., Tian, H. Q. Tonitto, C., Torn, M., Weng, e. S., and Zhou, X. 942	

L.: A model-data comparison of gross primary productivity: Results from the North 943	

American Carbon Program site synthesis, J. Geophys. Res.-Biogeo., 117, 2012. 944	

Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, 945	

B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., 946	

Denning, A. S., Field, C. B. Friendlingstein, P., Goodale, C., Heimann, M., Houghton, 947	

R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. 948	

C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: Recent 949	

patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 950	

169-172, 2001. 951	

Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., 952	

Barr, A., Black, T. A., Chen, G. S., Chen, J. M., Ciais, P., Davis, K. J., Desai, A., 953	

Dietze, M., Dragoni, D., Fischer, M. L., Flanagan, L. B., Grant, R., Gu, L. H., 954	

Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L. H., Li, Z. 955	

P., Liu, S. G., Lokupitiya, E., Luo, Y. Q., Ma, S. Y., Margolis, H., Matamala, R., 956	

McCaughey, H., Monson, R. K., Oechel, W. C., Peng, C. H., Poulter, B., Price, D. T., 957	

Ricciuto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J. F., Tian, H. Q., 958	

Tonitto, C., Verbeeck, H. and Verma, S. B.: A model-data intercomparison of CO2 959	

exchange across North America: Results from the North American Carbon Program 960	

site synthesis, J. Geophys. Res.-Biogeo., 115, 2010. 961	

Shi, X., Mao, J., Thornton, P. E., Hoffman, F. M., and Post, W. M.: The impact of 962	

climate, CO2, nitrogen deposition and land use change on simulated contemporary 963	

global river flow, Geophys. Res. Lett., 38, L08704, 2011. 964	



	

	 43	

Shi, X. Y., Mao, J. F., Thornton, P. E., and Huang, M. Y.: Spatiotemporal patterns of 965	

evapotranspiration in response to multiple environmental factors simulated by the 966	

Community Land Model, Environ. Res. Lett., 8, 024012, 2013. 967	

Shi, X. Y., Thornton, P. E., Ricciuto, D. M., Hanson, P. J., Mao, J. F., Sebestyen, S. D., 968	

Griffiths, N. A., and Bisht G.: Representing northern peatland microtopography and 969	

hydrology within the Community Land Model, Biogeosciences, 12, 6463-6477, doi: 970	

10.5194/bg-12-6463-2015, 2015. 971	

Stoy, P. C., Dietze, M. C., Richardson, A. D., Vargas, R., Barr, A. G., Anderson, R. S., 972	

Arain, M. A., Baker, I. T., Black T. A., Chan, J. M., Cook, R. B., Gough, C. M., Grant, 973	

R. F., Hollinger, D. Y., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Law, B. E., Liu, 974	

S., Lokupitiya, E., Luo, Y., Munger, J. W., Peng, C., Poulter, B., Price, D. T., 975	

Ricciuto, D. M., Riley, W. J., Sahoo, A. K., Schaefer, K., Schwalm, C. R., Tian, H., 976	

Verbeeck, H., and Weng, E.: Evaluating the agreement between measurements and 977	

models of net ecosystem exchange at different times and timescales using wavelet 978	

coherence: an example using data from the North American Carbon Program Site-979	

Level Interim Synthesis, Biogeosciences, 10, 6893-6909, 2013. 980	

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the 981	

Experiment Design, B. Am. Meteorol. Soc., 93, 485-498, 2012. 982	

Tissue, D. T., Thomas, R. B., and Strain, B. R.: Growth and photosynthesis of loblolly 983	

pine (Pinus taeda) after exposure to elevated CO2 for 19 months in the field, Tree 984	

Physiol., 16, 49-59,1995. 985	



	

	 44	

Thornton, P. E., and Rosenbloom, N. A.: Ecosystem model spin-up: Estimating steady 986	

state conditions in a coupled terrestrial carbon and nitrogen cycle model, Ecol. Model., 987	

