

Supplement of

Impacts of climate and reclamation on temporal variations in CH₄ emissions from different wetlands in China: from 1950 to 2010

T. Li et al.

Correspondence to: W. Zhang (zhw@mail.iap.ac.cn)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Supplementary materials for manuscript entitled: Impacts of climate and reclamation on temporal variations in CH_4 emissions from different wetlands in China: From 1950 to 2010.

Authors: Tingting Li, Wen Zhang, Qing Zhang, Yanyu Lu, Guocheng Wang, Zhenguo Niu, Maarit Raivonen, Timo Vesala

Supplementary material S1: Estimate CH₄ emissions from lakes and rivers

In this paper, we totally followed Chen's method (Chen *et al.*, 2013) to calculate regional CH_4 emissions from lakes and rivers across China. Lakes can be found in five major regions in China: the plains of eastern China, the Qinghai-Tibetan Plateau, the Yunnan-Guizhou Plateau, the Mongolia-Xinjiang Plateau, and the Northeast China Plain (Wang & Dou, 1998). The followed equation was used to calculate regional CH_4 emissions from lakes:

$$CH4_{regional} = \sum_{i} \sum_{j} \sum_{k} f_{ijk} \times A_{ijk} \times D_{ijk}$$
(S1.1)

Where *i* is the lake region, *j* is the growing season and non-growing season (between the different regions), and *k* is the different zones (pelagic zone and/or littoral zone). f_{ijk} is the seasonal mean CH₄ fluxes under conditions of *i*, *j*, and *k* (listed in Table S1). A_{ijk} is the lakes' area, and D_{ijk} is the duration of the growing and non-growing season or the unfrozen season. $CH4_{regional}$ is the regional CH₄ emissions from lakes.

The average area-weighted CH₄ flux was calculated as followed:

$$CH4_{flux} = \frac{CH4_{regional}}{\sum_i \sum_j \sum_k A_{ijk}}$$
(S1.2)

Uncertainties of the estimation were come from the fraction of the littoral zones of the lakes, which was assumed at 5% to 12% for all lakes in China based on a preliminary estimate (Chen *et al.*, 2009). More details about this method please see Chen *et al.* (2013).

When used [Eqn. (S1.1)] to calculate regional CH₄ emissions from rivers, f_{ijk} is assumed to equal to the value in the pelagic zone, since no available data present.

Location	Zones	CH_4 flux (mg m ⁻² h ⁻¹)	Sampling season	References			
Eastern Plain							
Lake Donghu	Pelagic zone	0.97±0.78	Apr. 2003 to Mar. 2004	Xing et al., 2005			
Lake Taihu	Littoral zone ^a	0.4±0.9	Aug. 2003 to Aug.2004	Wang <i>et al.</i> , 2006			
	Littoral zone ^b	10±23.0	Aug. 2003 to Aug.2004				
	Pelagic zone	0.5 ±1.9	Aug. 2003 to Aug.2004				
Lake Boyang	Pelagic zone	0.82±0.22	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Dongting	Pelagic zone	0.2±0.64	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Caohu	Pelagic zone	0.021 ± 0.012	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Nansihu	Pelagic zone	0.034 ± 0.020	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Hongzehu	Pelagic zone	0.019 ± 0.010	Dec. 2004 to Jan.2005	Chen et al., 2007			
Three Gorges Reservoir Region	Littoral zone	6.7 ± 13.3	Jul. to Sep.,2008	Chen et al., 2009a			
	Pelagic zone	0.26 ± 0.38	Jan. to Dec., 2009	Chen et al., 2011			
	Littoral zone	0.22 ± 0.26	the inundated season	Yang <i>et al.</i> , 2012			
Qinghai-Tibet Plateau							
Lake Huahu	Littoral zone	15.1	Jun. to Aug. 2006 and 2007	Chen et al., 2009b			
Mongolia-Xinjiang Plateau							
Lake Wuliangsu	Littoral zone ^b	15.28	Apr. to Oct.2003	Duan et al., 2005			
	Littoral zone ^c	2.16	Apr. to Oct.2003				
Yunnan-Guizhou Plateau							
Lake Fuxianhu	Pelagic zone	0.012 ± 0.029	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Erhai	Pelagic zone	0.044 ± 0.15	Dec. 2004 to Jan.2005	Chen et al., 2007			
Lake Dianchi	Pelagic zone	0.16 ± 0.035	Dec. 2004 to Jan.2005	Chen et al., 2007			
Taiwan Island							
10 lakes on plateau	Pelagic zone	0.07 ± 0.06	NS	Wang <i>et al.</i> , 1998			
26 lakes on plain	Pelagic zone	0.11 ±0.19	NS	Wang et al., 1998			

Table S1 Measurements of CH₄ fluxes from lakes in China, from Chen et al. (2013).