189, 25-48, 2005. 988	

Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of 989	

carbon-nitrogen cycle coupling on land model response to CO2 fertilization and 990	

climate variability, Global Biogeochem. Cy., 21, 2007. 991	

Vandegehuchte, M. W., Guyot, A., Hubeau, M., De Swaef, T., Lockington, D. A., and 992	

Steppe, K.: Modelling reveals endogenous osmotic adaptation of storage tissue water 993	

potential as an important driver determining different stem diameter variation patterns 994	

in the mangrove species Avicennia marina and Rhizophora stylosa, Ann. Bot., 114, 995	

667-676, doi:10.1093/aob/mct311, 2014. 996	

Vanlear, D. H., Taras, M. A., Waide, J. B., and Augspurger, M. K.: Comparison of 997	

biomass equations for planted vs. natural loblolly-pine stands of sawtimber size, Forest 998	

Ecol. Manag., 14, 205-210, 1986. 999	

Walker, A. P., Hanson, P. J.., De Kauwe, M. G., Medlyn,B. E., Zaehle, S., Asao, S., 1000	

Dietze, M., Hickler, T., Huntingford, C., Iversen C. M., Jain, A., Lomas, M., Luo Y., 1001	

McCarthy, H., Parton, W. J., Prentice, I. C.., Thornton, P. E., Wang S., Wang, Y. –P., 1002	

Warlind, D., Weng, E., Warren, J. M., Woodward, F. I., Oren, R., and Norby, R. J.: 1003	

Comprehensive ecosystem model-data synthesis using multiple data sets at two 1004	

temperate forest free-air CO2 enrichment experiments: Model performance at ambient 1005	

CO2 concentration, J. Geophys. Res. Biogeosci., 119, 937-964, 2014. 1006	



	

	 45	

Wang, D. L., Xu, Y., Thornton, P. E., King, A., Steed, C., Gu, L. H., and Schuchart, J.: A 1007	

functional test platform for the Community Land Model, Environ. Modell. Softw., 55, 1008	

25-31, 2014. 1009	

Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., van 1010	

Gorsel, E., and Luhar, A.: Diagnosing errors in a land surface model (CABLE) in the 1011	

time and frequency domains, J. Geophys. Res.-Biogeo., 116, 2011. 1012	

Warren, J. M., Norby, R. J., and Wullschleger, S. D.: Elevated CO2 enhances leaf 1013	

senescence during extreme drought in a temperate forest, Tree Physiol., 31, 117-130, 1014	

2011. 1015	

Warren, J. M., Iversen, C. M., Garten, C. T., Norby, R. J., Childs, J., Brice, D., Evans, R. 1016	

M., Gu, L., Thornton, P. E., and Weston, D. J.: Timing and magnitude of C 1017	

partitioning through a young loblolly pine (Pinus taeda L.) stand using C-13 labeling 1018	

and shade treatments, Tree Physiol., 32, 799-813, 2012. 1019	

Warren, J. M., Iversen, C. M., Garten Jr., C. T., Norby, R. J., Childs, J., Brice, D., Evans, 1020	

R. M., Gu, L., Thornton, P. E., and Weston, D. J.:  PiTS-1: Carbon partitioning in 1021	

loblolly pine after 13C labeling and shade treatments, Carbon Dioxide Information 1022	

Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak 1023	

Ridge, Tennessee, U.S.A., doi: 10.3334/CDIAC/ornlsfa.001, 2013. 1024	

White, M. A., Thornton P. E., Running S. W., and Nemani R. R.: Parameterization and 1025	

sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary 1026	

production controls, Earth Interactions, 4, 1–85, 2000. 1027	

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., 1028	

Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, 1029	



	

	 46	

E., Trudinger, C. M., and Wang, Y. –P.: Improving land surface models with 1030	

FLUXNET data, Biogeosciences, 6, 1341-1359, 2009. 1031	

Wullschleger, S. D., Hanson, P. J., and Todd, D. E.:Transpiration from a multi-species 1032	

deciduous forest as estimated by xylem sap flow techniques, Forest Ecol. Manag., 143, 1033	