^a Bare littoral zone; ^bEmergent plant zone; ^cSubmerged plant zone; NS, not specified.

Supplementary material S2: Model description, modification and validation S2.1 Description and modification of CH4MOD_{wetland}

CH4MOD_{wetland} is a biogeophysical model that aims to simulate CH₄ production, oxidation and emission from natural wetlands (Li *et al.*, 2010). The model adopted the hypothesis of CH4MOD model (Huang *et al.*, 1998, 2004, 2006; Zhang *et al.*, 2011), and made modifications based on the supply of methanogenic substrates in natural wetlands that differs significantly from that in rice paddies. Model inputs include daily soil temperature, water table depth, the annual above-ground net primary productivity (*ANPP*) and soil texture. The outputs are daily and annual CH₄ production and emissions. In principle, CH4MOD_{wetland} is possible to simulate CH₄ emissions from several kinds of natural wetlands, since it was validated against independent field measurements of CH₄ fluxes from different wetland sites across China, Canada and USA (Li *et al.*, 2010). More details about CH4MOD_{wetland} are well documented in the previous studies (Li *et al.*, 2010; 2012).

In CH4MOD_{wetland}, the environmental factors that influence CH₄ production and emission in natural wetlands include soil temperature, soil texture and soil redox potential. Previous studies (Atkinson & Hall, 1976; King & Wiebe, 1978; Bartlett *et al.*, 1985; 1987; Magenheimer *et al.*, 1996) indicate that methane emissions from various coastal salt marshes in the temperate zones vary with salinity. In order to provide the capability of simulating methane emissions from coastal wetland, we adopted the relationship between salinity and methane fluxes according to Poffenbarger *et al.* (2011).

$$f(s) = 10^{a \times s} \tag{S2.1}$$

where f(s) represents the effect of salinity on CH₄ production. *s* is the salinity (psu, practical salinity unit). *a* is an empirical constant.

S2.2 Description of TOPMODEL for simulating water table depth

Following previous research (Bohn *et al.*, 2007; Kleinen *et al.*, 2012; Lu & Zhuang *et al.*, 2012; Zhu *et al.*, 2013), this study is based on the topographic wetness index (TWI) $ki = \ln(\alpha_i/\tan\beta_i)$ to represent the spatially distributed water table depth for a 1 km sub-grid within a grid of 0.5 °, where α_i is the upslope contributing area above point *i*, $\tan\beta_i$ is the local surface slope at that point. The central equation of TOPMODEL is

$$zi = z - m \times (ki - \lambda) \tag{S2.2}$$

where *zi* is the local water table depth in a 1 km pixel, *z* is the average water table depth in the 0.5 ° grid, *m* is the scaling parameter, *ki* is the local topographic wetness index (TWI) in the 1 km pixel, λ is the average of *ki* over the 0.5 ° grid cell. The value of *z* is calculated by the soil moisture content in a 0.5 ° grid cell. More details about calculating the average water table depth please see the previous study (Letts, *et al.*, 2000; Lu & Zhuang *et al.*, 2012). For the scaling parameter *m*, we followed Kleinen *et al.* (2012) that it described the capability of transmissivity with depth for each soil type, and was classified by the soil texture.

After acquiring the local water table depth (*zi*) for each 1 km pixel, we used an approach of (Zhu *et al.*, 2013). The water table depth z_{wet} of wetland in a 0.5 ° grid cell is calculated as

$$z_{wet} = \frac{\sum_{i=1}^{i=n} z_i}{n}$$
(S2.3)

where *n* is the number of 1 km wetland pixels within each 0.5° grid cell, and the value of *n* is derived from the GLWD-3 data set, within each grid cell.

S2.3 Model validation

Two simulations were made to test the model performance at the site scale and the grid scale. To begin with, we used the site-specific measurements of air temperature, soil temperature, water table depth, aboveground net primary productivity (ANPP) and the observed plant phenology to drive CH4MOD_{wetland} to simulate site-specific daily CH₄ fluxes at each site (Table S2). We compared these daily simulated CH₄ fluxes with the measurements. Fig S1 (a, b, d, e, g, i and k) and Fig S2a shows the comparisons of the seasonal variations and the monthly amount between the modeled and observed CH₄ fluxes.

Moreover, in order to test the performance of the integrated model framework (CH4MOD_{wetland}/TEM/TOPMODEL) (Fig. 1) at the grid level, we also compared the observed monthly CH₄ fluxes in the wetland sites (Table S2) and the simulated monthly CH₄ fluxes at the $0.5 \times 0.5^{\circ}$ grid. We used the gridded data of climate, soil and vegetation to drive the integrated model framework (Fig. 1) on a monthly step. Field measurements in the wetland show that there are large uncertainties in the ANPP, standing water depth and the plant phenology. For example, in the Sanjiang Plain, the range of ANPP ranges from 422 to 530 g m⁻² (Hao, 2006; Li *et al.*, 2012); The average standing water depth during the growing season ranges from 1 to 10 cm (Song *et al.*, 2007); The mature period of the plant ranges from mid-July to

mid-August (Hao, 2006). We made 8 sensitivity experiments with differing ANPP, standing water depth and the plant mature period. The range of input ANPP, standing water depth and the plant mature period are from the observed data at each wetland sites (Table S3). Variations of half the range in ANPP, standing water depth and the plant mature period on the basis input data were used as the maximum and minimum values of the input. Error bars in Fig. S1 (c, f, h, j, l) and Fig. S2b are determined by the sensitivity experiments.

Table S2 Site description						
Site name	Site name Location		Plant speices	Experiment period	References	
Sanjiang Plain (SJ)	47 35' N,133 31'E	marsh	<i>Carex & Deyeuxia</i> 2003-2005		Hao (2006);	
					Song <i>et al.</i> , (2007)	
Ruoergai Plateau (REG)	32 47'N,102 32'E	peatland	Carex	2001	Ding <i>et al.</i> , (2004)	
Haibei alpine marsh (HB)	37 29'N,101 12'E	marsh	Carex	2002	Hirota et al., (2004)	
Zhalong wetland (ZL)	46 52'N -47 32'N,	floodplain	Phragmites	2009	Huang <i>et al.</i> , (2011)	
	123 47'E- 124 37'E					
Wuliangsu lake (WLS)	40 47′ -41 °03′ N,	floodplain	Phragmites	2003	Duan <i>et al.</i> , (2005)	
	108 43'-108 57' E					
Liao river delta (LRD)	40 40'-41 25'N,	coastal wetland	Phragmites	1997	Huang <i>et al.</i> , (2005)	
	121 35'- 122 55'E					
Chonging island (CMI)	31 °00' -31 °30' N,	coastal wetland	Scirpus	2004	Yang <i>et al.</i> , (2007)	
	121 00' -122 00' E					

Parameters	Description	Value					I.I:4		
and inputs	Description	SJ	REG	HB	ZL	WLS	LRD	CMI	Unit
VI [*]	Vegetation index	$2.4^{a)1},$ $2.8^{b)1}$	2.4 ¹	2.4^{1}	1^1	1^1	1^1	1^1	dimensionless
ANPP [^]	Aboveground net primary productivity	$485^{a)2}, 450^{b)2}$	340 ^{c)3} , 290 ^{d)3}	380 ⁴	1200 ⁵	1860 ^{e)6} , 2520 ^{f)6}	1200 ⁵	692 ⁷	$g m^{-2} yr^{-1}$
$\mathbf{f_{root}}^{*}$	Proportion of below-ground to the total production	$0.6^{a)8}, 0.5^{b)8}$	0.6 ^{c)d)9}	0.5^{9}	0.5^{9}	0.5^{9}	0.5^{9}	0.5^{9}	dimensionless
P _{ox} *	The fraction of CH_4 oxidized during plant mediated transport	0.5^{1}	0.5^{1}	0.5^{1}	0.9^{1}	0.9^{1}	0.9^{1}	0.9^{1}	dimensionless
${\rm T_{veg}}^{*}$	The fraction of plant mediated transport was available	1^1	1^{1}	1^1	1^{1}	1^{1}	1^1	1^1	dimensionless
SAND	Soil sand fraction	56.0 ^{a)10,11} ,47.0 ^{b) 10,11}	66.0 ^{10,11}	80^{12}	47^{12}	80^{12}	30 ¹²	65 ¹²	%
SOM	Concentration of soil organic matter	$70^{a)} {}^{10,11}$,246 ^{b)} 10,11	520 ^{10,11}	146 ¹³	222^{13}	133 ¹³	103 ¹³	212^{13}	$g kg^{-1}$
ρ ^	Soil bulk density	$1.00^{a)}$ 10,11 ,0.74 ^{b)} 10,11	0.75 ^{10,11}	1.73 ¹³	1.40^{13}	1.52^{13}	0.9 ¹³	1.55 ¹³	g cm ⁻³