205-213, 2001. 1034	

Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., 1035	

Luo, Y. Q., Wang, Y. P., El-Masri, B., Thornton, P., Jain, A., Wang, S. S., Warlind, 1036	

D., Weng, W. S., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, 1037	

A. C., Hanson, P. J., Prentice, I. C., Oren, R. and Norby, R. J.: Evaluation of 11 1038	

terrestrial carbon-nitrogen cycle models against observations from two temperate Free-1039	

Air CO2 Enrichment studies, New Phytol., 202, 803-822, 2014.  1040	



	

	 47	

Table 1. 1041	

		1042	
* stem-leaf allocation is a function of annual NPP.  2.2 is the nominal value at NPP = 800 gC m-2 yr-1 1043	
 1044	
Table 2. 1045	

 1046	
 1047	

Captions of Tables and Figures  1048	

Table 1. Default PFT-level, site-specific and optimized parameters for the PiTS site used 1049	

in CLM 4.0.  PFT-level parameters are for the temperate evergreen needleleaf forest 1050	

(ENF) type.  Optimized values were obtained using the pretreatment data (PRE_OPT), 1051	

and for the transpiration data during the shading period (HS_MB).  In the HS_MB 1052	

optimization, only the mp and bp parameters were optimized, while other parameters 1053	

retain their pretreatment optimization values.  1054	

Table 2. Pretreament state variables included in the optimization. Simulated values were 1055	

obtained using the default parameters (PRE_STD) and the optimized parameters 1056	

(PRE_OPT). The bias reduction (%) caused by the optimization is listed in the last 1057	

column. In the case of leaf, root and aboveground biomass, we use allometric equations 1058	

Parameter Description Units Default Observed PRE_OPT HS_MB
measured
slatop Top	of	canopy	specific	leaf	area	(SLA) m2/gC 1.00E-02 1.02E-02 none 1.02E-02
dsladlai Change	in	SLA	through	per	unit	LAI gC-1 1.25E-03 0 none 0
leafcn leaf	C:N	ratio gC/gN 35 50 none 50
optimized
mp Ball-Berry	stomatal	conductance	slope none 6 none 5.59 71.3
bp Ball-Berry	stomatal	conductance	intercept µmol	m-2	s-1 5000 none 4960 61100
froot_leaf fine	root	to	leaf	allocation	ratio none 1 none 1.24 1.24
stem_leaf stem	to	leaf	allocation	ratio none 2.2* none 3.29 3.29
flnr fraction	of	leaf	N	in	RuBisCO none 0.05 none 0.0845 0.0845
q10_mr maintenance	respiration	t-sensitivity none 1.5 none 2.83 2.83

State%variable Units Observed PRE_STD PRE_OPT Bias%reduction%(%)
Leaf%carbon gC/m

2 [182,221] 419 209 96.55

Stem%carbon gC/m
2 [973,1220] 1455 1027 88.49

Root%carbon gC/m
2 488 859 408 78.44

Aboveground%biomass gC/m
3 [728,1758] 1645 1236 98.26

δ13C%leaf per%mil H27.99 H27.38 H27.49 18.03

δ13C%phloem per%mil H28.48 H27.38 H27.50 10.91

δ13C%Root per%mil H28.86 H27.36 H27.39 2.13

Sap%flow mm/day 2.40 3.70 2.37 97.85

Soil%respiration µmol%m
H2
%s

H1 3.63 5.20 3.26 76.58
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from multiple sources (Baldwin, 1987; Naidu et al., 1998; Vanlear et al., 1986) that went 1059	

into producing a range. The bias calculation uses the mean of the range. For sap flow and 1060	

soil respiration, daily observations were made, but the values represent a mean over the 1061	