Table S3 Site-specific parameters and model inputs of CH4MOD_{wetland}

a) For *Carex lasiocarpa* site; b) For *Deyeuxia angustifolia* site; c) For *Carex meyeriana* site; d) For *Carex muliensis* site; e) For *Phragmites australis* site1; f) For *Phragmites australis* site2; * Defined as model parameters; ^ Defined as model inputs.

1) this study

2) Hao, Q. J.: Effect of land-use change on greenhouse gases emissions in freshwater marshes in the Sanjiang Plain, PhD Thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 2006. (in Chinese with English abstract).

3) Tian, Y. B., Xiong, M. B., Xiong, X. S. and Song, G. Y.: The organic carbon distribution and flow in wetland soil–plant system in Ruoergai Plateau, Acta Phytoecological Sinica, 27, 490–495, 2003. (in Chinese with English abstract)

4) Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Gao, G. M. and Marikoe, S.: Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland, Soil Biol. Biochem., 36, 737–748, 2004.

5) Jia, Q. Y., Zhou, L., Xie, Y. B. and Zhou, G. S.: Study on biomass dynamics of Phragmites community in Panjin wetland, Journal of Meteorology and Environment. 22, 25–29, 2006. (in Chinese with English abstract).

6) Duan, X. N., Wang, X. K., Mu, Y. J. and Ouyang, Z. Y.: Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China, Atmos. Environ., 39, 4479-4487, 2005.

7) Cheng, X. L., Peng, R. H., Chen, J. Q., Luo, Y. Q., Zhang, Q., An, S. Q., Chen, J. and Li, B: CH₄ and N₂O emissions from *Spartina alterniflora* and *Phragmites australis* in experimental mesocosms, Chemosphere, 68, 420–427, 2007.

8) Ma, X. H., Lu, X. G., Yang, Q., and Yan, M. H.: Carbon cycle of a marsh in Sanjiang Plain, Scientia Geographica Sinca, 16, 323–330, 1996. (in Chinese English abstract)

9) Gill, R. A. and Jackson, R. B.: Global patterns of root turnover for terrestrial ecosystems, New Phytol., 147, 13-31, 2000.

10) State Soil Survey Service of China (SSSSC): China Soil Series, vol. 2., China Agriculture Press, Beijing, 622-637, 1996. (in Chinese).

11) State Soil Survey Service of China (SSSSC): China Soil Series, vol. 6., China Agriculture Press, Beijing, 512-513, 1996. (in Chinese).

12) FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database, version 1.0, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2008.

13) FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database, version 1.2, FAO and IIASA, Rome, Italy and Laxenburg, Austria, 2012.

Fig. S1: Comparison of simulated and observed seasonal CH₄ variations. SJ: the "site-scale" validation (a, b), the "grid-scale" validation (c); REG: the "site-scale" validation (d, e), the "grid-scale" validation (f); HB: the "site-scale" validation (g), the "grid-scale" validation (h); ZL: the "site-scale" validation (i), the "grid-scale" validation (j); LRD: the "site-scale" validation (k), the "grid-scale" validation (l). Error bars in a and b are the standard errors from 3 sampling replicates. Error bars in c, f, h, j and l are the uncertainties from the heterogeneities of ANPP, standing water depth and the plant mature period in the grid.

Fig. S2: Observed vs. simulated monthly CH_4 emissions from 5 wetland sites. (a) site-scale validation; (b) grid-scale validation. Dashed line is 1:1. The horizontal bars represent standard errors from 3 sampling replicates in SJ. The vertical bars are the uncertainties from the heterogeneities of ANPP, standing water depth and the plant mature period in the grid. For the wetland where two micro-sites locate (SJ and REG), the average observed/simulated values were used to represent the average CH_4 emissions at that site.