25 pretreatment days over both LS and HS periods. δ13C values represent observed and 1062	

simulated values on the day before treatments began. 1063	

Figure 1 (a) Air temperature (T, °C), relative humidity (Hr, %) and (b) wind speed (u, m 1064	

s-1) under the shade cloth at the top of the canopy compared with open field 1065	

measurements at 2 m height; (c) Typical diurnal patterns of photosynthetically active 1066	

radiation (PAR, µmol m-2 s-1) at the site under full sun, light shade or heavy shade 1067	

treatments. 1068	

Figure 2 (a) Daily air temperature (°C) and precipitation (mm d-1) for the pretreatment 1069	

and treatment of light shade (LS) and heavy shade (HS) (Day -20 to 25), (b) change in 1070	

daily atmospheric long wave radiation (LW, W m-2), short wave radiation (SW, W m-2) 1071	

and 13CO2 (PPMV) prior to and after exposure to shade treatments. Dashed gray line 1072	

represents the starting day of the treatment. 1073	

Figure 3 (a) CLM simulated change of leaf carbon (PRE_STD_LeafC), stem carbon 1074	

(PRE_STD_StemC) and root carbon (PRE_STD_RootC) with default parameters, and 1075	

change of those (PRE_OPT_LeafC, PRE_OPT_StemC and PRE_OPT_RootC) simulated 1076	

with optimized parameters for the pretreatment period between year 2003 and Sep. 1st 1077	

(dashed gray line) of year 2010. Observational estimations of leaf (OBS_LeafC, which 1078	

are 221.1 g C m-2, 283.8 g C m-2 and 181.9 g C m-2), stem (OBS_StemC, which are 1079	

1011.2 g C m-2, 973.8 g C m-2 and 1220.1 g C m-2) and root (OBS_RootC, which is 488.4 1080	

g C m-2) are based on measured stem diameters at breast height and allometric 1081	
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relationships from similarly aged loblolly pine (Baldwin, 1987; Naidu et al., 1998; 1082	

Vanlear et al., 1986). Note that y-axis is log10-scaled. (b) Comparison of observed and 1083	

simulated light response of top of the canopy leaves of loblolly pine at the PiTS-1 site.  1084	

Solid black circles are mean ± 1 std dev of observations.  Solid red and green circles are 1085	

simulated results from the net photosynthesis module of the functional unit testing 1086	

framework using site-observed parameters (PRE_STD) and optimized parameters 1087	

(PRE_OPT), respectively (see section 2.2.2). Simulations are with the mean observed 1088	

internal CO2 concentrations (Ci) and leaf temperatures (Tleaf) at the observed light 1089	

(PAR) levels and the site’s observed leaf nitrogen (Na). Three grey bars represent the 1090	

mean ± 1 std dev of midday PAR levels under the light shade treatment (LS), heavy 1091	

shade treatment (HS) and open field condition (OF).  1092	

Figure 4 (a) Observed (obs) and CLM simulated (sim) daily soil temperature at 0-5cm 1093	

depth (standard deviation, SD = 0.6-1.4 °C), (b) volumetric soil water content at 15-95cm 1094	

depth (±SD) and (c) the transpiration before and after initiation of light shade (LS) or 1095	

heavy shade (HS) treatments (SD = 0.1-1.7 mm day-1). “HS – opt” represents the CLM 1096	

simulation with optimized leaf conductance parameters. The vertical dashed lines 1097	

indicate the starting day of the shade treatments. 1098	

Figure 5 (a) Observed (obs) and CLM simulated (sim) daily stem carbon relative to day 1099	

0 (±SD), and (b) soil respiration prior to and after exposure to light shade (LS) and heavy 1100	

shade (HS) treatments (±SD). Both observed and simulated stem carbon were normalized 1101	

to 1 at Day 0. The simulated soil respiration is the combination of autotrophic respiration 1102	

from roots and heterotrophic respiration from the decay of litter and soil organic matter. 1103	