Supplementary material S3: Division of the inland wetlands in China

Chinese inland wetlands are divided to 5 regions (Fig. 2) (Lang & Zu, 1983). They are distributed unevenly and primarily occur in in northeastern China (30%) (Region I; Fig. 2) and the Qinghai Tibetan Plateau (50%) (Region II; Fig. 2) (Ding *et al.*, 2004). Marshes (dominated by *Carex*, *Phragmites*, *Cyperus*, *Blymus*, and *Deyeuxia*) and the swamps (dominated by *Alnus* and *Larix*) are widely distributed in the northeast China. Peatlands (dominated by *Carex*, *Pedicularis*, and *Scirpus* species) are the mainly type in Qinghai Tibetan Plateau. In Region III (Fig. 2) (Inner Mongolia and northwestern China) and Region IV (Fig. 2) (North China plain and the Middle-Lower Yangtze Plain), marshes and floodplains dominated by *Phragmites australis* are the important landscape. Peatlands (dominated by *Carex and Sphagnum*) and marshes (dominated by *Phragmites australis*) are the main types in Region V (Fig. 2) (southern China).

References

- Atkinson, L. P. and Hall, J. R.: Methane distribution and production in the Georgia salt marsh, Estuarine Coastal Mar. Sci., 4, 677–686, 1976.
- Bartlett, K. B., Harriss, R. C. and Sebacher, D. I.: Methane flux from coastal salt marshes, J. Geophys. Res., 90, 5710–5720, 1985.
- Bartlett, K. B., Bartlett, D. S., Harriss, R. C. and Sebacher, D. I.: Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4, 183–202, 1987.
- Bohn, T. J., Lettenmaier, D. P., Sathulur, K., Bowling, L. C., Podest, E., McDonald, K. C. and Friborg, T: Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change, Environ. Res. Lett., 2, 045015 doi:10.1088/1748-9326/2/4/045015, 2007.
- Chen, H., Zhu, Q., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., Jiang, H., Xiang, W. H., Chang, X., Deng, X. W. and Yu G. R.: Methane emissions from rice paddies natural wetlands, lakes in China: synthesis new estimate, Glob. Change Biol., 19, 19-32, 2013.
- Chen, H., Wu, Y., Yuan, X., Gao, Y., Wu, N. and Zhu, D.: Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir, J. Geophys. Res., 114, D18301, doi:10.1029/2009JD012410, 2009a.
- Chen, H., Wu, N., Yao, S. P., Gao, Y. H., Zhu, D., Wang, Y. F., Xiong, W. and Yuan, X. Z.: High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau, Atmos. Environ., 43, 4995–5000, 2009b.
- Chen, H., Yuan, X., Chen, Z., Wu, Y., Liu, X., Zhu, D., Wu, N., Zhu, Q., Peng, C. and Li, W.: Methane emissions from the surface of the Three Gorges Reservoir, J. Geophys. Res., 116, D21306, doi:10.1029/2011jd016244, 2011.
- Chen, Y., Bai, X., Li, X., Hu, Z., Liu, W. and Hu, W.: A priminary study of the methane flux on the the water-air interface of eight lakes in winter, China, Journal of Lake Sciences, 19, 11–17, 2007. (in Chinese with an English abstract)
- Ding, W., Cai, Z. and Wang, D.: Preliminary budget of methane emissions from natural wetlands in China, Atmos. Environ., 38, 751–759, 2004.
- Duan, X. N., Wang, X. K., Mu, Y. J. and Ouyang, Z. Y.: Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China, Atmos. Environ., 39, 4479-4487, 2005.
- Hao, Q. J.: Effect of land-use change on greenhouse gases emissions in freshwater marshes in the Sanjiang Plain, PhD Thesis, Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing, 2006. (in Chinese with English abstract).