The vertical dashed lines indicate the starting day of the treatments. 1104	
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Figure 6 (a) Observed (black) and CLM simulated (blue) change in δ13C (parts per 1105	

thousand (‰)) of (a) leaf, (b) phloem, (c) bulk root and (d) soil surface efflux δ13C for the 1106	

light shade (LS, open circle) and heavy shade (HS, filled circle) pretreatment and 1107	

treatment periods (± standard error (SE)). The modeled δ13C values were calculated from 1108	

the CLM simulated 13C and 12C variables and the reference standard (0.0112372) using 1109	

the equation described in https://en.wikipedia.org/wiki/Δ13C. The 13CO2 labeling pulse 1110	

was initiated on Sep. 1st in year 2010 (Day 0). Dashed gray line represents the starting 1111	

day (again Day 0) of the shading treatment. To better visualize the model results, inset 1112	

figures illustrate the CLM simulated δ13C values for the light shade (open triangle) and 1113	

heavy shade (filled triangle) treatments from Day 1 to Day 25. 1114	

Figure 7. Conceptual model of label transport, assuming a constant velocity (V) of 1115	

phloem stream with a cross-sectional area for the phloem pathway that varies as a 1116	

function of ongoing photosynthetic rate. Cross-sectional area is conceptualized here as a 1117	

varying number of similar phloem elements, with white elements in an active state, and 1118	

dark elements inactive. The experimental case with a higher photosynthetic rate for the 1119	

LS treatment and lower photosynthetic rate for the HS treatment is illustrated. Flux from 1120	

roots (FR) includes root respiration, root exudation, and turnover of root tissue. The entire 1121	

label is assumed to exit the leaf and enter the active phloem stream, at a rate that is 1122	

independent of the ongoing rate of photosynthesis, as observed in the experiment. 1123	

 1124	
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Figure 1 (a) Air temperature (T, °C), relative humidity (Hr, %) and (b) wind speed (u, m s-1) under the shade cloth at the 

top of the canopy compared with open field measurements at 2 m height; (c) Typical diurnal patterns of 

photosynthetically active radiation (PAR, µmol m-2 s-1) at the site under full sun, light shade or heavy shade treatments. 

(a) 

(b) 

(c) 
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Figure 2 (a) Daily air temperature (°C) and precipitation (mm d-1) for the pretreatment and treatment of light shade (LS) 

and heavy shade (HS) (Day -20 to 25), (b) change in daily atmospheric long wave radiation (LW, W m-2), short wave 

radiation (SW, W m-2) and 13CO2 (PPMV) prior to and after exposure to shade treatments. Dashed gray line represents 

the starting day of the treatment. 
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Figure 3 (a) CLM simulated change of leaf carbon (PRE_STD_LeafC), stem carbon (PRE_STD_StemC) and root 

carbon (PRE_STD_RootC) with default parameters, and change of those (PRE_OPT_LeafC, PRE_OPT_StemC and 

PRE_OPT_RootC) simulated with optimized parameters for the pretreatment period between year 2003 and Sep. 1st 
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(dashed gray line) of year 2010. Observational estimations of leaf (OBS_LeafC, which are 221.1 g C m-2, 283.8 g C m-2 

and 181.9 g C m-2), stem (OBS_StemC, which are 1011.2 g C m-2, 973.8 g C m-2 and 1220.1 g C m-2) and root 

(OBS_RootC, which is 488.4 g C m-2) are based on measured stem diameters at breast height and allometric 

relationships from similarly aged loblolly pine (Baldwin, 1987; Naidu et al., 1998; Vanlear et al., 1986). Note that y-

axis is log10-scaled. (b) Comparison of observed and simulated light response of top of the canopy leaves of loblolly 

pine at the PiTS-1 site.  Solid black circles are mean ± 1 std dev of observations.  Solid red and green circles are 

simulated results from the net photosynthesis module of the functional unit testing framework using site-observed 

parameters (PRE_STD) and optimized parameters (PRE_OPT), respectively (see section 2.2.2). Simulations are with the 

mean observed internal CO2 concentrations (Ci) and leaf temperatures (Tleaf) at the observed light (PAR) levels and the 

site’s observed leaf nitrogen (Na). Three grey bars represent the mean ± 1 std dev of midday PAR levels under the light 

shade treatment (LS), heavy shade treatment (HS) and open field condition (OF). 
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Figure 4 (a) Observed (obs) and CLM simulated (sim) daily soil temperature at 0-5cm depth (standard deviation, SD = 

0.6-1.4 °C), (b) volumetric soil water content at 15-95cm depth (±SD) and (c) the transpiration before and after initiation 

of light shade (LS) or heavy shade (HS) treatments (SD = 0.1-1.7 mm day-1). “HS – opt” represents the CLM simulation 

with optimized leaf conductance parameters. The vertical dashed lines indicate the starting day of the shade treatments. 
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Figure 5 (a) Observed (obs) and CLM simulated (sim) daily stem carbon relative to day 0 (±SD), and (b) soil respiration 

prior to and after exposure to light shade (LS) and heavy shade (HS) treatments (±SD). Both observed and simulated 

stem carbon were normalized to 1 at Day 0. The simulated soil respiration is the combination of autotrophic respiration 

from roots and heterotrophic respiration from the decay of litter and soil organic matter. The vertical dashed lines 

indicate the starting day of the treatments. 

 

 

(b) 

(a) 



	 7	

	
Time since labeling (days)

-20 -10 0 10 20 30

 le
af

 δ
13

C
 (‰

)

-20

0

20

40

HS - obs
LS - obs
HS - sim
LS - sim

0 10 20
-21.0

-20.5

-20.0

	

	

Time since labeling (days)

-20 -10 0 10 20 30

 p
hl

oe
m

 δ
13

C
 (‰

)

0

100

200

0 10 20
-22.5

-22.0

-21.5

		

		

Time since labeling (days)

-20 -10 0 10 20 30

 r
oo

t δ
13

C
 (‰

)

-30

-25

-20

-15

-10

-5

0

0 10 20
-24.0

-23.5

-23.0

	

	 Time since labeling (days)
-20 -10 0 10 20 30

so
il 

C
O

2 δ
13

C
 (‰

)

0

50

100

150

200

250

0 10 20
-19

-18

-17

-16

 

Figure 6 (a) Observed (black) and CLM simulated (blue) change in δ13C (parts per thousand (‰)) of (a) leaf, (b) 

phloem, (c) bulk root and (d) soil surface efflux δ13C for the light shade (LS, open circle) and heavy shade (HS, filled 

circle) pretreatment and treatment periods (± standard error (SE)). The modeled δ13C values were calculated from the 
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CLM simulated 13C and 12C variables and the reference standard (0.0112372) using the equation described in 

https://en.wikipedia.org/wiki/Δ13C. The 13CO2 labeling pulse was initiated on Sep. 1st in year 2010 (Day 0). Dashed 

gray line represents the starting day (again Day 0) of the shading treatment. To better visualize the model results, inset 

figures illustrate the CLM simulated δ13C values for the light shade (open triangle) and heavy shade (filled triangle) 

treatments from Day 1 to Day 25. 
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Figure 7. Conceptual model of label transport, assuming a constant velocity (V) of phloem stream with a cross-sectional 

area for the phloem pathway that varies as a function of ongoing photosynthetic rate. Cross-sectional area is 

conceptualized here as a varying number of similar phloem elements, with white elements in an active state, and dark 

elements inactive. The experimental case with a higher photosynthetic rate for the LS treatment and lower 

photosynthetic rate for the HS treatment is illustrated. Flux from roots (FR) includes root respiration, root exudation, and 

turnover of root tissue. The entire label is assumed to exit the leaf and enter the active phloem stream, at a rate that is 

independent of the ongoing rate of photosynthesis, as observed in the experiment. 

 

	