- Huang, Y., Sass, R. L. and Fisher, F. M.: A semi-empirical model of methane emission from flooded rice paddy soils, Glob. Change Biol., 4, 247–268, 1998.
- Huang, Y., Zhang, W., Zheng, X., Li, J. and Yu, Y.: Modeling methane emission from rice paddies with various agricultural practices, J. Geophys. Res., 109, D08113, doi: 10.1029/2003JD004401, 2004.
- Huang, Y., Zhang, W., Zheng, X., Han, S. and Yu, Y.: Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database, Acta Ecologica Sinica, 26, 980–987, 2006.
- Hirota, M., Tang, Y., Hu, Q., Hirata, S., Kato, T., Mo, W., Gao, G. M. and Marikoe, S.: Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland, Soil Biol. Biochem., 36, 737–748, 2004.
- Huang, G. H., Li, X. Z., Hu, Y. M., Shi, Y. and Xiao, D. N.: Methane emission from a natural wetland of northern China, J. Environ. Sci. Heal. A, 40, 1227–1238, 2005.
- Huang, P. Y., Yu, H. X., Chai, L. H., Chai, F. Y. and Zhang, W. F.: Methane emission flux of Zhalong Phragmites Australis wetlands in growth season, Chinese Journal of Applied Ecology, 22, 1219-1224, 2011. (in Chinese with English abstract).
- King, G. M. and Wiebe, W. J.: Methane release from soils of a Georgia salt marsh, Geochimi. Cosmochim. Ac., 42, 343–348, 1978.
- Kleinen, T., Brovkin, V. and Schuldt, R. J.: A dynamic model of wetland extent and peat accumulation: results for the Holocene, Biogeosciences, 9, 235–248, 2012.
- Lang, H. Q. and Zu, W. C.: Marshland in Chinese, Shandong Science and Technology Press, China, 1983.
- Letts, M. G., Roulet, N. T., Comer, N. T., Skarupa, M. R. and Verseghy, D.: Parameterization of peatland hydraulic properties for the Canadian Land Surface Scheme, Atmosphere Ocean, 38, 141–160, 2000.
- Li, T., Huang, Y., Zhang, W. and Song, C.: CH4MOD_{wetland}: A biogeophysical model for simulating CH₄ emissions from natural wetland, Ecol. Model., 221, 666–680, 2010.
- Li, T., Huang, Y., Zhang, W. and Yu, Y.: Methane emissions associated with the conversion of marshland to cropland and climate change on the Sanjiang Plain of northeast China from 1950 to 2100, Biogeosciences, 9, 1–17, 2012.
- Lu, X. and Zhuang, Q.: Modeling methane emissions from the Alaskan Yukon River

basin, 1986-2005, by coupling a larg-scale hydrological model and a process-based methane model, J. Geophys. Res., 117, G02010, doi:10.1029/2011JG001843.

- Magenheimer, J. F., Moore, T. R., Chmura, G. L. and Daoust, R. J.: Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick Canada, Estuaries, 19, 139–145, 1996.
- Poffenbarger, H. J., Needelman, B. A. and Megonigal, J. P.: Salinity influence on methane emissions from tidal marshes, Wetlands, 31, 831–842, 2011.
- Song, C. C., Zhang, J. B., Wang, Y. Y., Wang, Y. S. and Zhao, Z. C.: Emission of CO₂, CH₄ and N₂O from freshwater marsh in northeast of China, J. Environ. Manage., 40, 6879–6885, 2007.
- Wang, S. M. and Dou, H. S.: Lakes in China, Beijing, Science Press, Beijing, China, 1998. (in Chinese)
- Wang, S., Chen, Z. And Zhang, Z.: Methane emissions from lakes in Taiwan, Oceanologia et Limnologia Sinica, 29, 527-534, 1998. (in Chinese with an English abstract)
- Wang, H. J., Lu, J. W., Wang, W. D., Yang, L. Y., Yin, C. Q.: Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China, J. Geophys. Res., 111, D17109, doi:10.1029/2005JD006864, 2006.
- Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y. And Rong, K.: Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropicalLake in China, Atmos. Environ., 39, 5532-5540, 2005.
- Yang, L., Lu, F., Wang, X., Duan, X., Song, W., Sun, B., Chen, S., Zhang, Q., Hou, P., Zheng, F., Zhang, Y., Zhou, X., Zhou, Y. And Ouyang, Z.: Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir, J. Geophys. Res., 117, D10109, doi:10.1029/2011jd017362, 2012.
- Yang, H. X., Wang, D. Q., Chen, Z. L., Chen, H., Wang, J., Xu, S. Y. and Yang, L. Y.: Seasonal variation of CH₄ emission from Chongming east intertidal flat of Yangtze River Estuary, Scientia Geogr Aphica Sinca, 27, 408–413, 2007. (in Chinese with English abstract)
- Zhang, W., Yu, Y., Huang, Y., Li, T. and Wang, P.: Modeling methane emissions from irrigated cultivation in China from 1960 to 2050, Glob. Change Biol., 17, 3511–

3523, 2011.

- Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M., Prinn, R. G., and McGuire, A. D.: Response of global soil consumption of atmospheric methane to changes in atmospheric climate and Nitrogen deposition. Global Biogeochem. Cy., 27, 650-663, 2013.
- Zhu, X. D., Zhuang, Q. L., Xiang, G., Sokolov, A. and Schlosser, C. A.: Pan-Arctic land-atmospheric fluxes of methane and Carbon dioxide in response to climate change over the 21st century, Environ. Res. Lett., 8, 045003, 2013.